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Abstract 

Market concentration ratios are popular statistics for characterizing the extent of market 

dominance in an imperfectly competitive market, but these ratios may not agree when 

comparing two markets.  Neither do they necessarily agree with the Herfindahl-Hirschman or 

entropy indices.  This letter compares two Cournot oligopoly markets in which firms have 

constant unit costs.  It is shown that the majorization pre-ordering on normalized marketing 

margin vectors is both necessary and sufficient for all aforementioned indices to agree on which 

is the more concentrated market.  
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1.  Introduction 

The measurement of market concentration is important for several reasons.  In many 

jurisdictions, market concentration indices are used when determining whether a merger should 

be allowed and whether an existing firm should be broken up.  In addition, some companies use 

market concentration indices when re-organizing production activities.  Furthermore, market 

structure is believed to affect market efficiency in a variety of ways such as altering incentives to 

innovate (Aghion et al., 2005).  

The most widely considered market concentration indices are the Herfindahl-Hirschman 

index ( ( )H S ), the entropy index ( ( )E S ), and the k-firm concentration ratio ( ; )R k S , where S  is 

a vector of market shares and we will shortly define each index.  If considering N-firm industries, 

we have just enumerated 2N +  concentration indices.  Given a vector of market shares, it is 

possible to construct a second vector such that 1N +  of these indices agree in ranking but the 

remaining index does not.  We ask the question: when market structure changes then what 

conditions must be imposed such that all of these indices agree about the consequences of the 

change for the extent of market concentration?  We do so when working directly with share 

vectors for any pair of markets.  We also do so when working indirectly with normalized 

marketing margin vectors for a pair of Cournot oligopoly markets possessed of constant unit 

costs. 

 

2.  The set of indices 

We adopt the following two conventions.  Parentheses () are used in subscripts to identify 

the lower order statistics for a vector, i.e., for 1 2( , , ... , )NX x x x=  then (1) (2) ( )... Nx x x≤ ≤ ≤ .  

Similarly, square brackets [] are used in subscripts to identify the lower order statistics, i.e., 
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[ ] [ 1] [1]...N Nx x x−≤ ≤ ≤ .  Of course, ( ) [ 1]n N nx x − +≡ .1  For market share vector 1 2( , , ... , )NS s s s=  in 

a N-firm industry, write 

2
[ ] [ ] [ ] [ ]1 1 1

( ) ; ( ) Ln[ ]; ( ; ) .N N k
n n n nn n n

H S s E S s s R k S s
= = =

= = − =∑ ∑ ∑   (1) 

All of these formulae are symmetric in that one could interchange, say, is  with js  in the formula 

without changing the formula value.  Function ( )H ⋅  is convex, while ( )E− ⋅  is convex.  The 

concentration ratios are not of uniform curvature.  Symmetry is an appealing property because it 

ensures that the index treats the firms identically.  Convexity is appealing because it requires that 

the marginal contribution to the index increases with firm market share, suggesting that a larger 

firm is of particular concern when market concentration is an issue.   

Pairs of vectors, [1] [2] [ ]( , , ... , )NS s s s′ ′ ′ ′=  and [1] [2] [ ]( , , ... , )NS s s s′′ ′′ ′′ ′′= , can be readily constructed 

to show that all but one of the index set { ( ), ( ), (1; ), ... , ( 1; )}H S E S R S R N S′ ′ ′ ′− −  is larger than 

its counterpart in { ( ), ( ), (1; ), ... , ( 1; )}H S E S R S R N S′′ ′′ ′′ ′′− − .  One question we ask is whether a 

set of conditions for comparing a pair of market share vectors exists such that all of these indices 

agree about which represents the more concentrated market structure?  Another is whether, given 

Cournot market structure, a set of conditions on cost primitives exists such that the indices 

concur. 

 

3.  Model 

We compare behavior across markets A and B.  With unit costs across iN  active firms as 

, {1,2, ... , } , { , }
i

i
n i Nc n N i A B∈ =Ω ∈ , firm outputs as i

nq , market outputs as 
N

i i
nn

Q q
∈Ω

=∑ , and 

                                                 
1 But the two ways of presenting the same order statistic will prove to be convenient because the 
order of statistics for a unit cost vector will be the reverse of those for production shares in 
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inverse demand functions as ( )i iP Q , the standard Cournot oligopoly model asserts that firm 

output choices satisfy  

( ) ( ) 0;i i i i i i
n Q nP Q q P Q c+ − =         (2) 

where ( ) 0i i
QP Q <  is the first derivative.2  We make the standard assumptions about demand, 

equilibrium existence and equilibrium uniqueness, and hold that all choices are interior.  

Optimum choices are characterized as *,i
nq .   

For *,iQ  equal to equilibrium market output, use (2) to write *, *, *,[ ( )]/ ( )i i i i i i
n n Qq c P Q P Q= − .  

Define the unit cost order statistics as (1) (2) ( )...
i

i i i
Nc c c≤ ≤ ≤ .  Then, for *,

[ ],
i

n cq  the output for the 

firm with unit cost ( )
i
nc , it follows that *, *, *,

[ ], [ 1], [1],...
i i

i i i
N c N c cq q q−≤ ≤ ≤  and3  

*,
( )*, 1

[ ], *,1

( )
.

( )

k i i i
k ni n

n c i in
Q

c P Q
q

P Q
=

=

⎡ ⎤−⎣ ⎦=
∑∑        (3) 

Since  

*,
( )*, *, 1

[ ], *,1

( )
,

( )

i

i

N i i i
N ni i n

n c i in
Q

c P Q
Q q

P Q
=

=

⎡ ⎤−⎣ ⎦= =
∑∑       (4) 

the value of *,iQ  is determined by the values of the average cost over active firms, iC =  

1
( )1

iN i
i nn

N c−
=∑ , and the number of active firms, iN .  Dividing the partial summations in (3) 

through by *,iQ  in (4) establishes  

                                                                                                                                                             
Cournot oligopoly. 
2 The analysis to follow can be extended to the context of quadratic costs of form i i

n nc q +  
20.5 ( ) , ( )i i i

n Qq P Qγ γ > , where the constraining feature is that γ  be firm-invariant. 
3 We use square brackets in *,

[ ],
i

n cq  to remind readers that the sequence rank order for firm outputs 
is the reverse of that for unit costs.  So as to avoid reversing the indexation on summations, we 
sum costs from low to high but sum outputs from high to low. 
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*, *,
( ) [ ],*, *,1

[ ], [ ], *,*,1

( )
; .

( )

k i i i i
k n n ci in

n c n c ii i in
i

P Q c q
s s

QN P Q C
=

=

⎡ ⎤−⎣ ⎦= =
⎡ ⎤× −⎣ ⎦

∑∑      (5) 

Here, *, *, *,
[ ], [ 1], [1],...

i i

i i i
N c N c cs s s−≤ ≤ ≤  so that the order statistics are *, *, *, *,

(1) [ ], (2) [ 1], ...
i i

i i i i
N c N cs s s s −≡ ≤ ≡ ≤ ≤  

*, *,
( ) [1],

i i
N cs s≡ .  Another way of presenting the above is  

( )*, 1
[ ], *,1

; 1 ; .
( )

i

k i
k ni k k n

n c k ki in
i N

cM Aks M A
N M P Q k

=
=

= × = − = ∑∑    (6) 

Now *,
[ ],1

( / ) k i
i n cn

N k s
=∑  has value 1 when ik N= , a value at most iN  when 1k = , and declines in 

value as k  increases.  Expression kM  is the average profit margin on the k  lowest-cost firms, so 

that ratio /
ik NM M  represents an index of the normalized average profit margin for the k  

lowest-cost firms. 

Write the vector of equilibrium market shares as *,iS .  The majorization concept, see 

Marshall and Olkin (1979, pp. 10 and 59), is relevant to equations (5)-(6):4,5 

Definition 1. Vector MV ′∈\  is majorized by MV ′′∈\  (V V′ ′′≺ ) if the ordinates satisfy 

[ ] [ ]1 1

k k
n n Mn n

v v k
= =

′ ′′≤ ∀ ∈Ω∑ ∑  and [ ] [ ]1 1

M M
n nn n

v v
= =

′ ′′=∑ ∑ .  A function ( ) : MU Q →\ \  is said to 

be Schur-convex if ( ) ( )U V U V′ ′′≤  whenever V V′ ′′≺ . 

 

Observe that, since the partial sums are taken from top to bottom, it is possible to compare 

vectors of unequal dimensions.  Just add a balancing number of zero entries to the lower 

                                                 
4 This is a pre-ordering.  It is reflexive and transitive but, unlike a partial ordering, the truth of 
both Q Q′ ′′≺  and Q Q′′ ′≺  does not imply Q Q′ ′′=  in the sense of equivalence since vector 
permutations are distinct.  For our purposes, the distinction is of no relevance. 
5 Consider (1,2,6)  and (2,3,4)  with common sum, 9.  But 4 6≤  and 7 8≤  so that (2,3,4) ≺  
(1,2,6) . 
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dimensional vector.  For example, suppose that (1,2,6)V ′′ =  as in footnote 4 while V ′ =  

(1,1,3,4) .  Then extend V ′′  to (0,1,2,6)V ′′ =� .  Comparisons 4 6≤ , 7 8≤ , 8 9≤ , and 9 9=  then 

establish V V′ ′′�≺ .  In what is to follow we assume the dimension extension and write, with some 

informality in notation, that V V′ ′′≺ . 

The majorization idea has been widely applied when addressing income inequality, see 

Dasgupta, Sen, and Starrett (1973) or Shorrocks (1983).  It has also been used when modeling 

decision making under uncertainty, as in Chambers and Quiggin (2000) or Lapan and Hennessy 

(2002).  Note that *,
[ ],1

( ; ) ki i
n cn

R k S s
=

= ∑ , and define  

*,
( )

[ ] *,

( )
.

( )

i i i
ni

n i i i
i

P Q c
N P Q C

θ
−

=
⎡ ⎤× −⎣ ⎦

        (7) 

The numerator is the nth largest firm’s marketing margin in the ith industry.  The denominator is 

the product of *,( )i i iP Q C− , to scale for the industry’s average marketing margin, and iN  where 

the latter ensures that [ ]1
1iN i

nn
θ

=
=∑ .  Write 1 2( , , ... , )i i i i

Nθ θ θ θ= . 

When comparing these industries there are min[ , ]A BN N  meaningful concentration ratios, 

and so (1) provides min[ , ] 2A BN N +  meaningful concentration indices. 

Proposition 1.  (a) Industry B is more concentrated than industry A in the sense of all 

min[ , ]A BN N  concentration ratios in (1) if and only if *, *,A BS S≺ .  Furthermore, if *, *,A BS S≺  

then ( )H S  and ( )E S  agree with each of the concentration ratios when ranking market 

concentrations. 

(b) When we compare Cournot oligopoly markets, agreement across concentration ratios occurs 

if and only if A Bθ θ≺ .  Furthermore, if A Bθ θ≺  then ( )H S  and ( )E S  agree with each of the 

concentration ratios.   
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Proof.  The parts assert the same thing, so we will only demonstrate (b).  For ( )H S  and ( )E S , 

note that any symmetric, convex function is Schur-convex.6  For these indices then, A Bθ θ≺  

ensures consistency in ranking markets.7  Now view the min[ , ]A BN N  concentration ratios.  By 

definition 1, (5), (7) and *, *,
[ ],1

( ; ) ki i
n cn

R k S s
=

= ∑ ,  it follows that *, *,( ; ) ( ; )B AR k S R k S k≥ ∀ ∈ 

{1,2, ... ,min[ , ]}A BN N  if and only if A Bθ θ≺ .      Q 

 

A special case arises when we consider how a change in the allocation of unit costs across 

firms in a given industry affects industry concentration, see Salant and Shaffer (1999).  Then AN  

BN N= = , ( ) ( ) ( )A BP Q P Q P Q= = , and A BC C C= = , so that we can remove the industry 

identifier in (7) and write  

*

[ ] 1 2 ( ) 1 2* *

( ) 1; ; .
( ) ( )n n

P QK K c K K
N P Q C N P Q C

θ = − = =
⎡ ⎤ ⎡ ⎤× − × −⎣ ⎦ ⎣ ⎦

  (8) 

From definition 1 it is readily seen that 1 2 1 2( , , ... , ) ( , , ... , )N Nc c c c c c c c′ ′ ′ ′ ′′ ′′ ′′ ′′≡ ≡≺  if and only if 

1 2 1 2( , , ... , ) ( , , ... , )N Nθ θ θ θ θ θ θ θ′ ′ ′ ′ ′′ ′′ ′′ ′′≡ ≡≺  because it is readily shown that an affine transformation 

of the coordinates does not change the majorization relation.  We have then8  

Corollary 1.1.  Let N firms be active in a constant unit cost Cournot oligopoly, where unit costs 

are represented by vector c′ .  Consider a rearrangement of unit costs c c′ ′′→  such that the sum 

                                                 
6 See p. 4 and p. 14 of Marshall and Olkin (1979). 
7 We do not suggest the reverse, that agreement between ( )H S  and ( )E S  implies order in the 
sense of majorization.  This reversal is not true in general.  
8 It has been demonstrated in corollary 1 of Salant and Shaffer (1999) that an increase in the 
variance of unit costs increases all of the Herfindahl-Hirschman index, social welfare, and 
industry profits.  This calls into question the merit of anti-trust enforcement in an industry where 
homogeneous goods, constant unit costs, Cournot behavior, and restricted entry are believed to 
adequately approximate the decision environment.  
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of unit costs does not change and all firms remain active.  The industry is more concentrated 

under c′′  than under c′  in the sense of all 2N +  concentration indices in (1) if and only if 

c c′ ′′≺ .  

 

As to whether the requirement that all firms remain active can be relaxed, the answer is in 

the negative.  Suppose that *
( ) ( )Nc P Q>  ex-post so that the least efficient producer ceases 

production.  Then, by definition 1, the sum of unit costs over remaining firms declines.  This 

reduction in unit cost sums could involve a unit cost reduction in just one small producer.  Zhao 

(2001) has provided an example involving linear demand in which a unit cost reduction for a 

small producer reduces both social welfare and the Herfindahl-Hirschman index.  The reason is 

that the smallest remaining firm behaves less like a price taker and the resulting decline in 

competition more than offsets the effects of the cost reduction.  

 

3.  Graphical interpretation 

Figures 1 and 2 identify points in the unit simplex of market shares such that market share 

vector α  is more concentrated (i.e., majorizes and given in fig. 1) and is less concentrated (i.e., 

majorized by and given in fig. 2).9  Fig. 1 was constructed by identifying all six permutations of 

some share allocation in an industry where three firms are active.  If, for example, α =  

(0.7,0.2,0.1)  then the other five points would be (0.7,0.1,0.2) , (0.1,0.7,0.2) , (0.1,0.2,0.7) , 

(0.2,0.1,0.7) , and (0.2,0.7,0.1) .  These points all provide the same market concentration index 

levels for all considered indices because the indices are indifferent to which firm is matched with 

a share.  Intuitively, a convex combination of the six points (the blackened area in fig. 1) should 

                                                 
9 These convex hull representations of majorization are originally due to Rado (1952).  See Ok 
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be less concentrated because convexification decreases the share of the most dominant firm. 

Fig. 2 is constructed from α  by asking what market share vectors would be more 

concentrated than α .  These would be outside any convex hull that could be constructed using 

α .  It turns out that only two convex hulls need be considered.  One is an equilateral triangle 

(label it 1T ) constructed from adding three smaller equilateral triangles to the smaller sides of the 

hexagon generated in fig. 1.  As it happens, this equilateral triangle is contained inside the unit 

simplex.  The other is also an equilateral triangle (label it 2T ), but this time it is obtained from 

adding three smaller equilateral triangles to the larger sides of the hexagon generated in fig. 1.  

This time, however, the larger equilateral triangle so constructed is not contained within the unit 

simplex.  Three equilateral triangles can be discarded as irrelevant, see the dotted line extensions.  

The set complement of 1 2T T∪ , but inside the unit simplex are the blackened points in fig. 2.  

Any point in these blackened areas generates, through symmetrization, five other points the 

convex hull of which contains α .   

Points not blackened in either figures (three trapezoids, each contiguous to the simplex 

perimeter) are not comparable in the majorization ordering.  As such they will lead to 

inconsistencies among some of the concentration indices.  In particular, for the three-firm case 

the one-firm and two-firm concentration ratios cannot agree on ranking market concentration.  

For example, with (0.7,0.2,0.1)α =  and (0.75,0.14,0.11)β =  then the one-firm and two-firm 

concentration ratios do not agree. 

 

4.  Conclusion 

The intent of this note has been to identify necessary and sufficient conditions under which 

                                                                                                                                                             
(1997) for an application in the theory of equitable taxation. 
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all of the most widely used market concentration indices are in agreement.  The condition set, 

known as the majorization pre-ordering, is restrictive in that it is only partial.  Unlike any one of 

the concentration indices by itself, the relation does not always rank share vectors to be 

compared.  That is the price to be paid for spanning all the functions in the set.  For a pair of 

well-defined markets, if the market share vectors are ordered in the sense of majorization then 

there can hardly be any technical dispute about which is the more concentrated.  
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Fig. 1.  Convex hull of share vector    , where interior points are less 
concentrated under all considered market concentration indices.
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Fig. 2.  Blackened area comprise points in simplex that are more
concentrated than      under all considered market concentration indices.
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