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1. INTRODUCTION

Health status has long been recognized as a crucial determinant of many important economic

decisions, including choices about whether to participate in the labor force or enroll in public

transfer programs. Yet there exists widespread concern about the reliability of self-reported health

and disability in survey datasets. A person�s self-assessed degree of work capacity, in particular,

may be in�uenced by a variety of economic, psychological, and social factors. Work disability, after

all, is not a purely medical phenomenon; two individuals with identical medical pathologies may

have di¤erent abilities to work in the labor market. The potential for large classi�cation errors

has been widely accepted as a central problem for social science research and for administrative

purposes in de�ning eligibility for government assistance programs (e.g., U.S. General Accounting

O¢ ce, 1997; Institute of Medicine, 2002). Ongoing debates about measuring the presence of work-

limiting disabilities, the e¤ects of health on labor market decisions, and the in�uence of Social

Security Disability Insurance (SSDI) policy on declining labor force participation rates have all

emphasized issues regarding the reliability of self-reported disability information (e.g., Haveman

and Wolfe (1984) vs. Parsons (1984); Bound (1991a) vs. Parsons (1991)).1

This paper focuses on the problem of drawing inferences on the prevalence of long-term work

disability using self-reports of work capacity. Numerous studies measure disability status based

on subjective self-reports of limitation, such as responses to questions of the form: �Do you have

a health impairment that limits the kind or amount of work you can perform?�We examine the

prevalence of �true disability�among respondents in the Health and Retirement Study (HRS), a

survey of persons nearing retirement commonly used to evaluate the e¤ects of disability on the work

behavior of older persons. In the HRS, nearly 21% of the respondents report having a long-term

work limitation caused by a medical problem; about half of these respondents report being unable

to work altogether.

Many researchers are skeptical of the accuracy of these self-reports. Bound and Burkhauser

1Bound (1991b) provides a comprehensive analysis of the econometric issues surrounding the debates.
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(1999, p. 3446), for example, suggest the possibility that �those who apply for SSDI and especially

those who are awarded bene�ts tend to exaggerate the extent of their work limitations (relative to

those who do not apply)...�Eligibility for disability transfers is speci�cally tied to diminished work

capacity. Others (e.g., Bowe, 1993) have argued that the threshold for claiming disability may be

lower for those who �nd themselves out of the labor force, either by choice or through involuntarily

unemployment. Some who have withdrawn from the labor force prior to normal retirement age

may rationalize their employment status as driven mostly by their health conditions instead of

by other factors, such as high preferences for leisure or unlucky labor market outcomes. The

psychology literature discusses the potential medical role of �negative a¤ectivity� in respondents�

self-assessments of disability status (e.g., Watson and Clark, 1984).

Studies that have modeled and assessed the reliability of self-reported work limitations have not

resolved these issues. Using a variety of parametric latent variable models to assess the impact of

health on labor market outcomes, several researchers have found evidence of systematic disability

reporting errors. Kerkhofs and Lindeboom (1995), O�Donnell (1999), Kreider (1999, 2000), and

Lindeboom and Kerkhofs (2004), for example, estimate large reporting errors that are related to

labor force status. In contrast, Stern (1989) and Dwyer and Mitchell (1999) accept the hypothesis

that labor market outcomes do not a¤ect reporting behavior. These con�icting �ndings are di¢ cult

to reconcile. Most related studies impose what seem to be sensible restrictions on the reporting

process. However, to address structural questions involving the simultaneous interactions between

health status, government assistance programs, and labor market behaviors, these studies also

impose strong parametric assumptions.

To disentangle these issues, Benítez-Silva et al. (2004) isolate the problem of inferring disability

status. Using an innovative approach that focuses on a subsample of applicants for federal disability

bene�ts, they compare self-reports of work incapacity to the Social Security Administrations�s (SSA)

award decision. Under the identifying assumption that the SSA�s de�nition of disability forms the

social standard for what constitutes work incapacity (see Sections 2 and 4.3), they �nd that the
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disability self-reports are largely accurate. As they acknowledge, however, questions about the

reliability of self-reported disability remain. Well-documented concerns about the reliability of SSA

award decisions (U.S. General Accounting O¢ ce, 1997; Institute of Medicine, 2002) coupled with

the possibility that self-reports may be in�uenced by the award outcome itself (possible for about a

third of their sample for which self-reported disability status was recorded after the award decision)

could lead both measures to be biased. More generally, even if self-reported work incapacity is

unbiased within the pool of disability applicants, this result may not extend to nonapplicants or to

less stringent notions of work disability of interest in other settings (see Section 2).

Given the ongoing debates about measuring work limitations, we similarly focus on the nar-

row but complex problem of inferring disability rates from self-reported survey data. In contrast

to Benítez-Silva et al. (2004), we assess disability among the general population of individuals

nearing retirement age and thus do not observe an alternative direct measure of work limitation.

Instead, we develop and apply a nonparametric bounding methodology that allows us to assess the

identifying power of some basic assumptions about the reporting process that have been applied

in the literature. By narrowly focusing on the problem of inferring disability, we abstract away

from the parametric assumptions used in the structural models, focusing instead on the identifying

power of the more primitive assumptions about the reporting process.

We describe the data and di¤erent measures of limitation in Section 2. In Section 3, we de-

velop a methodological framework to infer disability in corrupt data in which we assume, initially,

that nothing is known about the patterns of reporting errors. We do not focus on providing point

estimates of the true disability rates. Instead, in extending the nonparametric bounding methods

developed by Horowitz and Manski (1995), we provide a unifying framework that allows us to

explore what can be learned under di¤erent restrictions on the reporting process. This framework

allows one to assess the sensitivity of inferences about work disability to the strength of the iden-

tifying assumptions. Two classes of assumptions are considered: �rst, we consider �veri�cation�

assumptions that formalize the notion of placing more con�dence in some responses than others
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(e.g., depending on corresponding medical evidence); and second, we consider monotone instrumen-

tal variable (MIV) assumptions that specify monotonic relationships between the true disability

rate and certain observed covariates, such as labor force participation and age.

In developing these models, we extend the econometric literature by providing sharp bounds

on the mean of a binary random variable when nothing is known about the accuracy of the classi-

�cations for an unveri�ed portion of the sample while random errors may occur in the remaining

portion. Our Proposition 1 bounds provide an explicit treatment of binary outcomes in the corrupt

sampling setting.2 Moreover, by allowing for random classi�cation errors within veri�ed subgroups,

we depart from both the nonparametric (e.g., Manski, 1995; Dominitz and Sherman, 2004) and

parametric (e.g., Kreider, 1999; McGarry, 2004) literatures that assume fully accurate reporting

within certain subgroups. We also formally correct for the �nite sample bias of the plug-in MIV es-

timator that arises from taking sups and infs over collections of estimates. Without this correction,

the estimated MIV bounds would be too narrow.

In Sections 4 and 5, we present results and draw conclusions. We �rst study what can be learned

about the prevalence of work disability in the general population. We then turn to inferences for

the subsample of disability insurance applicants, the group studied by Benítez-Silva et al. (2004).

Since we observe no objective measure of true work capacity, there invariably will be questions

about the credibility of any veri�cation or MIV assumption. Thus, a primary objective is to assess

how inferences vary under di¤erent seemingly reasonable restrictions. To do so, we exploit the

wealth of information available in the HRS on health and labor market status to motivate and

assess the identifying power of di¤erent assumptions. For example, we might have more con�dence

that a respondent truly has a signi�cant work limitation if the respondent also reports a serious,

objectively diagnosed health condition that is known to be associated with disability (e.g., having

had a stroke).

2Bollinger (1996) has previously bounded the mean regression in the classical errors-in-variables setting when the
mismeasured regressor is binary. Kreider and Pepper (forthcoming) relax the independence assumption, allowing the
binary regressor to come from a corrupt sampling process. To illustrate their methodology, they analyze what can
be learned about employment outcomes among the disabled when disability status is unobserved.
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Our results help reveal the nature and extent to which our knowledge about the prevalence of

disability is limited by our lack of understanding of reporting errors. Inferences are quite sensitive

to the speci�c veri�cation model. Under our strongest assumptions, we precisely identify the

prevalence of disability and �nd some evidence of systematic misreporting. Under more conservative

models, however, we can only bound the prevalence rate to lie within a wide (e.g., over 20 point)

range which includes the accurate reporting rate.

2. DATA

Our analysis uses data from the Health and Retirement Study, a nationally representative

survey of 7608 households whose heads were nearing retirement age (aged 51-61) at the time of the

initial interview in 1992-93.3 The HRS has become an especially popular data source for studying

the e¤ects of health status and public policy on work behavior of older persons because of its

detailed information about health and disability, work history, and participation in public transfer

programs. The �rst wave is comprised of 12,652 respondents (heads and other adult household

members). As common in micro analyses of the HRS data, we restrict our sample to the 9,824

age-eligible respondents born between 1931 and 1941.

Our analysis focuses on inferring long-term disability rates in the �rst wave of the survey using

responses to direct questions on work limitation. HRS respondents were asked, �Do you have any

impairment or health problem that limits the kind or amount of paid work you can do?�Those who

answered in the a¢ rmative to this broad disability question were asked the more narrow question:

�Does this limitation keep you from working altogether?�Of the 9824 respondents, 2039 (20:8%

of the sample) reported a long-term work limitation and 992 (10:1% of the sample) reported being

3We have examined the robustness of our main results using data from the 1996 panel of the Survey of Income
and Program Participation (SIPP), a nationally representative sample of 36,800 households. For the SIPP, we use
information from all 60,265 individuals between the ages of 18 and 69, the age range surveyed about the existence of
work limitations. We further check robustness using data from the U.S. Census. Our primary results are consistent
across these data sources, though we cannot replicate many of our models due to a lack of comparable data. These
auxiliary results are available from the authors. See Maag and Wittenburg (2003) for discussion about disability
measurement issues for the SIPP.
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unable to work altogether.4 We also use information from the second wave, conducted two years

after the �rst wave, to help resolve uncertainty about pending applications for federal disability

bene�ts.

Responses to these work limitation questions provide convenient summary measures of disability

(especially for computationally expensive dynamic programming models) and are often viewed to

be more informative about work capacity than more objective yet indirect proxies, such as the

presence of speci�c health conditions or functional limitations (e.g., Haveman and Wolfe, 1984).5

In particular, these direct disability questions capture the notion of both physical and mental

limitations as well as the more elusive ideas involving social context. These ideas are re�ected

in Nagi�s (1965) seminal work and espoused by both the World Health Organization (WHO) and

framers of the 1990 Americans with Disabilities Act (ADA). Nagi (1965) relates disability to �the

expression of a physical or a mental limitation� in a social context such as the workplace. The

WHO framework is similar: �In the context of a health experience, a disability is any restriction or

lack of ability (resulting from an impairment) to perform an activity in the manner or within the

range considered normal for a human being�(World Health Organization, 1980). Under the ADA,

disability requires the presence of �a physical or mental impairment that substantially limits one or

more major life activities,�such as performing tasks on the job (Americans with Disabilities Act,

1990). Each of these conceptualizations of disability allows for the possibility that substantial work

capacity remains.6

Since employment and disability are not mutually exclusive, researchers interested in studying

the impact of disability on labor market behaviors have relied largely on the broader measure of

�some limitation� in work capacity. In some contexts, however, the more restrictive �inability to

4Focusing on long-term disability, we code a respondent reporting a work limitation as not disabled if the underlying
health problem is reported to be only temporary and expected to last for less than three months (77 such cases).
There were 22 missing values for these questions that we code as not disabled for purposes of presenting descriptive
statistics. When estimating bounds on disability rates, however, we take worst cases and allow for the possibility
that some or all of these respondents may be truly disabled.

5Using the HRS data, Benítez-Silva et al. (1999) �nd that self-reported disability status constitutes a powerful
predictor of disability insurance applications and awards.

6See the Institute of Medicine (2002, Chapter 2) for further discussion of the conceptual issues in de�ning disability.

6



work�de�nition may be of more interest. For example, the Social Security Administration (U.S.

Social Security Administration, 2006) requires recipients of federal disability insurance bene�ts to

demonstrate �the inability to engage in any substantial gainful activity by reason of any medically

determinable physical or mental impairment which can be expected to result in death or which has

lasted or can be expected to last for a continuous period of at least 12 months.� In 2006, substantial

gainful activity is de�ned as earnings exceeding $860 per month ($500 per month during the time

of the HRS survey). We estimate bounds on the disability rates for both the broad and restrictive

measure of disability.

As elaborated in Section 4, our estimated bounds on the true disability rates combine these self-

reports of work limitation with other information in the HRS that can potentially shed light on the

reliability of these self-reports. Table I displays means and standard deviations for selected variables

used in our analysis. As expected, labor market and disability insurance status vary substantially

with reported disability status. For example, the employment rate is 2:6 times higher among those

reporting no work limitation compared with those reporting some limitation (78% compared with

30%). Likewise, just over half the respondents reporting work limitations and nearly four-�fths

reporting being unable to work altogether had applied for federal disability bene�ts from SSDI or

Supplemental Security Income (SSI), whereas very few respondents reporting no work limitation

had applied for bene�ts. Because the HRS does not distinguish between SSDI and SSI applications,

from this point on we refer to SSDI/SSI jointly as the SSA�s Disability Insurance (DI) program.7

Although work disability is not synonymous with general health status, there is undoubtedly a

close relationship given the potential impact of health conditions on work capacity. Our analysis

exploits a wealth of information on a respondent�s reported physical and mental health to aid in

7The federal government provides cash and medical bene�ts to the disabled through the Social Security Disability
Insurance (SSDI) and Supplemental Security Income (SSI) programs. The formal limitation eligibility criteria for
the two programs are identical, requiring a medically determinable impairment that prevents the applicant from
engaging in any �substantial gainful activity.� SSI bene�ts are means-tested and do not require prior work history,
whereas SSDI bene�ts are set according to a recipient�s prior earnings. Based on personal correspondence with an
SSA o¢ cial, it appears that SSDI applications are routinely screened for potential SSI eligibility and vice versa. In
this light, applicants are e¤ectively applying for bene�ts from both programs.
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implementation of the veri�cation and MIV assumptions. For example, a respondent reporting

to be disabled but in excellent physical and mental health might not be veri�ed as providing an

accurate disability report.

In Table I, we display the means of these health-related variables by reported disability status.

Table II displays a matrix of correlation coe¢ cients for the numerous health and limitation measures

used in this analysis. We observe three general categories of health-related information: subjec-

tive measures of general health, alternative measures of physical limitation, and speci�c health

conditions.

At the most basic level, we exploit information from two generic questions about a respondent�s

physical and mental health status. About 42% of respondents reporting a work limitation claim to

be in fair or poor general physical health, compared with only 12% among those reporting no work

limitation. The correlation coe¢ cient between these two measures is 0:52. Patterns are similar for

reported emotional health status, although the correlation coe¢ cient is only 0:31.

Another series of health-related questions provides information on other measures of limitation.

To avoid using subjective self-reports of disability, some researches have relied on indirect summary

measures like body mass (e.g., Gruber and Kubik, 1997) or subsequent mortality (e.g., Parsons,

1980).8 In our sample, 3% of respondents died before the second interview could take place (Table

I) and nearly 60% have a body mass outside the ideal range de�ned by Fahey et al. (1997).9 These

measures of limitation are clearly associated with self-reports of disability. The mortality rate, for

example, is more than four times higher among those reporting a work limitation (7:5% compared

with 1:8%) and more than �ve times higher among those reporting an inability to work at all (11%

compared with 2:1%). While not particularly large, di¤erences in the ideal body mass indicator

8Others, however, have criticized indirect measures as being poor indicators of disability status. Haveman and
Wolfe (1984), for example, view mortality experience as a �weak and arbitrary� proxy for disability status. Many
conditions a¤ecting disability status (e.g., back problems) do not normally contribute to an early death, and many
deaths occur for reasons unrelated to the source of a work limitation.

9They de�ne ideal body mass to be 20-25 kilograms per meter. We calculate body mass for each respondent using
information in the HRS on height and weight.
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across reported disability status are also statistically signi�cant at the 1% level. Nevertheless, these

alternative measures appear to provide di¤erent information about limitations � the means vary

from 0:03 for subsequent mortality to 0:209 for self-reported disability to 0:589 for non-ideal body

mass, and the correlations range from only 0:02 to 0:13.

Beyond these indirect proxy measures of limitation, the HRS includes a battery of direct ques-

tions related to a respondent�s ability to perform basic functions. Activities of daily living indicators

(ADLs) are intended to measure the ability to undertake basic self-care functions such as eating

or dressing without help. Instrumental activities of daily living (IADLs) are intended to measure

capabilities relevant to independent living, such as the ability to travel beyond walking distance.

Such limitations do not directly measure work disability, but they may often contribute to di¢ -

culties in performing job-related tasks. For each of these functional activities, a respondent can

answer �not at all di¢ cult,��a little di¢ cult,��somewhat di¢ cult,��very di¢ cult/can�t do,�or

�don�t do.�10 Respondents were told to disregard any limitation expected to last less than three

months.

Using de�nitions suggested by Loporest et al. (1995, p. S297), we aggregate this information

into an index of functional limitations. The �rst step is to create four categories of functions:

(I) Basic functions include the ability to (a) get in and out of bed without help, (b) bathe or

shower without help, (c) eat without help, (d) dress without help, and (e) walk across a room; (II)

Sedentary work functions include the ability to (a) sit for about two hours and (b) get up from a

chair after sitting for a long period; (III) Physical work functions include the ability to (a) walk

several blocks, (b) stoop/ kneel/crouch, (c) pick up a dime from a table, and (d) reach or extend

arms above shoulder level; (IV) Very physical work functions include the ability to (a) climb several

�ights of stairs without resting, (b) lift or carry weights over 10 pounds, and (c) pull or push large

objects like a living room chair. Given these four categories, the functional limitation index is then

10As pointed out by Loporest et al. (1995), the language �don�t do� is somewhat problematic for interpretation
since this response may not re�ect an inability to perform the task. Nevertheless, we follow their approach and group
the �can�t do�and �don�t do�responses together.
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constructed based on the following outcomes:11

� Level 0: No functional limitation
� Level 1: Some di¢ culty with very physical work functions

� Level 2: Very di¢ cult/can�t do one of the very physical work functions

� Level 3: Some di¢ culty with physical or sedentary work functions

� Level 4: Very di¢ cult/can�t do one of the physical work or sedentary work functions

� Level 5: Some di¢ culty with any basic function

� Level 6: Very di¢ cult/can�t do one of the basic functions

As expected, respondents reporting work limitations are more inclined to report functional

limitations. Still, these measures seem to re�ect di¤erent aspects of reported impairment. For

example, nearly 14% of those reporting a work limitation and 5% of those reporting the inability

to work altogether do not report di¢ culty with any of the activities. In Section 4, we examine how

inferences on work disability depend on assumptions about the relationship between work disability

and functional limitations.

Finally, we exploit self-reported information on the presence of speci�c clinical health conditions

recorded in the HRS. Wallace and Herzog (1995) focus on a subset of reported conditions in the

HRS that are expected to be the most prevalent among middle-aged and elderly persons and/or

most likely to result in work disability. In most cases, responses to questions about the presence of

a condition can be combined with responses to follow-up questions that help indicate the severity

of the condition. Following Wallace and Herzog�s de�nitions, Table I provides prevalence rates

for six speci�c serious and objective conditions: diabetes (plus currently taking insulin), cancer

(with treatment in the last 12 months), chronic lung disease (with reported activity limitations), a

heart condition (congestive heart disease with prescribed medication or accompanied by shortness

of breath), stroke (with reported health consequences), and psychiatric problems (currently taking

medication or receiving treatment). We also report on the prevalence of arthritis and hypertension,

11Loporest et al. (1995) recognize some ambiguity in the index. For example, the severity of physical versus seden-
tary functions is unclear, as are comparisons between being unable to perform a physical activity versus having some
di¢ culty with a very physical function. Nevertheless, we �nd their aggregation approach to represent a signi�cant
advancement over the usual approach of simply counting the number of reported ADLs and IADLs.
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along with nine medical conditions associated with a major organ system: asthma, back problems,

problems with legs or feet, kidney or bladder problems, stomach or intestinal ulcers, high cholesterol,

the occurrence of a fracture since age 45, poor eyesight (with glasses), and poor hearing (with

hearing aid).

While self-reports on health conditions are almost certainly more objective than self-reports on

work disability, they do not speci�cally measure disability.12 Across all of the 17 conditions listed

in Table I, respondents who report a work limitation report an average of 4.02 conditions compared

with 1.58 conditions among those reporting no work limitation.

3. CLASSIFICATION ERROR MODEL

While the disability questions are notably ambiguous, survey designers clearly have an expec-

tation that respondents will be able to place these questions about work limitation in a reasonable

social context. When a survey asks whether a respondent is �unable to work altogether,�for exam-

ple, it is understood that the respondent might reasonably answer �yes�even though hypothetically

it might be possible to perform some small amount of work. The threshold for answering in the

a¢ rmative depends on current social norms for what constitutes an inability to work (see, e.g.,

Kapteyn et al., forthcoming).

The problem is that some respondents might use a di¤erent threshold for assessing disability.

While it seems unlikely that a signi�cant number of survey respondents are prone to willfully misrep-

resent their work capacity, especially in con�dential surveys, a much greater concern in the literature

revolves around the possibility that social or psychological factors can lead to self-rationalization.

Concerns over systematic misreporting are generally based on two distinct observations, one �nan-

cial and one social. First, eligibility for government disability assistance programs is tied to both

earnings and disability status (Bound and Burkhauser, 1999). Second, some people may feel social

pressure to be working until normal retirement age (Bound, 1991b; Bowe, 1993). Thus, short of in-

12Also, despite the relative objectivity of speci�c conditions, the potential for misreporting remains. For example,
conditions may be misdiagnosed, and respondents may be reluctant to disclose the presence of a condition. Conditions
might often go undiagnosed for some time, especially among respondents with limited access to health care providers.
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tentionally misreporting, some nonworkers or disability insurance applicants might have a di¤erent

threshold for equating a health condition with a work limitation. To help rationalize a nonemploy-

ment spell, for example, nonworkers might be more prone than workers to interpret a particular

medical problem (e.g., a bad back of a given severity) as a work limitation. At the same time, other

respondents might not wish to admit that they are having di¢ culty coping with a health condition,

so they might claim to be able-bodied despite having a substantial work limitation.

To evaluate the impact of invalid response, we introduce notation that distinguishes between

self-reports and the truth. Let X be the self-reported measure, where X = 1 if the respondent

reports a limitation and 0 otherwise. Let W = 1 indicate that the individual is truly disabled

relative to the intent of the survey question, with W = 0 otherwise. Finally, let Z indicate whether

a respondent provides accurate information, with Z = 1 if W = X and Z = 0 otherwise. We are

interested in making inferences on the unobserved true disability rate, P (W = 1).

Some fraction, P (X = 1; Z = 0), inaccurately report being disabled (false positives) while

others, P (X = 0; Z = 0), inaccurately report being nondisabled (false negatives). Thus, the true

and reported disability rates are related as follows:

P (W = 1) = P (X = 1) + P (X = 0; Z = 0)� P (X = 1; Z = 0). (1)

The observed disability rate equals the true disability rate if the fraction of false negative reports

exactly o¤sets the fraction of false positive reports. The data, however, only identify the fraction

of the population that self-reports disability, P (X = 1). The sampling process cannot identify the

fraction of false negative or false positive reports.

As a starting point, it is useful to evaluate what can be inferred about the disability rate

P (W = 1) given prior information on the fraction of respondents who provide valid self-reports. In

particular, suppose

P (Z = 1) � v (2)

where v is a known lower bound on the accurate reporting rate. By varying the value of v, we can

consider the wide range of views characterizing the debate on inaccurate reporting. Those willing
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to assume fully accurate reporting can set v = 1, in which case the sampling process identi�es

the disability rate. Those uncomfortable with placing any lower bound on the fraction of accurate

responses (e.g., Myers, 1982; Bowe, 1993) can set v = 0, in which case the sampling process is

uninformative. Middle ground positions are evaluated by setting v somewhere between 0 and 1.

Given the restriction that no more than some fraction, 1 � v, of the population misreports

disability status, we know from (1) that

maxfP (X = 1)� (1� v); 0g � P (W = 1) � minfP (X = 1) + (1� v); 1g. (3)

These bounds are derived by Horowitz and Manski (1995, Proposition, Corollary 1.2). Henceforth,

we will refer to these bounds as the HM bounds. Intuitively, the bounds narrow as the upper bound

misreporting rate, 1� v, declines.

In the HRS sample, 20:8% of respondents report some work limitation. The bounds in (3)

reveal that this self-reported disability measure provides only modest information about the true

disability rate unless v is large. In fact, the HM bounds remain completely uninformative unless it

can be assumed that the accurate reporting rate exceeds 20:8%; the lower bound is zero unless it

is known that at least 79:2% of responses are accurate.

To narrow these identi�cation bounds, we consider two di¤erent classes of assumptions linking

observed covariates to the reporting process and the true disability rate. In Section 3.1, we consider

veri�cation assumptions that place more con�dence in some responses than others. In Section 3.2,

we consider the identifying power of monotonicity assumptions linking disability and observed

covariates such as age, employment, and the presence of physician-diagnosed health conditions. In

Section 3.3, we describe the estimator and, in particular, focus on a bias correction for the plug-in

estimator of the nonparametric instrumental variable bound.

3.1. PARTIAL VERIFICATION OF OBSERVED SUBGROUPS

Short of assuming fully accurate reporting, a number of researchers combine distributional

restrictions with assumptions of fully accurate disability self-reports within particular groups of

13



respondents. Kreider (1999) and McGarry (2004), for example, explicitly assume that workers

provide fully accurate responses, remaining agnostic about the self-reports from nonworkers. In

the spirit of these ideas, we evaluate what can be inferred about the true disability rate when prior

information is brought to bear on the degree of misreporting within certain observed subgroups.

For now, we focus on basic notation. Our speci�c veri�cation strategies are presented in Section 4.

To formalize the notion of partial veri�cation, let Y = 1 indicate that a respondent belongs to

a veri�ed subgroup, with Y = 0 otherwise. Using the law of total probability, we can decompose

the true disability rate by subgroups:

P (W = 1) = P (W = 1jY = 1)P (Y = 1) + P (W = 1jY = 0)P (Y = 0). (4)

Although respondents in the veri�ed subgroups might have few incentives to misreport, there

may remain random errors: respondents may make mistakes in assessing the disability threshold,

valid reports can be miscoded, and so forth. So, in contrast to the existing literature, we allow

for the possibility of exogenous response errors within the veri�ed group such that there can be

partial veri�cation. Formally, let vy be the known lower bound fraction of accurate reporters

in the veri�ed subgroup and assume that at least half of the veri�ed group reports accurately:

P (Z = 1jY = 1) � vy � 1
2 .
13 Let the reporting errors in the veri�ed group be random so that

P (W = 1jY = 1) = P (W = 1jY = 1; Z).14 No prior information is assumed about the validity

of self-reports from the unveri�ed cases. Then the following bounds follow (see Appendix A for a

proof):15

13The assumption that at least half the reports are accurate is applied by Bollinger (1996) and others and seems
consistent with the notion of veri�cation. In fact, however, the bounds derived in Proposition 1 extend to all
vy � min fP (X = 1jY = 1); P (X = 0jY = 1)g. Otherwise, the Proposition 1 bounds that follow do not apply.
14We relax this independence assumption, termed contaminated sampling by Horowitz and Manski (1995), as part

of the sensitivity analysis in Section 4.
15Molinari (2005) independently derives a similar result using a di¤erent approach that does not focus on partial

veri�cation. For a wide class of models, she shows that the relationship between the distribution of a true variable and
its potentially mismeasured counterpart can be represented by a linear system of simultaneous equations involving
a coe¢ cient matrix of misclassi�cation probabilities. She then shows how restrictions on this matrix (depending on
the underlying assumptions of the model) can be used to partially identify regions for the true variable.
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Proposition 1: Let �i = 1 [vy > P (X = ijY = 1)], i = 0; 1 and � = 1[P (X = 0jY = 1) > P (X =

1jY = 1). Then if P (Z = 1jY = 1) � vy � 1
2 for a known vy and P (W = 1jZ; Y = 1) = P (W =

1jY = 1), it follows that

�
0

�
�
vy � P (X = 0jY = 1)

2vy � 1
+ (1� �)P (X = 1jY = 1)

�
P (Y = 1)

� P (W = 1) ��
�
1

�
�P (X = 1jY = 1) + (1� �)vy � P (X = 0jY = 1)

2vy � 1

�
+ (1� �

1
)

�
P (Y = 1) + P (Y = 0).

By varying the value of vy, we can assess the sensitivity of the bounds to the strength of the

veri�cation assumption. In the special case that all respondents in veri�ed groups are known to

provide accurate reports (vy = 1)16 then

P (X = 1; Y = 1) � P (W = 1) � P (X = 1; Y = 1) + P (Y = 0). (5)

In this informational setting, the true disability rate is intuitively no less than the reported rate

among veri�ed cases and no greater than this rate plus the fraction of unveri�ed cases. Thus, the

width of this bound is the fraction of unveri�ed cases, P (Y = 0). Intuitively, for example, in the

special case where all workers are known to provide accurate reports about limitation, then the

true disability rate must be at least as high as the fraction of workers claiming limitation but no

larger than this fraction plus the fraction of nonworkers.

3.2. MONOTONICITY ASSUMPTIONS

The Propositions 1 bounds can be further narrowed when combined with monotonicity assump-

tions linking disability and observed covariates. Consider, for example, age and disability. The

incidence of many debilitating health conditions rises with age, and many health conditions are

persistent once developed. The resulting tendency for individuals to accumulate health problems

over time suggests that the population disability rate is nondecreasing in age.
16This model is precisely the case of censored outcomes considered by Manski (1995). The assumption of fully

accurate reporting within certain groups was also evaluated by Lambert and Tierney (1997) and Dominitz and
Sherman (2004) for the case of contaminated sampling.
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To formalize the age monotonicity assumption, let u measure the age of the respondent and

let LB(u) and UB(u) be the known lower and upper bounds, respectively, given the available

information on the true disability rate, P (W = 1ju): Age is a monotone instrumental variable

(MIV) if the true disability rate weakly increases with u. Under this restriction, Manski and

Pepper (2000, Proposition 1 and Corollary 1) show that

sup
u0�u1

LB(u1) � P (W = 1ju = u0) � inf
u0�u2

UB(u2): (6)

There are no other restrictions implied by the MIV assumption.

The MIV bound on the unconditional disability rate, P (W = 1), is easily obtained using the

law of total probability. If the disability rate weakly increases in u, then

X
u0�U

P (u = u0)f sup
u0�u1

LB(u1)g � P (W = 1) �
X
u0�U

P (u = u0)f inf
u0�u2

UB(u2)g:

Thus, to �nd the MIV bounds on the disability rate, one takes the weighted average of the upper

and lower bounds across the di¤erent values of the instrument.

Since the MIV assumption alone has no identifying power, we combine this assumption with

the previous veri�cation assumptions. In this case, the MIV can have identifying power if the

veri�cation probability or the observed disability rate is not monotonic in age.

3.3. ESTIMATION

The Proposition 1 bounds are functions of various nonparametrically estimable probabilities

and thus can be consistently estimated by �plugging-in� the sample analogs. Estimation of the

MIV bounds, however, is complicated by the fact that the monotonicity restrictions in Equation

(6) must be imposed over collections of various estimates. In �nite samples, estimators that take

sups and infs are systematically biased such that the estimated bounds will be too narrow.

To measure and correct for this bias, we present a modi�ed estimator that uses a nonparametric

bootstrap bias correction. The basic idea is straightforward. Let Tn be a consistent analog estimator

of some unknown parameter � such that the bias of this estimator is bn = E(Tn) � �. Using
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the bootstrap distribution of Tn, one can estimate this bias as bb = E�(Tn) � Tn where E�(�) is

the expectation operator with respect to the bootstrap distribution. A bootstrap bias-corrected

estimator then follows as T cn = Tn �bb = 2Tn� E�(Tn).17
For this application, let the parameter of interest, �, be the MIV lower bound on P (W = 1)

(the upper bound case is analogous), let LBn(j) be the plug-in estimate of the MIV lower bound

on P (W = 1ju = j) for each age group j = 1; :::; J , and let Tn be the uncorrected MIV lower

bound estimate across all age groups. To estimate these bounds, we divide the sample into 39 age

groups containing 252 respondents per group (251 in four of the groups). Then for each cell, the

veri�cation bounds are estimated and the MIV restrictions in Equation (6) are applied. Finally,

we compute the MIV lower bound, Tn =
P
j�U Pn(j)fsupj�j0 LBn(j0)g, where Pn(j) is the fraction

of respondents in age group j.

The bias bn is estimated using the bootstrap sampling distribution of Tn. In particular, we ran-

domly draw with replacement from the empirical distribution 10; 000 independent pseudo-samples

of the original data. Then, using these samples, we compute a set of 10; 000 lower bound MIV

estimates of P (W = 1). Let T kn , k = 1; :::; 10; 000, be the lower bound bootstrap estimate for

the kth pseudo-sample, and let E�(Tn) = 1
10;000

P10;000
k=1 T kn be the expected lower bound from the

bootstrap distribution. Finally, we compute the estimated bias, bb, and the bias-corrected MIV
estimator, T cn = 2Tn� E�(Tn).

The bootstrap is also used to provide a tractable way to form con�dence intervals for our

estimates of bounds on the disability rate. To do this, we �rst apply the percentile-bootstrap

method (bias-corrected) to derive 90% con�dence intervals for the upper and lower bounds (see

Efron and Tibshirani, 1993). The interval on the lower bound, for example, is de�ned by the

0:05 and 0:95 quantiles of the bootstrap distribution of the estimated bound. A Bonferroni joint

con�dence interval with a level of at least 90% is then derived by taking by the 0:05 quantile from

17The bootstrap bias correction e¤ectively reduces �nite sample bias (in monte-carlo simulations) and is asymptot-
ically e¢ cient at higher orders in a variety of di¤erent settings. See, for example, Parr (1983), Efron and Tibshirani
(1993), Hahn et al. (2002), and Ramalho (2005). Kreider and Pepper (forthcoming) apply this method of correcting
the MIV estimator in a di¤erent application.
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the bootstrap distribution of the lower bound estimator and the 0:95 quantile of the distribution

of the upper bound estimator.18

4. SPECIFIC STRATEGIES AND RESULTS

In this section, we provide details about our speci�c veri�cation strategies and present empirical

results. Throughout, we report estimated HM bounds, veri�cation bounds, and MIV bounds. We

begin by considering the problem of drawing inferences on the broader de�nition of disability

involving some limitation in the kind or amount of work that can be performed. In Section 4.1,

we bound the true disability rate under two di¤erent sets of veri�cation assumptions. In Section

4.2, we assess identi�cation decay when we use measures of functional limitation to corroborate

subjective measures of work limitation. For example, one could decide not to verify work limitation

among respondents who report no functional limitation. Finally, in Section 4.3 we consider drawing

inferences on work incapacity, the more restrictive de�nition of work disability. Focusing on the

subpopulation of disability insurance applicants, we assess whether the data provide any evidence

of bias in the SSA award decision.

4.1 VERIFICATION STRATEGIES

Many researchers have argued that the propensity to provide inaccurate reports of work limita-

tion may be linked to particular observed groups of respondents. Researchers have argued that the

extent of response errors is likely to vary by employment status (e.g., Stern, 1989; Kreider, 1999;

McGarry, 2004; Lindeboom and Kerkhofs, 2004), applications to and participation in government

disability insurance programs (Bound and Burkhauser, 1999; Kreider, 2000), reported disability

status (Institute of Medicine, 2002), and other observed covariates.

Following this theme, we evaluate what can be learned about the true disability rate when

certain observed groups are assumed to provide accurate responses, or at least to provide some lower

bound degree of accurate reporting. While most of the earlier research uses latent variable models to
18Horowitz and Manski (1998) and Manski and Pepper (2000 �see the longer NBER version) also use and discuss

Bonferroni intervals to derive con�dence intervals for bounds.
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study more complex structural questions relating health, government assistance, and labor market

behaviors, we focus attention on inferring disability alone. This setting allows us to strip away

the parametric assumptions used in most of the previous literature and focus on exploiting the

rich HRS data to assess the identifying power of di¤erent assumptions on the reporting process.

Thus, when formulating veri�cation strategies, we borrow from the basic ideas contained in the

existing literature but, at the same time, thoroughly examine the extensive health and labor market

information available in the HRS.

We aim to verify self-reported disability status for cases that appear to be the most credible

and to not verify cases that involve some type of ambiguity or inconsistency. For example, previous

studies have veri�ed the self-reports of workers under the premise that workers face few incentives

to misreport. But of the 6503 respondents reporting to be gainfully employed, 733 report elsewhere

in the survey either zero hours, zero earnings, or being nonemployed. Given these labor market

inconsistencies, we do not verify the work limitation responses of such individuals based on employ-

ment status alone (they might be veri�ed based on other information). Likewise, we do not verify

the responses of the 58 individuals who claimed to be able-bodied in one part of the survey but

disabled or receiving disability bene�ts in another part of the survey.

Given the inherent uncertainty about which responses should be veri�ed, we present two di¤erent

models of partial veri�cation tailored to the work disability measure of interest. Model I involves

relatively strong veri�cation assumptions, some of which are relaxed in Model II.

We begin with the broad measure of disability involving some work limitation. Veri�cation

strategies for the narrower disability measure are presented in Section 4.3. For Model I, we treat

disability status reports of X as veri�ed (with discussion below) for:

1. those currently working for pay (HRS variable V2717=1) except those who (a) report that
they receive disability bene�ts from any program, (b) did not check the �working� box in
question F1a (variable V2701) for current employment status, or (c) do not report positive
labor hours and positive earnings (i.e., either value is zero or missing);
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2. those reporting no work limitation (X = 0), except those who (a) report receiving disability
bene�ts or (b) checked �disabled�in box F1d (variable V2701) for current employment status;

3. those reporting a work limitation (X = 1) if they also report being unable to work altogether
due to one of the six serious conditions listed in Table 1 (Wallace and Herzog 1995, p.S90);

4. disability bene�ciaries (reporting X = 1), except those who report that they are (a) currently
working or (b) able to work.19

In Model I, 91:9% of the sample is veri�ed. Borrowing from the existing literature, we verify

the responses of most workers and of most respondents reporting to be able-bodied. In both cases,

there appear to be few economic or psychological factors that would lead to misreporting. However,

in each case exceptions are made for potentially con�icting information. The responses of workers

who receive disability bene�ts are not veri�ed, nor does employment status confer veri�cation if

there exists contradictory information on labor hours or earnings. Similarly, we verify X = 0 cases

except in the face of contradictory evidence that the respondent is receiving disability bene�ts or

reports being disabled earlier in the survey. We verify the presence of at least some work limitation,

X = 1, if the respondent reports complete work incapacity caused by a health condition that is

known to often be debilitating and associated with relatively few false positive diagnoses.

Veri�cation of disability bene�ciaries is a more subtle matter that deserves additional attention.

The maintained assumption is that, in the absence of labor force participation, the receipt of

disability bene�ts among those claiming to be unable to work at all corroborates the existence of at

least some work limitation. Many have raised concerns that bene�ciaries are inclined to exaggerate

the extent of their limitations and that disability awards are prone to classi�cation errors. Verifying

some work limitation among this subset of bene�ciaries, however, does not imply that the awards

process is without error or that bene�ciaries do not exaggerate the extent of limitation; it only

requires that adjudication errors are not so extreme that bene�ciaries who report complete work

incapacity are not work-limited at all.

Model II relaxes some of these assumptions. In particular, in Model II responses are �unveri�ed�

19For this purpose, bene�ciaries include all respondents who reported receiving disability bene�ts from any public
or private program. Respondents were queried about the receipt of disability bene�ts from a variety of programs
(e.g., SSDI, SSI, Veterans�Disability, �State disability program,�Employer/union plan).
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as follows: (1) proxy responses are never veri�ed,20 (2)X = 0 cases are not veri�ed if the respondent

(a) reports pain of at least moderate severity, at its worst, that makes activities di¢ cult or (b) has

one of the six serious medical conditions and reports being limited in housework or other activities

besides paid work, and (3) X = 1 cases are no longer veri�ed based on reporting one of the six

serious health conditions. Under these more conservative assumptions, at least 78:4% of the sample

is known to provide accurate responses.

4.1.A VERIFICATION BOUNDS

Table III presents the estimated bounds for the true disability rate and their 90% con�dence

intervals. Column A provides results under the corrupt sampling assumption alone. Under both

Models I and II, the bounds re�ect much uncertainty about the true disability rate. If at least 91:9%

of respondents are known to provide accurate reports, for example, the HM bounds constrain the

true disability rate to lie within [0:127; 0:288]. Without additional information about the reporting

process, the disability rate may lie anywhere within this 16 point range.

In this setting, a primary function of the bounds is to test the validity of alternative measures

of disability and models of the reporting error process. If the veri�cation assumptions are correct,

estimates lying signi�cantly outside the bounds cannot be valid measures of true disability. Ta-

ble 1 contains various possible alternative measures of disability. Most notably, the self-reported

disability rate of 20:8% lies within the 16 point range and thus cannot be rejected as being an

accurate measure of true disability. Neither, however, can we reject the possibility that the fraction

of respondents reporting to be in fair or poor physical health (18:6%), the fraction reporting to

be in poor mental health (22:7%), or the fraction reporting to have one of the six serious medical

conditions (27:3%), are valid measures of work disability (see Table 1). Alternative measures lying

outside of this range can be rejected as measures of work disability. We see, for example that the

incidence of non-ideal body mass (58:9%) and the subsequent mortality rate (3:0%), lie far outside
20 In our sample, 5 percent of responses come from proxy reports. Lee et al. (2004) compare estimates of the number

of disabled by respondent type in an environment in which self-response versus proxy was randomized. Among their
primary �ndings, self-respondents and proxy respondents were equally likely to report disability during the initial
interview, but proxy respondents were less likely to report disability in the second wave of the survey.
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of the estimated bounds. Thus, given the assumption that at least 91:9% of respondents provide

accurate self-reports, we �nd that these alternative measures do not reveal the incidence of work

disabilities. These proxies appear to be measuring other aspects of health.21

Column B displays estimated bounds under the assumption that all veri�ed respondents provide

accurate self-reports of disability. The veri�cation assumption provides substantial identifying

power, but the speci�cs are quite sensitive to the underlying model. Under Model I, the bounds

narrow to the seven point range of [0:135; 0:215], a 50% reduction in the width of the bounds.

However, the width of the veri�cation bounds increases by three-fold when we move from Model I,

where 92% of respondents are veri�ed, to Model II, where 78% of respondents are veri�ed. These

changes in the underlying assumptions about the nature and extent of reporting errors generate

large changes in the uncertainty about the disability rate.

Although the veri�cation bounds can be substantially more informative than the HM bounds,

they still provide only limited information on the true disability rate unless a large fraction of the

caseload is veri�ed to provide completely accurate information. When we relax the parametric

restrictions applied in much of the literature and isolate the identifying power of the veri�cation

assumptions, there remains much uncertainty about the true disability rate. Consistent with con-

cerns raised by Benítez-Silva et al. (2004), these results suggest that conclusions about reporting

errors based on latent variable models are driven largely by parametric assumptions. Moreover, we

�nd that some alternative disability measures do not seem to resolve the identi�cation problems.

Instead, these measures appear to capture some other dimension of health or limitation.

4.1.B MIV BOUNDS

We can reduce uncertainty about the disability rate at the cost of imposing stronger assump-

tions. In this section, we combine veri�cation assumptions with MIV restrictions and illustrate how

inferences vary across the di¤erent models. First, we combine the assumption that true disability

21 In a regression framework, these measures might still serve as important control variables for health and limitation,
and perhaps as valid instrumental variables for the true disability rate.
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weakly increases with age, as discussed above, with the restriction that the disability rate is no

higher among the employed than among the nonemployed: P (W = 1jL = 0) � P (W = 1jL = 1),

where L indicates whether a respondent participates in the labor market.22 Second, we combine

this employment monotonicity assumption with an assumption that �tted values from an ordered

probit model of federal disability applications comprise an MIV. In particular, a natural MIV can

be constructed as the outcome of a respondent�s Disability Insurance application decision. Let

this variable equal 0 if the respondent has not applied for disability bene�ts, 1 if a disability ap-

plication was rejected, 2 if an application was accepted after appeal, and 3 if an application was

accepted initially. Using this variable, we constructed an MIV as the �tted values from an ordered

probit model that exploits information from attributes expected to in�uence work disability. The

speci�cation includes indicators for each of the 17 health conditions listed in Table 1, indicators

for the functional limitation index (Levels 1-6), the indicator for subsequent mortality (died before

wave 2), the indicator for ideal body mass, the indicator for being often bothered by pain, age,

education, race, gender, marital status, veteran status, and asset level (details from this regression

are available upon request).23

The bias-corrected MIV estimates are reported in Columns C and D of Table 3. These MIV

assumptions have substantial identifying power. Under the age-employment MIV assumption,

the Model I bounds on the work limitation rate, for example, collapse to the three point range

[0:178; 0:204], while the DI-employment MIV shrinks the bounds to [0:149; 0:193]. In these cases,

the self-reported disability rate, 0:208, lies outside of these bounds for the true disability rate and

just on the edge of the upper bound of the conservative 90% con�dence interval. These bounds

22 If only workers are veri�ed, the monotonicity assumption is not informative on the upper bound. The lower
bound is similar to the Proposition 1 bound except that it is not multiplied by the fraction of veri�ed respondents,
P (Y = 1). That is,

�
0

�
�
vy � P (X = 0jL = 1)

2vy � 1
+ (1� �)P (X = 1jL = 1)

�
� P (W = 1): (7)

In the special case that workers are known to provide fully accurate reports of work limitation, vy = 1; the population
disability rate is at least as large as the reported disability rate among workers, P (X = 1jL = 1). Note that this
assumption is equivalent to an assumption that the employment rate decreases with disability status: P (L = 1jW =
1) � P (L = 1jW = 0).
23 In the HRS, the incidence of moderate to severe functional limitation (e.g., Level 3 and above) is, up to sampling

variability, monotonic in age, employment status, and the disability application index.
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also do not contain the self-reported rate even if more than 10% of the veri�ed respondents may

misreport.24 Thus, if the MIV assumptions are valid, these estimates provide some evidence of

misreporting. In particular, since the unveri�ed group consists primarily of nonworkers who claim

to be disabled, we �nd some support for suggestions in the literature that members of this group

systematically over-report disability.

As before, however, the identi�cation bounds decay rapidly as we relax the veri�cation restric-

tions. The width of the age-employment MIV bound, for example, increases from the three point

range in Model I to a nearly 16 point range, [0:129; 0:285], in Model II. Thus, under Model II

veri�cation assumptions, there is much uncertainty about the true disability rate. In this case, the

self-reported disability rate of 20:8% lies within the estimated bounds, but so too does the fraction

of respondents reporting to be in fair or poor physical health (18:6%) and the fraction reporting to

have one of the six serious medical conditions (27:3%). The estimated bounds are quite sensitive to

the underlying assumptions; we generally cannot reject the possibility that all reports are accurate,

nor many di¤erent alternatives.

4.2 FUNCTIONAL LIMITATIONS

We now investigate the sensitivity of the estimated bounds to assumptions linking work dis-

ability to functional limitation. Measures of physical limitation in the HRS might corroborate ver-

i�cation assumptions on self-reported disability. As noted in Section 2, disparities between these

health-related measures do not imply that either measure is invalid. Still, inconsistencies might

argue against veri�cation. Arguably, for example, respondents with severe functional limitations

who report being able-bodied should not be veri�ed as providing accurate reports of disability.

To study the sensitivity of the estimated bounds, we trace out the implications of a corroboration
24This result does not rely on strict independence between reporting errors and true disability status maintained

in Proposition 1, P (W = 1jY = 1; Z = 0) = P (W = 1jY = 1; Z = 1). To weaken this assumption, let the
disability rate among inaccurate reporters be some unknown multiple of the disability rate among accurate reports:
P (W = 1jY = 1; Z = 0) = 
P (W = 1jY = 1; Z = 1) for some 
 2 [0;1), with 
 = 1 under independence. If up
to 10% of the veri�ed respondents may misreport (i.e., vy = 0:90), then accurate reporting of work limitation status
continues to be rejected under the age-employment MIV assumption when 
 � 3:2 �i.e., as long as the true disability
rate among inaccurate reporters is no more than 3:2 times the true disability rate among accurate reporters. If up
to half may misreport (vy = 0:50), then accurate reporting is rejected as long as 
 � 1:9.
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strategy that uses self-reports of functional limitation to weaken the veri�cation assumptions. Some

researchers might be willing to assume that after accounting for self-reported disability, responses

to questions about functional limitation provide no further evidence about work disability. In that

case, the results presented in Table III apply. Otherwise, apparent inconsistencies between reports

of functional limitation and work limitation serve to caution against veri�cation.

Table IV displays the estimated bounds for veri�cation Models I and II under the age-employment

MIV assumption.25 Column 1 presents the lower bound estimates when no respondents are veri�ed

if they report being disabled with a su¢ ciently low functional limitation index value (i.e., a value

less than or equal to the particular level of �). Column 2 presents the upper bound when no respon-

dents are veri�ed if they report being able-bodied with a su¢ ciently high functional limitation value

(i.e., a value greater than or equal to the speci�ed level of �). When we do not verify respondents

claiming to be disabled but also claiming to have no functional limitations, for example, the lower

bound decreases from 0:178 to 0:166: The lower bound falls further to 0:114 when respondents with

some di¢ culty with work functions (Level 3) are not veri�ed. When we do not verify respondents

claiming to be able-bodied yet also having a severe functional limitation (� = 6), the upper bound

barely increases from 0:204 to 0:205. However, when we do not verify cases involving at least some

di¢ culty with basic work functions (Level 3), the upper bound increases to nearly 40%.

Inferences are clearly sensitive to how one models and assesses the relationship between reports

of functional and work limitation. Identi�cation decays rapidly if disparities between these two

measures are taken to cast doubt on the validity of the self-reports of work limitation. Stated

di¤erently, to the extent that self-reported limitation responses are believed to be reliable, we pro-

vide evidence that indicators of work limitation and functional limitation are measuring markedly

di¤erent aspects of impairment.

25Analogous results under the DI index MIV assumption are available in Appendix B Table I.
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4.3 WORK INCAPACITY AND THE SSA AWARD PROCESS

Thus far, we have focused on the problem of inferring the prevalence of impairment that limits

the kind or amount of work that can be undertaken. While this conceptualization is widely utilized

in research applications, the more restrictive de�nition of work limitation is of more interest in

some settings. For example, Benítez-Silva et al. (2004) take the SSA�s de�nition of disability �

�the inability to engage in any substantial gainful activity��(see Section 2) as the basis for the

social standard for what constitutes work incapacity. In our HRS sample, 10:1% of respondents

report they are unable to work altogether. In this section, we �rst use the methods developed above

to place bounds on the true fraction of respondents nearing retirement age who are incapable of

work. We then turn our attention to the subsample of DI applicants to assess whether SSA award

outcomes are consistent with this conceptualization of disability.

Our veri�cation assumptions for the �unable to work altogether� case are similar to those

described in Models I and II above for �some work limitation,�with several notable di¤erences.

Given the restrictive nature of this disability conceptualization, we impose stronger standards for

verifying disability and impose weaker standards for verifying nondisability. In Model I, reported

work incapacity (X = 1) is veri�ed if the respondent is receiving disability bene�ts and reports one

of the six aforementioned diagnosed conditions. The self-reported ability to work is veri�ed unless

the respondent reports being nonemployed, having some work limitation, and receiving disability

bene�ts. Under these assumptions, self-reports of work capacity are veri�ed for 93:5% of the sample.

This percentage is slightly higher than the 91:9% obtained above for the �some work limitation�

case because we verify the vast majority of responses reporting work capacity.

Under more conservative assumptions in Model II, we begin by unverifying reports from proxy

respondents. Otherwise, reported work incapacity is veri�ed only if the respondent reports �dis-

abled�as current employment status (V2701), reports the current receipt of disability bene�ts, and

reports one of the six diagnosed conditions. Self-reported work capacity is no longer veri�ed for

workers if the respondent reports some work limitation and either zero/missing labor hours or earn-
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ings. The reported ability to work among nonworkers is not veri�ed if the respondent reports some

work limitation and any of the following are indicated: the receipt of disability bene�ts, one of the

six diagnosed conditions, or the person responded �disabled�as current employment status. Under

these more conservative assumptions, self-reports of work capacity are veri�ed for 85:4 percent of

the sample.

Table V presents the base results. As before, we �nd that the veri�cation and MIV restrictions

confer substantial identifying power. Consider veri�cation Model I, where nearly 94 percent of the

respondents are veri�ed as providing accurate reports. In this case, the HM bounds con�ne the

disability rate to the 13 point range [0:036; 0:166], whereas the veri�cation bounds lie within the 6

point range [0:044; 0:109]. These bounds shrink further to the four point range [0:049; 0:089] under

the age-employment MIV assumption. As before, the MIV bounds under veri�cation Model I do

not contain the self-reported rate of 10:1%, a �nding that is replicated under notable departures

from full veri�cation.26 Under Veri�cation Model II, however, the upper bound increases to 0:163,

much higher than the self-reported rate.

These veri�cation bounds decay further after incorporating information about reported func-

tional limitations. In Table VI, we present estimates that require di¤erent levels of corroboration

between measures of functional limitation and work limitation before verifying disability responses.

When using Level 3 as our corroboration cuto¤ (some di¢ culty with physical or sedentary work

functions), the Model I lower bound falls from 0:049 to 0:040 and the upper bound increases from

0:089 to 0:362. Under Model II, the lower bound decreases to 0:032 and the upper bound increases

to 0:413.

The restrictive de�nition of work disability is particularly germane for the subpopulation of DI

applicants who, to be awarded bene�ts, must demonstrate the inability to engage in substantial

gainful activity. By focusing on this group of respondents, our bounding approach can supplement

insights into the validity of the DI award process. To obtain disability bene�ts, applicants provide

26 If up to 10% of the veri�ed respondents may misreport (i.e., vy = 0:90), then accurate reporting under the broad
disability de�nition is rejected in the HRS as long as 
 � 11 (see footnote 24). If up to half may misreport (vy = 0:50),
then accurate reporting is rejected as long as 
 � 5.
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detailed medical, income, and asset information to a federal SSA o¢ ce. Eligibility is strict, and

many applicants are denied bene�ts on the grounds that they do not meet the medical severity

criteria. That is, the applicant is found to be able to engage in substantial gainful activity. The

accuracy of this process has been the subject of both political and academic debate.

Using HRS data on DI applications, awards, and receipt, we compare the fraction of bene�ciaries

to the estimated bounds on the true prevalence of work incapacity. Among the 9824 age-eligible

respondents, 1082 had applied for DI bene�ts prior to the �rst interview. The ultimate award

decision, which can take a few months to a few years to be resolved, is discerned using information

from the �rst two waves of the HRS. For successful applicants, we also document whether the

respondent was receiving (or scheduled to receive) bene�ts during the Wave 1 interview. This

allows us to compare self-reported disability status with concurrent determination of DI eligibility.

Of the 1082 disability applicants, 452 were initially awarded bene�ts and 617 were initially denied.

The award decision was not available in Wave 1 for an additional 13 cases, but Wave 2 information

indicates that only one of these applications was ultimately successful.27 Of the 617 initially denied

cases, 430 continued through the appeals process, and 263 of these appeals were successful.28 Of

those awarded bene�ts, 75 recipients were no longer participating in the program by Wave 1 of the

survey. Therefore, we �nd that 641 respondents (59:2% of the applicant pool) were receiving or

scheduled to receive bene�ts at the time the questions about work limitation were asked.

Since the HRS collects disability status information at discrete times that do not necessarily

coincide with the time of the application and award decisions for DI bene�ts, an important issue is

the relevant window of observation. In Table VII, we compare data on self-reports and SSA award

decisions for two di¤erent time windows. In Panel A, we consider the relatively large subgroup

27Of the remaining 12 cases, �ve respondents indicated in Wave 2 that they had been denied bene�ts. We classi�ed
the other seven cases as denied as well: none reported receiving bene�ts in either wave, and we found no indication of
pending decisions. None of the qualitative results depend on how we classify the relatively few cases for which there
is some ambiguity.
28By Wave 1 of the survey, 259 appeals were successful and 162 were not successful. For the remaining nine cases,

we used Wave 2 information to classify four applications as ultimately successful and the rest unsuccessful. The
decision whether to appeal was unavailable for three applicants; we classi�ed each case as ultimately rejected based
on evidence from Wave 2.
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of all (age-eligible) HRS respondents who applied to receive DI bene�ts regardless of when the

application was �led. In Panel B, we focus on the much smaller subsample of 233 applicants whose

most recent SSA adjudication date lies within six months of the Wave 1 interview date. These

two panels display the joint frequency distribution of the self-reports and DI bene�ciary status.

For both observation windows, self-reported work incapacity and DI bene�ciary status generally

concur, but this is clearly not always true. Nearly 33% of respondents in the larger sample and

43% of respondents in the smaller sample provide self-reports that di¤er from the DI outcome. A

relatively small number of respondents report that they can work despite receiving bene�ts. A

larger number report that they cannot work and are not receiving DI bene�ts. Thus, a notably

larger fraction of applicants classify themselves as being unable to work �73% in the full sample

and 79% using the shorter horizon �than report the current receipt of disability bene�ts �59%

and 47%, respectively.29

Bounds on the true rate of work incapacity may provide evidence about the accuracy of SSA

award decisions. If the award process accurately determines the rate at which applicants are unable

to engage in gainful activity, then the fraction of bene�ciaries should lie within the estimated bounds

on the true disability rate. If the fraction of bene�ciaries instead lies outside of the bounds, then

we can reject the joint hypothesis that the SSA award process is accurate and forms the basis for

the social de�nition of work incapacity. Like Benítez-Silva et al.�s (2004) test of Rational Unbiased

Reporting, we test for accurate award decisions on average, not for a particular individual.

Table VIII presents the bounds on the true work incapacity rate for both observation windows.

Bounds under Models I and II are provided in both cases, and the age-employment MIV bounds

29Benítez-Silva et al. (2004) �nd the marginal distribution of the ultimate DI award outcome to be very similar
to the marginal distribution of self-classi�ed work incapacity status. There are several notable di¤erences between
the sampling frames and assignment rules that are likely to explain these di¤erences. First, whereas we focus on
respondents in the �rst wave of the survey, Benítez-Silva et al. use the �rst three waves. This allows them to observe
new and repeat applications that are not included in our subsample of DI applicants. Second, Benítez-Silva et al.
de�ne an observation window that restricts attention to individuals who applied for DI bene�ts within a one-year
window surrounding the interview date (6 months before and after). Third, Benítez-Silva et al. do not restrict the
sample to age-eligible respondents nearing retirement age. Finally, whereas we classify outcomes based on the current
receipt of DI bene�ts, Benítez-Silva et al. classify outcomes based on whether the applicant was approved to receive
bene�ts. As shown in Appendix B Table II, the fraction of bene�ciaries rises to 66% in the full sample and to 51%
using the shorter horizon if we reclassify the 75 successful applicants no longer receiving bene�ts as bene�ciaries.
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are provided for the larger subpopulation of all age-eligible HRS applicants.30 In all cases, the

estimated bounds are rather wide, and in all cases the bounds include the DI bene�ciary rate.

Consider the tightest bounds found under the Model I MIV assumptions. For the subsample of all

age-eligible HRS applicants, we estimate the true work incapacity rate to lie within [0:505; 0:751].

Since the bounds overlap with the fraction of applicants that was deemed eligible for assistance

(59%), we �nd no evidence of bias of the SSA award decision under the maintained assumptions.

Thus, without additional information on the reporting process, we cannot reject the possibility that

the true work incapacity rate equals the DI bene�ciary rate of around 60%. Nor, however, can we

reject the possibility the true rate equals the self-reported work incapacity rate of nearly 75%.

5. CONCLUSION

While questions have been raised about the validity of many self-reported measures, surveys of

disability have been especially controversial. Quantifying disability is conceptually di¢ cult, and

there is no commonly accepted gold standard for its measurement. In addition to random errors

associated with self-reports associated with somewhat ambiguous questions, systematic errors can

arise if a person�s self-assessed disability status is in�uenced by economic or psychological factors.

The nature and extent of these errors has been debated in the academic literature for more than

two decades since Anderson and Burkhauser (1984) characterized disability measurement problems

in survey datasets as �the major unsettled issue in the empirical literature on the labor supply of

older workers.�Today, especially since the passage of the Americans with Disabilities Act (ADA)

in 1990, these measures have become a matter of growing public concern. The National Council on

Disability (NCD 2002), for example, argues that the use of self-reported disability information can

lead to dangerous public policy decisions. The Council goes so far as to suggest that the federal

government should not support the dissemination of self-reported work limitation data due to a

lack of acceptable methods for assessing disabilities.

This paper provides and illustrates a methodology for partially identifying work disability rates.

30The MIV estimates are unreliable when using the smaller sample of 233 respondents.
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Our framework allows us to explore the identifying power of a range of di¤erent assumptions that

bridge the gap between completely discarding the data (e.g., as suggested by the NCD) and taking

all of the data at face value. Under strong assumptions, we are able to nearly identify the disability

rate. Identi�cation of this controversial parameter decays as some of the identifying assumptions are

relaxed. The patterns of identi�cation decay are striking. Without strong prior information on the

nature and degree of accurate reporting, the bounds are frustratingly wide. Moreover, the bounds

can be sensitive to relatively minor changes in the underlying classi�cation error models. The

results are especially sensitive to how one models potential inconsistencies between the subjective

self-assessments of work limitation and more objective measures of functional limitation.

In the end, however, our results do not imply that the use of self-reported disability should

be abandoned. To the contrary, these self-reports seem to provide valuable information about

work capacity beyond that captured in alternative measures of health (such as the existence of

speci�c medical conditions, functional limitations, or proxy measures like body-mass and subsequent

mortality). More �objective� measures may be less prone to classi�cation error, yet they may

also contain far less information about work capacity than responses to direct questions about a

person�s ability to work. Still, there are currently large gaps in our knowledge about the extent

to which policy conclusions are being driven by untenable assumptions on the reporting error

processes. Given this uncertainty, there exists a need for better information on the degree and

nature of reporting errors on work limitation. The Institute of Medicine (2002) has called for more

methodological research on these measurement issues. We hope that our nonparametric bounding

framework can be used as a stepping stone for resolving the uncertainty about how best to measure

work limitations and model disability, labor supply, and the receipt of public transfers.
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APPENDIX A

Proof of Proposition 1

To simplify notation, let the conditioning on the veri�ed subgroup, Y = 1, be implicit. Then the

law of total probability implies:

P (X = 1) = P (W = 1jZ = 1)P (Z = 1) + P (W = 0jZ = 0)P (Z = 0): (8)

The independence assumption requires P (W = 0jZ = 1) = P (W = 0jZ = 0): Substituting for

P (W = 0jZ = 0) in (??) and using the fact that W is binary, it follows that P (X = 1) = P (W =

1jZ = 1) [2P (Z = 1)� 1] + [1� P (Z = 1)]. Therefore,

P (W = 1) = P (W = 1jZ = 1) = P (X = 1)� 1 + P (Z = 1)
2P (Z = 1)� 1 =

P (Z = 1)� P (X = 0)

2P (Z = 1)� 1 :

Although P (Z) is unknown, we know that vy � P (Z = 1) � 1: Thus, we can bound the disability

rate by assessing P (W = 1jZ = 1) across the possible values of P (Z = 1). It follows that if

vy � P (X = 0), the lower bound on the true disability rate is zero. Likewise, if vy � P (X = 1),

the upper bound is one. Otherwise, di¤erentiating this equation with respect to P (Z) reveals that

if P (X = 0) > P (X = 1), then P (W = 1) is increasing in P (Z = 1) for all conjectured values of

P (Z = 1) > P (X = 0). Otherwise, it is decreasing in P (Z = 1). �



 
Table I.  Means and Standard Deviations 

  
    

Reported Work 
Limitation?  

Reported Inability to 
Work Altogether? 

  Full Sample  Yes  No  Yes  No 
  N=9824   N=2039  N=7785  N=992  N=8832 

  Mean  Std. Dev.  Mean  Mean  Mean  Mean 
Age  56.0    3.18  56.4*  55.9  56.6*  55.9 
Years of schooling  12.0    3.24  10.8*  12.3  10.3*  12.2 
Female    0.532    0.499    0.538    0.530    0.526    0.532 
Nonwhite    0.286    0.452    0.359*     0.267    0.435*    0.269 
White collar occupationa     0.246    0.431      0.132*    0.276    0.106*    0.262 
Currently working for pay    0.683    0.465    0.296*    0.784    0.000*    0.759 
Ever applied for SSDI/SSI benefits    0.110    0.313    0.528*    0.001    0.792*    0.034 
Currently receive SSDI/SSI benefits    0.065    0.246    0.311*    0.000    0.537*    0.012 
Currently receive disability benefits from  any program    0.073    0.260    0.351*    0.000    0.586*    0.016 
Reported fair/poor general health statusb    0.186    0.389    0.423*    0.124    0.535*    0.147 
Reported fair/poor emotional health statusb    0.227    0.419    0.651*    0.115    0.824*    0.160 
Often bothered by pain, at least moderate at its worst    0.219    0.414    0.573*    0.126    0.673*    0.168 
Pain interferes with normal work    0.165    0.371    0.537*    0.067    0.665*    0.109 
Died prior to second wave    0.030    0.171    0.075*    0.018    0.111*    0.021 
Body mass index out of ideal rangec    0.589    0.492    0.622*    0.580    0.628*    0.584 

ADL/IADL functional limitation index (0-6)d    1.51    1.84    3.34*    1.04    3.98*    1.24 
    Level 0: No functional limitation    0.540    0.498    0.139*    0.645    0.047*    0.595 
    Level 1: Some difficulty with very physical work functions    0.055    0.229    0.043*    0.059    0.028*    0.058 
    Level 2: Very difficult/can't do one of the very physical  
                   work functions    0.031    0.175    0.038†    0.030    0.031    0.031 
    Level 3: Some difficulty with physical or sedentary  
                   work functions    0.177    0.382    0.220*    0.166    0.175    0.178 
    Level 4: Very difficult/can't do one of the physical  
                   work or sedentary work functions    0.141    0.348    0.337*    0.089    0.374*    0.114 
    Level 5: Some difficulty with any basic function    0.034    0.181    0.131*    0.008    0.194*    0.016 
    Level 6: Very difficult/can't do one of the basic functions    0.022    0.145    0.092*    0.003    0.150*    0.007 

(continued) 



Table 1, Continued 

Specific health conditionse             
    Diabetes (current and taking insulin)    0.083    0.276     0.172*    0.060    0.191*    0.071 
    Cancer (treatment in last 12 months)    0.037    0.190    0.063*    0.031    0.076*    0.033 
    Chronic lung disease (with activity limitations)    0.032    0.176    0.127*    0.007    0.184*    0.015 
    Heart condition (congestive heart disease with medication  
        or accompanied by shortness of breath)    0.084    0.277    0.227*    0.046    0.290*    0.061 
    Stroke (with health consequences)    0.017    0.128    0.067*    0.004    0.108*    0.006 
    Psychiatric problem (current with medication or treatment)    0.104    0.306    0.246*    0.067    0.301*    0.082 
    Arthritis    0.344    0.475    0.600*    0.277    0.651*    0.309 
    Hypertension    0.153    0.360    0.275*    0.121    0.322*    0.134 

Conditions by organ systemf             
    Asthma    0.061    0.240    0.120*    0.046    0.151*    0.051 
    Back problems    0.346    0.476    0.593*    0.281    0.628*    0.314 
    Problems with legs or feet    0.356    0.479    0.675*    0.273    0.751*    0.312 
    Kidney or bladder problems    0.107    0.309    0.237*    0.073    0.282*    0.088 
    Stomach or intestinal ulcers    0.095    0.294    0.193*    0.070    0.233*    0.080 
    High cholesterol    0.241    0.428    0.309*    0.223    0.339*    0.230 
    Fracture since age 45    0.138    0.345    0.201*    0.122    0.193*    0.132 
    Poor eyesight (with glasses)    0.032    0.177    0.101*    0.014    0.126*    0.022 
    Poor hearing (with hearing aid)    0.024    0.153    0.050*    0.017    0.058*    0.020 

Number of reported conditions in previous two categories    2.08    1.92    4.02*    1.58    4.63*    1.78 
Reported a severe conditiong    0.273    0.446    0.593*    0.190    0.712*    0.224 
             
             

*,†Significant  difference between the “yes” and “no” responses at the 1% and 5% levels, respectively 
aOccupation at onset of disability if reporting a work limitation and this information is available; current or most recent occupation otherwise. 
bOther categories include excellent, very good, and good health status. 
cIdeal body mass is defined as 20-25 kg/m2 following Fahey et al. (1997).  
dFollowing Lobrest et al. (1995, p.  S297), we construct four categories of functions as described in the text: (I) basic functions, (II) sedentary work functions,  
  (III) physical work functions, and (IV) very physical work functions.  For each activity, a respondent can answer “not at all difficult,” “a little difficult,”  
  “somewhat difficult,” “very difficult/can't do,” or “don’t do.”  The last two categories are grouped together.  Respondents were told to exclude any limitation  
  expected to last less than three months.  The functional limitation index takes on values 0-6 as defined by Level 0 – Level 6 in the table. 
e,fDefined by Wallace and Herzog (1995,  pS89 and Table 1);  we additionally include poor eyesight (with glasses) and poor hearing (with hearing aid). 
gIncludes diabetes, cancer, chronic lung disease, heart condition, stroke, or psychiatric condition as defined by Wallace and Herzog (1995, Table 1). 



 
 
 
 

Table II.  Correlations Between Health Indicators 
             
   (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
             
(1) Self-reported work limitation            
(2) Self-reported inability to work  0.65*          
(3) Reported fair/poor general health status  0.52* 0.48*         
(4) Reported fair/poor emotional health status  0.31* 0.30* 0.45*        
(5) Died prior to second wave  0.13* 0.16* 0.15* 0.08*       
(6) Body Mass Index out of ideal range  0.03* 0.03* 0.05* 0.04* 0.02†      
(7) ADL/IADL functional limitation index (0-6)  0.51* 0.45* 0.47* 0.33* 0.12* 0.07*     
(8) Often bothered by pain, at least moderate  0.44* 0.37* 0.39* 0.29* 0.05* 0.04* 0.46*    
(9) Pain interferes with normal work  0.51* 0.45* 0.45* 0.33* 0.09* 0.04* 0.48* 0.75*   
(10) Number of reported health conditions  0.52* 0.45* 0.54* 0.38* 0.13* 0.05* 0.54* 0.50* 0.52*  
(11) Reported a severe condition  0.37* 0.33* 0.41* 0.30* 0.13* 0.03* 0.31* 0.23* 0.26* 0.50* 
             
             

*,†significantly different from zero at the 1% and 10% levels, respectively 
 

 
        



 
Table III.  Corrupt Sampling, Partial Verification, and MIV Bounds on P(W=1) 

 
 Work Limitation Case 

     

(A)  (B)  (C)  (D) 
HM Corrupt 

Sampling Bounds*  
Proposition 1 

Verification Bounds  
Age and Employment  

MIV Bounds  
Disability Application 

and Employment MIV Bounds 
 

Verification Model I†    

    vy = 1 vy = 0.9  vy = 1 vy = 0.9 
[0.127,  0.288]a    [0.135,  0.215]   [0.178,  0.204]c [0.106,  0.204]  [0.149,  0.193] [0.120,  0.193] 
[0.121   0.298]b  [0.129   0.223]  [0.155   0.207] [0.086   0.207]  [0.143   0.209] [0.112   0.209] 

      +0.010  -0.016d  +0.016  -0.016   +0.009  -0.005  +0.006  -0.005 
   

Verification Model II‡ 

    vy = 1 vy = 0.9  vy = 1 vy = 0.9 
[0.000,  0.423]  [0.103,  0.318]  [0.129,  0.285] [0.065,  0.285]  [0.110,  0.320] [0.089,  0.320] 
[0.000   0.434]  [0.098   0.326]  [0.115,  0.300] [0.051,  0.300]  [0.104,  0.325] [0.080,  0.325] 

      +0.013  -0.013  +0.013  -0.013   +0.008  -0.008  +0.006  -0.008 

†For Model I (v = 0.919), work limitation status X (but not work incapacity status) is treated as verified for members of the following groups: 
    (1) disability beneficiaries (reporting X=1) unless currently working or report able to work  
    (2) those currently working for pay (V2717=1) unless (a) receiving disability benefits, (b) did not check the “working” box in question 
          F1a (V2701) for current employment status, (c) labor hours are zero/missing, or (d) earnings are zero/missing 
    (3) those reporting no work limitation (X=0) unless also report receiving disability benefits or checked “disabled” as current employment status 
    (4) those reporting work limitation (X=1) if report unable to work due to one of the six serious diagnosed conditions highlighted by Wallace and  
          Herzog (1995): treated for cancer in the last 12 months, diabetic taking insulin, chronic lung disease that limits activities, congestive heart  
          disease with treatment or shortness of breath, stroke with health consequences, or current psychiatric/emotional problem with medication or  
          other treatment 
 
‡Model II (v = 0.784) differs from Model I in that: (1) proxy responses are never verified, (2) X=1 cases are not verified based on specific medical  
     conditions, and (3) X=0 cases are never verified if the respondent (a) reports pain of at least moderate severity at its worst that makes activities  
     difficult or (b) has a serious/objective medical condition defined in Model I and reports being limited in housework or other activities. 
 
apoint estimates of the population bounds 
bbootstrapped 5th and 95th percentile bounds 
cMIV point estimates, corrected for finite-sample bias 
destimated finite-sample bias   
 
*There are 22 missing values for reported work limitation X; the estimated bounds conservatively take worst case scenarios for these missing values. 

 



 
Table IV.  Sensitivity of Age and Employment MIV Bounds when Requiring Functional Limitation Corroboration 

 
Work Limitation Case, Model I 

 
       
       
 Lower Bound    Upper Bound  
       
 X=1 (reports work limitation) is never 

verified if ADL limitation index ≤ θ 
   X=0 (reports no work limitation) is never 

verified if ADL limitation index ≥ θ 
 

       

0.166a 0.205 
θ=0: no functional limitation 

0.152b 

 θ=6: very difficult/can't do at least 
  one basic function 

0.210 

0.160 0.209 
θ=1: some difficulty with at least one 

  very physical work function 
0.146 

 θ=5: some difficulty with at least one 
  basic function 

0.217 

0.148 0.271 
θ=2: very difficult/can't do at least one 

  very physical work function 
0.143 

 θ=4: very difficult/can’t do at least one 
  physical or sedentary work function 

0.279 

0.114 0.398 
θ=3: some difficulty with at least one 

  physical or sedentary work function 
0.104 

 θ=3: some difficulty with at least one 
  physical or sedentary work function 

0.411 

0.089 0.422 
θ=4: very difficult/can’t do at least one 

  physical or sedentary work function 
0.076 

 θ=2: very difficult/can't do at least one 
  very physical work function 

0.431 

0.081 0.482 
θ=5: some difficulty with at least one 

  basic function 
0.070 

 θ=1: some difficulty with at least one 
  very physical work function 

0.495 

(continued) 
 
 
Note: Functional limitation index defined by Loprest et al. (1995).  See discussion in text. 
 
aMIV point estimates, corrected for finite-sample bias 
bbootstrapped 5th and 95th percentile bounds 
 

 
 



 
 
 

Table IV, Cont.  Sensitivity of Age and Employment MIV Bounds when Requiring Functional Limitation Corroboration 
 

Work Limitation Case: Model II 
 

       
       
 Lower Bound    Upper Bound  
       
 X=1 (reports work limitation) is never 

verified if ADL limitation index ≤ θ 
   X=0 (reports no work limitation) is never 

verified if ADL limitation index ≥ θ 
 

       

0.122a 0.285 
θ=0: no functional limitation 

0.110b 

 θ=6: very difficult/can't do at least 
  one basic function 

0.302 

0.119 0.286 
θ=1: some difficulty with at least one 

  very physical work function 
0.107 

 θ=5: some difficulty with at least one 
  basic function 

0.299 

0.110 0.357 
θ=2: very difficult/can't do at least one 

  very physical work function 
0.101 

 θ=4: very difficult/can’t do at least one 
  physical or sedentary work function 

0.365 

0.093 0.458 
θ=3: some difficulty with at least one 

  physical or sedentary work function 
0.085 

 θ=3: some difficulty with at least one 
  physical or sedentary work function 

0.469 

0.089 0.479 
θ=4: very difficult/can’t do at least one 

  physical or sedentary work function 
0.076 

 θ=2: very difficult/can't do at least one 
  very physical work function 

0.490 

0.078 0.527 
θ=5: some difficulty with at least one 

  basic function 
0.065 

 θ=1: some difficulty with at least one 
  very physical work function 

0.536 

Note: Functional limitation index defined by Loprest et al. (1995).  See discussion in text. 
 
aMIV point estimates, corrected for finite-sample bias 
bbootstrapped 5th and 95th percentile bounds 
 

 



 
Table V.  Corrupt Sampling, Partial Verification, and MIV Bounds on P(W=1) 

 
 Unable to Work Case 

     

(A)  (B)  (C)  (D) 
HM Corrupt 

Sampling Bounds*  
Proposition 1 

Verification Bounds  
Age and Employment  

MIV Bounds  
Disability Application 

and Employment MIV Bounds 
 

Verification Model I†    

    vy = 1 vy = 0.9  vy = 1 vy = 0.9 
[0.036,  0.166]a    [0.044,  0.109]   [0.049,  0.089]c [0.032,  0.089]  [0.048,  0.072] [0.045,  0.072] 
[0.033   0.174]b  [0.041   0.114]  [0.042   0.097] [0.025   0.097]  [0.042   0.084] [0.038   0.084] 

      +0.009  -0.008d  +0.011  -0.008   +0.003  -0.002  +0.003  -0.002 
   

Verification Model II‡ 

    vy = 1 vy = 0.9  vy = 1 vy = 0.9 
[0.000,  0.247]  [0.037,  0.184]  [0.043,  0.163] [0.031,  0.163]  [0.042,  0.152] [0.040,  0.152] 
[0.000   0.256]  [0.034   0.190]  [0.038   0.175] [0.022   0.175]  [0.037,  0.165] [0.034,  0.165] 

      +0.009  -0.013  +0.010  -0.013   +0.002  -0.007  +0.002  -0.007 

†Model I (v = 0.935): Reported work incapacity (X=1) is treated as verified if the respondent receives disability benefits and reports one of the six 
  serious diagnosed conditions highlighted by Wallace and Herzog (1995): treated for cancer in the last 12 months, diabetic taking insulin, chronic  
  lung disease that limits activities, congestive heart disease with treatment or shortness of breath, stroke with health consequences, or current  
  psychiatric/emotional problem with medication or other treatment.  Reported work capacity (X=0) is verified for workers (L=1).  For nonworkers,  
  work capacity is verified unless the respondent reports some work limitation and the receipt of disability benefits.    
 
‡Model II (v = 0.854):  Proxy responses are never verified.  Otherwise, reported work incapacity (X=1) is verified if the respondent receives  
  disability benefits, reports a serious/objective diagnosed condition (see above), and checked “disabled” as current employment status.  Reported  
  work capacity of workers remains verified unless the respondent reports some work limitation and labor hours or earnings are zero/missing.   
  Reported work capacity among nonworkers remains verified unless the respondent reports some work limitation and any of the following:  
  (a) receipt of disability benefits, (b) a serious/objective condition as defined in Model I, or (c) checked “disabled” as current employment status. 
 
apoint estimates of the population bounds 
bbootstrapped 5th and 95th percentile bounds 
cMIV point estimates, corrected for finite-sample bias 
destimated finite-sample bias   
 

 
 
 
 



Table VI.  Sensitivity of Age and Employment MIV Bounds when Requiring Functional Limitation Corroboration 
 

Unable to Work Case, Model I 
 

       
       
 Lower Bound    Upper Bound  
       
 X=1 (reports work limitation) is never 

verified if ADL limitation index ≤ θ 
   X=0 (reports no work limitation) is never 

verified if ADL limitation index ≥ θ 
 

       

0.046a 0.099 
θ=0: no functional limitation 

0.042b 

 θ=6: very difficult/can't do at least 
  one basic function 

0.108 

0.044 0.113 
θ=1: some difficulty with at least one 

  very physical work function 
0.040 

 θ=5: some difficulty with at least one 
  basic function 

0.119 

0.044 0.199 
θ=2: very difficult/can't do at least one 

  very physical work function 
0.037 

 θ=4: very difficult/can’t do at least one 
  physical or sedentary work function 

0.210 

0.040 0.362 
θ=3: some difficulty with at least one 

  physical or sedentary work function 
0.033 

 θ=3: some difficulty with at least one 
  physical or sedentary work function 

0.374 

0.026 0.396 
θ=4: very difficult/can’t do at least one 

  physical or sedentary work function 
0.018 

 θ=2: very difficult/can't do at least one 
  very physical work function 

0.402 

0.011 0.453 
θ=5: some difficulty with at least one 

  basic function 
0.006 

 θ=1: some difficulty with at least one 
  very physical work function 

0.466 

(continued) 
 
Note: Functional limitation index defined by Loprest et al. (1995).  See discussion in text. 
 
aMIV point estimates, corrected for finite-sample bias 
bbootstrapped 5th and 95th percentile bounds 
 

 
 
 
 



 
Table VI, cont.  Sensitivity of Age and Employment MIV Bounds when Requiring Functional Limitation Corroboration 

 
Unable to Work Case: Model II 

 
       
       
 Lower Bound    Upper Bound  
       
 X=1 (reports work limitation) is never 

verified if ADL limitation index ≤ θ 
   X=0 (reports no work limitation) is never 

verified if ADL limitation index ≥ θ 
 

       

0.044a 0.170 
θ=0: no functional limitation 

0.038b 

 θ=6: very difficult/can't do at least 
  one basic function 

0.177 

0.039 0.179 
θ=1: some difficulty with at least one 

  very physical work function 
0.033 

 θ=5: some difficulty with at least one 
  basic function 

0.186 

0.038 0.261 
θ=2: very difficult/can't do at least one 

  very physical work function 
0.033 

 θ=4: very difficult/can’t do at least one 
  physical or sedentary work function 

0.272 

0.032 0.413 
θ=3: some difficulty with at least one 

  physical or sedentary work function 
0.027 

 θ=3: some difficulty with at least one 
  physical or sedentary work function 

0.426 

0.022 0.440 
θ=4: very difficult/can’t do at least one 

  physical or sedentary work function 
0.016 

 θ=2: very difficult/can't do at least one 
  very physical work function 

0.450 

0.005 0.486 
θ=5: some difficulty with at least one 

  basic function 
0.004 

 θ=1: some difficulty with at least one 
  very physical work function 

0.498 

Note: Functional limitation index defined by Loprest et al. (1995).  See discussion in text. 
 
aMIV point estimates, corrected for finite-sample bias 
bbootstrapped 5th and 95th percentile bounds 
 

 



 
Table VII.  Self-reported Inability to Work and the 

   Receipt of SSDI/SSI Benefits 
 

A. All Age-Eligible Applicants 
 

Receiving Benefitsa 

“Can’t Work” totals 
         0         1  

0     193     103    296 (27.4%)  
1     248       538      786 (72.6%) 

totals     441 
(40.8%)  

    641 
(59.2%) 1,082 

 
 

B. Age-Eligible Applicants with Most Recent Adjudication 
Within Six Months of the Interview Date  

 
Receiving Benefitsa 

“Can’t Work” totals 
       0         1  

0     37       13    50 (21.5%) 
1     87       96  183 (78.5%) 

totals   124 
(53.2%)     109 

(46.8%)  233 

 
 

a Category 1 includes those awarded and still receiving benefits; category 0  
   includes rejected applicants and those no longer receiving benefits 
 
 
 

 



 
 
 

Table VIII.  Age and Employment MIV Bounds on Work Incapacity 
among SSDI/SSI Applicants 

P(Unable to Work) Among SDI/SSI Applicants 

  
A. All Applicants 

  
B. Applicants with the Most Recent  
     Adjudication Date Within Six  
    Months of the Interview Date

                                                                                                

                                 Verification Model I† 
 

 No MIV Age and 
Employment MIV  No MIV  

      
  [0.381,  0.791]   [0.505,  0.751]a  [0.335,  0.837]d  
  [0.357   0.811]   [0.441   0.790]b  [0.288   0.871]b  
  +0.056  -0.062c       

                                 Verification Model II‡ 
 

 No MIV 
Age and 

Employment MIV  No MIV  
      
 [0.324,  0.894]   [0.432,  0.863]  [0.275,  0.906]  
 [0.302   0.909]     [0.382   0.892]  [0.227   0.936]  
  +0.051  -0.051     

 

Note: Case A (all applicants) imposes the age and employment MIV assumption.  We do not  
           impose the MIV assumption for Case B due to insufficient sample sizes.   
 
†,‡See definitions in text or previous table footnotes 
  
aMIV point estimates, corrected for finite-sample bias 
bbootstrapped 5th and 95th percentile bounds 
cestimated finite-sample bias   
dpoint estimates (no MIV assumption) 

 
 
 
 
 
 
 



 
APPENDIX TABLES 
 
 

Appendix Table Ia.  Sensitivity of DI and Employment MIV Bounds when Requiring Functional Limitation Corroboration 
 

Work Limitation Case, Model I 
 

       
       
 Lower Bound    Upper Bound  
       
 X=1 (reports work limitation) is never 

verified if ADL limitation index ≤ θ 
   X=0 (reports no work limitation) is never 

verified if ADL limitation index ≥ θ 
 

       

0.146a 0.198 
θ=0: no functional limitation 

0.141b 

 θ=6: very difficult/can't do at least 
  one basic function 

0.213 

0.144 0.210 
θ=1: some difficulty with at least one 

  very physical work function 
0.139 

 θ=5: some difficulty with at least one 
  basic function 

0.230 

0.129 0.290 
θ=2: very difficult/can't do at least one 

  very physical work function 
0.125 

 θ=4: very difficult/can’t do at least one 
  physical or sedentary work function 

0.296 

0.101 0.425 
θ=3: some difficulty with at least one 

  physical or sedentary work function 
0.095 

 θ=3: some difficulty with at least one 
  physical or sedentary work function 

0.430 

0.067 0.448 
θ=4: very difficult/can’t do at least one 

  physical or sedentary work function 
0.059 

 θ=2: very difficult/can't do at least one 
  very physical work function 

0.454 

0.045 0.493 
θ=5: some difficulty with at least one 

  basic function 
0.039 

 θ=1: some difficulty with at least one 
  very physical work function 

0.499 

(continued) 
 
Note: Functional limitation index defined by Loprest et al. (1995).  See discussion in text. 
 
aMIV point estimates, corrected for finite-sample bias 
bbootstrapped 5th and 95th percentile bounds 
 



 
 
 

Appendix Table Ia, cont.  Sensitivity of DI and Employment MIV Bounds when Requiring Functional Limitation Corroboration 
 

Work Limitation Case: Model II 
 

       
       
 Lower Bound    Upper Bound  
       
 X=1 (reports work limitation) is never 

verified if ADL limitation index ≤ θ 
   X=0 (reports no work limitation) is never 

verified if ADL limitation index ≥ θ 
 

       

0.108a 0.321 
θ=0: no functional limitation 

0.100b 

 θ=6: very difficult/can't do at least 
  one basic function 

0.328 

0.106 0.324 
θ=1: some difficulty with at least one 

  very physical work function 
0.101 

 θ=5: some difficulty with at least one 
  basic function 

0.330 

0.096 0.373 
θ=2: very difficult/can't do at least one 

  very physical work function 
0.091 

 θ=4: very difficult/can’t do at least one 
  physical or sedentary work function 

0.379 

0.075 0.481 
θ=3: some difficulty with at least one 

  physical or sedentary work function 
0.069 

 θ=3: some difficulty with at least one 
  physical or sedentary work function 

0.489 

0.053 0.499 
θ=4: very difficult/can’t do at least one 

  physical or sedentary work function 
0.046 

 θ=2: very difficult/can't do at least one 
  very physical work function 

0.507 

0.038 0.537 
θ=5: some difficulty with at least one 

  basic function 
0.029 

 θ=1: some difficulty with at least one 
  very physical work function 

0.547 

Note: Functional limitation index defined by Loprest et al. (1995).  See discussion in text. 
 
aMIV point estimates, corrected for finite-sample bias 
bbootstrapped 5th and 95th percentile bounds 
 

 



 
 
 

Appendix Table Ib.  Sensitivity of DI and Employment MIV Bounds when Requiring Functional Limitation Corroboration 
 

Unable to Work Case, Model I 
 

       
       
 Lower Bound    Upper Bound  
       
 X=1 (reports work limitation) is never 

verified if ADL limitation index ≤ θ 
   X=0 (reports no work limitation) is never 

verified if ADL limitation index ≥ θ 
 

       

0.046a 0.091 
θ=0: no functional limitation 

0.041b 

 θ=6: very difficult/can't do at least 
  one basic function 

0.102 

0.045 0.118 
θ=1: some difficulty with at least one 

  very physical work function 
0.040 

 θ=5: some difficulty with at least one 
  basic function 

0.126 

0.043 0.230 
θ=2: very difficult/can't do at least one 

  very physical work function 
0.037 

 θ=4: very difficult/can’t do at least one 
  physical or sedentary work function 

0.236 

0.037 0.388 
θ=3: some difficulty with at least one 

  physical or sedentary work function 
0.032 

 θ=3: some difficulty with at least one 
  physical or sedentary work function 

0.395 

0.020 0.415 
θ=4: very difficult/can’t do at least one 

  physical or sedentary work function 
0.016 

 θ=2: very difficult/can't do at least one 
  very physical work function 

0.422 

0.009 0.467 
θ=5: some difficulty with at least one 

  basic function 
0.006 

 θ=1: some difficulty with at least one 
  very physical work function 

0.473 

(continued) 
 
Note: Functional limitation index defined by Loprest et al. (1995).  See discussion in text. 
 
aMIV point estimates, corrected for finite-sample bias 
bbootstrapped 5th and 95th percentile bounds 
 

 



 
 
 

Appendix Table Ib, cont.  Sensitivity of DI and Employment MIV Bounds when Requiring Functional Limitation Corroboration 
 

Unable to Work Case: Model II 
 

       
       
 Lower Bound    Upper Bound  
       
 X=1 (reports work limitation) is never 

verified if ADL limitation index ≤ θ 
   X=0 (reports no work limitation) is never 

verified if ADL limitation index ≥ θ 
 

       

0.041a 0.164 
θ=0: no functional limitation 

0.036b 

 θ=6: very difficult/can't do at least 
  one basic function 

0.178 

0.039 0.188 
θ=1: some difficulty with at least one 

  very physical work function 
0.034 

 θ=5: some difficulty with at least one 
  basic function 

0.197 

0.037 0.284 
θ=2: very difficult/can't do at least one 

  very physical work function 
0.031 

 θ=4: very difficult/can’t do at least one 
  physical or sedentary work function 

0.291 

0.032 0.427 
θ=3: some difficulty with at least one 

  physical or sedentary work function 
0.028 

 θ=3: some difficulty with at least one 
  physical or sedentary work function 

0.436 

0.018 0.452 
θ=4: very difficult/can’t do at least one 

  physical or sedentary work function 
0.015 

 θ=2: very difficult/can't do at least one 
  very physical work function 

0.460 

0.008 0.502 
θ=5: some difficulty with at least one 

  basic function 
0.006 

 θ=1: some difficulty with at least one 
  very physical work function 

0.508 

Note: Functional limitation index defined by Loprest et al. (1995).  See discussion in text. 
 
aMIV point estimates, corrected for finite-sample bias 
bbootstrapped 5th and 95th percentile bounds 
 

 



 
 

Appendix Table II.  Self-reported Inability to Work and the 
               SSDI/SSI Award Decision 

 
A. All Age-Eligible Applicants 

 
Granted Benefitsa 

“Can’t Work” totals 
         0        1  

0     155    141    296 (27.4%) 
1     211    575    786 (72.6%) 

totals     366 
(33.8%) 

   716 
(66.2%) 1,082 

 
 

B. Age-Eligible Applicants with Most Recent Adjudication 
Within Six Months of the Interview Date 

 
Granted Benefitsa 

“Can’t Work” totals 
       0        1  

0     35      15      50 (21.5%) 
1     79    104    183 (78.5%) 

totals   114 
(48.9%)    119 

(51.1%)    233 

 
 

a Category 1 includes those awarded benefits, whether still receiving them 
   or not; category 0 includes rejected applicants 
 

 
 
 
 


