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Adaptive Expectations
and Stock Market Crashes

Abstract

A theory is developed that explains how the stock market can crash in

the absence of news about fundamentals, and why crashes are more common

than frenzies. A crash occurs via the interaction of rational and naive in-

vestors. Naive traders believe in a simple (but reasonable) statistical model

of stock prices: that prices follow a random walk with serially correlated

volatility. They predict future volatility adaptively, as a weighted average

of past squared price changes. We assume an initial round of trading that

establishes a baseline price for the stock. In the next round, the price either

remains near the baseline level or, with a small probability, "crashes" to a

lower level. If the price crashes, the naive traders lower their demand in

response to the apparent increase in volatility. This lowers the risk bear-

ing capacity of the market, so that the lower crash price clears the market.

Unlike other explanations of market crashes, this mechanism is fundamen-

tally asymmetric: the stock price cannot rise sharply, so frenzies or bubbles

cannot occur.

Keywords: Stock market crashes, adaptive expectations.
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1 Introduction

On October 19, 1987, the S&P 500 index fell by 20.5%. Evidence from option prices

suggests that investors expect more crashes to occur (e.g., Ait-Sahalia, Yared, and Wang

[2]). What causes such jumps in prices? The explanation should reflect the fact that

many traders were responding to the price declines themselves, rather than to news

about the economy or firm profitability. According to Shiller’s postcrash survey [46, p.

386], declining prices on October 14-16 and the morning of October 19 were the news

items that most influenced investors’ views of the stock market on October 19, 1987 (See

also Cutler, Poterba, and Summers [14] and Shiller [46, pp. 373-4]).

The theory should also explain why crashes happen more often than comparable-

sized frenzies, in which prices rise sharply. Nine out of the ten largest one-day price

movements in the postwar period were declines (Hong and Stein [27]). Since 1945, the

S&P Composite index has fallen by 5% or more on 13 separate days; the average of

these declines was 7.5%. The index has risen by over 5% on only 5 days; the average

was only 5.9%.

We present a new theory in which a crash results from the interaction between

rational and naive traders. The naive traders believe that stock prices follow a random

walk with serially correlated volatility. (“Volatility” refers to the variance of the change

in stock prices.) They predict future volatility adaptively, as a weighted average of

recent squared price changes. This contrasts with the rational traders, who predict

future volatility correctly using knowledge of other players’ strategies.

The naive traders’ model for predicting future volatility lies in the family of Au-

toregressive Conditional Heteroskedasticity (ARCH) models proposed by Engle [17] and

Bollerslev [8]. These models have become the dominant approach to modelling changing

volatility in econometric analysis of asset markets. Our model appears to be the first

to explore how equilibrium prices are affected if some agents use this common type of

model to predict future return volatility.

There is some historical justification for the idea that the presence of naive traders

makes crashes more likely. The largest crashes, in 1929 and 1987, occurred after ex-
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tended bull markets that attracted many inexperienced investors into the stock market.

The investor Bernard Baruch wrote, in reference to the crash of 1929,

Never before had there been such gambling as there was in those last turbu-

lent years of the twenties; but few people realized they were gambling–they

thought they had a sure thing. ... Taxi drivers told you what to buy. The

shoeshine boy could give you a summary of the day’s financial news as he

worked with rag and polish. (Baruch [6, pp. 219-220])

In our model, a crash occurs in the following way. The rational traders observe a

common signal that acts as a coordinating device. For certain values of this signal,

they lower the price they bid for stocks, causing the stock price to fall. The sharp

price change raises the naive traders’ assessment of the risk in the market. Since naive

traders are risk averse, they become less willing to own stocks. This lowers the market’s

risk-bearing capacity, so that a lower price clears the market. The crash is thus a

self-fulfilling prophecy for the rational traders.

Importantly, this mechanism does not give rise to frenzies. Suppose rational traders

were suddenly to raise their bid for stocks. The sharp price change would, once again,

raise the naive traders’ estimate of future volatility, lowering the market’s risk-bearing

capacity. Accordingly, there would be a surplus of stock at the higher price: the market

would not clear. This is consistent with the empirical rarity of frenzies.1

This model captures other stylized facts surrounding crashes. Prices jump discon-

tinuously. Some traders - the naive ones - sell in response to the falling price. In

addition, crashes are unexpected: until the crash signal is observed, no one knows a

crash is about to happen. This mirrors findings of Bates [7] that option prices indicated

no crash fears in the 2 months leading up to the 1987 crash.

1Naive traders in the model believe that prices follow a random walk. Thus, they do not believe that

price increases will be followed by more increases. If they did believe this (à la the feedback traders of

De Long, Shleifer, Summers, and Waldman [16]), frenzies might occur. However, the mechanism we

describe would still reduce the sizes of frenzies relative to crashes.
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The presence of naive traders is necessary for crashes to occur in our model. If

there were only rational agents, they would know that the crash was a transitory event

and would thus prevent the crash by bidding prices up on the crash day. But while

some naivete is needed for a crash to occur, it takes a very mild form: naive traders

believe that stock prices follow a random walk with serially correlated volatility. Until

recent years, this was a widespread belief among economists (e.g., Bachelier [3], Fama

[18], Malkiel [39], Mandelbrot [40]).

In our theory, naive traders fare worse than rational traders. However, the usual

criticism is not valid that naive traders cannot play a role in price dynamics since they

will eventually be driven from the market. This is because crashes are rare. Most of

the investors in the market during the 1987 crash had not been born in 1929.

In the model, the rational traders sell in response to a common signal that acts as

a coordinating device. What played this role in 1987? On the morning of the crash

on October 19, 1987, the Wall Street Journal published a chart suggesting a similarity

between recent market action and stock prices in 1929. This chart, which is discussed

by Shiller [47], is reproduced in Figure 1.

Figure 1:

This similarity is more than just casual. On the eve of the 1987 crash, the recent
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behavior of the Dow Jones Industrial Average (DJIA) was more similar to its behavior

on the eve of the 1929 crash than at any Friday between the two dates. More precisely,

we computed charts of the closing Dow Jones Industrial Average, in logs, over the 100

trading days ending on each Friday from 1930 through 1987. (We restrict to Fridays

since both crashes occurred on a Monday.) We superimposed each of these charts on

the corresponding chart for the Friday that preceded the 1929 crash. We then computed

the area between the two curves. This area was smaller on the Friday preceding the

1987 crash than on any prior Friday in the 1930-1987 period.2 These two curves are

depicted in Figure 2.

This parallel was noticed independently by other investors. Stanley Druckenmiller,

then manager of George Soros’s Quantum Fund, states:

That Friday [October 16, 1987] after the close, I happened to speak to Soros.

He said that he had a study done by Paul Tudor Jones that he wanted to

show me. [...] The analysis [...] illustrated the extremely close correlation in

price action between the 1987 stock market and the 1929 stock market, with

the implicit conclusion that we were now at the brink of a collapse [emphasis

added]. I was sick to my stomach when I went home that evening. I realized

that I had blown it and that the market was about to crash. [44, pp. 198-9]

Shiller argues that such reliance on historical parallels is an example of the represen-

tativeness heuristic:

2Let Dt be the log closing DJIA on day t. Let T be 10/25/1929, the Friday preceding the 1929

crash. The minimum area between the 100-day charts ending on days t and T is given by At =

minx
P99

i=0 |Dt−i −DT−i − x|. At is minimized by setting x to the difference between the medians of

the two series. We measure At for t equal to each Friday from 1930 to 1987. The smallest At is 2.29

and occurred on the Friday that preceded the 1987 crash (10/16/1987). The next smallest, 2.53, was

reached the prior Friday (10/9/1987). The average value of At from 1930 to 1987 (Fridays only) is 5.76

and the maximum is 23.38. (The New York Stock Exchange was open for two hours in the morning

on Saturdays until 1952. In order to ensure a consistent relation between trading days and calendar

time, we omit these Saturday index levels from our analysis.)
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Behavior of Dow Jones Industrial Index
Preceding 1929 and 1987 Crashes
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Figure 2: Closing value of the Dow Jones Industrial Index, in logs, for the 100 trading

days ending the Fridays before the 1929 and 1987 crashes. The crash occurred on the

following Monday in both cases. The median of each series is subtracted in order to

minimize the area between the curves.
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a tendency for people to categorize events as typical or representative of a

well-known class, and then, in making probability estimates, to overstress

the importance of such a categorization, disregarding evidence about the

underlying probabilities. (Shiller [47, p. 22])

This heuristic was first identified by Kahneman and Tversky [31, p. 431]. It has also

been cited as an explanation for stock market overreaction to news (Barberis, Shleifer,

and Vishny [4]; De Bondt and Thaler [15]). Early experimental evidence that decision

makers use this heuristic appears in Kahneman and Tversky [32], Grether [24], and

Johnson [30].

Camerer [10] documents the use of the representativeness heuristic in asset markets.

In his experiment, subjects are shown an urn that contains three balls. With some prior

probability, one ball is black and two are red. With complementary probability, two

balls are black and one is red. Subjects know these prior probabilities. Three balls

are drawn with replacement from the urn and are shown to the subjects. Subjects then

trade in assets whose payoffs depend on the numbers of black and red balls in the urn.

Camerer’s subjects appear to overestimate the probability that the actual distribution

equals the sample distribution. For instance, if two sampled balls are black, then

subjects tend to overvalue assets that pay off when the urn contains exactly two black

balls.

Why is the representativeness heuristic used? One possible answer comes from

Gilboa and Schmeidler [22, 23]. They study "case-based decision making": the practice

of choosing among possible actions by considering how they have performed in similar

situations in the past. Gilboa and Schmeidler suggest that this practice may be a

reasonable way to copy with complex situations.3 Our theory gives another context in

which the heuristic may be useful: it may serve as a coordinating device. This would

provide an additional reason for individual agents to use it in some strategic settings.

3While both theories predict that agents will choose actions that have performed well in similar

situations, case-based decision theory is not the same as the representativeness heuristic. For instance,

while the representativeness heuristic involves underweighting of priors, in case-based decision theory

there are no priors (Gilboa and Schmeidler [22]).
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The rest of the paper is organized as follows. Relevant literature is reviewed in

section 2. Section 3 explains the naive traders’ beliefs. The model is presented in

section 4 and solved in section 5.

2 Literature Review

Explaining crashes is a central problem in economics. Occasional crashes are an essential

feature of the aggregate stock market in modern times and appear to be crucial for

understanding the empirical patterns of option prices (e.g., Ait-Sahalia, Yared, and

Wang [2]). A satisfactory model of crashes should generate asymmetric price jumps

from little or no fundamental news. By and large, prior models of crashes do not yield

this phenomenon.

One group of models studies how crashes can occur if small changes in the environ-

ment lead substantial information to be revealed to partially informed investors. This

class of models includes Abreu and Brunnermeier [1], Caplin and Leahy [12], Hong and

Stein [27], Kraus and Smith [34], Lee [35], Romer [43], and Zeira [50]. While these

models yield price jumps with little or no fundamental news, they generally do not yield

the prediction that crashes are more common than frenzies. However, there are two

exceptions. In Abreu and Brunnermeier, negative skew is generated by the assumption

that investors overestimate the dividend growth rate. If investors were to underesti-

mate this rate, the skew would be positive. In Hong and Stein, negative skew comes

from short-sale constraints. If these were replaced with margin constraints on leveraged

buying, crashes would be replaced by frenzies. In our model, negative skew is generated

by risk aversion. If naive investors were risk-loving, there would be frenzies instead of

crashes.

The models of Gennotte and Leland [21], Grossman [25], and Jacklin, Kleidon, and

Pfleiderer [28], explore how rational investors can mistake the informational content

of the trades of nonrational investors. These models assume the existence of portfolio

insurers, who mechanically sell stocks when prices fall and buy when they rise. If rational

traders underestimate the extent of this behavior, they will mistake it for informed
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trading. This can magnify the price effects of minor news. The first two papers

interpret the crash as coming from such a mistake. Jacklin et al interpret the price

increase before the crash as coming from underestimation of portfolio insurance, while

the crash itself occurred when informed traders realized their mistake. These models

do not generate skewed returns: crashes and frenzies are equally likely. In addition, in

most of these models, the crash is caused by a misinterpretation by rational investors.

One would expect prices to recover quickly as this confusion is cleared up. In practice,

prices returned to precrash levels only a year after the 1987 crash. According to our

theory, prices can remain low if naive investors remain “crashophobic” after the crash.

Evidence from option prices indicates that crash fears have been present in the years

since 1987 but were not present before the crash (Jackwerth and Rubinstein [29]).

Two other models of crashes are Barlevy and Veronesi [5] and Yuan [49], in which

all investors are rational and some are uninformed. A price decline signals negative

information to the uninformed investors, which lowers the price further, which signals

the possibility of even worse information, and so on. These models share the property

that crashes and frenzies can occur without assuming irrational or mistaken investors.

In Barlevy and Veronesi [5], this is due to nonstandard assumptions about the signal

distribution. In Yuan [49], it is due to borrowing constraints. Both papers find that the

stock price can depend discontinuously on fundamentals. However, like Gennotte and

Leland [21], both of these are static, one period models and thus do not bear directly

on the asymmetry of changes in price.

The model of Grossman and Zhou [26], while not aimed at explaining crashes, does

yield some of their properties. They study a model with symmetric information and two

types of risk averse investors who each maximize expected consumption utility. One

type, the “portfolio insurers,” have an additional constraint that their wealth must not

fall below a certain level. As fundamentals worsen, the portfolio insurers sell stock at

an accelerating rate, leading to an increase in volatility. This model does not yield

news-free price jumps.

Our theory is related to the “volatility feedback” effect first studied by French, Schw-

ert, and Stambaugh [20], Malkiel [38] and Pindyck [41]. They point out that greater
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stock market volatility can lead to a higher risk premium and thus to lower stock prices.4

Campbell and Hentschel [11] show that this effect can also give rise to negative skew:

price declines are larger, on average, than price advances. They assume a fully rational

representative agent who sees dividends that follow a process with serially correlated

volatility. Large dividend shocks lead to lower prices since they indicate an increase in

volatility and the agent is risk averse. This “volatility feedback effect” dampens the

price effects of positive dividend news and exaggerates the price effects of negative news.

While the model of Campbell and Hentschel generates negative skew, it does not

give news-free jumps: prices are a continuous function of fundamentals. In their

calibrated model, the crash of 1987 results from a substantial negative dividend shock.

This is inconsistent with the evidence, cited above, that this crash was not caused by

any fundamental news that was revealed around the crash date (Shiller [46, pp. 373-4,

386]; Cutler, Poterba, and Summers [14]). One point of our model is that if risk-averse

traders believe that prices display serially correlated volatility, then their presence in

the market can yield news-free crashes without frenzies.

3 Naive Traders’ Beliefs

The naive traders in our model believe that large price changes tend to be followed

by more large changes: that price volatility is serially correlated. This has been the

dominant view among academic researchers since Mandelbrot [40, pp. 418-9] and Fama

[18, pp. 85-7]. It has reached a broader audience through popular textbooks such as

Brealey and Myers [9, p. 510] and Sharpe [45].

This view also underlies many econometric studies of asset prices. In 1982, Engle

[17] first proposed the ARCH (Autoregressive Conditional Heteroskedasticity) model, in

which next period’s volatility is a weighted sum of past realized volatilities. In 1986,

Bollerslev [8] generalized this to GARCH (Generalized ARCH) by letting next period’s

4In response to Pindyck [41], Poterba and Summers [42] produced evidence that volatility changes are

not persistent enough to effect stock prices much. They model volatility as an AR(1) process. However,

Chou [13] subsequently found much stronger persistence using GARCH, a more flexible specification.
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volatility depend also on past predicted volatilities. In the past two decades, over 200

journal articles have used ARCH or GARCH to model the changing volatility of asset

returns.5 Our naive traders use a restricted GARCH model to predict future volatility.

We also assume naive traders believe that prices follow a random walk or, more

precisely, a Martingale. This view has been widely promulgated in textbooks and the

popular literature. In his best-selling textbook, Sharpe [45, p. 315] writes:

Stock returns exhibit almost no serial correlation: the particular value of

return in the last period provides little if any help in predicting the likelihood

of various possible returns in the next period.

Malkiel makes the same point forcefully in his well-known book A Random Walk Down

Wall Street [39]. The view that price changes are unpredictable dates from Bachelier

[3].

To first order, the market behaves in accordance with naive traders’ beliefs. For the

S&P Composite Index from 1929 to 1999, the serial correlation of daily return volatility

was 0.23; in comparison, the serial correlation of daily returns was only 0.055.6 For

the Dow Jones Industrial Average over the same period, the analogous figures were 0.22

and 0.052, respectively. Daily returns on S&P futures are essentially uncorrelated.7

These statistics support the view that stock prices follow a random walk with serially

correlated volatility.

Naive traders’ beliefs are as follows. Let pt be the stock price in period t. Naive

traders believe that pt+1 will be normally distributed with mean pt and variance or

"volatility" Vt. They predict future volatility adaptively:

5Author’s tabulation from Econlit.

6These statistics are based on the usual definition of the ex-dividend return, rt =
pt−pt−1
pt−1

. The

serial correlation of returns is the sample correlation of rt with rt−1; the serial correlation of volatility

is the sample correlation of r2t with r2t−1.

7MacKinlay and Ramaswamy [37] compute daily autocorrelations in log returns for the S&P 500

index and for futures contracts on this index during the 1983-1987 period. They find an average

autocorrelation of 6.04% for daily index returns versus -0.24% for daily futures returns.
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Vt = α(pt − pt−1)
2 + βVt−1 (1)

for some fixed, positive constants α and β. By substituting repeatedly for V on the

right hand side, one can express Vt as a geometric weighted sum of past squared returns:

Vt = α
∞X
i=1

βi−1r2t−i (2)

where rt = pt − pt−1.

Equation (1) is a restricted GARCH(1,1) model. To see this, note that the unre-

stricted GARCH(1,1) model is

rt = γ + εt

E(ε2t ) = Vt = ω + αr2t−1 + βVt−1

where rt is the return (Bollerslev [8]). The belief that prices follow a Martingale corre-

sponds to setting γ to zero. We also set ω and V0 to zero: as long as naive traders have

not seen any price changes, they do not expect them. Indeed, we will show that there

is an equilibrium in which the price is constant. Finally, for analytical convenience we

define rt to be the absolute price change pt − pt−1 rather than the log return.

4 The Model

The game takes place in three periods: t = 0, 1, 2. There is a measure μ of fully

rational traders and 1 − μ of naive traders. Agents consume only in period 2; they

maximize expected utility EU(W2) = E
£
−e−λW2

¤
, where Wt is wealth in period t and

λ is the coefficient of absolute risk aversion. Note that agents are not myopic; both

types are forward looking. There are two assets: one (“stocks”), pays an i.i.d. dividend

δt ∼ N(δ, σ2δ) per share
8 after the market closes in each period t = 0, 1, and a fixed

8The assumption of negative exponential utility and normally distributed dividends is common in

the theoretical finance literature. This is an advantage: it shows that crashes can be obtained in a

standard framework by adding a certain type of naive trader. The assumption that dividends are i.i.d.
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liquidating dividend of D in period 2. The other asset, bonds, is in infinitely elastic

supply and pays interest at a fixed net rate of r after the market closes in periods 0 and

1.

Let pt be the price of a share of stock in period t. If an agent buys xt shares of stock

in period t = 0, 1, costing her ptxt, her wealth in period t+ 1 is

Wt+1 = xt (pt+1 + δt) + (Wt − ptxt)(1 + r) (3)

The sequence of events is as follows.

Period 0. No signals are observed and all traders trade. The role of this period is to

permit optimal risk-sharing and to establish a base price p0 for the stock. At the

end of the period, the dividend δ0 per share is announced and distributed. The

naive traders’ prediction V0 of the variance of the initial price p0 is taken to be

zero.

Period 1. With probability ε, the rational traders all observe a crash signal; with prob-

ability 1 − ε, no signal is seen. The crash signal is a pure coordinating device.

All traders then trade at some price p1. Finally, the dividend δ1 is announced and

paid.

Period 2. The liquidating dividend D is paid. There is no trade in this period.

When trade takes place, naive agents simultaneously submit demand functions: the

quantity of shares they wish to buy at each price. Each rational trader submits a single

limit order of the form “I will buy x shares if the price per share is no greater than p.”

Since there is a continuum of agents, they will act as price takers.

By making limit orders, the rational traders collectively determine whether a crash

will occur by picking a particular point on their demand curves. This permits decen-

tralized crashes: many different investors suddenly deciding to pay less for stock since

implies that there is no fundamental news that is relevant to the stock price. This stylized assumption

is made to show that crashes can occur without any fundamental news. Serially correlated dividend

shocks, while perhaps making the model more realistic, would obscure this point without essentially

changing the results.
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they predict that the price will be lower. If rational agents were instead to submit entire

demand curves, crashes would be centralized. They would take the form of a Walrasian

auctioneer’s occasionally choosing a low market-clearing price. The reason is that the

risky asset is liquidated in the next period with a fixed payoff distribution, so a rational

agent’s demand curve in period 1 is the same regardless of whether or not a crash signal

is seen. This is not the case with more trading periods. In Frankel [19] we analyze an

infinite-horizon extension in which the crash signal leads rational agents to lower their

entire demand curves, which causes the crash to occur.

The model’s environment is nonstationary: there is a finite horizon and agents con-

sume only at the end of the game.9 To ensure the existence of a baseline equilibrium

with a constant stock price, we make two normalizations. The first is to fix the liqui-

dating dividend D at 1
r

£
δ − λσ2δ

¤
. The second is to fix the number of shares of stock

at 1
1+r

in period zero and one in period 1. Why? Agents in period 1 face a one-period

problem with objective function e−λW2. But agents in period 0 invest as if they are

more risk averse. Their objective function is proportional to e−λ(1+r)W1 : by (3), W2

equals W1(1 + r) plus a term that is independent of W1.10 As a result, stock demand

in any constant-price equilibrium must be lower in period 0 than in period 1. For the

price to be constant, the initial supply must also be lower.

We allow for the possibility of margin constraints: in every period, a trader can

buy no more than κ shares of stock, where κ ≥ 1. The case of no constraints can

be captured by setting κ = ∞. The main barrier to a crash is that rational traders

demand more stock when the price falls. The margin constraint tempers this effect.

Indeed, we will show that crashes can occur as long as the margin constraint is tight

enough to prevent rational traders from buying all the stock in the market in period

1: if μκ < 1. Without margin constraints, crashes can still occur if there are enough

9The main advantage of the finite horizon formulation is that analytical results are possible. In

Frankel [19], we show by simulation that crashes can also occur in a stationary infinite-horizon version

of the model.

10This is because the amount the agent invests in stock in period 1 does not depend on her wealth

W1.
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naive traders. Note that the margin constraint cannot bind for both groups of traders

in a given period. Otherwise, total stock demand would be μκ + (1− μ)κ = κ, which

exceeds the supply.

The market-clearing price is determined by the condition that the demand for stocks

equal the supply:

Period 0: μxR0 + (1− μ)xN0 =
1

1 + r
(4)

Period 1: μxR1 + (1− μ)xN1 = 1 (5)

where xRt and x
N
t are the time-t stock demands of rational and naive traders, respectively.

5 Results

We first solve for investors’ stock demand functions. We will make use of the following

well known property. Proofs of all results are in the appendix.

Lemma 1 Suppose an agent has wealth W and the share price is p. The agent buys

x shares of a risky asset that pays a gross return R in the next period and invests the

rest of her wealth in a riskless asset that pays the gross return 1+ r. There is a margin

constraint: x cannot exceed some constant κ. Let the agent’s wealth in the next period

be W 0 = W (1 + r) + x(R − (1 + r)p). The agent seeks to maximize the expectation of

−e−λW 0
. Assume the agent believes that R ∼ N(μ, σ2). Then the agent’s unconstrained

stock demand is x∗ = μ−(1+r)p
λσ2

. She will buy x = min{κ, x∗} shares and she believes that

her expected utility is

EU =

⎧⎨⎩ − exp
h
− (μ−(1+r)p)

2σ2

2 − λW (1 + r)
i
if x = x∗

− exp
h
λ2σ2

2
κ2 − λ (μ− (1 + r)p)κ− λW (1 + r)

i
if x = κ

In period 1, each share yields the gross return D+ δ1, which is normally distributed

with mean D+ δ and variance σ2δ. By Lemma 1, the unconstrained demand of rational

agents is thus

xR∗1 =
D + δ − (1 + r)p1

λσ2δ
(6)
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Note that rational traders demand more stock when the price falls.

Naive traders expect each share to yield the gross return p2 + δ1, which they believe

is normally distributed with mean p1 + δ and variance V1 + σ2δ where V1 = α(p1 − p0)
2.

(Recall our assumption that naive traders’ initial variance estimate V0 is zero.) By

Lemma 1, naive traders’ unconstrained demand must equal:

xN∗1 =
δ − rp1

λ(α(p1 − p0)2 + σ2δ)
(7)

This equation is the key for understanding how crashes can occur. A falling price

in period 1 has two effects. It raises the numerator: the higher dividend yield has a

positive effect on naive demand, as in the case of rational traders. But it also raises

the denominator: declining prices raise naive traders’ estimate of future volatility, which

lowers their demand for stock. If this second, “volatility feedback” effect dominates,

then naive traders’ demand for stock will be upwards sloping.

We now solve for demand in period 0. Naive traders expect each share to yield

the gross return p1 + δ0, which they believe is normally distributed with mean p0 + δ

and variance σ2δ. By Lemma 1, their expected utility in period 1 is proportional to

exp (−λ(1 + r)W1), where W1 is period 1 wealth. Applying Lemma 1 with a risk

aversion coefficient of λ(1+ r), naive traders’ unconstrained demand in period 0 equals:

xN∗0 =
δ − rp0

λ(1 + r)σ2δ
(8)

Rational traders’ demand in period 0 cannot be computed explicitly if p1 is not normally

distributed. However, we can compute it in a constant-price equilibrium, in which

p1 = p0 for sure. In this case, rational traders have the same beliefs as naive traders,

so their unconstrained demand is also given by

xR∗0 =
δ − rp0

λ(1 + r)σ2δ
(9)

We first show that there is only one constant-price equilibrium:

Proposition 2 There is only one equilibrium in which the same price occurs in periods

0 and 1. In this equilibrium, this price is p = D = 1
r

£
δ − λσ2δ

¤
.
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We call p the variance-free price. Proposition 3 shows that even in equilibria with

changing prices, the stock price can never exceed this fundamental level of p. Thus,

frenzies cannot occur in this model.

Proposition 3 In any equilibrium, the stock price can never exceed p.

The intuition for Proposition 3 is as follows. In a given equilibrium, let pmax be the

maximum price that can be attained in any period. When the price is pmax, rational

traders must expect the next period’s return to be zero or negative. Naive traders,

by assumption, expect it to be zero. Agents’ expected returns in the constant price

equilibrium are at least as optimistic as this; furthermore, agents in the constant-price

equilibrium expect zero volatility. So if the price is pmax, stocks cannot offer a more

attractive return distribution to either type of agent than in the constant-price equi-

librium. But then no agent will ever be willing to pay more than the price in that

equilibrium, which is p; hence, pmax ≤ p.

We now consider equilibria in which there are two possible prices in period 1: a high

price that is close to the prior period’s price and a lower “crash” price that occurs with

some small probability. A crash has two effects. It raises rational traders’ demand

for stock since a lower stock price implies a higher dividend yield. However, it also

lowers naive trader stock demand if their prediction of future volatility puts enough

weight on past volatility (i.e., if α is high enough). If this volatility feedback effect is

sufficiently strong, stock demand can be upward sloping. In this case, there can be

multiple market-clearing prices.

The following Proposition gives two alternative conditions that guarantee this. The

first is that margin constraints be strict enough that rational traders alone cannot pur-

chase all the stock and that naive traders’ beliefs be sufficiently sensitive to realized

volatility. The second, alternative condition is that there exist any equilibrium other

than the constant-price equilibrium. If either condition holds, then crashes can occur,

in the following sense. For any sufficiently small ε > 0 there is an equilibrium in which

(a) the period-0 price is close to the variance-free price; (b) with probability 1 − ε the

period-1 price is also close to the variance-free price; (c) with probability ε the period-
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1 price is below and not close to the variance-free price. As the crash probability ε

shrinks to zero, the period-0 price and the noncrash price in period 1 converge to the

variance-free price, p, while the period-1 crash price converges to a level that is strictly

below the variance-free price.

Proposition 4 The following properties hold generically. Fix δ > 0, λ > 0, σ2δ > 0,

μ ∈ (0, 1), and r > 0, such that the variance-free price p = (δ−λσ2δ)/r is positive. Then

if either

1. rational traders cannot buy all the stock (μκ < 1) and naive traders are sufficiently

sensitive to past price volatility (α > α∗ for some α∗ <∞), or

2. there exists any equilibrium other than the constant-price equilibrium

then:

1. there is an ε > 0 such that for any ε ∈ (0, ε) there are prices p0, pL1 , and pH1 , such

that the following is an equilibrium:

(a) the period 0 price equals p0, and

(b) the period 1 price equals pL1 with probability ε and p
H
1 with probability 1− ε;

2. as ε→ 0, p0 and pH1 both converge to p, but p
L
1 converges to a price that is strictly

lower than p.

By Proposition 4, infrequent crashes are the easiest type of price uncertainty to sustain

in this model. An intuition is that if the crash is unlikely, then it has little effect on

rational traders’ stock demand in period 0. Hence, the period-0 price will be very

close to its maximum possible value of p. This maximizes naive traders’ prediction of

future volatility, α (p0 − p1)
2, at any given crash price. Hence, the volatility feedback

effect is greatest when crashes are rare, which maximizes the chance that there exists a

market-clearing crash price.
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We now study how the exogenous parameters of the model affect whether or not

crashes can occur in equilibrium.11 The following proposition shows that equilibria

with crashes are easier to sustain when naive traders are either more numerous or more

sensitive to past price volatility, or the margin constraint is tighter. Each of these has

the effect of magnifying the importance of the volatility-feedback effect. The margin

constraint does this since it limits the increase in the demand of rational traders in a

crash.

Proposition 5 Each of the following expands the set of other parameters for which

there exist equilibria with rare crashes.

1. An increase in α, the sensitivity of naive traders to past price volatility.

2. A decrease (tightening) of κ, the margin constraint.

3. A decrease in μ, the proportion of rational traders.

The third result is consistent with the fact, cited above, that the 1929 and 1987 crashes

occurred after sustained bull markets that drew many novice investors into the stock

market.

5.1 Simulations

A simulation appears in Figure 3. The chart shows excess demand (demand minus

supply) for stocks in period 1. The horizontal axis shows the ratio p1/p0 and the

vertical axis gives excess demand. Each curve shows not excess demand per investor

but rather excess demand for the group as a whole. Hence, the two dashed curves

11We do not study the effects of exogenous parameters on crash sizes and probabilities, since these

are not uniquely determined: when a crash is possible, there must exist multiple crash equilibria, each

with its own crash size and probability (Proposition 4). In addition, the effects of model parameters

on, say, the maximum possible crash size or probability are generally not monotonic, making it hard

to derive useful empirical implications. We also do not study the effects of changes in risk aversion

or dividend risk on the equilibrium set since these effects are likely to depend on the assumptions of

exponential utility and normally distributed dividends.
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Excess Demand in Period 1
in Limit as Crash Risk Goes to Zero

with Margin Constraints
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Figure 3: Example with margin constraints. The curves show excess demand for stock

among rational traders (long dashes), naive traders (short dashes), and all traders (solid).

The horizontal axis is p1/p0. Parameters are α = 0.1, μ = 0.6, δ = 1.25, λ = σ2δ = 1,

r = 1%, and κ = 1.5.

(excess demand of naive and rational traders) add up to the solid curve (total excess

demand). Equilibrium in period 1 requires that total excess demand (the solid curve)

be zero.12

In this simulation, Naive traders’ update sensitivity is moderate (α = 0.1) and a

majority (60%) of traders are rational. Despite this, there is a small but positive

chance that prices will fall by 23% in period 1. Substantial crashes can occur even

though rational traders as a group can buy almost all (μκ = 0.9 units, or 90%) of the

stock.

Without margin constraints (κ =∞), Proposition 4 does not guarantee that crashes

12The chart depicts the limiting case in which the crash risk goes to zero. It is approximately correct

when the crash risk is small but nonzero.

20



Excess Demand in Period 1
in Limit as Crash Risk Goes to Zero
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Figure 4: Example without margin constraints. Parameters are α = 0.3, μ = 0.2,

δ = 1.15, λ = σ2δ = 1, and r = 1%.

can occur since the rational traders can purchase all the stock. However, simulations

show that crashes can occur if naive traders are sufficiently numerous and put high

enough weight on recent volatility in updating their beliefs. An example in which this

weight, α, equals 0.3 and 80% of traders are naive appears in Figure 4. Since excess

demand crosses the zero axis in two places for these parameters, crashes can be either

large (about 18% of the precrash price) or small (about 9%).

Without margin constraints, the proportion of naive traders must be fairly high

to sustain crashes – in these simulations, 80%. The reason is that rational traders’

demand rises in a crash. For there to be multiple market-clearing prices in period one,

the reduced demand of naive traders in a crash must have the potential to offset the

greater demand of rational traders. This holds only if there are relatively many naive

traders in the market.
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6 Discussion

In the model presented here, rational traders collectively cause a crash by making limit

orders that correspond to a lower point on their (fixed) demand curves: they bid a lower

price, but for a larger quantity of stock. This makes them net buyers of stock on the

day of the crash. In Frankel [19], we study an infinite horizon, overlapping generations

version of the model presented here. In that model, rational traders actually lower their

entire demand curves for stock and become net sellers of stock on the crash day. This

occurs because we now permit trading after the crash, unlike in the original model. On

the day after the crash, naive traders sell their shares en masse. This causes prices to

continue to fall, though by far less than on the crash day. Thus, the market actually

reaches its lowest point the day after the crash. Anticipating this, rational traders have

an incentive to sell on the crash day.13

The analysis in Frankel [19] indicates that naive traders make two mistakes that

cause them to sell after the crash. First, they do not take into account that, due to risk

aversion, expected returns are higher when volatility is high. Instead, they continue

to believe after the crash that prices follow a random walk - neither rising nor falling

on average. In Frankel [19] we show that this mistake is not essential: crashes can

occur even if naive traders take into account the empirical relation between volatility

and expected returns. The reason is that, empirically, this relation is not very strong.

Naive traders also overestimate postcrash volatility. This error is essential: if naive

traders correctly predict the variance of future returns, crashes cannot occur. However,

this error is plausible. First, we show that traders who used adaptive expectations to

predict future volatility following the 1987 crash would have made this mistake. More

generally, the GARCH model overpredicts the persistence of large shocks to volatility

(see, e.g., Longin [36]). In addition, the 1987 crash did lead to a large and permanent

increase in the market’s assessment of the likelihood of future crashes (Jackwerth and

Rubinstein [29])

13In the extension, naive traders react to increased volatility with a lag. This allows them to be net

buyers of stock on the crash day and net sellers the next day.
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7 Conclusion

From time to time, stock indices have jumped by several percentage points in a single

day. These jumps tend to be negative and they do not appear to be driven by public

news about fundamentals. While these jumps are infrequent, evidence from derivatives

markets suggests that their anticipation has a significant effect on asset prices. By ex-

tension, these "crash fears" may raise the cost of corporate capital and depress economic

growth.

For these reasons, it is important to understand the mechanisms that underlie crashes.

The existing literature has revealed many mechanisms that help us understand markets

for risky assets. However, most models lack one or more of the essential features of

crashes. Some models give skewed returns but require large fundamental shocks to gen-

erate crashes. Others yield news-free jumps but symmetric returns. In the few models

that do exhibit both phenomena, the negative skew is due to special assumptions of the

model that can be plausibly reversed, yielding positive skew. This paper presents a

theory that does not appear to have this weakness. Positive skew can be generated by

assuming that investors are risk-loving, but this is not plausible.

The basic idea of our theory is that some investors are naive: rather than taking

into account the strategic behavior of other agents, they believe that stock prices follow

a random walk with serially correlated volatility. This belief is approximately true in

an empirical sense and was the mainstream view in the finance community for decades.

In this simple model, we show that prices cannot exceed fundamentals but they can

suddenly fall significantly below fundamentals. Simulations show that this can occur

with reasonable updating by naive traders. Moreover, with mild margin constraints,

naive traders can also constitute a minority of investors in the market.

23



A Proofs

Proof of Lemma 1. Expected utility is:

− 1

2πσ

∞Z
R=−∞

exp
£
− (R− μ)2 /2σ2

¤
exp (−λ [W (1 + r) + x(R− (1 + r)p)]) dR

= − 1

2πσ

∞Z
R=−∞

exp
£
− (R− μ)2 /2σ2 − λxR− λ [W (1 + r)− x(1 + r)p)]

¤
dR

But

− (R− μ)2 /2σ2 − λxR = − 1

2σ2
¡
R2 − 2μR+ μ2 + 2σ2λxR

¢
= − 1

2σ2

³¡
R+ σ2λx− μ

¢2 − ¡σ2λx− μ
¢2
+ μ2

´
= − 1

2σ2

³¡
R+ σ2λx− μ

¢2 − h¡σ2λx¢2 + μ2 − 2μσ2λx
i
+ μ2

´
= − 1

2σ2

³¡
R+ σ2λx− μ

¢2 − ¡σ2λx¢2 + 2μσ2λx´
so expected utility is

− 1

2πσ

∞Z
R=−∞

exp

⎡⎣ − 1
2σ2
(R+ σ2λx− μ)

2

+ 1
2σ2

³
(σ2λx)

2 − 2μσ2λx
´
− λ (W (1 + r)− x(1 + r)p))

⎤⎦ dR
= − exp

∙
1

2σ2

³¡
σ2λx

¢2 − 2μσ2λx´− λ (W (1 + r)− x(1 + r)p))

¸
= − exp

∙
λ2σ2

2
x2 − λ (μ− (1 + r)p)x− λW (1 + r)

¸
(10)

The expression in (10) is globally concave. To see why, note that (10) is of the form

∂2

∂x2
¡
− exp

¡
ax2 − bx− c

¢¢
= eax

2−bx−cf(x)

where f(x) = 4abx− 2a− b2 − 4a2x2. f(x) is concave in x so its first derivative is zero

at a maximum of f . One can verify that f 0 = 0 only at x = b/2a. At this value of x,

f(x) = 4ab b
2a
− 2a − b2 − 4a2

¡
b
2a

¢2
= −2a. This is negative since a = λ2σ2

2
> 0. So

f(x) is always negative: (10) is globally concave.

Consequently, (10) has a unique maximum given by x = b/2a = μ−(1+r)p
λσ2

= x∗. If

24



x∗ ≤ κ, then the agent sets x = x∗ and receives the utility

− exp
"
λ2σ2

2

µ
μ− (1 + r)p

λσ2

¶2
− λ (μ− (1 + r)p)

μ− (1 + r)p

λσ2
− λW (1 + r)

#

= − exp
"
(μ− (1 + r)p)

2σ2

2

− (μ− (1 + r)p)2

λσ2
− λW (1 + r)

#

= − exp
"
−(μ− (1 + r)p)

2σ2

2

− λW (1 + r)

#
If x∗ > κ, then the agent chooses x = κ; substituting into (10), her utility is

− exp
∙
λ2σ2

2
κ2 − λ (μ− (1 + r)p)κ− λW (1 + r)

¸

Q.E.D.Lemma 1

Proof of Proposition 2. By definition, p0 = p1 in a constant-price equilibrium. By

(5), (6), and (7), market clearing in period 1 implies

1 = μxR1 +(1−μ)xN1 = μmin

½
κ,

D + δ − (1 + r)p1
λσ2δ

¾
+(1−μ)min

½
κ,

δ − rp1
λσ2δ

¾
(11)

If the rational traders’ margin constraint binds in period 1, then the naive traders’

margin constraint cannot bind, so by (11),

1 = μκ+ (1− μ)
δ − rp1
λσ2δ

=⇒ p1 =
1

r

µ
δ − λσ2δ

1− μκ

1− μ

¶
> D

but this is a contradiction: if p1 > D, then by (6) and (7), the rational traders’ uncon-

strained demand is less than the naive traders’ unconstrained demand. An analogous

argument implies that naive traders’ margin constraint cannot bind. Since neither

group’s margin constraint can bind in period 1, (11) implies that p1 = D = 1
r

£
δ − λσ2δ

¤
.

We now consider period 0. Since p1 is known to equal D, rational traders’ demand

equals xR0 = min
n
κ, D+δ−(1+r)p0

λ(1+r)σ2δ

o
by Lemma 1. Hence, by (4) and (8),

1

1 + r
= μxR0 + (1− μ)xN0

= μmin

½
κ,

D + δ − (1 + r)p0
λ(1 + r)σ2δ

¾
+ (1− μ)min

½
κ,

δ − rp0
λ(1 + r)σ2δ

¾
(12)
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By an analogous argument to the case of period 1, one can show that neither margin

constraint binds; give this, p0 = D is the only solution to (12). Q.E.D.Proposition 2

Proof of Proposition 3: First suppose p1 > p. By (7), xN1 ≤ δ−rp1
λσ2δ

< δ−rp
λσ2δ

= 1. So

by (5), xR1 > 1. However, by (6),

xR1 = min

½
κ,

D + δ − (1 + r)p1
λσ2δ

¾
> 1

=⇒ D + δ − (1 + r)p1
λσ2δ

> 1 =⇒ p1 <
1

r

£
δ − λσ2δ

¤
= p

a contradiction. Now suppose p0 > p. Since p1 ≤ p, rational trader demand is maxi-

mized by the belief that p1 = p. Hence, by Lemma 1, rational traders’ unconstrained

demand is at most p+δ−(1+r)p0
λ(1+r)σ2δ

. Since p0 > p, this is less than δ−rp0
λ(1+r)σ2δ

, which is an upper

bound on naive traders’ demand. Hence, total demand is less than δ−rp0
λ(1+r)σ2δ

. Since

demand must equal supply, 1/(1 + r), it must be that

δ − rp0
λ(1 + r)σ2δ

>
1

1 + r
=⇒ p0 < D

–a contradiction. Q.E.D.Proposition 3

Proof of Proposition 4: We cannot explicitly compute rational agents’ demands in

period 0 in this case, since returns are not normally distributed. We will overcome this

by using instead their period-0 demand for the case in which they expect the price in

period 1 to equal the variance-free price for sure. Under this assumption, there can be

two market clearing prices in period 1: the variance-free price and a lower price, which

is unanticipated in period 0. We will then show that there is continuity: for any small

probability ε, there is an equilibrium in which the price is close to the lower price in

period 1 with probability ε and close to the variance-free price with probablity 1− ε.

If rational traders expect the price in period 1 to be the variance-free price, their

demand in period zero is min
n
κ, p+δ−(1+r)p0

λ(1+r)σ2δ

o
by Lemma 1. Hence, market-clearing in

period 0 implies

μmin

½
κ,

p+ δ − (1 + r)p0
λ(1 + r)σ2δ

¾
+ (1− μ)min

½
κ,

δ − rp0
λ(1 + r)σ2δ

¾
=

1

1 + r
(13)
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But this is just equation (12), whose only solution was shown to be p0 = p: the

variance-free price clears the market in period 0 as well.

Now suppose that traders reach period 1 after observing p0 = p. By (5), (6), and

(7), market clearing in period 1 requires that

μmin

½
κ,

D − p1 + δ − rp1
λσ2δ

¾
+ (1− μ)min

½
κ,

δ − rp1
λ (α(p1 − p)2 + σ2δ)

¾
= 1 (14)

One solution to this equation is p1 = p. When is there a lower market clearing price?

As p1 falls below p, both numerators in (14) rise to first order. The denominator of the

naive traders’ demand is unchanged to first order but rises to second order. Hence, for

p1 less than but arbitrarily close enough to p, the left hand side exceeds 1. However, if

α is large enough, we can guarantee that as p1 continues to fall, naive traders’ demand

will begin to shrink. Indeed, by taking α arbitrarily large, we can ensure that naive

traders’ unconstrained demand shrinks to zero arbitrarily quickly as p1 < p falls. Since

by assumption the rational traders cannot buy all the stock, there must exist an α∗ such

that if α > α∗, then there is another market clearing price p1 that is strictly less than p.

Thus, for any sufficiently high α there is an equilibrium in which p0 = p1 = p for

sure but there also exists another price p01, strictly lower than p, that would also clear

the market in period 1.

We now prove that for any small enough crash risk ε > 0, there are equilibria that

are close to this equilibrium. There are five variables: the crash probability, ε; rational

traders’ unconstrained demand in period 0, xR∗0 ; the period 0 price p0; the low period 1

price, pL1 ; the high period 1 price p
H
1 . The equations for an equilibrium are as follows.

The equation for optimality of unconstrained rational trader demand:

0 = f1(ε, xR∗0 , p0, p
L
1 , p

H
1 )

=
∂

∂xR∗0
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(by Lemma 1); the equation for market clearing in period 0:

0 = f2(ε, xR∗0 , p0, p
L
1 , p

H
1 ) = μmin{κ, xR∗0 }+ (1− μ)min

½
κ,

δ − rp0
λ(1 + r)σ2δ

¾
− 1;

and the equations for market clearing in period 1:

0 = f3(ε, xR∗0 , p0, p
L
1 , p

H
1 )

= μmin

½
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D − pL1 + δ − rpL1
λσ2δ

¾
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λ (α(pL1 − p0)2 + σ2δ)

¾
− 1;
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λσ2δ

¾
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¾
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As shown above, one solution to this system is

(ε, xR∗0 , p0, p
L
1 , p

H
1 ) =

µ
0,

δ − rp

λ(1 + r)σ2δ
, p, p01, p

¶
For generic parameters, the functions fn are continuously differentiable in a neighbor-

hood of this solution, since differentiability fails only when one of the following non-

generic conditions holds: xR∗0 = κ, or either D−p+δ−rp
λσ2δ

= κ or δ−rp
λ(α(p−p0)2+σ2δ)

= κ for

p = pL1 or p
H
1 . In addition,
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is generically nonzero. By the Implicit Function Theorem, there is a neighborhood N of

0 such that for ε ∈ N there are unique, continuously differentiable functions xR0 (ε), p0(ε),

pL1 (ε), and pH1 (ε), such that (ε, x
R
0 (ε), p0(ε), p

L
1 (ε), p

H
1 (ε)) solve the system of equations

(and thus constitute an equilibrium). The claim follows.

We now show that if there is an equilibrium with a nonconstant price, then there

are equilibria with occasional crashes. The nonconstant price must occur in period 1,
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since there is no way for rational traders to randomize in a coordinated way in period

0. We first show that there must be a positive probability that p1 will take a value

p
1
< p0. Otherwise, rational traders in period 0 would know that the price could not

fall in period 1. A lower bound on their demand would thus be their demand under the

belief that p1 would equal p0 for sure. Under this belief, rational trader demand equals

min
n
κ, δ−rp0

λ(1+r)σ2δ

o
by Lemma 1. Since this is also the expression for naive demand,

neither group’s margin constraint could bind. Accordingly, rational and naive trader

demand in period 0 would both equal δ−rp0
λ(1+r)σ2δ

. Since this is a lower bound on actual

market demand, it must be no greater than market supply, 1
1+r
; solving, we find p0 ≥ p.

But no price can exceed p by Proposition 3. Since by hypothesis the period 1 price

is never below the period 0 price, it must be that p0 = p1 = p, which contradicts the

assumption that p1 is not constant.

This shows that there must be a price p
1
that is strictly below p0 and that occurs

with positive probability. Market clearing in period 1 requires that μmin{κ, xR∗1 }+(1−

μ)min{κ, xN∗1 } = 1, where xR∗1 =
D−p

1
+δ−rp

1

λσ2δ
is unconstrained rational trader demand

and xN∗1 =
δ−rp

1

λ α(p1−p0)
2
+σ2δ

is unconstrained naive trader demand. Since p
1
< p0 ≤ p,

one can show easily that xN∗1 < xR∗1 , so the margin constraint does not bind for naive

traders in period 1.

Now consider what would happen if the period-0 price were increased to the variance-

free price p. This would increase the denominator of xN∗1 , lowering market demand in

period 1 at the price p
1
. Hence, market demand at p1 = p

1
would be strictly less than

one. Market demand at p1 = p would equal one by Proposition 2. Moreover, for

p1 slightly less than p, market demand would strictly exceed one, since (a) the margin

constraint cannot bind when both prices equal p and (b) the effect on the denominator

of xN∗1 is zero to first order while the numerators of xR∗1 and xN∗1 both rise to first order.

Hence, if the period 0 price were to equal p, then both p1 = p and a price strictly below

p would clear the market in period 1. One can now show that there exist equilibria with

rare crashes using the implicit function theorem as shown above. Q.E.D.Proposition 4

Proof of Proposition 5: Equilibria with rare crashes exist if there are market-clearing
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prices strictly below p in period 1 following a period 0 price of p. Each such p1 must

satisfy μmin{κ, xR∗1 }+(1−μ)min{κ, xN∗1 } = 1, where xR∗1 = D−p1+δ−rp1
λσ2δ

is unconstrained

rational trader demand and xN∗1 = δ−rp1
λ(α(p1−p)2+σ2δ)

is unconstrained naive trader demand.

As p1 begins to fall below p, both unconstrained demands rise to first order; for a

lower price to clear the market, eventually the second order term α (p1 − p)2 in the

denominator of xN∗1 must dominate the first order effect. By raising this second order

term, an increase in α will expand the range of other parameters where equilibria with

rare crashes exist. Since xR∗1 exceeds xN∗1 for all p1 < p, a decrease in either κ or μ will

lower market demand and thus also expand this range. Q.E.D.Proposition 5
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