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Abstract

This paper evaluates the effects of imposing Value-at-Risk (VaR) limits and quan-
titative restrictions on portfolio choices in the context of a risk-based supervision
framework for defined contribution pension funds. It shows the conditions under
which VaR constraints are equivalent to constraints on volatility. The paper also
presents some further considerations that regulators should take into account when
adopting a risk-based supervision framework when contributions are mandatory and
a significant part of the pension depends on the performance of past investments.
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1 Introduction

A risk-based approach for supervision and regulation of the financial sector is gaining
ground in both emerging and industrialised countries. As part of this approach,
regulators need to measure, monitor, and mitigate market risk. Value at Risk (VaR)
is one measure being explored for this purpose. One of the most important sectors
in which this practice has been adopted is the pension fund industry.1 As the recent
financial crisis has shown, risks are generally difficult to measure and mitigate. This
becomes crucial in the case of pensions, where people rely on their savings to finance
their old age.
As longevity increases, defined benefit pension systems may no longer be sustain-

able, and defined contribution systems are more likely to be considered. In defined
benefit schemes, retirement income is a function of labour income during the last years
before retirement, and the investment and longevity risks are taken by the sponsor
of the plan (namely, the company or government). In defined contribution schemes,
the retiree’s pension depends on the amount accumulated during the working life, so
the investment and longevity risks are taken by the individual.
Measuring risk adequately is important for individuals, because their portfolio

decisions have an impact on their future pensions. This is particularly important for
countries that have adopted a mandatory defined contribution pension system, as is
the case in most of Latin America and Eastern Europe.2 Most of these countries have
adopted stringent quantitative restrictions which, in practice, imply a very narrow
set of instruments in which pensions funds can invest. However, there is increas-
ing interest in adopting risk measures to complement or substitute the quantitative
restrictions.
This paper discusses some of the effects of imposing VaR limits and quantitative

restrictions on portfolio choices. The paper relates results on conventional portfo-
lio optimisation and VaR portfolio optimisation with the imposition of regulatory
constraints (such as volatility constraints, VaR limits, or quantitative constraints).
It also provides guidelines with respect to the conditions under which VaR limits
are preferable to quantitative limits. Finally, it also discusses some empirical issues
that regulators should consider prior to imposing VaR limits or adopting a risk-based
supervision framework for the case of defined contribution pension systems.
The paper is organised as follows. Section 2 describes the main rationale for im-

posing regulations based on VaR limits or quantitative restrictions for pension funds
in defined contribution systems. Section 3 presents some equivalences between VaR
limits and conventional risk measures and the conditions required to meet them. Sec-

1For example, Mexico has adopted a regulation that combines quantitative limits and a VaR limit
for the case of Pension Funds. Other countries with a defined contribution system are considering
adopting a similar framework.

2In Latin America: Bolivia, Chile, Colombia, Costa Rica, Dominican Republic, El Salvador,
Mexico, Peru, and Uruguay. In Eastern Europe: Bulgaria, Croatia, Estonia, Hungary, Kosovo,
Latvia, Lithuania, Macedonia, Poland, Russia, Slovak Republic, and Sweden.
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tion 4 uses the equivalences of the previous section to analyse the effects of imposing
VaR limits and discusses specific aspects that should be considered prior to imposing
a VaR-based supervision. Finally, section 5 presents some concluding remarks.

2 VaR-Based Limits for Pension Funds

Asset allocations for pension funds in a defined contribution system might vary de-
pending on the importance of this income for future retirees and on whether the
contribution is voluntary or compulsory. If retirement income strongly depends on
pension fund assets, risk tolerance may be lower than if there are other sources of
income. Risk tolerance may also be lower if the system is mandatory rather than
voluntary. This is particularly true in countries where there are explicit guarantees
or where implicit guarantees might be claimed.
Under mandatory defined contribution pension systems, the risks of investment

and longevity are assumed by affiliates, whose pensions depend on the returns ob-
tained by their portfolio over their lifetime. Since they invest for the long term,
short-term volatility does not necessarily have an impact on pensions, unless the
worker is close to retirement. Risk tolerance may thus change over the life cycle, and
pension funds should consider this when taking portfolio decisions.
Additionally, at the time of retirement, the worker faces interest rate and longevity

risks, as the assets that were accumulated need to be transformed into an annuity
(pension income). The value of that annuity depends on the interest rate and life
expectancy tables at the moment of retirement. Therefore, the asset allocation must
also consider these risks. All these considerations might be taken into account when
choosing the portfolio and defining the risk tolerance of pension funds.
Regulations on the portfolio allocation of pension funds in mandatory defined

contribution systems are often motivated by a potential principal-agent problem. The
regulator may consider that pension fund administrators (the agent) may be inclined
to take riskier positions than what the affiliates (the principal) would prefer in order
to attract clients by showing higher expected returns (and implicitly exposing the
principal to higher risk).3

Even with no principal-agent problems, investment strategies may be regulated
because of the existence of moral hazard. For example, several governments provide
minimum pension guarantees, which may induce both the principal and the agent to
take riskier positions than they would in the absence of the guarantees. Thus, the
optimality and welfare considerations of a given regulation depend on the extent of the
difference between the agent’s and the principal’s preferences and on the regulator’s
ability to approximate the preferences of the latter. Prior to imposing limits or similar
regulations, the regulator should be clear about the source of the problem and the

3Differences in the incentives of the principal and agents are less likely with a competitive market
and free movement of the affiliates among pension funds.
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preferences and technologies of the agents involved.
To address these potential problems, regulators tend to impose restrictions on the

investment strategies of pension funds in mandatory defined contribution systems.
The most frequent restriction is the imposition of quantitative limits that put a
ceiling on investments in variable-income instruments and/or investments abroad.
As discussed above, regulators have also adopted or are considering VaR limits.
Are quantitative and VaR limits related? Is one preferable to the other? Under

what conditions? How likely are they to be met in practice? What should regulators
consider prior to imposing limits? The next sections provide guidelines for answering
these questions.

3 Supporting Theory: Some Equivalences

This section presents a simple theoretical framework that relates conventional port-
folio optimisation with VaR and quantitative limits and derives the conditions under
which they may be equivalent. These strategies share the property of choosing port-
folios that combine returns and volatility such that the investor’s objective function is
maximised. For instance, the mean-variance frontier approach implies that the port-
folio is chosen to minimise volatility subject to the constraint of obtaining a certain
expected return.4 This strategy is equivalent to one that assumes quadratic prefer-
ences and therefore maximises a utility function that is increasing in expected return
and decreasing in volatility. Finally, under certain circumstances, these strategies are
also equivalent to a VaR approach, in which the investment manager chooses a port-
folio that maximises expected returns subject to the constraint that the probability
of a loss beyond a given amount is set at a fixed level. For this equivalence to hold,
the distribution of returns should be elliptical, which generally implies symmetry.5

These equivalences are derived in order to discern the likely effects of imposing
certain constraints on the choice of portfolios. This case is particularly relevant when
considering pension funds which are subject to stringent regulations in terms of expo-
sure to risk for the affiliates. This section also shows that, under certain conditions,
VaR limits would amount to imposing a bound on volatility. Furthermore, with
quadratic preferences or elliptical distribution of returns, portfolios would pertain
to the mean-variance frontier. Finally, this section discusses the effects of imposing
quantitative limits instead of VaR limits.

4The same frontier can be derived by maximising expected returns subject to a volatility con-
straint.

5A multivariate elliptical distribution is fully characterised by its mean, covariance matrix, and
characteristic generator. A linear combination of an elliptically distributed vector is also ellipti-
cal. Elliptical distributions are symmetric and unimodal, but they are not constrained in terms
of kurtosis. Examples of elliptic distributions are the normal, Student’s t, logistic, and Laplace
distributions.
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3.1 Quadratic Preferences and the Mean-Variance Frontier

Following Campbell et al (1997), let there be n risky assets with mean vector m and
covariance matrix V . Define wa as the n-vector of portfolio weights for an arbitrary
portfolio a with weights summing to unity. The mean return and variance of this
portfolio are denoted by µa = w0am and σ2a = w0aV wa, respectively.

Definition 1 Portfolio p is the minimum-variance portfolio of all portfolios with
mean return µp if its portfolio weight vector is the solution to the constrained optimi-
sation problem:

min
w

∙
1

2
w0V w

¸
(1)

subject to
w0ı = 1 (2)

w0m = µp. (3)

The first-order conditions with respect to the weights (w) are

V wp − λ1ı− λ2m = 0. (4)

where ı is an n-vector of ones, and λ1 and λ2 are the Lagrange multipliers of equations
(2) and (3), respectively.
Combining equations (2), (3), and (4), we obtain the solution

wp = G+Hµp, (5)

where G and H are n-vectors,

G =
1

D

£
BV −1ı−AV −1m

¤
H =

1

D

£
CV −1m−AV −1ı

¤
,

and A = ı0V −1m, B = m0V −1m, C = ı0V −1ı, and D = BC −A2.6

The expected return is, by definition, w0pm = µp and its volatility is

σ2p = w0pV wp =
1

D

£
Cµ2p − 2Aµp +B

¤
. (6)

The portfolio that attains the minimum variance subject to constraint (2) but not
(3) is the portfolio i with µi = A/C and σ2i = 1/C.

7 The mean-variance frontier is
the part of the curve of Figure 1 where the expected return satisfies µp ≥ µi.
If risk is volatility, the minimum-variance portfolio problem is closely related to

the optimisation problem in which an agent maximises expected utility with quadratic
preferences (see Huang and Litzenberger, 1988; LeRoy and Werner, 2001).

6The optimal portfolio (5) admits short sales (some of the weights may be negative). Short sales
can be seen as proxies for the use of derivates by the portfolio manager.

7This portfolio is denoted by i in Figure 1.
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Figure 1: Mean-Variance Frontier. An i denotes the minimum variance portfolio.
Portfolio r is chosen when a maximum expected return, maximum variance, or a
VaR constraint is binding.

Definition 2 Portfolio q is the optimal portfolio with quadratic preferences if its
portfolio weight vector is the solution to the following constrained optimisation:

max
w

∙
w0m− 1

2
γw0V w

¸
(7)

subject to equation (2).

The parameter γ > 0 defines the degree of risk aversion, with higher values indi-
cating higher aversion. The solution to this problem is

wq =
1

γ
V −1 (m+Eı) , (8)

where
E =

γ −A

C
.
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Proposition 1 Portfolio q belongs to the mean-variance frontier.

Proof. Define µq = m0wq and let γ be:

γ =
D

µqC −A
. (9)

Then, equation (8) can be expressed as

wq = G+Hµq,

which belongs to the mean-variance frontier.
Note that if µq is set equal to A/C (the minimum variance portfolio i), then γ

diverges, in which case the problem is not well defined. Thus, µq > A/C must hold,
which implies that portfolio i is not a portfolio q.
Next we consider the impact of imposing other constraints on an agent that has

quadratic preferences. Studying how portfolio selection changes when the manager
faces other constraints is important since regulators may want to impose them as a
response to potential agency problems.
The most natural constraint would be an upper limit on the volatility of the port-

folio. This constraint is equivalent to imposing an upper limit on the expected return.
For expositional purposes, this equivalence starts by deriving this last portfolio.

Definition 3 Portfolio r is the optimal mean restricted portfolio with quadratic pref-
erences if its portfolio weight vector is the solution to the following constrained opti-
misation:

max
w

∙
w0m− 1

2
γw0V w

¸
subject to equation (2) and

w0m ≤ µ. (10)

Proposition 2 If µ > A/C, portfolio r belongs to the mean-variance frontier.

Proof. Using equation (9), note that if

µ >
D + γA

γC
,

constraint (10) is not binding and wr = wq. When this condition is violated, µq > µ.
In that case, wr = wp for µp = µ.

Definition 4 Portfolio s is the optimal variance restricted portfolio with quadratic
preferences if its portfolio weight vector is the solution to the following constrained
optimisation:

max
w

∙
w0m− 1

2
γw0V w

¸
subject to equation (2) and

w0V w ≤ σ2. (11)
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Proposition 3 If σ2 > 1/C, portfolio s belongs to the mean-variance frontier.

Proof. Using equation (6), note that

µ =
A+

p
D (Cσ2 − 1)
C

is the expected return consistent with σ2 in the mean-variance frontier. The proof
follows from Proposition 2.
The above propositions make clear that within this framework, imposing a con-

straint that precludes the volatility of a portfolio from exceeding a threshold is equiv-
alent to imposing a constraint on its expected return not to exceed a threshold.
Figure 1 shows that these constraints imply that, with quadratic preferences, the
chosen portfolio would be either a portfolio on the mean-variance frontier in the con-
strained area (when the constraint is not binding) or it would be portfolio r (when
the constraint is binding).

3.2 Value-at-Risk and the Mean-Variance Frontier

Value-at-Risk (VaR) has become a popular tool for risk management of financial
institutions.8

Following Gourieroux et al (2000), let l (w) be the observed return of portfolio
w. As the returns are random, so is l (·). Given the cumulative distribution of l (·),
define the Value-at-Risk [V aR(w,α)] of portfolio w for a probability α as the value
that produces

Pr [l (w) ≤ V aR(w,α)] = α.

That is, the probability of obtaining a return of V aR(w,α) or lower is α%.9

If the returns follow an elliptic distribution with mean m and covariance matrix
V , then

V aR(w,α) = w0mt + kα(w
0Vtw)

1/2,

with kα being the quantile of level α of the distribution.10

8See Dowd (1998), Basak and Shapiro (2001), and references therein.
9Often, l (·) is defined as a loss (instead of a return), and V aR(w,α) should be viewed accordingly.
10This holds if the returns follow a multivariate normal distribution kα = zα = −z1−α, where

zα = Φ
−1 (α), with Φ−1 (·) denoting the inverse of the cdf of a standard normal distribution. For

example, if α = 0.025 and the returns are normal, kα = −1.96. If the returns follow a multivariate
Student’s t distribution with v > 2 degrees of freedom, kα = zα (v) [(v − 2) /v]1/2. In general, if the
returns follow an elliptical distribution, the VaR will be a linear function of the mean and standard
deviation of the portfolio. De Giorgi (2002) presents other results derived from imposing normality.
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Definition 5 Portfolio v is the minimum VaR portfolio for a level α if its portfolio
weight vector is the solution to the following constrained optimisation:

max
w

£
w0mt + kα(w

0Vtw)
1/2
¤

(12)

subject to equation (2).

Proposition 4 If α < 1/2 and kα < −
p
D/C, portfolio v belongs to the mean-

variance frontier.

Proof. Alexander and Baptista (2002, Proposition 1) show that if kα < −
p
D/C,

portfolio v exists and takes the following form:

wv = G+Hµv,

where:

µv =
A

C
+

vuutD

C

Ã
(kα)

2

C (kα)
2 −D

− 1

C

!
which is in the mean-variance frontier.
As was the case with the q portfolio, the minimum variance portfolio (i) is not

VaR efficient given that µv > A/C must hold. Thus, if the distribution of the returns
allows for the VaR function to be expressed as in equation (12), the v portfolio can
be expressed as a q portfolio by setting

γ =

"
1

D

Ã
C (kα)

2

C (kα)
2 −D

− 1
!#−1/2

. (13)

Thus, under elliptically distributed returns, VaR portfolio optimisation can be
directly mapped into a standard optimisation problem with quadratic preferences.
Furthermore, equation (13) shows that the risk aversion coefficient can be expressed
as a function of the tail quantile (as γ is increasing in |kα|).
If VaR minimisation is subject to the maximum volatility constraint (11), the

resulting portfolio can be described as a v portfolio resulting from an optimisation
with quadratic preferences and the same volatility constraint. If an additional VaR
constraint of the form

w0mt + kα(w
0Vtw)

1/2 ≥ V aR (14)

is considered, the resulting portfolio also belongs to the mean-variance frontier.
If this constraint is not binding, portfolio v is selected. If it is binding, there is a

k such that
w0mt + k(w0Vtw)

1/2 = V aR.

If k < −
p
D/C, the constrained portfolio will still be in the mean-variance frontier

and would be equivalent to an r or v portfolio, with a stricter volatility constraint
that would be to the left of the constraint depicted in Figure 1.
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3.3 VaR and Quantitative Limits

Defined contributions pension systems are subject to stringent regulations that intend
to limit risk. The most common regulation imposes quantitative restrictions on the
portfolios that can be chosen. This is equivalent to imposing a constraint of the
form:

w ≤ δ, (15)

where δ is the n vector of constraints that must be satisfied.
Berstein and Chumacero (2006) demonstrate that quantitative limits are costly

and inefficient mechanisms to limit the volatility of returns, given that quantitative
restrictions imply a mean-variance frontier that is dominated by the mean-variance
frontier without limits.
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Figure 2: Mean-Variance Frontier and Quantitative Limits. The continuous line cor-
responds to the unconstrained mean-variance frontier. The dashed line corresponds
to the mean-variance frontier with quantitative limits that prohibit investing in do-
mestic variable income instruments and overseas investments.

Figure 2 illustrates this point by constructing the mean-variance frontier of monthly
returns using Chilean data. The continuous line corresponds to the frontier with no
limits, and the line forbids investing in foreign or domestic variable-income instru-
ments. The distance between the lines depends on the stringency of the limits. The
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minimum variance portfolio of the restricted problem is to the right of the unrestricted
one. Furthermore, the distance between the lines shortens at a given location depend-
ing on the specific limits imposed.
Quantitative limits do not allow for proper diversification because limits lead

to inefficient portfolios, regardless of the risk aversion of the agents. That is, less
volatility could be achieved with the same expected return in the absence of limits.
Equivalently, more expected returns could be obtained with the same volatility if no
limits were imposed. For instance, more stringent limits imply a lower risk allowance,
at the expense of higher efficiency costs with respect to explicit volatility bounds.
In summary, a VaR limit would achieve a better risk-return combination than

quantitative restrictions if the selected portfolio is on the efficient frontier. As shown
above, this is precisely the case with elliptically distributed returns.11 Under this
assumption, VaR portfolio optimisation or VaR limits are equivalent to maximum
return or maximum volatility limits. This portfolio optimisation is, in turn, equivalent
to one obtained with a quadratic objective function subject to the constraints imposed
by the limits. The resulting portfolio will be on the mean-variance frontier. However,
a stringent VaR limit may lead to a suboptimal allocation of resources for agents that
are less risk averse than the implied bound.
If both restrictions are imposed at the same time, the selected portfolio would

be on the right side of the restricted frontier, which implies an additional efficiency
cost. Overall benefits and costs would have to be assessed when imposing this type of
regulation. The next section highlights some important drawbacks of VaR regulation.

4 Challenges for VaR-Based Supervision

The equivalences derived on the previous section rely on imposing some assumptions
on the preferences or the distribution of returns. Under such conditions, VaR lim-
its can be viewed as equivalent to maximum return or maximum volatility limits.
Furthermore, the portfolio chosen would be on the efficient frontier.
Although many regulatory agencies are considering VaR limits to curb risk for

affiliates of defined contribution pension fund systems, the vast majority of them
impose quantitative limits. As discussed, such limits are not efficient, as they are
dominated by the frontier of VaR-based limits. Under a defined contribution system,
the longevity and investment risks are assumed by the affiliate (principal), whose
pensions depend on the investment strategy of the portfolio manager (agent).
Next, we discuss three important aspects that regulators ought to consider prior

to imposing VaR or quantitative limits on this system. To illustrate some of the
points, we use Chilean data.

11As pointed out by a referee, pension funds (and affiliates) may have preferences that are not
quadratic even when the VaR limits are on the mean-variance frontier. In that case, limits would
not guarantee that the portfolio chosen by the agent is on the mean-variance frontier.
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• Ellipticity: As shown earlier, As shown earlier, if the objective function is
quadratic or if the distribution of returns is elliptic, then the portfolios chosen
are on the mean-variance frontier. In those cases, a VaR limit will also be on
the frontier (as long as the constraint is not too restrictive). Furthermore, with
elliptically distributed returns, the conditional VaR is equivalent to the VaR
(Rockafellar and Uryasev, 2000). If returns do not have a symmetric distribu-
tion, the mean-variance frontier may not be optimal (as long as preferences are
not quadratic).

Table 1 shows tests for skewness, excess kurtosis, and normality using Chilean
and U.S. instruments. For the case of Chilean assets, normality is strongly
rejected both for the individual series and for the bivariate distribution. The
same is (marginally) true for the U.S. series, although symmetry is not rejected
in the case of the U.S. fixed income instrument.12

FCh VCh FUS VUS Chile US All
Skewness 0.00 0.01 0.77 0.00 0.00 0.11 0.00
Kurtosis 0.00 0.21 0.00 0.00 0.00 0.10 0.00
Jarque-Bera 0.00 0.01 0.00 0.00 0.00 0.06 0.00

Table 1: P-values of Ellipcity Tests. FCh=Fixed income (Chile). VCh=Variable
income (Chile). FUS=Fixed income (United States). VUS=Variable income (United
States). Chile=Joint test for fixed- and variable-income instruments in Chile.
US=Joint test for fixed- and variable-income instruments in the United States.
All=Joint test for fixed- and variable-income instruments in Chile and the United
States.

As discussed, ellipticity does not preclude excess kurtosis, which is characteristic
in financial time series. However, in the absence of symmetry, VaR portfolios
are not on the mean-variance frontier. If agents take this characteristic into
account, VaR may not be the best risk measure. In the absence of quadratic
preferences or symmetrically distributed returns, agents may prefer to follow a
different portfolio strategy than the one implied by the efficient frontier, so VaR
limits may not guarantee efficiency (in the sense of aligning portfolio selection,
regulation, and preferences). Quantitative limits would still be suboptimal, but
they may prevent the realization of extreme downturns at the expense of being
generally inefficient with respect to VaR limits.

• Dependence: In practice, the VaR of a portfolio is computed using realized
time series of returns expressed in the same (real) currency and term, and it

12Figure 3 presents additional evidence of the strong departures from normality of the series by
comparing their empirical quantiles with the theoretical quantiles of the normal distribution. When
normality is present, the dots should lie in the straight lines. The pattern of deviation from linearity
provides an indication of the nature of the mismatch.
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Figure 3: Theoretical (Normal) and Empirical Quantiles for Returns on Instruments

assumes that the returns are independent. Efficiency would imply that this
is not a bad assumption. With monthly data, however, past returns help to
forecast present returns. In that case, quantile estimates should consider this
property.

The same can be said with respect to second moments. ARCH/GARCH fea-
tures are typical of financial returns. This implies that if VaR limits are intended
to limit volatility, they should be consistently estimated using time series mod-
els. The statistical properties of the data are not properly taken into account
with VaR measures if dependence is present.

Because financial returns tend to present volatility clustering (calm and volatile
periods tend to display persistence), the frequency and length of the observa-
tions used to compute the VaR measure may imply overly restrictive limits in
highly volatile periods and relatively loose limits in calm periods. Given that
pension funds in defined contribution systems invest for the long run, periods of
high (low) short-term volatility should not have a first-order impact on the in-
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vestment strategies of pension fund managers. Moreover, in a period of extreme
volatility, such as the recent global crisis, rebalancing the portfolio to comply
with a VaR limit could imply a significant movement in terms of buying and
selling instruments. This might not be possible in a small country with low
liquidity in the capital market, because of the impact on market prices and the
stability of the financial sector.

• Term: Pension fund affiliates invest for their retirement and do not use the
funds invested in the process. Guidolin and Timmermann (2006) demonstrate
that the VaR term structure varies according to the distribution of the returns.

For example, assume that the returns follow a multivariate normal distribution
with mean vector m and covariance matrix V .13 In this case, no additional
information regarding the distribution of the returns can be gathered with past
data. If an agent decides to maintain the same portfolio for h periods, the mean
and covariance matrix of the returns will be hm and hV respectively.14

In the quadratic preferences set-up, the portfolio chosen would be the same
regardless of the time horizon. This is so because the utility function is scaled
by the factor h and the first-order conditions do not depend on h. Thus, without
changes in attitudes toward risk (γ) and under these restrictive assumptions,
quadratic preferences imply that the portfolio that is optimal for a one-period
horizon is also optimal for any horizon.15

The VaR of this portfolio becomes

V aR(w,α, h) = hw0m+ kα
√
h(w0V w)1/2 (16)

= hµ+ σkα
√
h.

Since the objective function is not proportional to h, the optimal portfolio will
depend on h.

Consider a portfolio, with expected return µ and volatility σ2. Differentiating
equation (16) with respect to h, the horizon h∗ where VaR attains a minimum
is

h∗ =
σ2 (kα)

2

4µ2
. (17)

13In practice, time dependence may be present in second moments and even in first moments.
Furthermore, this example assumes that there is no risk-free asset for the investing horizon and that
fixed-income instruments have a one-period maturity.

14In a more general framework, the investor should use the available information to compute the
h-periods-ahead forecasts of the vector of expected returns and covariance matrix.

15The standard deviation of a portfolio held for h periods would follow the square-root rule (as
the standard deviation of that portfolio would be

√
h times the standard deviation of the portfolio

held for one period).
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For example, if the returns are normally distributed and α = 0.025, the value
of h at which equation (16) attains a minimum is approximately equal to the
square of the coefficient of variation of the portfolio. If the pair (µ, σ2) is the
tuple of expected return and volatility that would be optimally chosen for h = 1,
ten equation (17) shows that the same portfolio can not be optimal for h > 1
because equation (16) will be increasing in h for h > h∗.
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Figure 4: VaR and Term Structure. The left panel shows the combinations of
(monthly) expected returns and volatility resulting from maximizing the VaR ob-
jective function for α = 0.025 and h = 1, .., 12. The dot corresponds to the optimal
portfolio for h = 1 that is consistent with quadratic preferences. The right panel
shows the changes in γ that would be needed for the quadratic preferences portfolio
to match the VaR portfolio when h changes.

This implies that for h > 1, the first moment will tend to dominate the second.
Thus, an investor maximising equation (16) for h > 1 will choose more aggres-
sive strategies (in line with the popular perception that the equity premium
justifies more aggressive strategies for long-term investors).

Figure 4 shows the importance of considering the investment horizon. The
longer the investment horizon, the more aggressive the optimal v portfolio will
be. The equivalence between the v and q portfolios can be maintained by
changing the value of γ in the objective function (7). As the second panel of
the figure stresses, the risk aversion parameter γ should decrease with increases
in h for the VaR objective function to be maximised.

An implication of this result is that VaR measures obtained from high frequency
data for a relatively short span of time (say one or two years) when investors
have different planning horizons may be dangerous. For long-term investment
horizons, it is necessary to have consistent estimators of at least the uncondi-
tional first two moments of the distribution of returns. For this to happen, the
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distribution has to be ergodic for these moments and the sample used must
cover a representative realisation of “all states” of nature.

Additionally, as agents have different planning horizons, a universal VaR limit
may be undesirable for some agents (particularly long-term investors) since the
second-order considerations are not as important for them.

Multifunds (in which agents choose from different portfolio strategies depending
on the characteristics of the affiliates), with properly set varying VaR limits,
may be an attractive alternative.

However, there is a final consideration when setting this type of limit for pension
funds. The regulator may be interested in maximizing the pension attained with
the accumulated resources. This embodies an annuitisation risk at the moment
of retirement. A person who is retiring usually buys an annuity. The price
of the annuity at the moment of retirement depends on interest rates at that
time, among others factors. Therefore, the lower (higher) interest rates are at
the moment of retirement, the higher (lower) the price of a unit of pension
would be, and a given amount of accumulated funds would buy a lower (higher)
pension. This is the same as saying that even when close to retirement, a
person’s investment horizon is still significantly long. This should be taken into
account when setting restrictions on volatility.

A simple way to exemplify the issues discussed above is as follows. Assume that
the principal (affiliate) and the agent (pension fund administrator) differ on their
degree of risk aversion. In particular, assume that the agent (F ) is less risk averse
than the principal (P ):

γP > γF . (18)

As the objective functions of F and P are not aligned, the maximisation of equa-
tion (7) subject to equation (2) performed by each agent would lead them to different
optimal portfolios. Using equations (6), (9), and (18) we have

µP =
D + γPA

γPC
<

D + γFA

γFC
= µF

σ2P < σ2F .

In this case, the unconstrained optimisation performed by the agent would lead
to a riskier portfolio than the principal would have chosen (portfolios F and P of
Figure 2).
In principle, a regulator who knows the preferences of the principal and the first

and second moments of the returns could solve the principal-agent discrepancy by
imposing a maximum volatility constraint at σ2 = σ2P . From Propositions 2 and 3,
we know that even if the agent is less risk averse than the principal, this constrained
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optimisation would lead to portfolio P of Figure 2. A VaR constraint of the form
(14) would lead to the same result.
If the regulator is interested in limiting the volatility of the portfolio chosen by the

agent but decides to use quantitative limits to do so, the agent now faces a constraint
like equation (15). In that case, the resulting mean-variance frontier would be to the
right of the unconstrained frontier (the dashed frontier of Figure 2).
For the agent to choose a portfolio consistent with σ2 = σ2P , the regulator now

needs to know not only the preferences of the principal and the first and second
moments of the returns, but also the preferences of the agent. This is so, because
the regulator now needs to set the quantitative limits δ of the constraints in equation
(14) that would lead the agent to choose a portfolio like R in Figure 2.
The imposition of these limits is inefficient since the same volatility bound could

have been attained without sacrificing expected returns (compare portfolios P and
R in Figure 2). Furthermore, in order to lead the agent to choose portfolio R, the
regulator requires more information than is needed to attain portfolio P .

5 Concluding remarks

This paper presents a framework for analyzing some of the implications of VaR-based
regulation.
Under certain conditions, VaR limits can be seen as maximum expected return

or maximum volatility constraints. In these cases, VaR portfolio strategies and VaR
limits produce portfolios that are on the mean-variance frontier. The conditions under
which these results hold are very restrictive and should be tested.
In terms of implementing VaR-based regulation for the case of pension funds, more

effort should be made in evaluating the potential discrepancies between the principal
(affiliate) and the agent (fund manager). This is crucial because one of the main
reasons for setting VaR limits is that the agent is supposed to be less risk averse than
the principal. In such cases, VaR limits in line with the preferences of the principal
might be desirable. Because risk aversion varies across systematic characteristics of
the principal or planning horizons, a unique VaR limit is undesirable.
VaR limits may seriously affect pensions in the long run, because they not only

restrict volatility, but also expected returns. Moreover, volatility or VaR limits might
not be a good measure of the relevant risk faced by the future pensioner if the an-
nuitisation risk is ignored. Annuitisation risk can be incorporated by expressing rates
of return and volatilities in terms of pension units, although this may be difficult to
do in practice.
From a practical standpoint, regulators should try to obtain precise estimators of

the moments of asset returns, given that the availability of this information is crucial
for setting an adequate VaR limit. VaR computations using high frequency data
for a short period may not be relevant risk measures for most agents (considering
their planning horizons). Moreover, compliance with this type of limit could have
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first-order impacts on the financial stability of countries with small capital markets
in periods of high volatility.
If VaR limits are properly set, quantitative limits might be loosened. They pre-

clude agents from diversifying their portfolios and lead to suboptimal mean-variance
combinations. As is the case with any regulation, costs and benefits should be as-
sessed and restrictions relaxed when possible.
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