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Abstract

We describe a new and flexible framework for modeling school effects. Like previous
work in this area, we introduce an empirical model that evaluates school performance on
the basis of student level test-score gains. Unlike previous work, however, we introduce
a flexible model that relates follow-up student test scores to baseline student test scores
and explore for possible nonlinearities in these relationships.

Using data from High School and Beyond (HSB) and adapting the methodology
described in Koop and Poirier (2004a), we test and reject the use of specifications that
have been frequently used in research and as a basis for policy. We find that nonlinear-
ities are important in the relationship between intake and follow-up achievement, that
rankings of schools are sensitive to the model employed, and importantly, that com-
monly used specifications can give different and potentially misleading assessments of
school performance. When estimating our preferred semiparametric specification, we
find small but “significant” impacts of some school quality proxies (such as district-level
expenditure per pupil) in the production of student achievement.

JEL Codes: C14, I21, J30
Acknowledgements: We would like to thank the two anonymous referees and the editor for
helpful comments and suggestions. All errors are our own.



1 Introduction

In recent years we have seen tremendous growth in policies created to hold schools account-
able for the production of student achievement.1 Perhaps the most visible of these policies
in the U.S. is the so-called “No Child Left Behind Act” of 2001. Under this act, individual
states are given control to come up with their own accountability systems and to define their
own criteria for acceptable and meritorious school performance. As an incentive device, the
No Child Left Behind Act also requires states to provide financial rewards (State Academic
Achievement Awards) to those schools exceeding academic achievement targets.

With some exceptions, states (as well as previous studies in this area) evaluate the
performances of public schools by looking at growth in test scores, potentially in a variety
of subject areas. In what follows, we refer to the first of the two scores used to construct
test score growth as intake achievement and the subsequent set of test scores as follow-
up achievement. Generally, a school is viewed as performing well, and potentially may be
eligible to receive financial rewards, if follow-up scores significantly exceed intake scores.
Perhaps not surprisingly, the specific rules governing accountability systems across U.S.
states are quite different, and can be rationalized under different assumptions regarding the
relationship between intake and follow-up achievement. These assumptions are extremely
important from a policy point of view, as the underlying models provide the foundation for
school rankings, rewards allocations and sanctions.

To illustrate varied nature of these programs across states, we can simply look at the
accountability programs adopted by (arguably) the three most widely studied states to
date: Texas, North Carolina and California. The rewards program implemented in Texas
is essentially based on a “value-added” model that uses year-to-year test score gains as the
evaluation metric. The use of the value added model could be rationalized from a statistical
point of view if the relationship between intake and follow-up achievement is linear with a
unit slope, whence score gains become the outcome of interest.2 Unlike the Texas program,
North Carolina’s ABC’s Accountability Model is based on a linear regression model that
relates follow-up achievement to initial (intake) achievement.3 In contrast, California’s
school accountability plan blends aspects of both the value-added and linear models when
determining schools that are deserving of reward funding.4

1See, e.g., Kane and Staiger (2002) for a recent review.
2To be eligible for an award allocation under the Texas Successful Schools Awards System (TSSAS), a

school’s average test score gains in reading and mathematics must rank within the top quartile of a compari-
son group of 40 similar schools. Specifically, a group of 40 comparison schools is first identified for each school,
where the comparison group is determined by finding the 40 schools that are “most similar” to the given
school by matching according to various average demographic characteristics. (Details of this procedure
can be found, for example, on the website http://www.tea.state.tx.us/perfreport/account/2001/manual.)
Student-level test score gains on the Texas Learning Index (TLI) are then calculated in reading and math-
ematics and are aggregated and averaged at the school level. This school-level score in reading and mathe-
matics is then compared to the score received by the 40 comparison schools. If the school ranks within the
top quartile of these 40 schools, it becomes eligible for awards under TSSAS.

3The formula governing awards allocation in North Carolina (suitably rearranged) is basically a linear
regression of follow-up scores in mathematics and reading on the subject intake score, as well as some cor-
rections for “student proficiency” and “regression to the mean.” More information about this accountability
model is available at http://www.ncpublicschools.org/abcs.

4To be eligible for rewards under the Governor’s Performance Award Program (GPAP) in California,
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Given the growing emphasis on the adoption of school accountability programs and
the use of awards systems to reward the most deserving schools, it is clear that proper
assessments of school performance are essential. From this simple investigation of existing
accountability programs, we also find that there is no universally accepted way to determine
those schools that are high-achieving, and observe that most of the programs implemented
in practice are based on popular “value-added” and “linear” models.

In this paper we revisit this important issue and present a new and more general way for
modeling school effects and assessing school performance. In particular, we recognize that
the relationship between intake and follow-up achievement may be nonlinear, as initially
low achieving schools and students may be expected to demonstrate large test score gains,
while initially high achieving schools and students may only be expected to maintain their
level of high achievement.

To flexibly model the relationships between intake and follow-up achievement and ex-
plore if such nonlinearities are present, we first recognize that the scores employed in our
data set and, in fact, the test scores used in virtually all accountability programs, are dis-
crete in nature. This suggests that one can be fully nonparametric about the relationships
between intake and follow-up scores - and thereby nest the widely-used linear and value
added models - by simply adding dummy variables for all the possible test score outcomes.
We argue, however, that this approach is deficient in the sense that it may potentially over-
fit the model, that it can (and does in our data) suggest relationships between intake and
follow-up scores that are excessively “jumpy”, and that it fails to impose intuitive proper-
ties like monotonicity in these relationships. To combat these issues we obtain an improved
modeling of the conditional mean function by introducing a prior that borrows information
from neighboring cells and uses this information to smooth the dummy variable coefficients.
We also describe an objective method for determining the amount of smoothing that is most
supported by the data, following Koop and Poirier (2004a).

We apply our methods and estimate this model using data from the High School and
Beyond (HSB) longitudinal survey. Importantly for our purposes, the sophomore cohort of
HSB is given a battery of tests in a variety of different subjects, and then is re-administered
these tests two years later during their senior year. This design essentially mimics the
evaluation problem currently faced by policy makers and states, wherein students are tested
in a variety of subjects at two distinct points in time, and the problem becomes one of
determining those schools exhibiting the best performance. In our HSB data, we obtain
information on approximately 20,000 students divided among approximately 1,000 different
high schools in the United States. We also obtain test score data in 6 different subjects:
reading, vocabulary, mathematics, science, writing and civics.

Using the HSB data, we find a number of important results. First, we test and reject

public schools must demonstrate a test score improvement equal to the larger of: (1) 5 Academic Performance
Index (API) points (during the 2000-2001 API cycle) and (2) 5 percent of the difference between 800 and
the schools base API score. This rule creates a linear spline describing the threshold for awards eligibility
where all schools with base API’s of at least 700 must demonstrate a 5 point API improvement (i.e., a
value-added model, wherein a school receives an award if it gains 5 API points), and all schools with base
API’s less than 700 must increase their score by 5 percent of the difference between 800 and the base API
(i.e., a linear model given by y∗ = 40 + .95x, where x is the base score and y∗ is the rewards threshold).
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the widespread use of linear or value-added models for the HSB data and find important
nonlinearities in the relationship between intake and follow-up achievement. Second, we
compare school rankings under our preferred semiparametric model to those obtained un-
der the value-added and linear models. In general we find that performance assessments
obtained in value-added specifications are surprisingly different from those obtained in our
preferred semiparametric model, and in particular, the value-added model tends to highly
rank schools whose students are initially low-achieving. Third, we consider how the addition
of student-level controls such as parental education and income affect the school rankings.5

We find that the addition of student-level controls does have a reasonable impact on the
resulting school rankings and that schools with favorable demographic characteristics are
rated most highly in our models. Finally, we also assess the roles of proxies for “school qual-
ity” such as teacher education, class size and expenditure per pupil in explaining variation
in school performance. Interestingly, we find “significant” effects for some of these variables
in our semiparametric model, though the magnitude of the impacts is reasonably small.
However, when estimating the “value-added” specification (as often done in the literature),
we find no “significant” impacts of the school quality proxies.

The outline of the paper is as follows. In the next section we introduce our semipara-
metric hierarchical model of achievement growth and discuss the smoothing prior. Section 3
describes the data from the High School and Beyond (HSB) longitudinal study, and empiri-
cal results are provided in section 4. The paper concludes with a summary in section 5, and
specific details regarding the model and posterior simulator are provided in the appendix.

2 The Model

The model we employ must account for specific features of our data and also allow for
the potential to flexibly estimate the relationships between intake and expected follow-up
achievement. With respect to features of our data, we need to account for the multilevel
clustering structure since we observe multiple test score outcomes for the same student, and
students are then clustered into various public high schools.

Before diving into the particular model we use to account for these issues, let us first
define some general notation. Let yish denote the follow-up test score of individual i in
subject s in (high) school h,6 and let xish similarly denote the baseline score. Since the
test score data are discrete, we assume xish ∈ {x1

s, x
2
s, · · · , xJs

s }, with x1
s < x2

s < · · · < xJs
s ,

where Js denotes the total number of possible test score outcomes on subject test s. We
then define

Dj
ish =

{
1 if xish = xj

s

0 otherwise , j = 1, 2, · · · , Js (1)

5This comparison is particularly important as rewards programs in some states (e.g. Texas) explicitly use
demographic characteristics in their performance evaluation, while others basically condition on the intake
score exclusively (e.g. California).

6The High School and Beyond data we use in our empirical analysis contains information on the test
score outcomes of high school students, and so we maintain this notation in our modeling.
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and let
Dish =

[
D1

ish D2
ish · · · DJs

ish

]
(2)

be the 1× Js label vector denoting the test score for individual i in subject s. Finally we let

βs = [β1
s β2

s · · · βJs
s ]′ (3)

be the associated Js× 1 vector of dummy variable coefficients. Importantly, we have sorted
the xj

s so that the dummy variable coefficients are ordered consecutively with the intake test
score outcomes.

With this notation in hand, and keeping in mind the hierarchical nature of our problem,
we choose to estimate a specification of the following form:7

yish = αih + Dishβs + εish, εish
ind∼ N(0, σ2

ys) (4)

αih = γh + uih, uih
iid∼ N(0, σ2

α) (5)

γh
iid∼ N(0, σ2

γ). (6)

This model constitutes a multilevel hierarchical model, with αih representing an individ-
ual random effect (given the availability of multiple test score performances for a given
individual) and γh representing a school random effect (given the clustering of individuals
within schools). We are primarily interested in the γh parameters, as they can be used to
summarize school performance.

The hierarchical approach to this and similar evaluation problems has been undertaken
in previous work. For example, Aitkin and Longford (1986) consider the assessment of school
effectiveness in educational research studies and Goldstein and Spiegelhalter (1996) describe
the statistical issues involved in making quantitative comparisons between institutions in the
areas of education and health using hierarchical Bayesian models and Gibbs sampling. Yang
et al. (2002) introduce the use of multivariate multilevel models and carefully document
the need to account for subject selectivity and prior achievement for a large sample of
examination results from the U.K. Our goal in this paper is to introduce a new framework
for modeling the relationship between base and follow-up achievement, to argue that care
needs to be taken to correctly model this relationship, and to further explore how school
performance assessments are affected by a variety of other changes in the specification of
(4) - (6).

Some features of the model above merit additional discussion. First, our flexible rep-
resentation in (4) nests the value-added and linear models and allows for different patterns

7Of course the follow-up scores (yish) are also discrete-valued, which is not fully accounted for in our
empirical specification. In our application y takes on approximately 100 different values for each subject
test so that the continuous approximation is reasonable, and posterior predictive checks suggest that pre-
dictions obtained from the continuous model match the observed follow-up data quite well. We exploit the
discreteness of the test score variable on the right-hand side as a means to an end: it offers a convenient
way to approach nonparametric estimation of the regression function. Estimates for each subject test were
also conducted using an ordered probit specification (which does account for the discreteness of y), and were
found to be highly similar to those obtained from the model in (4) - (6).
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of growth across subject tests.8 The restricted value-added and linear models have not only
provided a basis for policy decisions, as discussed in the introduction, but have also been
used extensively in academic research to assess the importance of school characteristics or
various school policies.9 Second, we also allow for the possibility of subject-specific variance
parameters, since it is reasonable to expect that the conditional variability in test score
outcomes may differ by subject test. If the variances differ across subjects, a constant test
score improvement should not be rewarded equally across subjects when aggregating results
to the school level.

The Smoothing Prior

At this point the model in (4) is just a dummy variable model that is quite flexible and
imposes no restrictions on the nature of test score improvements. However, it is reasonable a
priori to expect some degree of smoothness in the relationships between intake and expected
follow-up scores. Direct estimation of (4)-(6) without any additional structure placed on
the model may yield estimates that are “undersmoothed” and at odds with our prior beliefs
regarding the shape of the regression functions.

To incorporate these features into our model specification, we introduce independent
smoothing priors on the set of dummy variable coefficients for each subject test. These
smoothing priors incorporate our prior belief that adjacent dummy variable coefficients
should be similar in value, and the prior will thus tend to “iron out” jumpiness in results
obtained from the unrestricted dummy variable model. To be more formal about our prior
specification, let S denote the total number of subject tests and define the Js × Js first
differencing matrix Hs :10

Hs =




1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

...
. . .

...
0 0 0 · · · −1 1




, s = 1, 2, · · · , S (7)

8In the empirical sections, we will show explicitly that our model nests the value-added models and the
linear models. In addition, we will also add school quality variables and measurable individual characteristics
to our model in the empirical sections, which appears to be a natural extension to our model.

9For example, Lee and Smith (1995) and Hanushek, Kain and Rivkin (1998) use value-added specifi-
cations while Willms (1985), Hoffer, Greely and Coleman (1985) and Link and Mulligan (1991) use linear
specifications. An important exception to this rule is Goldstein and Thomas (1996) who allow for a quartic
specification of the intake score.

10Note that the intake test scores have been ordered in ascending value, as described before in (1). In
the empirical sections, we smooth our regression curves using the second-order differencing. As suggested
in Koop and Poirier (2004a), with the second-order differencing and a particular choice of the smoothing
prior V (η), the smoothing prior approach can match the natural cubic spline approach. In this sense, the
second-order differencing appears to have a natural interpretation and it allows the regression curves to
be estimated in a very flexible way. More importantly, the smoothness of the regression curves ultimately
depends on the smoothing parameter η to be introduced shortly, which governs the smoothness of the
differenced parameters. In the empirical sections, we will illustrate in detail how we choose the smoothing
prior optimally by finding the η value that maximizes the log marginal likelihood.
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and the Js × Js covariance matrix Vs(ηs):

Vs(ηs) =
[

v2
s 0
0 ηsIJs−1

]
, s = 1, 2, · · · , S, (8)

where IM denotes the M ×M identity matrix. We then employ the following priors for the
vectors [β1

s β2
s − β1

s β3
s − β2

s · · · βJs
s − βJs−1

s ],′ s = 1, 2, · · · , S, by specifying:

Hsβs
ind∼ N [0, σ2

ysVs(ηs)], s = 1, 2, · · ·S, (9)

or equivalently,
βs

ind∼ N
(
0, σ2

ysH
−1
s Vs(ηs)[H−1

s ]′
) ≡ N(0, σ2

ysΩs) (10)

with Ωs ≡ H−1
s Vs(ηs)[H−1

s ]′. The parameter β1
s acts as an initial condition, and our speci-

fication in (10) places a prior over that initial condition. The remaining rows of Hs serve to
take first-differences of the dummy variable coefficients, and we introduce the potential for
smoothing the dummy variable coefficients by centering these first differences over a prior
mean of zero. As will be discussed in the following section (following Koop and Poirier
(2004a,b)), the values of ηs act as smoothing parameters and will dictate the degrees of
smoothness imposed on these regression curves.

Finally, the model specification is completed by adding the following (conjugate) pri-
ors:11

σ2
ys

ind∼ IG(e1s, e2s), s = 1, 2, · · ·S (11)

σ2
α ∼ IG(a1, a2) (12)

σ2
γ ∼ IG(g

1
, g

2
). (13)

The question naturally arises: is this added “smoothing” feature of the model as outlined
in (7) - (10) really necessary? We argue strongly in the affirmative. Generally speaking, if
the size of the data set at hand is moderate then we would expect imprecise estimation of
the dummy variable coefficients, thus yielding erratic estimates of the relationships between
base and expected follow up scores. Prior information such as that outlined in (7) - (10) can
serve to “smooth out” this excessive jumpiness. Finally, we can simply look into the data
to ultimately decide if such smoothing is warranted. Specifically, we can calculate marginal
likelihoods associated with our smoothed model and a variety of parametric alternatives,
including the value-added and linear models and the unrestricted dummy variable specifi-
cation. These marginal likelihoods will balance the added fit of the unrestricted dummy
variable model against the parsimony expressed in the smoothed model. If the data pre-
fer the unrestricted model or simpler parametric alternatives, then seemingly there is little
value in the smoothing prior. In our application, however, we find that the smoothed model
produces reasonable estimates of the relationships between intake and expected follow-up
achievement, and is also strongly favored relative to competing specifications in more formal
testing procedures.

11In all cases, IG(a, b) denotes the Inverted Gamma density, and is parameterized as in Carlin and Louis
(1996, page 326).
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2.1 How Does the Smoothing Prior Smooth?

Using the result of Lindley and Smith (1972), one can show that the conditional posterior
mean of the coefficient vector βs is of the following form:12

E(βs|ηs, α, Data) =
(
D′

sDs + Ω−1
s

)−1
D′

sỹs, (14)

where

Ds =




D1sh

D2sh

...
Dnsh


 , ỹs =




y1sh − α1h

y2sh − α2h

...
ynsh − αnh


 (15)

n denotes the number of individuals in the sample and Ωs is defined as in (10). We note
that

D′
sDs =




n1
s 0 · · · 0
0 n2

s · · · 0
...

...
. . .

...
0 0 · · · nJs

s


 and D′

sỹs =




n1
sy

1
s

n2
sy

2
s

· · ·
nJs

s yJs
s


 , (16)

where nj
s denotes the number of students with intake test scores equal to xj

s on subject s
and yj

s denotes the average follow-up score (net of individual effects) for those individuals
with intake test scores equal to xj

s, i.e., yj
s ≡ (nj

s)−1
∑

i:xish=xj
s
[yish − αih].

To fix ideas (and without loss of generality), let us make the simplifying assumption that
the number of students observed with each initial test score is constant so that nj

s = c ∀j.
With a bit of work, it follows that the posterior mean in (14) reduces to

E(βs|ηs, α, Data) = Wsys (17)

where ys = [y1
s y2

s · · · yJs
s ]′, Ws = Ws(vs, ηs, c), and specifically,

Ws = c




(v−2
s + η−1

s + c) −η−1
s 0 0 · · · 0 0 0

−η−1
s (2η−1

s + c) −η−1
s 0 · · · 0 0 0

0 −η−1
s (2η−1

s + c) −η−1
s · · · 0 0 0

.

..
.
..

.

..
.
..

. . .
.
..

.

..
.
..

0 0 0 0 · · · −η−1
s (2η−1

s + c) −η−1
s

0 0 0 0 · · · 0 −η−1
s η−1

s + c




−1

.

(18)

In the case of the unrestricted dummy variable model, the weight matrix Ws takes the
form Ws = IJs so that the posterior mean of each element of βs is simply the average of
follow-up outcomes for those students with the given intake score. As ηs →∞, and for v−2

s

small, we see that Ws → IJs , so that the unrestricted dummy variable model results in this
limiting case. Conversely, when ηs → 0, the coefficients are restricted to be constant, thus
“oversmoothing” the model. Without loss of generality, however, (18) shows that expected
performance at a particular intake score will be obtained as a weighted average of the average

12Note that, conditioned on the individual effects α, the assumptions of our model imply that the coeffi-
cients βs are independent across s. As such, we drop {βk}k=1,2,···,S,k 6=s

from the conditioning.
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follow-up score at the given intake score and the averages of follow-up scores at neighboring
intake scores.

To illustrate the particular way that ηs acts as a smoothing parameter, we calculate
the weights as in (18) for a particular case.13 We set Js = 10 (10 possible test scores),
c = 100 (100 observations per score) and v−2

s = 0 (a diffuse prior over the initial condition).
We then determine the weights assigned to the various average follow-up scores for the fifth
element of the parameter vector (β5

s ) under a variety of choices for ηs. These are reported
in Table 1 below:

Table 1: Weights assigned to Follow-up Averages when Calculating E(β5
s |ηs, α, Data) Under

Alternate Choices of ηs

Avg. Follow-Up Score ηs = .0001 ηs = .001 ηs = .01 ηs = .1 ηs = 1 ηs = 10
y1

s .0992 .0900 .0313 .0004 .0000 .0000
y2

s .0997 .0945 .0469 .0023 .0000 .0000
y3

s .1007 .1037 .0860 .0159 .0004 .0000
y4

s .1022 .1181 .1681 .1087 .0185 .0020
y5

s .1042 .1384 .3341 .7454 .9623 .9960
y6

s .1017 .1157 .1673 .1087 .0185 .0020
y7

s .0998 .0987 .0841 .0159 .0004 .0000
y8

s .0983 .0867 .0431 .0023 .0000 .0000
y9

s .0973 .0790 .0235 .0003 .0000 .0000
y10

s .0969 .0752 .0157 .0001 .0000 .0000

As shown in Table 1, for small values of ηs (i.e., ηs = .0001) the weights essentially
become uniform and thus we will obtain the same posterior mean for all elements of βs. For
large values of ηs, virtually all the weight is placed on the 5th cell, thus reproducing the
dummy variable specification. For intermediate cases, the results are local averages of the
neighboring scores, with the weights declining as we move farther away from the 5th cell. In
our empirical application, we will calculate marginal likelihoods associated with a variety of
ηs and thereby determine and use the amount of smoothing most supported by the data.

2.2 Interpretation of School Effects

The objects of primary interest in this investigation are the school effects γh. Though the
smoothing feature of our model is important and offers a methodological contribution to
this literature, the relationships between intake and follow-up achievement are really only
policy-relevant insofar as they are correctly modeled and thus yield accurate assessments of
school performance.

Before looking a bit more closely at how our school effects are obtained, let us first
introduce some notation. Let θ denote all the parameters in our model and write θ =

13Koop and Poirier (2004a) contain a similar discussion, and also discuss the use of a variety of other
smoothing priors.
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[α γ π] to separate the individual random effects α and the school random effects γ from
the remaining parameters.

Again, from Lindley and Smith (1972), it immediately follows that

E(γh|α, π,Data) =
nhσ2

γ

nhσ2
γ + σ2

α

αh, (19)

where nh denotes the number of students in school h and αh = n−1
h

∑
i∈h αih is the sample

average of individual effects within school h. This derivation shows that the posterior mean
of the effect for school h is simply a weighted average of the average individual effects
within the school and the common mean across all schools, which in this case is zero.14

Thus, schools will be estimated to have large effects if the students within that school are
improving more than other students with similar levels of intake achievement.

To be a bit more formal about this claim, we can obtain the conditional mean analogous
to (19) but marginalized over the individual effects α.15 This will enable us to directly
see how student-level performances above or below expectation will affect our resulting
assessments of school performance. To this end, we let αh = [α1h α2h · · · αnhh]′ be the
nh × 1 vector of individual effects from school h. We note

E(γh|π,Data) = Eαh|π,Data [E(γh|αh, π, Data)] (20)

=

(
σ2

γ

nhσ2
γ + σ2

α

)
ι′nh

E(αh|π, Data), (21)

where the first line follows by the law of iterated expectations, the second line applies (and
slightly rewrites) our formula for the conditional expectation in (19) with ιm denoting an
m× 1 vector of ones.

The expectation E(αh|π,Data) on the right-hand side of (21) does not involve γh.
Thus, to calculate this expectation we first need to integrate out the school effects from the
model in (4) - (6). By substituting γh out of (5) and stacking over i within h we obtain
the prior αh|σ2

α, σ2
γ ∼ N(0,Σh), where Σh = σ2

αInh
+ σ2

γιnh
ι′nh

. Similarly, one can take (4),
stack observations first over subject tests s and then over individuals i within school h16 to
obtain the part of the likelihood that depends on αh.17 With a bit of work, we obtain the
following posterior mean:

E(αh|π,Data) = Whrh, (22)

14Note that for identification purposes the common intercept in (6) is set to zero, as the intercept is
implicitly incorporated in the dummy variable specification.

15The conditional means E(γh|π, Data) derived below is marginalized over the individual effects α, but
still conditioned on other parameters π. It is worth noting that the conditional means E(γh|π, Data) are
somewhat different from the marginal posterior means E(γh|Data) to be estimated from the Gibbs sampler.

16Highly similar derivations are reported in the appendix in the description of the posterior simulator,
and we do not repeat those derivations here.

17Again, note the assumptions of our model imply that observations arising from different schools h are
independent from one another. Thus, we do not need to carry along the remaining set of individual effects
in the conditioning.
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where

Wh =







∑S
s=1 σ−2

ys

S


 Inh

+
Σ−1

h

S



−1

, rh = [y1h y2h · · · ynhh]′ (23)

and in the construction of rh in (23) we have defined

yjh =
1
S

S∑
s=1

yjsh −Djshβs

σ2
ys

(24)

as the average of the “adjusted residuals” on each of the S subjects for individual j. Putting
(22) together with (21) we obtain the desired mean

E(γh|π,Data) =

(
σ2

γ

nhσ2
γ + σ2

α

)
ι′nh

Whrh. (25)

This result directly shows that point estimates of the school effects γh are obtained as a
weighted average of the average performances of the students within the given school. A
school will tend to receive a high ranking if its constituent yjh are positive, and from (24),
this implies that the students comprising the school have improved more than other students
with similar intake ability. These individual performances yjh are also a function of {βs},
and thus our school performance assessments will clearly be affected by our treatments of the
relationships between intake and follow-up scores - the value-added, linear, dummy variable
and smoothed dummy variable models can potentially produce dramatically different school
rankings. In our empirical analysis of section 4 we investigate this issue, and find strong
evidence that the maintained model can have a significant impact on assessments of school
performance. Before discussing these results, however, we first describe the data used in
more detail.

3 The Data

We take data from High School and Beyond (HSB) to estimate the models discussed in
the previous section. High School and Beyond is an unusually rich longitudinal study,
containing detailed information on student achievement, school characteristics and family
characteristics of the sampled individuals. Approximately 1,000 randomly selected U.S.
high schools participated in the HSB survey, and were chosen to be representative of the
population of U.S. high schools. HSB consists of both a sophomore and senior cohort, and
approximately 30 students from each cohort were sampled from the participating schools.

In 1980, the base year of the survey, HSB administered cognitive tests in a variety of
subjects, including vocabulary, reading, math, science, writing and civics. In 1982, the first-
follow up year of the survey, the sophomore cohort was re-administered this test battery,
thus allowing us to analyze the production of achievement gains on the various component
tests. Since these follow-up test scores are not available for the senior cohort (as they were
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high school graduates in 1980), we restrict our attention to the sophomore cohort of HSB.18

For each subject test we make use of a formula score provided in the HSB data that
corrects scores by imposing penalties for incorrect guessing. For each of the 6 component
tests analyzed in this paper (vocabulary, reading, math, science, writing and civics) we
obtain a discrete grid of approximately 100 possible test score outcomes. To convert these
scores to a common scale, we divide each score by the maximum score, and thus an intake
or follow-up score of 1 denotes a perfect score. In general, the transformed scores are then
contained in the common interval [−.2, 1] for all subject tests (see, e.g. Figure 1). Though
it is possible to receive a negative score, the vast majority of intake and follow-up scores
were positive. For example, the percentage of positive intake and follow-up scores in each
subject test ranges from 93 to 98 percent.

In some of our models we additionally control for student-level and school-level variables
to see how results change with the inclusion of these covariates. The student-level controls
we investigate include sex, race, family income, father’s education, mother’s education and
number of siblings. From the school survey in the HSB, we also extract typical proxies
for the “quality” of the high school, including average class size, number of books in the
school’s library, percentage of teachers with at least a Master’s or Ph.D. degree and district-
level expenditure per pupil. We will examine if these school characteristics play any role in
explaining variation in performance across schools in our semiparametric hierarchical model.

The sample sizes we employ in our analysis change as we consider models with additional
covariates. In our base model, as described in (4) - (6), which requires only test scores in 1980
and 1982 and individual and school indicator variables, we obtain a final sample of 20,559
students from 953 schools, and thus observe 21.5 students per school on average. When we
incorporate student-level controls into the second stage of the hierarchy, the sample size is
reduced to 13,404 students from 941 schools due to missing data on family characteristics.
Finally, in our models which include both individual-level and school-level covariates, we
obtain a final sample of 8,983 students from 599 schools.

4 Empirical Results

In this section we look into the HSB data to address the following key questions: (1) Do the
data support the use of the semiparametric smoothing methods over popular alternatives
like value-added and linear models? Are nonlinearities in the relationship between intake
and follow-up achievement important? (2) Are key model outputs such as assessments
of school performance (i.e., school rankings) sensitive to the model employed? (3) Does
accounting for student-level controls like parental education and family income affect our
school rankings? (4) Do proxies for “school quality” like class sizes, teacher education and

18We do not exclude the dropouts from the sophomore cohort. Importantly, dropouts only comprise a
small portion of the entire sample. Moreover, most dropouts spend considerably long periods of time in their
high schools before they drop out. Therefore, it is still reasonable to assume that dropouts and in-school
students from the same school share the same school-specific effect. In addition, the results of our paper are
robust to the exclusion of the dropouts from the sample.
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expenditure per pupil explain variation in school performance in our semiparametric model?
(5) Do we obtain the same impact of the “school quality” variables when estimating the
widely-used value-added and linear models?

The models we employ are fit using the Gibbs sampler. In the appendix of this paper we
describe our algorithm for fitting the model in (4) - (6) by employing a blocking step wherein
the regression parameters {βs}, individual effects {αih} and school effects {γh} are drawn in
a single block. This helps to mitigate autocorrelation in our parameter chains. Our posterior
means and other parameters of interest are calculated after running the sampler for 10,000
iterations and discarding the first 1,000 of these simulations as the burn-in period. Some of
our models add covariates to the second and third stages of the hierarchy, and these models
can be fit using simple modifications of the algorithm described in detail in the appendix.

We specify proper yet reasonably “flat” priors for all the parameters in our model.
Specifically, for the variance parameters {σ2

ys}, σ2
α and σ2

γ , we make the choices: e1s = 1,
e2s = 1, a1 = 1, a2 = 1, g

1
= 1 and g

2
= 1, and found that setting all these parameters

to 10 or .1 produced virtually identical results. For the variance parameter governing the
initial condition in (8), we specify v2

s = 10, 000 ∀s. Finally, for our most general model
specifications we also include student and school level covariates. When these are included,
we center the coefficients around a prior mean of zero with a prior covariance matrix equal
to 1, 000Ik. These specifications are chosen to be vague so that the data information is
predominant, and results were not found to be sensitive to moderate changes in these priors.

4.1 A Series of Test-Specific Models

To fix ideas and illustrate the potential advantages of “smoothing” we begin by treating
each of the six subjects (vocabulary, reading, math, science, writing and civics) indepen-
dently. Specifically, we estimate six different linear regression models where the follow up
scores of each test are regressed on an exhaustive set of dummy variables. We then place
a smoothing prior on these dummy variable coefficients as in (10). These simplified models
are not hierarchical, and do not account for the group structure of our HSB data. How-
ever, estimation of these simplified models provides a clear way to visualize inadequacies
with the unrestricted dummy variable approach, and also reveals how our preferred method
overcomes these deficiencies.

We present in Figure 1 the results of this estimation exercise. In Figure 1 we plot
the expected follow-up scores for each test against the value of intake achievement using
the unrestricted dummy variable regression model. For each of the six component tests
we also plot a dotted 45 degree line, which represents the case where intake and expected
follow-up scores coincide. In general, expected follow-up scores lie above the 45 degree
line in all of our component tests, and only fall below this line at the far right-tail of the
intake achievement distribution. This indicates that the vast majority of students have
improved, and a closer inspection of Figure 1 shows that those individuals with low intake
test scores tend to demonstrate the most improvement. The fact that the “production” of test
score improvements is not constant over the intake support is evidence against the popular
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Figure 1: Expected Follow-up Test Score Given Base Year Test Score: Dummy Variable
and Smoothed models
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value-added model, where it is implicitly assumed that achievement gains are treated equally
regardless of the intake test score.

For our purposes, what may be most important to note is that estimates from the
dummy variable model in Figure 1 are quite erratic, while we expect them to be smooth
and non-decreasing. Even abstracting from the tails, where the “bumpiness” of the curves
seems most pronounced and the data are most scarce, the regression curves still appear to
be fluctuating considerably over the interior of the support. In general, our prior beliefs are
that these curves should be smooth, and that those with higher intake scores should also
have higher expected follow-up scores. Thus, the introduction of the smoothing prior in (10)
seems potentially advantageous, as it will help to impose these conditions on our regression
functions.

In Figure 1 we also present our semiparametric results that smooth the dummy variable
coefficients. For each of the 6 component tests, we choose the smoothing prior optimally
by finding the η value that maximizes the log marginal likelihood.19 As you can see, the
smoothed regression functions mimic the overall trends suggested by the dummy variable
model quite well, and even capture the nonlinearities suggested by the dummy variable model
in the tails of the regression functions. These smoothed regression curves also embody our
prior beliefs that the regression function should be increasing, though it is important to
note that we have not formally imposed this condition through our prior. Finally, we also
note that the nature of test score improvements seems different across tests (particularly for
civics), and thus one should not simply aggregate these test scores when estimating school
performance.

To be a bit more formal about our model comparison methods, we present in Table 2
a table of log marginal likelihoods for a variety of models in each subject area. Marginal
likelihoods are widely used in Bayesian testing and their use arises from the observation
that for any two competing models M1 and M2:

p(M1|y)
p(M2|y)

=
(

p(y|M1)
p(y|M2)

)
p(M1)
p(M2)

. (26)

The left-hand side of (26) gives the posterior odds of Model 1 in favor of Model 2, and
the ratio p(M1)/p(M2) is the prior odds ratio, typically taken to be unity. The expression
in parentheses following the equality in (26) is the Bayes factor or the ratio of marginal
likelihoods, with p(y|Mi) denoting the marginal likelihood for Model i. Thus, under equal
prior odds, posterior odds ratios can be obtained by exponentiating the difference between
the log marginal likelihoods.

In Table 2 we report the log marginal likelihoods for a variety of models. These include
the value-added model where the dependent variable is the change in test score, the linear
model which regresses the follow-up score on the intake score, the unrestricted dummy
variable model and the smoothed dummy variable model for an optimally chosen smoothing

19These cross-sectional models fit into the framework of a standard linear regression model with a natural
conjugate prior for β (see (10)) and a conjugate inverse gamma prior for σ2

y . Thus, marginal likelihoods
can be obtained analytically for a given value of η, and so one can select the value of η that maximizes the
marginal likelihood via a grid search.
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Table 2: Test-Specific Log Marginal Likelihoods for a Variety of Models
model/ value dummy linear smoothed
subject added variable

vocabulary -39,842 -39,375 -39,220 -39,162
reading -42,272 -41,559 -41,429 -41,360
math -40,620 -40,489 -40,345 -40,244

science -39,716 -38,626 -38,458 -38,417
writing -45,184 -43,796 -43,664 -43,634
civics -49,691 -47,256 -47,179 -47,174

parameter. Interestingly, for all of the various subject tests, the rank-ordering of the models
is the same - the semiparametric model is most preferred by the data, followed by the linear
model, and the value-added specification is least preferred by the data.

4.2 The Full Hierarchical Model

The previous section focused on each subject test independently to illustrate the po-
tential benefits of the smoothing prior. However, these analyses did not account for the
panel structure of our data, and thus the models employed were not rich enough to make
assessments regarding school performance. In this section, we take up estimation of the
general hierarchical specification given in (4) - (6).

We choose to simplify our model by making the restriction ηs = η, thus limiting the
model to one smoothing parameter that will be used in the priors for the dummy variable
coefficient vectors for all the component tests. For this hierarchical model, marginal likeli-
hoods are not available in closed form, making it difficult to implement an empirical Bayes
procedure to search over six dimensions for an optimal vector of smoothing parameters.20

In addition, we note that each component test is measured on essentially the same scale, so
there is no compelling reason to require the use of test-specific smoothing parameters.

Again, we select the optimal value of the smoothing parameter by calculating the
marginal likelihoods for various models indexed by different values of η. We present these
log marginal likelihood calculations in Table 3.

Table 3 reveals the U -shaped nature of these marginal likelihoods when plotted over
the support of η. Using these results, we find η = 2 × 10−5 to be the one yielding the
highest value of the log marginal likelihood, and thus we use this value in our remaining

20To investigate how this assumption impacted our results, we implemented a different algorithm, where
{ηs} were included as parameters in our sampling routine. Results from that analysis were very similar to
those presented here. We calculate the marginal likelihoods using the Laplace-Metropolis method discussed
in Raftery (1996). When performing the test-by-test analysis of the previous section, marginal likelihoods
could be obtained analytically, and we obtained exactly the same results when using the Laplace-Metropolis
method. When applying the estimator, we first integrated out the individual and school random effects and
the set of dummy variable coefficients for each subject test.
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Table 3: Log Marginal Likelihoods for Hierarchical Model With Different Values of Smooth-
ing parameter η

Parameter Value Log Marginal Likelihood
η = 2× 10−1 -240,377
η = 2× 10−2 -240,169
η = 2× 10−3 -240,052
η = 2× 10−4 -239,970
η = 2× 10−5 -239,935
η = 2× 10−6 -239,969
η = 2× 10−7 -240,107
η = 2× 10−8 -240,285
η = 2× 10−9 -240,336

calculations.21

With the optimal value of the smoothing parameter in hand, we now wish to compare
our smoothed semiparametric22 model to its competitors. We consider 6 competing models
in total, with 5 of these being restricted versions of a linear specification of (4), written as
follows:

yish = αih + [β0
s + β1

sxish] + εish, εish
ind∼ N(0, σ2

ys). (27)

Two of the 5 competing models based on (27) are value-added models which restrict the
slope coefficient in the linear model to unity: β1

s = 1, so that the dependent variable is the
gain score yish − xish. In one of our value added models (VA1) we also impose equality of
intercepts across subject tests: β0

s = β0.

The remaining 3 competitors based on (27) are linear models. The most restrictive of
these, denoted L1, restricts intercepts and slopes to be the same across tests (β0

s = β0 and
β1

s = β1). The linear model L2 restricts only the slopes to be constant: β1
s = β1, and the

least restrictive model, denoted L3, allows intercepts and slopes to vary across tests and is
given by (27).

Our final competitor is the unrestricted dummy variable model which generalizes the
linear specification in (27). This specification, denoted DUM, is given in (4) and results in
the limiting case as the smoothing parameter η → ∞. Of course, we also calculate the log
marginal likelihood associated with the smoothed semiparametric model, denoted SEM,
using η = 2× 10−5. The results of these calculations are given in Table 4.

As seen from the table, value-added models receive the least support from the data, and
our semiparametric model is most supported by the data. Among those models assuming
linearity, it is clear that one should not treat each subject test identically, as the most
supported linear model is the one allowing for test-specific intercepts and slopes. This

21In practice, the use of neighboring values of η produced virtually identical results.
22We call this model a semiparametric model since it involves a nonparametric treatment of the relation-

ships between intake and follow-up scores and maintains parametric assumptions about other aspects of the
model.
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Table 4: Log Marginal Likelihoods for Alternate Models: Full Hierarchical Model
Model Restrictions on (27) or (4) Log Marginal Likelihood
VA1 Eqn. (27) with β0

s = β0, β1
s = 1 -255,815

VA2 Eqn. (27) with β1
s = 1 -254,644

L1 Eqn. (27) with β0
s = β0, β1

s = β1 -245,240
L2 Eqn. (27) with β1

s = β1 -241,612
DUM Eqn. (4) with η = ∞ -241,080
L3 Eqn. (27) -240,234
SEM Eqn. (4) with η = 2× 10−5 -239,938

suggests the nature of achievement growth varies by subject, and as such, when attempting
to assess school or student performance, one needs to estimate a model that does not involve
simple aggregation of scores across subjects. Finally, we again note that the data prefer
flexibility in the estimation of the test score relationships up to the flexibility offered by
the smoothed semiparametric model; the more flexible and parameter-rich dummy variable
model did not receive as much support from the data as the smoothed version.

4.3 Do Student-Level Controls Change Results?

In this section we investigate the sensitivity of results to the addition of student level covari-
ates at the second-stage of the hierarchy (equation (5)). This exercise is important, as some
states explicitly make use of demographic characteristics like racial and ethnic composition
when defining a group of comparison schools for awards eligibility (e.g., Texas), while other
states essentially condition on intake achievement exclusively (e.g., California).23 In addi-
tion to these basic demographic variables, characteristics like family income and parental
education can also play a potentially important role in the production of student achieve-
ment growth. If this is true, then schools whose students come primarily from wealthy and
well-educated families will tend to be ranked highly in our hierarchical model. This high
ranking may not be due to a true school effect, but instead, may arise from the contribution
of family background characteristics that have gone unmodeled.

To this end we now include a male indicator, a white indicator, family income, highest
grade completed by the respondent’s mother and father and number of siblings as covariates
in (5). We stack these individual-level observables into a vector zih and write (5) as:

αih = γh + zihδ + uih, uih
iid∼ N(0, σ2

α). (28)

The parameters δ can be estimated in a straight-forward generalization of the algorithm
provided in the appendix.24 With this specification, the conditional posterior mean in (19)

23To be awards eligible in California, all numerically significant subgroups within the school must also
demonstrate adequate API improvement. California does not, however, base its awards allocation decision
by first “matching” the given school with schools with similar demographic characteristics. For all groups,
the decision is made exclusively on changes in API scores.

24For the sake of brevity, we do not provide a table of estimation results here, but will provide such a
table in the following section.
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now becomes

E(γh|α, θ,Data) =
nhσ2

γ

nhσ2
γ + σ2

α

α̃h, (29)

where α̃h = n−1
h

∑
i∈h(αih−zihδ). Thus, if the characteristics zih contribute positively to the

individual effects αih (e.g., coming from a family with high parental education and income
also improves your test score growth), these effects will tend to be “subtracted off” when
estimating school-level effects based on the generalized model in (28).

To investigate if our assessments of school performance are sensitive to the inclusion of
individual-level characteristics, we entertain the 7 models described in Table 4, and for each
of these we obtain school rankings with and without the inclusion of the individual-level
characteristics zih. Specifically, for each of the 7 models enumerated in Table 4, we obtain
a vector of school random effects γ = [γ1 γ2 · · · γH ] for each post-convergence draw from
the Gibbs sampler. For each iteration, the elements of this vector can be ordered to form
a ranking of the various schools. To see how similar these performance rankings are across
models that include or omit the characteristics zih, we appeal to the rank correlation. When
there are no ties (as is the case here) the rank correlation r can be calculated as

r = 1− 6
∑S

i=1(M
1
i −M2

i )2

S(S
2 − 1)

, (30)

where S denotes the total number of schools, M1
i denotes the ranking of school i under a

particular model in Table 4 without including zih, and M2
i denotes the ranking of school i

under that same model specification upon including zih as in (28).

For a particular model chosen from Table 4, and for every post-convergence draw from
our sampler, we calculate the (rank) correlation between the vector of school rankings ob-
tained when including or omitting zih in (28). Point estimates of the similarity in rankings
are then obtained by taking averages of the resulting series of rank correlations. Since this
procedure essentially simulates the posterior distribution of the rank correlation, we can
also calculate its posterior standard deviation. If the school effects are precisely estimated,
then the vector of rankings will not change significantly from iteration to iteration, and
thus the calculated rank correlations will remain essentially constant across iterations. The
posterior standard deviation thus allows us to quantify our degree of uncertainty surround-
ing the value of the rank correlation which arises from uncertainty in the school rankings
themselves.

As shown in the Table 5, the rank-ordering of schools is reasonably affected by the in-
clusion of student-level characteristics zih, and the magnitudes of the impacts are virtually
identical across model specifications. Specifically, our point estimates of the rank correla-
tions are all close to .76 with small posterior standard deviations, indicating that including
or omitting the individual-level characteristics zih produces a similar overall effect on school
rankings across our model specifications.

To investigate the relationship between family background characteristics and our
school rankings in more detail, we present additional information in Table 6. We begin
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Table 5: Rank Correlations Between School Rankings With and Without the Inclusion of
Student-Level Covariates

Model Restrictions on post. post. post. prob.
(4) or (27) mean std. positive

VA1 Eqn. (27) with β0
s = β0, β1

s = 1 0.7502 0.0167 1
VA2 Eqn. (27) with β1

s = 1 0.7542 0.01632 1
L1 Eqn. (27) with β0

s = β0, β1
s = β1 0.7568 0.01584 1

L2 Eqn. (27) with β1
s = β1 0.769 0.0153 1

L3 Eqn. (27) 0.7686 0.01504 1
DUM Eqn. (4) with η = ∞ 0.7642 0.01471 1
SEM Eqn. (4) with η = 2× 10−5 0.765 0.01459 1

by analyzing our original semiparametric model, as outlined in (4) - (6), without the in-
clusion of the covariates zih. We then break the vector of school rankings obtained from
this model into deciles, and calculate the average values of family characteristics for the
schools within each decile. Our intuition is that highly ranked schools will also be the ones
with “favorable” demographic characteristics, as these characteristics are likely to play a
significant role in achievement growth. The results of this analysis are reported in Table 6
for parental income, parental education and number of siblings.

Table 6: Average Family Characteristics by Decile of School Rankings. Semiparametric
Specification in (4) - (6)

Family Income/ $ 1,000 Father Education Mother Education Siblings
Decile Mean Std Mean Std Mean Std Mean Std

1 26.4 (.390) 15.0 (.113) 14.1 (.087) 2.47 (.044)
2 23.7 (.519) 14.2 (.150) 13.4 (.111) 2.60 (.061)
3 23.0 (.537) 13.8 (.148) 13.2 (.109) 2.68 (.064)
4 22.3 (.532) 13.5 (.141) 13.0 (.107) 2.73 (.066)
5 21.4 (.506) 13.2 (.132) 12.8 (.104) 2.79 (.067)
6 20.8 (.484) 13.1 (.120) 12.7 (.098) 2.85 (.070)
7 20.5 (.475) 12.9 (.119) 12.6 (.098) 2.89 (.070)
8 20.2 (.472) 12.8 (.111) 12.5 (.097) 2.91 (.070)
9 19.2 (.483) 12.4 (.099) 12.2 (.091) 3.03 (.074)
10 16.7 (.363) 12.0 (.062) 12.0 (.061) 3.36 (.059)

As shown in Table 6, family characteristics are strongly related to the rankings of schools
from our semiparametric model. In fact, the average family characteristics are monotonic
with the decile rankings. Schools in the highest deciles are comprised of students coming
from the wealthiest and most educated families with fewest siblings. This suggests that
rankings which do not account for these family characteristics may confound actual school
performance with demographic characteristics of the students attending those schools.
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4.4 Does School Quality Matter?

In the previous subsection we added student-level controls to the second-stage of the hi-
erarchy as in (28). We now investigate the roles of proxies for school “quality” (including
class size, number of books in the school’s library, percentage of teachers with at least a
Master’s Degree and district-level expenditure per pupil) in explaining variation in perfor-
mances across schools. We stack these school-level observables into a vector qh and write
(6) as:25

γh = qhπ + vh, vh
iid∼ N(0, σ2

γ). (31)

The model examined in this section is then given by (4), (28) and (31) and contains student
(zih) and school (qh) level observables. It is important to recognize that the results we
obtain here are based on our preferred semiparametric specification, which has not been
used in previous work, and can potentially give different results than those based on linear
and value-added specifications. We present coefficient posterior means, standard deviations
and probabilities of being positive from this semiparametric model in Table 7.

Table 7: Posterior means, Standard deviations and Probabilities of being Positive: Smoothed
Semiparametric Model with Individual and School Covariates

Parameter/ Post. Post. Post. Prob.
Variable Mean Std. Positive

Male 0.00196 0.00249 0.789
White 0.0671 0.00339 1

Individual Family income/ $1000 0.000698 0.000124 1
Covariates Father education 0.00503 0.000376 1

Mother education 0.0033 0.00043 1
Number of siblings -0.00458 0.000726 0

Class size -3.83e-005 0.000191 0.411
School Books in library/ 1,000 0.000678 0.00045 0.94
Covariates Perc. Teacher MA/Ph.D. 0.0164 0.0182 0.816

District expenditure per pupil / $1,000 0.0125 0.00606 0.986

σ2
α 0.0102 0.000228 1

σ2
γ 0.00855 0.00135 1

σ2
V ocabulary 0.0161 0.000291 1

Variance σ2
Reading 0.0204 0.000353 1

Parameters σ2
Math 0.0195 0.000333 1

σ2
Science 0.0154 0.000281 1

σ2
Writing 0.0265 0.000449 1

σ2
Civics 0.0388 0.000619 1

Table 7 confirms the results of the previous section and shows that family income,
parental education and family size are strongly related to follow-up achievement even after
flexibly controlling for intake achievement. Interestingly, we also find reasonably “signifi-
cant” effects of proxies for school quality, as district expenditure per pupil and number of

25We use π to denote the coefficients of qh.
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books in the school’s library26 have high posterior probabilities of being positive.27 Finally,
the coefficients associated with all of our proxies for school quality have the expected signs.

To get a different sense of how school characteristics impact student performance, we
conduct the following simulation exercise. Consider the predictive test score outcomes for
an out-of sample individual, and denote these test scores as yfsh, with f denoting a future,
as yet unobserved quantity. Assuming the model in (4), (28) and (31) applies to this out of
sample individual, we obtain28

yfsh|θ−α,γ , qh, zih, {Dfsh}, Data ∼ N
(
qhπ + zfhδ + Dfshβs, σ

2
ys + σ2

α + σ2
γ

)
, (32)

where we have integrated out the individual and school random effects. We can then cal-
culate the predictive density associated with the average follow-up score for this individual,
denoted yfh, where

yfh =
1
S

S∑
s=1

yfsh.

Using (32) we obtain

yfh|θ−α,γ , qh, zih, {Dfsh}, Data ∼ N
(
qhπ + zfhδ + Dfshβs, σ2

ys/S + σ2
γ + σ2

α

)
, (33)

where Dfshβs = (1/S)
∑

s Dfshβs and σ2
ys = (1/S)

∑
s σ2

ys. We calculate the mean of yfh

upon fixing each Dfsh to the median intake score on subject s and the elements of z to
their mean values.29 We then estimate the mean of (33) for a variety of values of the school
quality variables. Specifically, we set each of them equal to their mean values and also set
each of them (collectively30) to one and two standard deviations above and below their mean
values. We find that the posterior means of (33) were .51, .53, .55, .56 and .58 when the
quality variables were set equal to E(q) + cStd(q) for c = −2, −1, 0, 1 and 2, respectively.
A student-level average follow-up score of .58 would place the student at the 52nd percentile
of the observed follow-up score achievement distribution, while a score of .51 would place
that student at approximately the 41st percentile. So, seemingly, large changes in school
quality characteristics do have a moderate impact on expected follow-up performance.

We can look at this problem a bit differently and calculate the posterior predictive prob-
ability that a student coming from a school with characteristics 2 standard deviations above
the mean will receive a higher average follow-up score than a student with characteristics

26This variable also proxies for school size effects, which has been demonstrated in previous work to have
some effect on student outcomes, e.g., Betts (1995).

27Given our specification of the dependent variable, we can interpret these coefficients as percentage
changes in the maximum formula score corresponding to a unit change in the covariate. For example,
increasing expenditure per pupil by $1,000 increases expected follow-up scores by about 1.25 percent of the
maximum score. Similarly, a 10 point increase in the percentage of teachers in the school with at least an MA
increases expected follow-up scores by about .164 percent of the maximum score. These calculations show
that the magnitudes of the school quality effects are rather small, though in some cases still “significant.”

28As in the appendix, we use θx to denote all parameters in the model other than x.
29We set the white and male dummy variables equal to one.
30When we collectively set each of the school quality variables to one and two standard deviations above

and below their mean values, we change them in the same direction except for the class size variable simply
because the class size variable has an opposite effect on the achievement growth compared with other school
quality variables.
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2 standard deviations below the mean. Fixing the covariates other than qh at mean values
and using our model in (33), this probability reduces to Φ

(
[(q2

h − q−2
h )π]/

√
2σ2

)
, where q2

h

denotes the quality values 2 standard deviations above the mean, q−2
h denotes those two

standard deviations below the mean, and σ2 ≡ σ2
ys/S + σ2

γ + σ2
α. At posterior mean values,

we calculate this probability to be approximately .63. The overall .07 point increase in
expected follow-up scores as a result of the school quality improvements is rather modest
relative to the standard deviation of yfh which is approximately .15. Thus, even though we
find “significant” effects of some of the school quality proxies, our analysis suggests there is
a reasonably large chance that a student from a quality-poor school will still perform better
than a student from a school comparably rich in quality.

School Quality and Value-Added Models

Finally, it is useful to repeat the analysis of Table 7 using the popular value-added
specification. In this way, we investigate if our treatment of the relationship between intake
and follow-up achievement has any impact on our assessments of the importance of proxies
for school quality. Results obtained using the value-added model VA2 are reported in Table
8.

Table 8: Posterior means, Standard deviations and Probabilities of being Positive: Value-
Added Model with Individual and School Covariates

Parameter/ Post. Post. Post. Prob.
Variable Mean Std. Positive

Male 0.00191 0.0022 0.815
White 0.0088 0.00307 0.998

Individual Family income/ $1000 9.16e-005 0.000113 0.798
Covariates Father education 0.000874 0.000326 0.997

Mother education 0.000397 0.000372 0.853
Number of siblings -0.000266 0.000667 0.344

Class size -6.46e-005 0.000161 0.343
School Books in library/ 1,000 6.69e-005 0.000373 0.56
Covariates Perc. teacher MA/Ph.D -0.0087 0.0147 0.279

District expenditure per pupil/ $1,000 0.00115 0.00449 0.607

σ2
α 0.00567 0.000145 1

σ2
γ 0.0062 0.000377 1

σ2
V ocabulary 0.0233 0.000392 1

Variance σ2
Reading 0.0297 0.000485 1

Parameters σ2
Math 0.0245 0.000406 1

σ2
Science 0.0231 0.000393 1

σ2
Writing 0.0383 0.000617 1

σ2
Civics 0.0666 0.00105 1

The most important piece of information to take away from Table 8 is that we do not
see “significant” effects for any of the school quality variables in the value-added specifica-
tion. In addition, the coefficient on the teacher education variable is negative, contrary to
our expectation, and the magnitudes of the impacts are also significantly reduced relative
to those in Table 7. To summarize, use of the value-added specification led us to reach
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very different conclusions regarding the “significance” of the school quality variables: in our
preferred semiparametric model, we find some evidence of school quality effects while the
popular value-added specification does not reveal such effects. We rationalize this result by
observing (see Figure 1) that the value-added specification does not correctly model the
relationship between intake and follow-up achievement. More than this, the value-added
model will tend to highly rank schools that are initially low achieving and thereby evalu-
ate the importance of school quality variables off of these arguably misleading performance
assessments. We discuss this point in greater detail in the following section.

4.5 Are Assessments of School Performance Sensitive to the Con-
ditional Mean Specification?

In the previous sections we argued that our semiparametric specification was preferred over
various alternatives, and also noted that including student-level demographic information
had an impact on our assessments of school performance. In this section we investigate how
the specification of the relationships between intake and follow-up achievement affect our
results. Despite the statistical preference of the smoothed model, policy-relevant quantities
such as school rankings may not be sensitive to the use of the value-added, linear, dummy
variable, or smoothed models.

As in section 4.3, we appeal to the rank correlation to quantify the degree of similarity
between school rankings obtained from various specifications. We consider the 7 models
listed in Table 4 and calculate the pairwise correlations between school rankings from each
model. We report these calculations in Table 9.

Table 9: Similarity of School Rankings: Rank Correlations between Ordered School Effects
Across Competing Specifications

Model Restrictions on VA1 VA2 L1 L2 L3 DUM SEM
(27) or (4)

VA1 Eqn. (27) with β0
s = β0, β1

s = 1 1 0.759 0.557 0.517 0.517 0.517 0.515
VA2 Eqn. (27) with β1

s = 1 0.759 1 0.557 0.517 0.517 0.518 0.516
L1 Eqn. (27) with β0

s = β0, β1
s = β1 0.557 0.557 1 0.863 0.863 0.862 0.863

L2 Eqn. (27) with β1
s = β1 0.517 0.517 0.863 1 0.877 0.875 0.877

L3 Eqn. (27) 0.517 0.517 0.863 0.877 1 0.877 0.878
DUM Eqn. (4) with η = ∞ 0.517 0.518 0.862 0.875 0.877 1 0.88
SEM Eqn. (4) with η = 2× 10−5 0.515 0.516 0.863 0.877 0.878 0.88 1

As shown in Table 9, value-added models ( VA1 and VA2) can produce assessments
of school performance that are quite different from those obtained from the linear, dummy
variable or semiparametric models. Specifically, the correlation between rankings from the
value-added and smoothed semiparametric models was approximately .52. Given our re-
sults in section 4.3, we conclude that differences in school performance assessments between
the preferred semiparametric model and the value-added specification are greater than differ-
ences produced when adding student-level demographic controls to a particular model. This
result is particularly striking since many accountability policies and studies in economics
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have stressed the need to control for demographic characteristics, yet the specification of the
relationships between intake and follow-up scores has largely been overlooked. Our analy-
sis suggests that these specification issues are of first-order importance, particularly when
considering the value-added model against alternate specifications.

We explain the low correlation between value-added rankings and the rankings obtained
in our other models by noting that the value-added specification fails to capture the shape
of the relationships between intake and expected follow-up achievement. In particular, the
graphs in Figure 1 strongly show that initially low achieving students tend to demonstrate
the most improvement, as the gaps between the regression functions and the 45 degree lines
are largest at the left-tail of the intake score distribution. Value-added models will thus
tend to rank schools with initially low-achieving students highly.31 However, this will not
be the case for the semiparametric (and to a lesser extent, linear) models, since these models
first estimate expected performance profiles and then rank school performance off of these
estimated relationships. These results seem to call into question the use of value-added
specifications for performance assessment and policy evaluation.

5 Conclusion

In this paper we described a new and flexible framework for modeling school effects using
Bayesian hierarchical models with smoothing priors. Our “smoothed” analysis provided rea-
sonable depictions of the relationships between intake and expected follow-up achievement,
and statistically our model was found to be favored over a variety of competitors. These
competing specifications include the popular value-added and linear models that form the
backbone for previous research and underlie numerous school accountability policies.

Using data from High School and Beyond (HSB) we found that rankings of school perfor-
mance were sensitive to the models employed, and in particular, value-added specifications
could give widely different and potentially misleading performance assessments. The failure
of the value-added specification arises since the use of gain scores rewards improvements
equally across the intake achievement support, and does not recognize that low-achieving
students (and schools) tend to demonstrate the most improvement on average. Finally,
when estimating the popular value-added model in a generalized hierarchical setting, we
found little evidence that proxies for school quality played any role in explaining variation
in performance across schools, as these variables would not be reported as “significant.”
However, when estimating our preferred semiparametric specification, we found small but
reasonably significant impacts of school quality proxies such as district-level expenditure
per pupil.

31As suggestive evidence of this, note that the average intake scores for the top 10 schools as ranked in
value-added specification were .142, .192, .309, .338, .357, .366, .371, .381, .382 and .386, respectively. An
identical pattern emerges when calculating the average intake scores by quartile and decile of the school
rankings. These results strongly suggest an inverse relationship between intake achievement and value-added
rankings.
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Appendix: The Gibbs Sampler

Standard arguments show that the model outlined in (4) - (6) together with the priors

βs|ηs, σ
2
ys

ind∼ N
(
0, σ2

ysH
−1
s V (ηs)[H−1

s ]′
) ≡ N(0, σ2

ysΩs), s = 1, 2, · · · , S (34)

σ2
ys

ind∼ IG(e1s, e2s), s = 1, 2, · · ·S (35)

σ2
α ∼ IG(a1, a2) (36)

σ2
γ ∼ IG(g

1
, g

2
) (37)

yield the joint posterior distribution p(θ|Data) up to proportionality. In the above we have
defined Ωs = Ωs(ηs) = H−1

s V (ηs)[H−1
s ]′ and we let θ denote all the model parameters, i.e.,

θ = [{αih}N
i=1 {γh}H

h=1 {βs}S
s=1 {σ2

ys}S
s=1 σ2

α σ2
γ ].

We implement the Gibbs sampler (e.g., Casella and George (1992)) to fit this model, which
involves successively sampling from the posterior conditionals. To mitigate the degree of
autocorrelation in our parameter chains, we introduce an algorithm which samples the slope
coefficients {βs}, individual effects {αih} and school effects {γh} in a single block. We do this
by first sampling from the conditional for the regression parameters {βs} which is marginal-
ized over the individual and school effects. We denote this conditional as p(β|θ−β,α,γ , Data),
where β ≡ {βs} and θ−x denotes all parameters in the model other than x. We then sam-
ple from the conditional posterior distribution of the individual random effects marginalized
over the school effects: p(α|θ−α,γ ,Data). Finally, the blocking step is completed by sampling
from the complete posterior conditional for the school random effects p(γ|θ−γ , Data).

We will let S denote the total number of subject tests s, H denote the total number
of (high) schools in the sample, nh denote the number of the students in school h, and

J =
∑S

s=1 Js. Finally, define β as the J × 1 vector

β = [β′1 β′2 · · ·β′S ]′.

To derive the conditionals used in the sampler we will need to stack observations to the
school level and define some additional notation. We can write equation (4) as

yh = Dhβ + εh + uh + ιnhSvh,

where ιnhS denotes an (nhS) × 1 vector of ones and we have rewritten (6) as γh = 0 + vh,

where vh
iid∼ N(0, σ2

γ). The variables yh, Dh, εh, and uh are quantities stacked to the school
level, defined as follows:

yh =




y1h

y2h

...
ynhh


 , where yjh =




yj1h

yj2h

...
yjSh


 .
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Dh =




D1h

D2h

...
Dnhh


 , where Djh =




Dj1h 0 · · · 0
0 Dj2h · · · 0
...

...
. . .

...
0 0 · · · DjSh


 .

εh =




ε1h

ε2h

...
εnhh


 , where εjh =




εj1h

εj2h

...
εjSh


 .

Finally,

uh =




ιSu1h

ιSu2h

...
ιSunhh


 .

Given the Normality assumptions in (4) - (6), it follows that

yh|β, Σ, σ2
α, σ2

γ ∼ N
(
Dhβ,

[
Inh

⊗
[
Σ + σ2

αιSι′
S

]
+ σ2

γιnhSι′
nhS

])
,

where

Σ ≡




σ2
y1 0 · · · 0
0 σ2

y2 · · · 0
...

...
. . .

...
0 0 · · · σ2

yS


 .

Because of the assumed independence of observations across schools, we obtain

β|θ−β,α,γ , Data ∼ N(Dβdβ , Dβ),

where

Dβ =

[
H∑

h=1

[
D′

h

(
Inh

⊗
[
Σ + σ2

αιSι′
S

]
+ σ2

γιnhSι′
nhS

)−1

Dh

]
+ Ω−1

]−1

,

dβ =
H∑

h=1

D′
h

(
Inh

⊗
[
Σ + σ2

αιSι′
S

]
+ σ2

γιnhSι′
nhS

)−1

yh,

and Ω = Ω
(
{σ2

ys, ηs}S
s=1

)
≡ diag{σ2

ysΩs}S
s=1. For the posterior conditional for the set of

individual effects αih marginalized over the school effects γh, let α = [α1h α2h · · · αNh] and
note that the independence across schools assumed in the model implies

p(α|θ−α,γ ,Data) =
H∏

h=1

p(αh|θ−αh,γ , Data),
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where αh = [α1hα2h · · · αnhh]′ denotes the vector of individual random effects from school
h. This implies that a draw from the desired conditional for α can be obtained by drawing
independently from the αh conditionals. Integrating γh out of the prior for αih in (5), and
stacking observations in (4) to the school level, we obtain

αh|θ−αh,γ , Data ind∼ N(Dαh
dαh

, Dαh
), h = 1, 2, · · · ,H

where

Dαh
=




S∑
s=1

σ−2
ys Inh

+
[
σ2

αInh
+ σ2

γιnh
ι′nh

]−1



−1

,

dαh
= S




y1h

y2h
...

ynhh




and

yjh =
1
S

S∑
s=1

yjsh −Djshβs

σ2
ys

.

Finally, the blocking step is completed by drawing the school effects independently from
their complete posterior conditional

γh|θ−γh
, Data ind∼ N

(
[
nh/σ2

α + σ−2
γ

]−1
nh∑

i=1

αih/σ2
α,

[
nh/σ2

α + σ−2
γ

]−1

)
, h = 1, 2, · · · ,H.

The remaining variance parameters are drawn from their complete posterior conditional
distributions. For the first-stage variance parameters, we obtain (for s = 1, 2, · · · , S):

σ2
ys|θ−σ2

ys
, Data

ind∼ IG

(
N + Js

2
+ e1s,

[
e−1
2s +

1

2

N∑
i=1

(yish − αih −Dishβs)
2 +

1

2
β′sΩ

−1
s βs

]−1)
.

Finally, we obtain the complete conditionals for the individual and school level variance
parameters:

σ2
α|θ−σ2

α
, Data ∼ IG


N

2
+ a1,

[
a−1
2 +

1
2

N∑

i=1

(αih − γh)2
]−1




and

σ2
γ |θ−σ2

γ
, Data ∼ IG


H

2
+ g

1
,

[
g−1
2

+
1
2

H∑

h=1

γ2
h

]−1

 .
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