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Abstract 

We propose a strategy to identify the complementarity or substitutability among 

technology bundles.  Under the assumption that alternative technologies are independent, 

we develop a hypothetical distribution of multiple technology adoptions.  Differences 

between the observed distribution of technology choices and the hypothetical distribution 

can be subjected to statistical tests.  Combinations of technologies that occur with greater 

frequency than would occur under independence are complementary technologies. 

Combinations that occur with less frequency are substitute technologies.  Unlike past 

analyses of technology adoption, this method is easily applied to simultaneous decisions 

regarding many technologies.  We use the strategy to evaluate multiple technology 

adoptions on U.S. hog farms.  We find that some technologies used in pork production are 

substitutable for one another while others are complementary.  However, as the number of 

bundled technologies increases, they are increasingly likely to be complementary with 

one another, even if subsets are substitutes when viewed in isolation.  The resulting 

incentive to adopt many technologies at once leads to economies of scale, contributing to 

growth in average farm size over the past 20 years. 
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I. Introduction 

 Technological complementarities underlie many explanations for key economic 

phenomena.  Complementarities between human capital and technologies lead to 

endogenous economic growth (Romer, 2000).  Complementarities among educated 

workers leads to agglomeration economies and the rise of cities (Lucas, 2002). 

Complementarities between entrepreneurs and potential employees create the incentive to 

open a business (Rosen, 1983). Complementarities between human capital and new 

technologies causes more educated producers to innovate first (Griliches, 1957; Huffman, 

1999).  Complementarities among new technologies leads to rising returns to innovation 

and the incentive to adopt multiple technologies. 

Since the publication of Griliches’ (1957) seminal study on hybrid corn and 

Rogers (1962) seminal work on innovation diffusion, numerous studies have explored the 

process of technology adoption.1  These studies have demonstrated the existence of a 

common sigmoidal trend in adoption rates and shown how the timing and pace of 

adoption is influenced by factors such as firm size; firm location; market structure; the 

human capital of the entrepreneur; and constraints on accessing labor or financial 

resources.  Most of these studies focus on the decision to adopt a specific technology 

without explicitly considering other technologies.  An aspect of technology adoption that 

has received less attention is the extent to which different technologies work well together 

and are adopted collectively or do not work well together and are adopted separately; or, 

in economic parlance, the extent to which combinations of technology are complementary 

or substitutable.  This study develops and applies a tractable methodology that can show 

how technologies complement or substitute for each other, information that is critical to 

understanding the effect of technical innovation on industry growth and structure. 

Several strategies have been employed to identify complementary and substitute 
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relationships with multiple technology adoption.  Wozniak (1993) and Dorfman (1996) 

simultaneously estimate adoption equations with two technologies.  Although their 

methods differ, both studies use cross-correlation in regression errors to make inferences 

regarding technical relationships.  Positive correlation is interpreted as a complementary 

relationship, while negative correlation is interpreted as a substitute relationship.  The 

limitation is that the relationships can only be evaluated in bilateral comparisons, even 

when there are multiple technologies. 

Efforts to incorporate more technologies have their own limitations.  Stoneman 

and Toivanen (1997) estimate hazard rates for the adoption of five different technologies 

over time.  A series of technology state dummy variables are constructed and included in 

the hazard rate equations.  These technology state dummy variables reflect alternative 

bundles of technologies that have been adopted by the firm in addition to the technology 

under consideration.  A significant positive effect attached to these dummy variables is 

interpreted as indicating a complementary relationship, while a significant negative effect 

indicates a substitute relationship.  However, the technologies are jointly chosen with the 

technology being evaluated, and so there are clear endogeneity concerns.  As an 

alternative, Caswell and Zilberman (1985) employ a multinomial logit model to allow 

selection of one of several potential technologies.  However, the multinomial logit 

specification imposes that the technologies are substitutes, which was appropriate to their 

application but would not fit every circumstance.  

Poppo and Zenger (2002) estimate the relationship between relational governance 

and formal contracts and Lokshin et al. (2004) estimate the relationship between multiple 

technology adoption and productivity.  While Lokshin et al. treat technology as 

exogenous, Poppo and Zenger treat these choices as endogenous.  Both studies use the 

sign and significance of the effect of technology interactions on productivity to make 
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inferences regarding complementary and substitute relationships between technologies or 

bundles of technologies.   

While each of these strategies has its virtues, all share a common limitation — the 

curse of dimensionality.  If there are K distinct technologies, there are 2K possible 

technology bundles to choose from.  This curse of dimensionality limits the practicality of 

applying these methods to cases where the number of available technologies is large.  As 

a consequence, researchers may artificially restrict the number of technology choices to a 

subset of the universe, imposing independence between the included and excluded 

technologies.  As we will demonstrate, imposing independence can lead to incorrect 

inferences regarding the true complementary or substitution relationships among 

technologies. 

This paper proposes an alternative strategy for identifying complementary and 

substitute relationships in technology bundles.  A key virtue of the proposed strategy is its 

broad applicability even when there are a large number of technologies that can be used in 

many different combinations.  And the distributional forms of adoption are not required to 

be known. This virtue is demonstrated by applying the methodology to evaluate the 

adoption choices of eight separate technologies (or 256 potential technology bundles) 

used in U.S. hog production.  An interesting insight gained from the application is that 

fewer than 10% of the technology bundles are complementary.  However, over 80% of 

these complementary bundles include five or more different technologies, and so 

exploiting complementary relationships among technologies disproportionately involves 

the adoption of many technologies at once. 

Because the adoption of multiple technologies  requires substantial capital 

investment, larger operations are in a better position to adopt multiple technologies in 

order to exploit the complementarities among technologies.  We find strong evidence that 
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decisions about farm size and multiple technology adoption are positively correlated in a 

representative sample of hog farmers between 1995 and 2005.  The finding suggests that 

complementary technology bundles have contributed to the rapid market share growth of 

large hog farms over the past two decades. The next section of the paper proposes an 

alternative strategy for determining if technology bundles are complementary, 

substitutable, or independent.  The third section demonstrates the application of this 

method to data collected from three national surveys of U.S. hog producers.  The fourth 

section first reports the outcome of tests of the relationship between multiple technology 

adoption and firm size.  The final section concludes the paper. 

II. Identifying Whether Technology Bundles Are Complements or Substitutes  

Many previous studies of multiple technology adoption assume, either explicitly 

or implicitly, that complementary relationships result in positive correlation in adoption, 

while substitute relationships result in negative correlation.  This assumption is intuitively 

appealing because if different technologies complement each other by increasing 

productivity or reducing costs, it is more likely that they will be used in combination.  

Alternatively, if different technologies substitute for each other such that the use of some 

makes the use of others either less productive or more costly, it is less likely that they will 

be used in combination.  Nevertheless, the correlation between any two technology 

adoption rates may provide misleading inferences on whether the two technologies are 

complements or substitutes when there is even one more technology potentially in the 

mix. 

To illustrate, suppose that there are 3 technologies designated by k=1,2,3.   

 Xk = 1 if technology k is adopted  

       =0 otherwise.  
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Technologies 1 and 2 are independent if  

)(
0

iH : Pr(X1 = 1, X2 = 1) = Pr(X1 = 1) Pr(X2 = 1) 

Alternatively, if adoption of technology 1 changes depending on whether technology 2 is 

adopted, then  

)(i
CH : Pr(X1 = 1, X2 = 1) > Pr(X1 = 1) Pr(X2 = 1) or  

)(i
SH : Pr(X1 = 1, X2 = 1) < Pr(X1 = 1) Pr(X2 = 1) 

It is tempting to test hypothesis )(
0

iH against its alternatives )(i
CH or )(i

SH  to establish that 

the two technologies are complements (denoted by subscript C) or substitutes (denoted by 

subscript S).  However, this bivariate analysis will only yield unbiased inferences when 

any possible third technology is independent of these two.  Under that independence 

condition   

)(
0

iH also implies  Pr(X1 = 1& X2 = 1, X3 = 0) = Pr(X1 = 1) Pr(X2 = 1) Pr(X3 = 0).   

)(i
CH  also implies  Pr(X1 = 1& X2 = 1, X3 = 0) > Pr(X1 = 1) Pr(X2 = 1) Pr( X3 = 0)  

( i )
SH also implies Pr(X1 = 1& X2 = 1, X3 = 0) < Pr(X1 = 1) Pr(X2 = 1) Pr( X3 = 0). 

However, if the third technology is not independent of the first two, then none of the 

bivariate analyses can be equated with their corresponding trivariate forms.  In factas 

shown in Appendix A,  it is possible for two technologies that are truly substitutes in the 

presence of a correlated third technology to appear to be complements in a bivariate 

analysis that inappropriately assumes independence.  Alternatively, two true complements 

may appear to be substitutes in bivariate comparisons.   

A Test for Substitutability or Complementarity among Multiple Technologies 

Our strategy builds from the realization that regardless of the number of 

technologies in the universe, we can construct an expected probability that any subset of 
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the technologies will be adopted under a maintained hypothesis that all technologies are 

independent.  We can then compare the actual probability that a randomly selected agent 

picks that technology bundle with the benchmark probability under independence.  If the 

bundle is selected significantly more often than under the null hypothesis of independence, 

we can view the bundled technologies as mutually complementary.  If the bundle is 

selected significantly less often than predicted under the null hypothesis of independence, 

we can view the bundled technologies as substitutes.1   

To formalize this conceptual strategy, suppose that 1>K  technologies can be 

used alone or in combination.  Let kX , Kk ...,2,1= , equal to 1 if the thk technology is 

adopted and 0 otherwise. Define ,01 >> kp for Kk ...,2,1= as the probability a specific 

technology k is adopted.  Similarly, let ,01 >> lkp  klKkl ≠= ,...,,2,1, , be the 

probability that thk and thl  technologies are adopted jointly. 

With K  technologies, there are 2K possible technology bundles.  Let the jth bundle 

be 1 2
j j j

j KY { X , X ,...,X }= which is a series of ones and zeroes corresponding to whether 

the kth technology is adopted in the jth  bundle jY .   Let qj  be the probability the jth 

technology bundle jY  is adopted such that 01 >> jq  for Kj 2...,2,1= .  We designate the 

set of technologies adopted in bundle jY as A
jΩ  which is composed of all subscripts k such 

that 1 2 1k( k { , ,...,K } X )∈ ∧ = .  A second set of technologies not adopted in Yj , N
jΩ ,  is 

composed of all subscripts k such that 1 2 0k( k { , ,...,K } X )∈ ∧ = . 

We can now define our baseline adoption rate for each of the 2K possible 

technology bundles under the null hypothesis of independence.  Any two technologies k 

                                                        
1 This strategy is similar in spirit to Ellison and Glaeser’s (1997) analysis of clustering in U.S. 
manufacturing which compares actual plant distributions against the null of random location. 
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and l are pairwise independent if lkkl ppp =0 .  A larger dimensioned bundle is mutually 

independent if ( )∏∏
Ω∈Ω∈

−=
N
j

A
j l

l
k

kj ppq 10 .  These estimated probabilities form the null 

hypotheses against which complementarity and substitutability can be assessed. 

Pairwise test:  Null hypothesis: independence 0)(
0 : klkl

i ppH =    
  Alternative 1: complementarity 0)( : klkl

i
C ppH >  

  Alternative 2: substitutability  0)( : klkl
i

S ppH <  
  

General test, K ≥ 2:  Null hypothesis:  independence 0)(
0 : jj

ii qqH =  

   Alternative 1: complementarity 0)( : jj
ii

C qqH >  

   Alternative 2: substitutability 0)( : jj
ii

S qqH <  
 

To operationalize the tests, we need estimates of the sampling distributions of the 

null and alternative hypotheses.  Given a random sample of S firms denoted by 

Si ...,2,1= , let 1=i
kX  if firm i adopts technology k and 0 otherwise; 1=i

klX  if firm i 

jointly adopts technologies k and l and 0 otherwise; and 1=i
jY  if firm i adopts technology 

bundle j and 0 otherwise.   

Under the null hypothesis of independence, the likelihood function for kp  is 

( )∏∏
= =

−
−=

S

i

K

k

X
k

X
k

i
k

i
k ppL

1 1

11 .   Taking the natural log yields 

( ) ( )∑
= == ⎥⎦

⎤
⎢⎣
⎡ −⎟

⎠
⎞⎜

⎝
⎛ ∑−+⎟

⎠
⎞⎜

⎝
⎛∑=

K

k
k

S

i

i
kk

S

i

i
k

O pXSpXL
1 11

1lnlnln .       (1)           

Optimizing equation (1) with respect to kp  for k = 1, 2, …, K yields the estimates 

S

X
p

S

i

i
k

k

∑
== 1ˆ  for Kk ...,2,1= .      (2)  

The probability of adopting a given technology k can be calculated by the 

frequency of its occurrence in the random sample.  Equation (2) implies  
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0ˆ klp  = lk pp ˆˆ and 0ˆ jq  = ( )∏∏
Ω∈Ω∈

−
N
j

A
j l

l
k

k pp ˆ1ˆ .       (3)             

The log-likelihood function for the joint adoption of two technologies k and l is 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ ∑−−+∑=

==

S

i

i
klkl

S

i

i
klkl

i XSpXpL
11

)( 1lnlnln ,  (4)   

Optimizing over klp yields the estimate 
S

X
p

S

i

i
kl

kl

∑
== 1ˆ .   

The log-likelihood of adopting a bundle of technologies j is 

( ) ∑⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+∑=

=

−

=

−

= =
∑∑

S

i

i

j
j

j

S

i

i
jj

ii
K

KK

YqYqL
1 2

12

1

12

1 1

)( 1lnlnln ,   (5) 

Optimizing over jq yields the estimates  

S

Y
q

S

i

i
j

j

∑
== 1ˆ  for 12...,2,1 −= Kj  and ∑

−

=

−=
12

1
2

ˆ1ˆ
K

K

j
jqq .    (6)      

Testing is complicated by the fact that the sampling distributions of klp  and jq̂  are 

unknown.  Moreover, the test has to incorporate the unknown correlation between klp  and 

O
klp , and jq̂  and O

jq̂  .  We use percentile bootstrapping to approximate the sampling 

distributions and their inter-correlations.  The resulting simulated distributions are used to 

calculate confidence intervals. 

Our strategy is to draw M samples with replacement from the data.  For tests of 

individual adoption or for joint adoption of a pair of technologies, we calculate jq̂ and O
jq̂  

(or klp  and O
klp ).  Define C = (C1, C2, …, CM) as the ordered vector of deviations between 

observed adoption rates and the rates under independence,  O
jj qq ˆˆ −  or O

klkl pp − , so that 

CM ≥ CM  - 1 ≥ … ≥ C1.  The 2.5th and 97.5th percentiles of this ordered vector is  [CL , CH ] 
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= 
0.05 0.05( 1) , 1 ( 1)

2 2
M M⎡ ⎤⎛ ⎞ ⎛ ⎞+ − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

. Consequently, if zero lies within the interval [CL, 

CH], independence cannot be rejected. If CL is positive, independence and a substitute 

relationship can be rejected, but a complementary relationship cannot. If CH is negative, 

independence and a complementary relationship can be rejected, but a substitute 

relationship cannot. 

III. Multiple Technology Adoption on U.S. Hog Farms 

The U.S. hog industry has experienced rapid technological innovation over the 

last decade in the areas of nutrition, health, breeding and genetics, reproductive 

management, housing, and environmental management (McBride and Key, 2003). These 

technologies are used in five stages of the production process: breeding, gestation, 

farrowing, nursery and finishing. These technologies have been associated with improved 

feed efficiency, lower death loss, higher quality meat, more rapid weight gain, and other 

improved outcomes that raise farmer profits (Rhodes, 1995). The detailed benefits and 

targets of using specific technologies are shown in Table B.1 in the Appendix. Using our 

statistical method to compare observed adoption patterns against adoption patterns 

predicted under the null hypothesis of independence, we will be able to assess whether 

the observed technology bundles reflect an underlying complementary or substitute 

relationship among technologies. 

We use data from random sample surveys of subscribers to National Hog Farmer 

Magazine (NHFM) conducted in years 1995, 2000 and 2005. Hog farmers across the 

United States were asked whether they use any of the 10 technologies listed in Table 1. 

Each technology is treated as a dichotomous variable taking the value of 1 if the 

technology is used and 0 if it is not used. Information on Medicated Early Weaning and 
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Modified Medicated Early Weaning was only available for 1995 and 2000.  Questions 

regarding two other technologies, Auto Sorting and Parity Based Management, were only 

asked in 2005.  Therefore, we have eight possible technologies in each survey year.  

Because subscribers to NHFM are not a representative sample of all hog farmers 

and because the propensity to respond to surveys may differ by farm size and survey year, 

the survey data are weighted to conform to the size distribution of hog farms in the USDA 

Agricultural Census Data (ACD). Hog farm counts from 8 census regions and 3 size 

categories were taken as the population universe.3  Each farmer in the NHFM sample was 

assigned a weight, wi, representing the inverse of the probability of each individual farm 

sampled from the population in region and size class.4 Considering these weights, the 

adoption rate for technology k under independence is defined as  

∑

∑

=

== S

i
i

S

i
i

i
k

k

w

wX
p

1

1ˆ .                                          (8)         

The adoption rate for technologies k and l jointly is 
∑

∑

=

== S

i
i

S

i
i

i
kl

kl

w

wX
p

1

1ˆ   and the 

adoption rate for technology bundle j is 
∑

∑

=

== S

i
i

S

i
i

i
j

j

w

wY
q

1

1ˆ . 

Using equation (8), we utilize the raw data to estimate the adoption probability for 

each technology, kp̂ , k = 1, 2,…K,  shown in Table 1.  The usage of Artificial Insemination 

(AI) and Segregated Early Weaning (SEW) doubled between 1995 and 2005.  Other 

technologies such as Split Sex Feeding (SSF) and Phase Feeding (PF) have had a 

declining usage since 1995.  The most commonly used technologies are Phase Feeding 
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(PF) and All In /All Out (AIAO) production. Modified Medicated Early Weaning 

(MMEW) is the least often adopted in 1995, Medicated Early Weaning (MEW) is the 

least often adopted in 2000 and Auto Sorting (AS) is the least often used in 2005. 

At the same time, the number and size distribution of hog farms have changed 

dramatically across survey years, as shown in Table 2.5  The number of farms has fallen 

by 61% in ten years.  The surviving farms have tended to become larger or else have 

dropped to the smallest category.6  In 1995, 6.7% of farms produced more than 5,000 

hogs. By 2005, that proportion had risen to 12%.  Respondents that were very large, 

producing over 25,000 hogs annually, more than doubled over the 10 year period.   

IV. Relationships among Multiple Technologies on U.S. Hog Farms 

In this section, we show how our method can identify whether technologies 

adopted on U.S. hog farms are mutual complements or substitutes for individual 

technology bundles and also for all technology bundles jointly.   

First, for a technology bundle j, the elements of the difference 0ˆˆ jj qq −  are 

calculated using equations (2), (3) and (6).  We then draw 5,000 samples with 

replacement to generate an approximate distribution of the differences.  The results are 

summarized in Table 3a.  Depending on the year, about 51% to 71% of possible 

technology bundles never occur in our data.  The majority of the technology bundles that 

are selected occur with frequencies consistent with the independence assumption.  Of the 

selected bundles, 72 of 125 cases (58%) are chosen with frequencies not significantly 

different from independence in 1995; 48 out of 73 (66%) in 2000; and 71 out of 101 (70%) 

in 2005.  The remaining bundles can be categorized as either substitutes or complements 

with substitute relationships being more common at 23% of the selected bundles. 

We have a particular interest in examining evidence of technology bundles that are 
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mutually complementary.  Previous studies of technology adoption have explicitly or 

implicitly restricted technologies to be independent or substitutes.  As shown in Table 3b, 

we find evidence of mutually complementary technology bundles in each year.   

When we add other technologies to a complementary bundle, the resulting bundles 

are also more likely to be complementary.  For example, technologies SSF, PF and AIAO 

are complementary in 1995, when AI is added into the bundle, the new bundle is 

complementary.  If we further add MSP into this bundle, the new bundle is also 

complementary.  Furthermore, if any of the three early weaning technologies is added, the 

resulting six technology bundle is also mutually complementary.   

Two technology combinations, designated T1= {AI, PF, AIAO} and T2= {SSF, PF, 

MSP, AIAO} appear atypically frequently among the complementary bundles in the 

sample. When the four technologies in T2 were adopted in 1995 and in 2005, they appear 

to be independent.  When the T2 bundle is simultaneously adopted in combination with 

any one of three Early Weaning technologies, the new bundles are complementary in 

1995.  When the T2 bundle is simultaneously adopted with Segregated Early Weaning 

technologies, the resulting bundles are complementary in 2005. 

Another interesting result is that some technologies that may appear to be 

substitutes in isolation may become complementary when another technology is added to 

the bundle.  For example, SSF and PF are substitutes in 1995, but SSF, PF and AIAO are 

mutually complementary.  AI, PF and AIAO appear to be mutual substitutes in 1995, but 

adding SSF results in the complementary bundle {AI, SSF, PF, AIAO}.   

These are examples of a general tendency we find in the data: as the number of 

bundled technologies increases, they are increasingly likely to be mutually 

complementary.  This is true, even when subsets of the larger technology bundle are 

substitutes.  This finding suggests that farmers that can adopt many technologies at once 
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can take advantage of complementarities that would not occur if they adopted only a 

subset of those technologies. 

Not all of the interrelationships among the technologies are consistent or stable 

across time. One reason may be that new technologies are developed while others are 

discarded, changing the menu of available bundles.  Changes in adoption costs and 

changes in the market demand and packer capacity could also affect the interrelationships 

between technologies.  An example of this phenomenon is that the bundle {AI, SSF, PF, 

MSP, AIAO, SEW} is mutually complementary in every year.  However, {AI, PF, MSP, 

AIAO, SEW} is mutually complementary only in 1995 and 2000 but becomes 

independent in 2005.  They remain mutual complements when the new technologies PBM 

and AS, made available in 2005, are added to the bundle. 

Among early weaning technologies, Segregated Early Weaning is more frequently 

used than MEW and MMEW, as can be seen in Table 1.  The three early weaning 

technologies are less likely to appear together in the technology combinations.  None of 

the farms adopted the three technologies at the same time from 1995 to 2000. 

Furthermore, only rarely were any two of the three technologies adopted, and then only in 

combination with other available technologies.  Producers commonly adopted only one of 

the three early weaning technologies in complementary bundles with others.  MEW and 

MMEW declined dramatically in use in 2000 and were dropped from the survey in 2005.  

They were supplanted by SEW, which also incorporates the use of anti-biotic vaccines in 

early-weaned pigs combined with methods to keep litters of pigs separated to further 

suppress spread of diseases.  

One concern with our method is that the technology adoption decision is made 

simultaneously with the type of operation.  Some farms produce pigs from farrowing 

stages to finishing stages.  Others specialize in farrowing pigs which are sold as feeder 
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pigs and others specialize in purchasing feeder pigs for finishing as market hogs.  Not all 

technologies would be appropriate for the more specialized operations.  For example, 

artificial insemination (AI) technology is only useful on farms whose production includes 

the farrowing stage while multi-site production might be expected to be most appropriate 

for farms that only finish hogs.  Because farmers are choosing type of operation jointly 

with technology mix, it is not appropriate to condition the technology choice on type of 

operation.  Nevertheless, we can investigate the degree to which the technology bundle 

choice is dictated by the desired type of operation. Table B.2 in the appendix shows the 

adoption rates for single technologies by farm type.  Except for AI and MMEW, 

technology usage does not vary significantly by the farm operation type.  Therefore, it 

does not appear that choice of farm type constrains the technology mix sufficiently to 

alter our conclusions.   

The G statistic from equation (7) allows an overall test of the null hypothesis that 

the pattern of technology bundle choices is consistent with expected distribution derived 

from independence assumption.  By survey year, the G statistics are 1995: 94.7; 2000: 

215.1; and 2005: 175.3.  We easily reject the predicted frequencies based on technical 

independence.  

Testing Pairwise Relationships 

Past studies8 have relied on the correlation between technology adoption or the 

between the residuals from technology adoption equations to assess whether technologies 

are substitutes or complements.  As shown in section II, these bivariate relationships may 

yield misleading inferences in the presence of other technologies not included in the 

analysis.  We can compare bivariate relationships derived from our method with those 

from traditional methods to demonstrate the frequency of these errors.   
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Table 4 shows that pairwise correlations lead to numerous incorrect inferences.  

There are 28 possible bilateral relationships among the technologies.  We list the implied 

number of complementary or substitute technology pairs based on the correlations and 

then on the reevaluation using our multiple technology method.  In 1995, bilateral 

comparisons yielded the correct inference for only one pair.  For the other years, 46% of 

the bilateral correlations yielded the correct inference.   

The results show that bilateral analysis is particularly prone to incorrectly 

implying complementary relationships while failing to identify substitutes..  In 1995, 

bilateral correlations implied that there are no substitute technologies whereas 13 of 28 

possible cases are substitutes when these bivariate relationships are couched in context of 

other technologies.  Similarly, pairwise correlations imply numerous complementary 

technology pairs that are really independent or substitutes when viewed in the context of 

multiple technologies.  To illustrate with survey data on employers in 2005, (SSF, MSP) 

and (PF, MSP) are complements using the pairwise correlation method, but they turned 

out to be substitutes when the presence of other technologies are included.   

Many of the presumptive complementary pairs implied by simple correlations 

never occur in the data — the pair of technologies is only chosen in combination with 

other technologies that are presumed to be irrelevant alternatives.   One example is that in 

1995, the technology bundle (SEW, MMEW) was never selected unless other 

technologies were also included in the bundle, but the positive bivariate correlation 

implied that they were complement.   

Simultaneous Technology Adoption and Farm Size Determination 

The previous section demonstrates that certain technology bundles are mutually 

complementary, but that these bundles tend to have a relatively large number of 
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technologies.  On the other hand, subsets of these technology bundles may be substitutes 

when adoption of only two or three technologies is considered.  This leads to the 

interesting possibility that the pattern of complementarities in high dimensioned 

technology bundles is contributing to the rising market share of large hog farms.  Farm 

size may be complementary with multiple technology use because large holdings of land 

and facilities may be necessary to utilize multiple adoptions efficiently.  Additionally, the 

skills necessary to manage large farms may be similar to the skills necessary to 

implement and manage multiple technologies effectively.  Table 2 shows that it is indeed 

the larger farms that adopt more technologies in all three years.  Farms with annual 

production levels below 1,000 pigs utilize fewer than two technologies on average.  

Farms producing more than 10,000 pigs use more than three technologies on average. 

Over time, there is modest growth in the number of technologies used within each size 

category, but the gap in technology use between the largest and smallest farms remains.  

Previous studies have noted a correlation between firm size and technology 

adoption.8  Previous studies have also consistently shown that more educated agents more 

readily adopt new technologies, a finding that carries over to agriculture.9  In this section, 

we test the hypothesis that technology adoption and farm size are joint choices that are 

complementary with the human capital of the farmer.  To investigate this relationship, we 

use a bivariate ordered probit model. We consider two latent dependent variables: *
it  is 

the number of technologies used by producer i  and *
is  is the size of producer i ’s farm. 

We posit that the joint choice of *
it and *

is  takes the form 
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where β  andγ  are coefficient vectors to be estimated in the technology adoption and 

farm size equations, respectively.  The description and statistics of the covariates x  are 

shown in Table 5. The error term stju jiijji ,, =+= μελ  is composed of two parts: 

unobserved managerial ability iε  for each producer i  treated as random individual-

specific effects distributed ),0( 2σN ;  and a pure random factor stjji ,, =μ that varies 

across choices and is assumed to be an independent draw from a standard normal 

distribution.  The size and sign of the parameters tλ and tλ shows how and to what extent 

the managerial talents of producers affect their farm size and technology choices. 

The latent and continuous number of technologies *
it  is not observable by the 

analyst, but the number of technologies is observed as a discrete category, it  defined as: 
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where the ca are unknown threshold parameters to be estimated. We similarly divide farm 

size into categories from 0 to 8.  We impose that the two choices have the same 

thresholds ca , 7,...,1,0=c .  The model experienced convergence problems when we left 

all threshold parameters free to vary.  

In order to identify the model, tλ  is normalized to be one.  The remaining 

parameters to be estimated include ca,,, 2σγβ and sλ , 7,...,1,0=c . The tiμ and siμ can be 

regarded as draws from a bivariate normal distribution with correlation coefficient ρ , 

where  
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A finding that 0>ρ  (which implies that 0>sλ ) is consistent with the hypothesis 

that unobserved entrepreneurial skill positively affects both the number of technologies 

adopted and the size of farm. Finding that the β  and γ  attached to observable skills are 

also positive in both equations can be viewed as corroborating evidence that skills are 

complementary with both farm size and technology.The results of the sample-weighted 

bivariate ordered probit model  are shown in Table 6.  

The temporal context, as defined by the coefficients on the year dummies, is that 

farms were generally adopting more technologies but that farm size was actually 

declining in 2005 relative to 1995, other things equal.  Countering that trend was that 

more educated farmers were adopting more technologies and increasing farm size.  The 

significant positive correlation in the errors (ρ = 0.35) is consistent with the hypothesis 

that unobserved managerial skills are also contributing to the increase in both farm size 

and the adoption of multiple technologies.  Consistent with previous research on 

technology adoption, it is the younger educated farmers that adopted multiple 

technologies and increased farm size most readily.   

Our results might be suspect to the extent that different hog production 

technologies require differing levels of capital and labor inputs.  For example, Multiple 

Site Production (MSP) technology is relatively capital-intensive, while Medicated Early 

Weaning (MEW) technology is relatively labor-intensive. This suggests that farm size 

may be related to technology adoption because of the ability to attract funding rather than 

an underlying complementarity between farm size and technology.  As indicated in Table 

B.2, feeder-to-finish farms tend to adopt fewer technologies than those of other types, 

perhaps due to differences in ability to fund capital investments.   
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We examined this issue by adding choice of operation as an added decision to a 

multivariate probit model of technology adoption intensity and farm size.10 The 

hypotheses that observed and unobserved producer human capital increases probability of 

adopting multiple technologies and of operating a large farm still cannot be rejected even 

after the selection of farm types is added as a choice. 

 While choice of farm type is not related to observed farmer attributes, 

there is a strong negative relationship between errors in the choice to operate a feeder-to-

finish farm and both technology complexity and farm size.  This suggest that farmers 

whose unobserved managerial skills are not sufficient to manage large or more 

technologically complex farms will tend to select feeder-to-finish operations.11   

V. Conclusion 

This paper proposes a tractable statistical method to test for mutually 

complementary or substitute technologies. The method exploits the fact that profit 

maximizing producers will adopt technologies in groups if they are complements with 

greater frequency than would be predicted if the technologies were mutually independent. 

On the other hand, if the technologies are mutual substitutes, combinations will be 

bundled together with less frequency than would occur under mutual independence. This 

statistical method makes it simple and feasible to check the relationships between 

technologies which have high dimensional combinations. Our method solves a series of 

problems in the current literature of technology adoption such as complex computation 

and endogeneity in simultaneous adoption of multiple technologies. 

Applying the method to a data set that includes eight technologies adopted by U.S. 

hog farmers, we find that some technologies used in pork production are mutual 

substitutes while others are mutual complements. Several technologies including Split 

Sex Feeding, Phase Feeding, Multiple Site Production, and All In/ All Out production are 
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often bundled together. More importantly, as the number of bundled technologies 

increases, they are increasingly likely to be complementary with one another, even if 

subsets are substitutes when viewed in isolation. Ignoring the existence of other potential 

technologies and concluding from simple correlation between any two technologies is 

shown to be misleading. The application of our proposed method suggests that the usual 

correlation between any two technology adoption rates, ignoring other technologies may 

provide misleading inferences on whether the two technologies are complements or 

substitutes. 

Our findings suggest that the complementarity among technologies in large 

bundles is contributing to a form of returns to scale that is leading to increasing growth in 

average farm size. Because the technologies are complementary, the productivity of one 

technology is enhanced by the adoption of the other technologies.  This provides an 

incentive for multiple technology adoption, but not all farms are equally able to adopt.  

We find that large farms run by younger and more educated operators are the most likely 

to adopt multiple technologies.  This apparent size bias for multiple technologies is 

consistent with the view that new technologies are hastening the move toward larger 

farms in the U.S. pork industry. 
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Endnotes 

______________________   

1 Examples include Hannan and McDowell (1984), Weiss(1994), Putler and Zilberman 

(1986), Baker (2001), and Caswell and Zilberman (1985). Sunding and Zilberman (2001) 

offer a good survey of the literature. 

2 A formal proof that bivariate relationships yield biased inferences regarding substitute or 

complement relationships in the presence of a third technology is shown in the Appendix 

A. 

3 USDA counts originally include 18 regions and four size classifications. Since in some 

cells (region, size), there are only a couple of observations in our samples, we aggregate 

some of the regions and sizes. 8 regions are categorized in the following: 1. IL  2. IN  3. 

IA  4. MN  5. MO, TX, OK and AR  6. OH, WI and MI  7. NE  8 other states( including 

ND, SD, PA, CT, ME, MD, MA, VT, NJ, NH, NY, RI, DE, NC ,KY, WV, VA, GA, SC, 

FL, AL, TN, MS, LA, WA, ID, OR, NV, CA, AZ, UT, HI, AK, KS, MT, WY, CO and 

NM).   Farm size has 3 levels: small if fewer than 3,000 pigs are produced per year, 

medium if 3,000 to 9,999 pigs are produced per year and large if more than 10,000 pigs 

are produced per year.   

4 Weights based on the 1992 Census were used to weight 1995 survey responses, 1997 

Census were used for the survey in 2000 and 2002 Census for the survey in 2005.  

5 All of these market shares are computed using the sample weights. 

6 The size categories in the surveys are inconsistent over time in that the smallest category 

of less than 500 hogs produced annually was eliminated in the 2005 survey.  The 2005 

survey adds a new largest category of over 50,000 hogs produced per year.   

7 Lokshin, et.al (2004) also proposes a method to evaluate multiple technology choices 

rather than pairwise comparisons, but their procedure is also limited to small dimensional 
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problems. 

8 Examples include Dorfman(1996); Poppo and Zenger(2002); Colombo and Mosconi 

(1995); and Stoneman and Kwon (1994). 

9 See Griliches, 1957; Wozniak, 1987, 1993; Huffman and Mercier, 1991; Dorfman, 1996; 

Foster and Rosenzweig, 1995; Khanna, et. al. 1999; and Abdulai and Huffman, 2005 for 

examples of technology adoption in agriculture. Huffman (1999) presents a 

comprehensive review on the role of human capital on technology adoption in agriculture. 

10 Technology adoption intensity is indicated by a dummy variable, equal to 1 if at least 

six technologies are adopted, or 0 otherwise. Farm size is a dummy variable, equal to 1 if 

more than 10,000 pigs producer annually or 0 otherwise. Farm types are a series of 

dummy variables. Regression results are shown in Table B.3.  

11 The implication that farm type is chosen jointly with farm size and multiple technology 

adoption means thatfarm type cannot be used as an explanatory variable in equations 

explaining technology adoption.  In this case, incorrectly treating farrow-to-feeder 

operations as an exogenous attribute would cause researchers to incorrectly interpret that 

farrow-to-feeder operations are complementary with farm size. 

Reference 

Abdulai, Awudu and W. Huffman, “The Diffusion of New Agricultural Technologies: The 

Case of Cross-bred-Cow Technology in Tanzania,” American Journal of 

Agricultural Economics 87 (2005), 645-695.  

Baker, Laurence, “Managed Care and Technology Adoption in Health Care: Evidence 

from Magnetic Resonance Imaging,” Journal of Health Economics 30 (2001), 

395-421.  

Caswell, M. F. and D. Zilberman, “The Choices of Irrigation Technologies in California,” 



 24

American Journal of Agricultural Economics 67 (1985), 224-34.  

Colombo, M.G. and R. Mosconi, “Complementarity and Cumulative Learning Effects in 

the Early Diffusion of Multiple Technologies,” The Journal of Industrial 

Economics 43 (1995), 13-48.  

Dorfman, Jeffrey, “Modeling Multiple Adoption Decisions in a Joint Framework,” 

American Journal of Agricultural Economics 78 (1996), 547-557.  

Ellison, Glenn and Edward L. Glaeser. “Geographic Concentration in U.S. Manufacturing 

Industries: A Dartboard Approach.” The Journal of Political Economy, Vol. 105, 

No. 5 (October 1997): 889-927 

Foster, A. D. and M. R. Rosenzweig, “Learning by Doing and Learning from Others: 

Human Capital and Technical Change in Agriculture,” Journal of Political 

Economy 103 (1995), 1176-1209. 

Greene, W.H., Econometric Analysis, 4th Edition. Prentice Hall, (2000), 875-879. 

Griliches, Zvi, “Hybrid Corn: An Exploration in the Economics of Technological 

Change,” Econometrica 25(1957), 501-522.  

Hannan, Timothy and J. McDowell, “The Determinants of Technology Adoption: The 

Case of the Banking Firm,” The Rand Journal of Economics 15 (1984), 328-335.  

Huffman, W. E., “Human Capital: Education and Agriculture”. Handbook of Agricultural 

Economics. Vol 1A. Chapter 7. (1999).  

Huffman, W. E., and S. Mercier, “Joint Adoption of Micro Computer Technologies: An 

Analysis of Farmers' Decision,” The Review of Economics and Statistics 73 (1991), 

541-546. 

Idson, Todd and W. Oi, “Workers Are More Productive in Larger Firms,” American 

Economic Review Papers and Proceedings 89 (1999), 104-108.  

Khanna, M., O.F. Epouhe and R. Hornbaker, “Site Specific Crop Management: Adoption 



 25

Patterns and Incentives,” Review of Agricultural Economics 21(1999), 455-472.  

Lokshin, B., M. Carree and R. Belderbos, “Testing For Complementarity and 

Substitutability in Case of Multiple Practices,” Maastricht Research School of 

Economics of Technology and Organization in its series Research Memoranda 

with number 002(2004).  

Lucas Jr., Robert E. 2002. Lectures of Economic Growth. Cambridge, MA: Harvard 
University Press. 

McBride, William and N. Key, “Economic and Structural Relationship in U.S. Hog 

Production.” Agricultural Economic Report No. (AER818) 60 pp, USDA (2003). 

Poppo, Laura and T. Zenger, “Do formal contracts and relational governance function as 

substitutes or complements?” Strategic Management Journal 23(2002), 707-725. 

Putler, D. S. and D. Zilberman, “The Use of Computer Technology in California 

Agriculture,” CUDARE Working Paper Series 399, University of California at 

Berkeley (1986). 

Rabe-Hesketh, Sophia, A. Skrondal and A. Pickles, GLLAMM Manual, U.C. Berkeley 

Division of Biostatistics Working Paper series (2004).  

Rabe-Hesketh, Sophia and A. Skrondal, “Multilevel Modeling of Complex Survey Data,” 

Journal of the Royal Statistical Society Series A 169(2006) 805–827.  

Rhodes, V. J., “The Industrialization of Hog Production,” Review of Agricultural 

economics, 17 (1995), 107-118. 

Rogers, E.M., Diffusion of Innovations. The Free Press. New York (1962).  

Romer, Paul M. 2000. "Endogenous Technical Change." Journal of Political Economy 
98(5-2):S71–102. 

Rosen, Sherwin. 1983. "Specialization and Human Capital." Journal of Labor Economics 
1(1):43–9. 

Stoneman, Paul and M. Kwon, “The Diffusion of Multiple Process Technologies,” The 



 26

Economic Journal 104 (1994), 420-431.   

Stoneman, Paul and Otto Toivanen, “The Diffusion of Multiple Technologies: An 

Empirical Study,” Economics of Innovation & New technology 5(1997), 1-17. 

Sunding, D., and D. Zilberman, “The Agricultural Innovation Process: Research and 

Technology Adoption in a Changing Agricultural Sector,” in B. Gardner and G. 

Rausser, eds. Handbook of Agricultural Economics, Vol. 1A. Amsterdam, 

Elsevier (2001), 207–61. 

Weiss, A. M., “The Effects of Expectations on Technology Adoption: Some Empirical 

Evidence,” The Journal of Industrial Economics 42 (1994), 341-360. 

Wozniak, Gregory, “Human Capital, Information, and the Early Adoption of New 

Technology,” The Journal of Human Resources 22 (1987), 101-112. 

Wozniak, Gregory, “Joint Information Acquisition and New Technology Adoption: Late 

Versus Early Adoption,” The Review of Economics and Statistics 75 (1993), 438-

445. 

 



 27

TABLE 1. — TECHNOLOGIES USED AND ADOPTION RATE IN THE US HOG INDUSTRY 

No. Description Notation 1995 2000 2005 
1 Artificial Insemination AI 0.236 0.350 0.407 
   (0.425) (0.477) (0.492) 
2 Split Sex Feeding SSF 0.284 0.305 0.200 
   (0.451) (0.461) (0.400) 
3 Phase Feeding PF 0.508 0.524 0.397 
   (0.500) (0.500) (0.490) 
4 Multiple Site Production MSP 0.218 0.261 0.202 
   (0.413) (0.440) (0.401) 
5 Segregated Early Weaning SEW 0.079 0.156 0.155 
   (0.269) (0.363) (0.362) 
6 Medicated Early Weaning MEW 0.035 0.010  
   (0.183) (0.101)  
7 Modified Medicated Early Weaning MMEW 0.010 0.021  
   (0.097) (0.144)  
8 All in / All out AIAO 0.501 0.584 0.511 
   (0.500) (0.493) (0.500) 
9 Auto Sorting Systems AS   0.020 
     (0.139) 
10 Parity Based Management PBM   0.059 
     (0.235) 

Note: The estimates of the adoption rates of individual technologies are weighted using sampling weights. 
Number in the parenthesis is standard deviation.  



TABLE 2.— SIZE CLASS, FREQUENCIES AND RELATIONSHIP BETWEEN FARM SIZE AND TECHNOLOGY ADOPTION INTENSITY 
 
  Farm distribution (%)  Average number of 

technologies adopted Code Size Class ( pigs per year) 1995 2000 2005  
1 Less than 500 2.93 4.69 .  1.42 (0.12) 
2 500 to 999 / less than 1000 in 2005 6.41 1.97 27.64  1.22 (0.88) 
3 1,000 to 1,999 35.39 37.3 27.5  1.70 (1.25) 
4 2,000 to 2,999 42.28 36.43 27.74  2.04 (1.36) 
5 3,000 to 4,999 6.27 6.35 5.46  2.74 (1.52) 
6 5,000 to 9,999 5.67 9.18 8.36  3.11 (1.67)  
7 10,000 to 14,999 0.47 1.23 0.99  3.32 (1.63) 
8 15,000 to 24,999 0.3 1.02 0.75  3.71 (2.00) 

9 25,000 or more / 25,000 to 49,999 
(2005) 0.28 1.83 0.7  3.62 (2.09) 

10 50,000 or more (2005) . . 0.85  4.27 (2.10) 
Total Number of farms 175,775 97,180 69,420  - 

Source: Authors' compilation of weighted survey responses with weights defined in the text. 
Numbers in the parentheses are standard deviations for the average number of adopted technologies. 



TABLE 3. —  RESULTS OF THE SPECIFIC TECHNOLOGY BUNDLE TEST   
 
TABLE 3.A NUMBER OF SUBSTITUTE, COMPLEMENTARY AND INDEPENDENT TECHNOLOGY 
BUNDLES IMPLIED BY THE MULTIPLE TECHNOLOGY TESTS 
Relations 1995 2000 2005 
Do Not Exist in Sample 131 183 155 
Substitutes 35 18 16 
Independence 72 48 71 
Complements 18 7 14 

The statistics are based on M=5000 bootstrapped samples. 
 
TABLE 3.B COMPLEMENTARY TECHNOLOGY BUNDLES 

 1995 2000 2005 
2 technologies - - - 
3 technologies SSF & PF & AIAO - SSF & PF & AIAO 
4 technologies T1 & SSF  

AI, MSP,SEW, 
AIAO 

- SSF & PF & SEW & 
AIAO 

5 technologies T2 & MEW 
T2 & MMEW 
T2 & SEW 
T1 & SSF & MSP 
T1 & MSP & SEW 
T1 & SSF & MEW 
T1 & SSF & 
MMEW 

T1 & MSP & SEW 
 

T2 & AI 
T2 & SEW 

6 technologies T2 & AI & MEW 
T2 & AI & MMEW 
T2 & AI & SEW 

 
T2 & AI & SEW 

T2 & AI & SEW  
T2 & AI & AS 
T2 & AI & PM 
T1 & MSP & SEW & 
PM 

7 technologies - - T2 & AI & SEW & AS 
T2 & AI & SEW& PM 

8 technologies - - - 
Note: The number of technologies in the first column is the number of technologies adopted which are 
significantly complementary. T1= {AI, PF, AIAO}. T2 = {SSF, PF, MSP, AIAO}. The case in which no 
technologies are adopted is excluded from the analysis, though it generates a higher frequency and is 
included into the category of “complements”.  
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TABLE 4.— IMPLIED COMPLEMENTARY AND SUBSTITUTE RELATIONSHIPS BETWEEN 
TECHNOLOGIES USING OUR MULTIPLE TECHNOLOGY METHOD VERSUS THE 
RELATIONSHIPS IMPLIED BY BILATERAL CORRELATIONS   

 
Note: Each year, there are 28 possible bilateral relationships between the technologies. Each number 
shows how many cases are predicted using one of the methods in each of survey years.  The percent 
correct are the inferences implied by bilateral relationships that are confirmed in the multilateral setting. 
 
 
 

        Bilateral Correlations  

Year   

Percent 

Correct Substitutes Complements Independent 

1995 3.6% 0 27 1 

2000 46% 2 14 12 

2005 46% 0 15 13 

Reevaluation allowing for Multiple Technologies 

Year 

Not in 

Sample Substitutes Complements Independent 

1995 6 13 0 9 

2000 13 4 0 11 

2005 3 3 0 14 
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TABLE 5.— CHARACTERISTICS OF PRODUCERS AND FARMS 

Variables Description Mean Standard Deviation 

Female Gender of producer 0.068 0.252 

Edu Schooling years 13.873 2.429 

Experience Working experience 26.608 11.936 

Northeast Dummy variable, equal to one if located in the northeast 0.087 0.282 

Southeast Dummy variable, equal to one if located in the southeast 0.112 0.316 

West Dummy variable, equal to one if located in the west 0.119 0.323 
Number of 
technologies Number of technologies used 1.984 1.44 

Farm Size Categories 0-8 2.483 1.371 
Note: a. Farms with more technologies are defined as the ones adopting at least four technologies, other wise they are farms adopting fewer technologies. 
The statistics of the variables are weighted. The number is the weighted mean. The number in the parenthesis is standard deviation. Higher degree includes a master degree, a 
Ph.D. degree or a Doctor of Veterinary Medicine. Education variables are dummies based on high school dropout. Working experience is age of the producer minus schooling 
years minus six. The education level reflected in the survey is categorical. The schooling years (SY) of producer is defined in the following way. SY = 9 if she is a high 
school drop out.  SY = 12 if she is a high school graduate.  SY = 14 if she attended the four year college but did not complete. SY = 16 if she is has a bachelor’s degree.  SY = 
19 if she has a master degree. SY = 23 if she a Ph.D. degree hold or a Doctor of Veterinary Medicine. 
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TABLE 6. —  BIVARIATE ORDERED PROBIT REGRESSION OF MULTIPLE TECHNOLOGY 
ADOPTION AND FARM SIZE 

 
Note: Estimation follows the method defined by Rabe-Hesketh, Skrondal and Pickles (2004).  Absolute 
value of t statistics in parentheses and standard error in square bracket.  
* Significant at 5%; ** significant at 1%. 
Probability weights are considered in the model and the standard errors are therefore robust.  
Asymptotic standard error ofρ is obtained using Delta Method and shown in the parenthesis.  
  

Dependent Variable: Number of technologies Farm size 
Female 0.279 -0.660 
 (1.41) (3.93)** 
Edu 0.034 0.038 
 (1.97)* (2.65)** 
Experience -0.027 0.019 
 (1.97)* (1.86) 
Experience2 -0.0001 -0.0003 
 (0.36) (1.92) 
Northeast -0.318 -0.186 
 (1.67) (1.45) 
Southeast -0.476 -0.038 
 (2.49)** (0.33) 
West -0.354 -0.458 
 (2.22)* (3.90)** 
Year 2000 0.250 0.172 
 (2.62) ** (2.13)* 
Year 2005 0.266 -1.150 
 (2.49) * (11.6)** 
a0 -1.660  
 (6.86) **  
a 1 -0.531  
 (2.27) *  
a 2 0.549  
 (2.42)*  
a 3 1.616  
 (6.98)* *  
a 4 2.177  
 (9.32) **  
a 5 2.927  
 (12.49) **  
a 6 3.414  
 (14.34) **  
a7 3.643  
 (15.14) **  

2λ  0.575  [0.046]** 
2σ  0.998  [0.111] ** 
ρ  0.352  [0.026]** 



 

 33

Appendix A 

Proposition A: If technologies 1 and 2 are complements in pair wise comparison ( )(i
CH ) 

and substitutes without technology 3 ( )(ii
SH ), then technologies 1 and 2 must be 

complements with technology 3. 

Proof :  

Under )(i
CH , Pr(X1 = 1, X2 = 1) > Pr(X1 = 1) Pr(X2 = 1) ; 

Under )(ii
SH , Pr(X1 = 1) Pr(X2 = 1) > Pr(X1 = 1, X2 = 1| X3 = 0) 

Pr(X1 = 1, X2 = 1)  

= Pr(X3 = 1) Pr(X1 = 1, X2 = 1| X3 = 1) + Pr(X3 = 0) Pr(X1 = 1, X2 = 1| X3 = 0) 

> Pr(X1 = 1, X2 = 1| X3 = 0) according to )(i
CH  and )(ii

SH , which implies that  

Pr(X1 = 1, X2 = 1| X3 = 1) > Pr(X1 = 1, X2 = 1| X3 = 0) as long as Pr(X3 = 1)>0. 

Then 

Pr(X1 = 1, X2 = 1| X3 = 1) Pr(X3 = 0) + Pr(X1 = 1, X2 = 1| X3 = 1) Pr(X3 = 1)  

> Pr(X1 = 1, X2 = 1| X3 = 0) Pr(X3 = 0) + Pr(X1 = 1, X2 = 1| X3 = 1) Pr(X3 = 1). 

So, Pr(X1 = 1, X2 = 1| X3 = 1) > Pr(X1 = 1, X2 = 1), technologies 1 and 2 together are 

complements with technology 3.                             Q.E.D. 

Corollary A: If technologies 1 and 2 are complements in pair wise comparison ( )(i
CH ) 

and substitutes without technology 3 ( )(ii
SH ), then technologies 1, 2 and 3 are mutual 

complements. 

Proof: 

According to proposition A and HC
(i) , 

 Pr(X1 = 1, X2 = 1| X3 = 1) > Pr(X1 = 1, X2 = 1)> Pr(X1 = 1) Pr(X2 = 1).       Q.E.D. 
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Proposition B: If technologies 1 and 2 are substitutes in pair wise comparison ( )(i
SH ) and 

complements without technology 3 ( )(ii
CH ), then technologies 1 and 2 must be substitutes 

with technology 3. 

Proof : 

Under )(i
SH , Pr(X1 = 1, X2 = 1) < Pr(X1 = 1) Pr(X2 = 1) ; 

Under )(ii
CH , Pr(X1 = 1) Pr(X2 = 1) < Pr(X1 = 1, X2 = 1| X3 = 0). 

Pr(X1 = 1, X2 = 1)  

= Pr(X3 = 1) Pr(X1 = 1, X2 = 1| X3 = 1) + Pr(X3 = 0) Pr(X1 = 1, X2 = 1| X3 = 0) 

< Pr(X1 = 1, X2 = 1| X3 = 0) according to )(i
SH and )(ii

CH , which implies that  

Pr(X1 = 1, X2 = 1| X3 = 1) < Pr(X1 = 1, X2 = 1| X3 = 0) as long as Pr(X3 = 1)>0. 

Then 

Pr(X1 = 1, X2 = 1| X3 = 1) Pr(X3 = 0) + Pr(X1 = 1, X2 = 1| X3 = 1) Pr(X3 = 1)  

< Pr(X1 = 1, X2 = 1| X3 = 0) Pr(X3 = 0) + Pr(X1 = 1, X2 = 1| X3 = 1) Pr(X3 = 1), 

So, Pr(X1 = 1, X2 = 1| X3 = 1) < Pr(X1 = 1, X2 = 1). Technologies 1 and 2 must be 

substitutes with technology 3.                                                                     Q.E.D. 

Corollary B: If technologies 1 and 2 are substitutes in pair wise comparison ( )(i
SH ) and 

complements without technology 3 ( )(ii
CH ), then technologies 1, 2 and 3 must be mutual 

substitutes. 

Proof: 

According to proposition B and )(i
SH ,  

Pr(X1 = 1, X2 = 1| X3 = 1) < Pr(X1 = 1, X2 = 1)<Pr(X1 = 1) Pr(X2 = 1).         Q.E.D. 
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Appendix B 

TABLE B.1.— DESCRIPTION OF TECHNOLOGIES IN THE HOG PRODUCTION 

Technology Description 

AI Artificial Insemination focuses on enhancing hog reproductive efficiency and 
improving the gene pools. 

SSF Split Sex Feeding feeds different rations to males and females. They have 
different diets for pigs of various weights and separate diets for gilts and 
barrows for maximum efficiency and carcass quality.  

PF Phase Feeding involves feeding several diets for a relatively short period of 
time to more accurately and economically meet the pig's nutrient 
requirements.  

MSP Multiple Site Production produces hogs in separate places in order to curb 
disease spread.  

SEW Segregated Early Weaning gives the piglets a better chance of remaining 
disease-free when separated from their mother at about three weeks when 
levels of natural antibodies from the sow's milk are reduced.  At the same 
time, early weaning helps to produce more piglets each year. 

MEW Medicated Early Weaning uses medication of the sow and piglets to produce 
excellent results in removing most bacterial infections.  

MMEW Modified Medicated Early Weaning is same as MEW but less all-embracing. 
The range of infectious pathogens to be eliminated is not quite as 
comprehensive. MMEW can also be used to move pigs from a diseased herd 
to a healthy herd.  

AIAO All In/All Out allows hog producers to tailor feed mixes to the age of their 
pigs instead of offering either one mix to all ages or having to offer several 
different feed mixes at one time. It helps limit the spread of infections to new 
arrivals by allowing for cleanup of the facility between groups of hogs being 
raised.  

AS Auto Sorting System helps with labor savings, easier feed withdrawal, 
reductions in sort variation and sort loss, greater uniformity in pig market 
weight, and therefore more accurate marketing. 

PBM Parity Based Management uses specialized labor in breeding, feeding and 
caring for pigs.  In addition to returns from specialization, this method reduces 
disease transmission and lowers the risk of new disease introduction. 

 
Note: the technology the notation stands for is referred in the Table 1 or Table 2B.2. Information is based 
on the USDA animal and plant health inspection service and ERS; http://www.thepigsite.com/; and 
National Hog Farmer http://nationalhogfarmer.com/. 
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TABLE B.2.— TECHNOLOGY ADOPTION RATE BY FARM TYPE 
 

No. Description Notation 
Farrow to 

Finish 
Farrow to 
Feeder Pig 

Feeder Pig 
to Finish 

1 
Artificial 
Insemination AI 0.316 0.474 0.027 

   (0.465) (0.500) (0.163) 
2 Split Sex Feeding SSF 0.279 0.172 0.327 
   (0.448) (0.378) (0.470) 
3 Phase Feeding PF 0.551 0.305 0.448 
   (0.498) (0.461) (0.498) 

4 
Multiple Site 
Production MSP 0.251 0.214 0.139 

   (0.434) (0.411) (0.347) 

5 
Segregated Early 
Weaning SEW 0.096 0.144 0.107 

   (0.295) (0.352) (0.310) 

6 
Medicated Early 
Weaning MEW 0.025 0.025 0.005 

   (0.157) (0.157) (0.067) 

7 
Modified Medicated 
Early Weaning MMEW 0.006 0.019 0.000 

   (0.075) (0.136) (0.000) 
8 All in / All out AIAO 0.521 0.529 0.592 
   (0.500) (0.500) (0.492) 
9 Auto Sorting Systems AS 0.001 0.000 0.018 
   (0.028) (0.011) (0.133) 

10 
Parity Based 
Management PBM 0.013 0.007 0.003 

   (0.111) (0.084) (0.050) 

- 
Total number of 
technologies - 2.059 1.891 1.666 

   (1.460) (1.492) (1.295) 
Note: numbers in the parentheses are standard errors. The statistics of the variables are weighted. 
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TABLE B.3. — MULTIVARIATE PROBIT MODEL OF TECHNOLOGY, FARM SIZE AND FARM TYPE  

Variables 

Equation 1: 
Technology 

Adoption Intensity 

Equation 2: 
Farm size 

Equation 3: 
Farrow to 
Feeder Pig 

Equation 4: 
Feeder Pig to 

Finish 
Female 0.138 -0.100 -0.029 -0.197 
 (0.62) (0.78) (0.11) (0.79) 
Education 0.076 0.074 -0.031 0.003 
 (3.14)** (4.61)** (1.36) (0.13) 
Experience -0.002 0.001 -0.014 0.011 
 (0.11) (0.13) (1.02) (0.68) 
Experience2 -0.000 -0.000 0.000 -0.000 
 (1.48) (0.82) (0.82) (0.29) 
Northeast 0.079 -0.092 0.377 -0.142 
 (0.30) (0.68) (1.70) (0.81) 
Southeast -0.523 0.410 0.013 -0.000 
 (2.63)** (3.22)** (0.08) (0.00) 
West -0.526 -0.144 0.058 -0.143 
 (2.75)** (1.15) (0.34) (0.80) 
Year 2000 0.303 0.538 -0.402 0.227 
 (2.25)* (6.75)** (2.66)** (1.79) 
Year 2005 0.224 0.529 0.025 0.309 
 (1.63) (6.58)** (0.16) (2.27)* 
Constant -1.686 -3.333 -0.432 -1.325 

 (4.47)** (11.42)** (1.06) (3.44)** 
Correlation Coefficients    

ρ12 0.533    
 (17.00)**    
ρ13 0.026    
 (0.44)    
ρ14 -0.123    
 (2.18)*    
ρ23 0.199    
 (2.80)**    
ρ24 -0.162    
 (2.06)*    
ρ34 -0.428    

 (8.03)**    
Note: Absolute value of t statistics in parentheses and standard error in square bracket.  * Significant at 5%; 
** significant at 1%. 
Probability weights are considered in the model and the standard errors are therefore robust. ijρ  is a series 

of the correlation coefficients between equation i  and equation j .  


