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I. Introduction 

Numerous academic studies have investigated relationships between health insurance status and 

a wide variety of outcomes such as health care utilization, health status, labor supply, and 

participation in public assistance programs.  In more than 70 articles surveyed by Gruber and 

Madrian (2004), Levy and Meltzer (2004), and Buchmueller et al. (2005), nearly all parameters 

of interest are identified using parametric approaches.1  

 We develop the first nonparametric framework for studying the potential impact of 

universal health insurance on the nation’s use of medical services.  Within this framework, we 

study relationships between insurance status and use of services (expenditures and number of 

provider visits) in an environment of uncertainty about both counterfactual utilization outcomes 

and status quo insurance status.  Uncertainty about counterfactuals arises because insurance 

status is not randomly assigned.  For example, families that expect to use more health services 

have more incentive to acquire health insurance.  More generally, insurance status depends on 

individual and family characteristics that may also influence health care use.  Utilization patterns 

among households who become insured though expanded programs would not necessarily 

resemble observed utilization patterns among households that had already self-selected into 

insured status on their own. 

 Beyond the uncertainty created by unknown counterfactuals, validation studies have 

recently called into question the reliability of households’ responses to questions about their 

current insurance status.  Significant misreporting has been documented in several popular 

surveys including the Current Population Survey (CPS), the Survey of Income and Program 

Participation (SIPP), the Behavioral Risk Factor Surveillance System (BRFSS) survey, the 

                                                 
1 As an exception, Olson (1998) uses semiparametric techniques to estimate the relationship between 

women’s labor hours and the availability of health insurance through a spouse.  More recently, Gerfin and 
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Medical Expenditure Panel Survey (MEPS), and others (Davern et al. 2007; Card et al. 2004; 

Hill 2007/2008; Nelson et al. 2000).  Estimated error rates, which vary across surveys, have been 

linked in part to difficulties in recalling past coverage and difficulties reporting the status of 

other family members (Nelson et al. 2000; Pascale 2007).  The Census Bureau now issues 

caveats about the accuracy of insurance estimates from the CPS (DeNaves-Walt et al. 2005).  

 Using matched surveys of employers and their employees, Berger et al. (1998) find that 

21% of the workers and their employers disagree about whether the worker was eligible for 

insurance.  Their study appears to represent the only prior analysis of potentially mismeasured 

insurance status in an econometric framework.  Assuming exogenous measurement error in a 

classical errors-in-variables setting (after accounting for the binary nature of the mismeasured 

variable), they find that even nonsystematic reporting error seriously biases their estimated effect 

of insurance eligibility on wage growth.   

 The presence of reporting errors compromise a researcher’s ability to make reliable 

inferences about the status quo, and it further confounds identification of counterfactual 

outcomes associated with policies that would alter the distribution of insurance coverage within 

the population, such as national health insurance.2  Consistent with such concerns, some 

advocates have argued that uncertainty about the numbers and characteristics of the uninsured 

constitutes an important barrier to identifying optimal policy solutions (e.g., Hunter 2004; 

Woolhandler and Himmelstein 2007).  Highlighting surprising degrees of insurance 

classification error in many popular national surveys, along with dramatic inconsistencies in 

responses when experimental follow-up insurance questions have been posed, Czajka and Lewis 

                                                                                                                                                             
Schellhorn (2006) use nonparametric techniques and Swiss data to bound the effects of deductibles on the 

probability of visiting a physician. 
2 The extent to which universal coverage would increase use of services and expenditures has been 

estimated in a variety of parametric studies (Institute of Medicine 2003; Blumberg et al. 2006). Estimates 

of incremental spending range from $34 to $69 billion per year depending on the statistical assumptions 

and choice of comparison groups. 
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(1999) write: “Until we can make progress in separating the measurement error from the reality 

of uninsurance, our policy solutions will continue to be inefficient, and our ability to measure our 

successes will continue to be limited.” 

 Our analysis extends the nonparametric literature on partially identified probability 

distributions in several dimensions.  First, we provide sharp bounds on the conditional mean of a 

random variable (in our case health care visits or expenditures) for the case that a binary 

conditioning variable (insurance status) is subject to arbitrary endogenous classification error.  In 

this environment, insurance reporting errors are allowed to be arbitrarily related to true insurance 

status and health care use.  These results extend parts of the analyses of Horowitz and Manski 

(1998) and Kreider and Pepper (2007).  Second, we formally assess how statistical identification 

of a treatment effect decays with the degree of uncertainty about the status quo.  Our approach 

extends the nonparametric treatment effect literature for the case that some treatments are 

unobserved (especially Molinari, 2007a).3  Third, we relax the nondifferential errors 

independence assumption evaluated, for example, by Bollinger (1996) and Bound et al. (2001) 

embedded in the classical errors-in-variables model.  As an alternative, we evaluate the 

identifying power of a weaker “nonincreasing errors” monotonicity assumption that presumes 

that misreporting of insurance status does not rise with the level of utilization.  This assumption 

allows for the possibility, for example, that using health services informs a patient of her true 

insurance status.4  

                                                 
3To isolate identification problems associated with partially unobserved insurance status as a conditioning 

variable or treatment, we assume that other variables in the analysis are measured without error. 
4Using methods in Lewbel (2007), the treatment effects could be point-identified in certain cases if we 

had instruments that affect insurance status but not classification error or the average treatment effect. For 

related work on potentially endogenous classification errors in a linear regression framework, see Frazis 

and Loewenstein (2003).  Given the difficulty in identifying plausible instruments in our application, we 

consider what can be identified in the absence of instruments. 
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 We exploit detailed data in the 1996 MEPS to construct health insurance validation data 

for a nonrandom portion of the sample based on insurance cards, policy booklets, and follow-

back interviews with employers and insurance companies.  The next section describes these data 

and our health insurance verification strategy.  Section III formalizes the identification problem 

associated with estimating a particular descriptive statistic, the gap in health service use between 

the status quo insured and uninsured under existing policies, when insurance status is subject to 

arbitrary patterns of classification error.  We derive bounds on the unknown utilization gap under 

alternative assumptions about the nature and degree of reporting errors.  Extending these results, 

Section IV investigates what can be learned about the impact of national health insurance on the 

use of health services.  Combining our “nonincreasing errors” assumption with common 

monotonicity assumptions in the treatment effects literature, such as monotone treatment 

response (related to moral hazard) and monotone treatment selection (related to adverse 

selection), we can provide reasonably tight bounds on the impact of universal coverage without 

relying on some of the more controversial assumptions involving functional forms and 

independence.   

 Our primary set of estimates focuses on policies that would extend coverage to the 

uninsured using the same mixture of private and public insurance that exists under the status quo.  

Another set of estimates focuses on policies that would extend existing public programs to cover 

the uninsured.  Both types of expansions have been implemented by states.  Hawaii, Illinois, 

Pennsylvania, and Washington created public programs open to all uninsured children but with 

premiums for higher income families (Kaiser Commission on Medicaid and the Uninsured 

2007).  Maine, Massachusetts, and Vermont expanded public programs and developed new 

programs with subsidized premiums and other features (Kaye and Snyder 2007).  Massachusetts 

also mandates that individuals purchase insurance, facilitated with subsidies for low-income 

adults and fees for employers that do not provide coverage (Holahan and Blumberg 2006).  

California and other states are considering proposals with features similar to those of 
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Massachusetts, and prominent presidential candidates also advocate covering the uninsured with 

a mixture of private and public insurance.  Section V compares our nonparametric estimates with 

those from parametric studies, and Section VI concludes.  

II. The Medical Expenditure Panel Survey 

The data come from the 1996 Medical Expenditure Panel Survey (MEPS), a nationally 

representative household survey conducted by the U.S. Agency for Healthcare Research and 

Quality.  In the MEPS Household Component (MEPS HC), each family (reporting unit) was 

interviewed five times over two and a half years to obtain annual data reflecting a two year 

reference period (Cohen 1997).  This paper focuses on the nonelderly population because almost 

all adults become eligible for Medicare at age 65.  The sample contains 18,851 individuals.   

 We study insurance and service use in July 1996.  We focus on July because the 1996 

MEPS has a follow-back survey of employers, unions, and insurance companies which reported 

insurance information as of July 1, 1996.  We use 1996 data because that is the only year for 

which respondents to the follow-back survey reported on the employees’ and policyholders’ 

insurance status rather than whether the establishment offered insurance.5 Studying insurance 

and service use in one month also reduces the likelihood of confounding the dynamics of 

insurance status with misreported insurance status because employment-related insurance 

typically covers an entire month.   

A. Insurance Status Reported in the Household Component 

The MEPS HC asks about insurance from a comprehensive list of all possible sources of 

insurance.  In the first interview, conducted between March and August 1996, MEPS HC asked 

the family respondent about insurance held at any time since January 1st.  Because employment-

related insurance is the most prevalent source of insurance, the family respondent was asked 

                                                 
5These data are available at the AHRQ Data Center. 
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about all jobs held by coresiding family members since January 1st, jobs family members had 

retired from, and the last job held.  The family respondent was asked whether the employee had 

insurance from each job.  Then the family respondent was asked whether anyone had:  

• Medicare 
• Medicaid  
• Champus/Champva 
• For those who did not report Medicaid, any other type of health insurance through any 

state or local government agency which provided hospital and physician benefits  
• Health benefits from other state programs or other public programs providing coverage 

for health care services6  
• Other sources of private insurance, such as from a group or association, insurance 

company, previous employer, or union.   
 

For each source of insurance, MEPS HC asked which family members were covered and when.7  

 In the second interview, conducted between August and December 1996, MEPS HC 

asked questions based on jobs and insurance reported to be held at the time of the first interview 

to determine whether previously reported insurance was still held or when it ended.  MEPS also 

asked about new jobs and insurance from those jobs, public insurance acquired since the first 

interview, and insurance acquired from other sources since the first interview.  The recall period 

is not especially long, typically four to seven months.  Responses to the questions from the first 

and second interview were used to construct indicators of insurance coverage at any time during 

July 1996 and uninsurance, the residual category.  Family respondents reported 80  of the 

nonelderly population were insured in July 1996 and 19

7%.

3%.  were uninsured (Table 1).   

                                                 
6A very small number of individuals are reportedly covered through Aid to Families with Dependent 

Children (AFDC) or Supplemental Security Income (SSI), and these are counted as Medicaid. Other 

sources, such as the Veterans Administration and the Indian Health Services, are not included in measures 

of hospital/physician insurance. 
7State-specific program names are used in the questions. Insurance status is not imputed to families with 

missing data, which are rare. 
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B. Service Use and Expenditures 

In each interview, the MEPS asks about health care services used by all coresiding family 

members since the last interview.  The MEPS also obtains permission to interview a sample of 

the medical providers identified in the Household Component surveys to supplement household-

reported health care expenditure and source of payment information.  We create measures of 

service use and expenditures in July 1996: number of provider visits for ambulatory medical care 

(a medical provider visit, hospital outpatient visit, or emergency room visit), an indicator for 

whether the sample person had a hospital stay or ambulatory services, and expenditures for 

hospital stays and ambulatory services.  Twenty-one percent of the (weighted) sample used 

medical care in that month.8 Persons who the family respondent said were insured in July were 

nearly 80  more likely to have used medical care (% 22 5%.  of the insured versus 12  of the 

uninsured, Table 1).  The mean number of provider visits is also much greater for the reportedly 

insured, as are mean expenditures.   

7%.

C. Verification Data 

We use detailed data to identify sample members for whom there is evidence corroborating their 

insurance status.  The 1996 MEPS includes three sources that can be used to confirm health 

insurance reported by families: (1) the HC interviewers ask respondents to show insurance cards, 

(2) the HC interviewers ask respondents to provide policy booklets, and (3) separate interviews 

were conducted with family members’ employers and insurance companies.  Respondents for the 

family, employers, or insurance companies could err in reporting a person’s insurance status; 

none provides a gold standard of information.  Nonetheless, we use confirmations of insurance 

status to formally verify the insurance status of some sample members.  This approach represents 

a compromise between taking reported insurance status at face value for all sample members and 

                                                 
8 In the MEPS, outpatient prescription medications, medical supplies, and durable medical equipment are 

not linked to specific months; these expenditures are excluded. 

 7



discarding valuable family respondents’ reports about insurance status.   

 We label sample members as verified insured if an insurance card was shown at the time 

of the interview, a policy booklet was given to the interviewer, or if an employer or insurance 

company confirmed that the person was covered by insurance.  We assume that a report that a 

sample member is uninsured is accurate as long as there is no contradictory information from 

any family member’s employers and all employers provided data.  The person’s insurance status 

was not verified (but not assumed to be incorrect) if there were insufficient verification data or if 

employers or insurance companies contradicted the family respondent.  See Hill (2007/2008) for 

details.   

 As shown in Table 1, we find that 80 2%.  of the reportedly insured were confirmed as 

insured by a card, policy booklet, or an establishment.  For the few cases in which a respondent 

produced an insurance card but the establishment reported that the person was uninsured, we 

treat these cases as verified insured based on the physical evidence of insurance.  Among the 

reportedly uninsured, 11  are verified (Table 1).  This relatively low number reflects the lack 

of an employed family member in some uninsured families and the lack of response by some 

employers.  Recall that uninsurance is verified under this strategy only if all of the family’s 

employers responded and confirmed that they did not provide insurance to the sample member.  

Overall, 67  of the sample was verified.   

7%.

0%.

III. Identifying Utilization Differences Between the Insured and Uninsured 

We now study what can be learned about differences in health care utilization between 

the insured and uninsured when we cannot perfectly distinguish between the truly insured and 

uninsured.  In Section IV, we extend the analysis beyond descriptive statistics to assess what can 

be learned about the potential impacts of universal coverage.  We ignore heterogeneity of 

insurance plans and treat coverage as a binary event.  Let I* = 1 indicate that a person is truly 

insured, with I* = 0 otherwise.  Instead of observing I*, we observe the self-reported counterpart 
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I.  A latent variable Z* indicates whether a report is accurate.  If I and I* coincide, then Z* = 1; 

otherwise, Z* = 0.  Let Y = 1 indicate that I is verified to be accurate (i.e., Z* is known to equal 1).  

If Y = 0, then Z* may be either 1 or .0 9  In no case is the value of Z* assumed to be .0 10   

 Let U denote the amount of health care services consumed during the reference period.  

Typically, the amount of care is measured as health expenditures or number of provider visits.  

Policymakers are also interested in the proportion of the population that uses any medical care, in 

which case U can be treated as a binary variable.  In this section, we investigate what can be 

learned about the status quo utilization gap between the insured and uninsured, 

  (1) ( 1) (E U I E U I∗ ∗Δ = | = − | = ,0)

)

when true insurance status, I*, is unobserved for part of the sample.11   

 The utilization gap Δ is not identified since we observe (E U I|  but not ( )E U I ∗| .  Our 

objective is to provide worst-case bounds on Δ.  To partially identify , we will first 

derive bounds on the fraction of the population that consumes no more than a particular amount 

of care t conditional on unobserved insurance status, 

( )E U I ∗|

( )P U t I ∗≤ | .  We can then provide bounds 

on  by integrating over these worst-case probabilities.   ( )E U I ∗|

 We begin by writing 

 
( 1( 1)

( 1)
P U t IP U t I

P I

∗
∗

∗

≤ , = )
≤ | = =

=
.

                                                

 (2) 

Neither the numerator nor the denominator is identified, but assumptions on the pattern of 

 
9 In their analysis of testing for environmental pollutants, Dominitz and Sherman (2004) were the first to 

formalize the idea of distinguishing between “verified” and “unverified” observations in the data. 
10 That is, we conservatively allow for the possibility that the MEPS insurance classification is accurate 

even if the classification is not formally verified. 
11 Our notation leaves implicit any other covariates of interest. We focus on bounding the utilization gap 

for the nonelderly population as a whole, but it is straightforward to condition on subpopulations of 

interest.  Note that we are not estimating a regression, and there are no regression orthogonality 
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classification errors can place restrictions on relationships between the unobserved quantities.  

Let  and ( 1t P U t I Zθ + ∗≡ ≤ , = , = 0) 0)∗( 0t P U t I Zθ − ≡ ≤ , = , =  denote the fraction of false 

positive and false negative insurance classifications, respectively, for those whose medical 

consumption did not exceed .  Let t ( 1t P U t I Zθ + ∗′ 0)≡ > , = , =  and ( 0t P U t I Zθ − ∗′ 0)≡ > , = , =  

denote the analogous fractions for those whose use of care exceeded t .  We can then decompose 

the numerator and denominator in (2) into identified and unidentified quantities: 

 
( 1)( 1)

( 1)
t t

t t t t

P U t IP U t I
P I

θ θ
θ θ θ θ

− +
∗

− − +⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

≤ , = + −
≤ | = =

+ ⎞
⎟
⎠

′ ′= + + − +
 (3) 

where  and  are identified by the data.  In the numerator, ( 1P U t I≤ , = ) ) t( 1P I = tθ θ− − +  reflects 

the unobserved excess of false negative versus false positive insurance classifications among 

those whose use of services did not exceed t .  In the denominator, t t t tθ θ θ θ− − +⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

+ ⎞
⎟
⎠

′ ′+ − +  reflects 

the unobserved excess of false negative versus false positive insurance classifications within the 

entire population.  Utilization among the uninsured, ( 0)P U t I ∗≤ | = , can be decomposed in a 

similar fashion.   

 We now assess what can be learned about Δ.  First, we present “arbitrary errors” bounds 

that impose no structure on the distribution of false positives and false negatives.  This 

environment that allows for arbitrary error patterns is termed “corrupt sampling” (Horowitz and 

Manski 1995).  We then consider the identifying power of assumptions that restrict the patterns 

of errors.  Results in this section also inform our treatment effect bounds in Section IV. 

A. Arbitrary error bounds 

Our analytic framework allows us to trace out bounds on our unknown parameters of interest as 

function of a researcher’s confidence in reported insurance status.  Following Horowitz and 

Manski (1995), we consider a lower bound, v, on the accuracy rate among unverified cases.  

                                                                                                                                                             
conditions to be satisfied. 
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Setting  corresponds to an assumption that reported insurance status is always accurate, the 

implicit assumption in previous analyses.  Setting 

1v =

0v = corresponds to an assumption that 

nothing is known about the accuracy of unverified reports.  We will evaluate patterns of 

identification decay for our parameters of interest as v departs from 1.   

 Since we do not observe true insurance status for unverified responses, the accuracy of 

such responses cannot logically be known.  Nevertheless, our empirical analysis considers four 

candidates for v: 0.50, 0.84, 0.92, and 1.  For the most conservative value,  the 

researcher need only make the common classification error assumption that accurate responses 

are more prevalent than reporting errors (see, e.g., Bollinger, 1996 and Frazis and Loewenstein, 

2003).   

0.50,v =

 The other candidate thresholds, 0.84v =  and 0.92,v =  are derived from studies that have 

investigated the reliability of self-reported insurance status in the MEPS and other surveys.  

Among the reportedly insured (  let 1)I = , 1R =  and 1M =  denote reported private and public 

coverage, respectively, and let *R  and *M  denote true coverage.  If both private and public 

coverage are reported in the month, which is rare, private coverage is assumed to take 

precedence; in such cases, we label reported coverage as 1R =  and 0M =  (and analogously for 

true coverage).  Suppressing the conditioning on 0,Y =  the probability of misclassification is 

given by 

                         
* * *

* *

( 0) ( 0 | 1) ( 1) ( 0 | 1) ( 1)
( 1| 0) ( 0) ( 1| 0) ( 0).

P Z P I R P R P I M P M
P R I P I P M I P I

= = = = = + = = =

+ = = = + = = =

For the first term, we conservatively allow the proportion that is truly uninsured among those 

reporting private coverage,  to be as high as the proportion simply lacking 

private coverage,  Similarly, we allow the true rate of being uninsured among 

those reporting public coverage, 

*( 0 | 1P I R= = ),

).

),

*( 0 | 1P R R= =

*( 0 | 1P I M= =  to be as high as the rate of simply lacking 

public coverage,   Imposing these inequalities, we can write *( 0 |P M M= =1).
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* * *

* *

( 1) 1 ( 0 | 1) ( 1) ( 0 | 1) ( 1)
( 1| 0) ( 0) ( 1| 0) ( 0).

P Z v P R R P R P M M P M
P R I P I P M I P I

= ≥ = − = = = − = = =

− = = = − = = =

 The observed probabilities among the unverified cases are ( 1) 0.35P R ,= =  

 and  Estimates of the unobserved contradiction rates are 

inferred from other studies.  Hill (2007/2008) estimates that the probability of truly lacking 

private insurance when it was reported, 

( 1) 0.1P M = = 3,  

),

( 0) 0.51.P I = =

*( 0 | 1P R R= =  is about 0.02, with the possibility that 

it could be as large as 0.12.  Our two estimated thresholds, 0.84v =  and  incorporate 

the larger and smaller values, respectively.  The probability of truly having private insurance 

when no insurance was reported, 

0.92,v =

*( 1| 0P R I ),= =  is estimated to be no higher than 0.10. 

For both values of ν, we assume that the rate of false positives among those reporting 

public coverage,  does not exceed 0.03.  Card et al. (2004) estimate that the 

rate of false positives for Medicaid in the SIPP ranges from 0.01 to 0.03.  Like the MEPS, the 

SIPP is a longitudinal, household survey.  The MEPS and the SIPP also have similar recall 

periods and yield fairly similar estimates of enrollment in Medicaid and the State Children's 

Health Insurance Program (SCHIP) (Peterson and Grady 2005).  Estimates of  

range from 0.02 (for ) to 0.12 (for 

*( 0 |P M M= =1),

0)*( 1|P M I= =

0.92v = 0.84v = ).  These values are derived from 

benchmarking studies of the MEPS (Banthin and Sing, forthcoming; Nelson 2003; Peterson and 

Grady 2005), with the lower value reflecting an estimate that most (83%) of those who failed to 

report their public insurance instead reported private insurance (Call et al. 2007).  Further 

motivation is provided in an appendix available from the authors.    

 While we have attempted to be conservative in our derivations of v, these derivations 

necessarily involve extrapolating information from respondents for whom validation data are 

available.  Misreporting rates in our sample of unverified respondents may not reflect estimated       

misreporting rates in other samples.  While the descriptive utilization gap results presented later 

in this section are sensitive to values of ν, our main conclusions in Section IV about the impact 
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of universal health insurance on utilization (which impose additional monotonicity assumptions) 

are fairly robust to the choice of v across a wide range of values.  

In Proposition 1, we formalize what can be known about the utilization gap between the 

truly insured and truly uninsured given only a lower bound, v, on the fraction of accurate 

insurance classifications among unverified cases: 

Proposition 1: Let , and suppose that nothing is known about the pattern of 

reporting errors.  Then the mean utilization rate among the truly insured is bounded sharply as 

follows:     

( 1 0)P Z Y v∗ = | = ≥

 ( 1)H LUdF E U I UdF∗≤ | = ≤∫ ∫  

using the distribution functions 

 
{ }

( 1)( )
( 1) min ( ) ( 0 0)

t
L

t t

P U t IF t
P I v P U t I Y

α
α φ α

+

+ +

≤ , = −
=

= − + − , > , = , =
 

 
{ }

( 1)( )
( 1) min ( ) ( 1 0)

t
H

t t

P U t IF t
P I v P U t I Y

α
α φ α

−

− −

≤ , = +
=

= + − − , > , = , =
 

and values 

 
{ }

{ }{ }
min ( ) ( 1 0) if 0
max 0 min ( 1 0) ( ) ( 0 0) otherwise

L
t

t

v P U t I Y
P U t I Y v P U t I Y

φ δ
α

φ
+

⎧ , ≤ , = , = <⎪= ⎨ , ≤ , = , = , − > , = , =⎪⎩
 

 
{ }

{ }{ }
min ( ) ( 0 0) if 0
max 0 min ( 0 0) ( ) ( 1 0) otherwise

H
t

t

v P U t I Y
P U t I Y v P U t I Y

φ δ
α

φ
−

⎧ , ≤ , = , = ≥⎪= ⎨ , ≤ , = , = , − > , = , = .⎪⎩
 

Analogous bounds for the utilization rate among the uninsured, (E U I ∗ 0)| = , are obtained by 

replacing 1I =  with  and vice versa.   0I =

Proof.  See Appendix. 

Notice that increasing v  narrows the bounds over some ranges of v  but not others, and 

the rate of identification decay can be highly nonlinear as v declines.  When , these bounds 

can be derived from Horowitz and Manski’s (1998) censored regressor bounds (their Section 

0v =
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4.1).  In that context, some observations of a conditioning variable are missing in the data.  

Kreider and Pepper’s (2007) Proposition 2 bounds apply when 0v =  and the outcome U  is 

binary.12  

 We next bound the difference in use between the insured and uninsured.  We could 

compute a valid lower (upper) bound on the utilization gap, Δ, by subtracting the Proposition 1 

upper (lower) bound on  from the Proposition 1 lower (upper) bound on 

.  While these bounds on Δ would be valid, they would not necessarily be as tight as 

possible.  In particular, they would not impose the constraints that the parameters 

( 0)E U I ∗| =

(E U I ∗| =1)

tα
+  ( tα

− ) in the 

Proposition 1 bounds on  are identical to the parameters( 1)E U I ∗| = tα
−  ( tα

+ ) in the bounds on 

.  Therefore, we compute sharp bounds on Δ using numerical methods that impose 

these constraints.

(E U I ∗| = 0)

                                                

13   

B. Arbitrary error results 

Table 2 presents estimated bounds on the utilization gap, Δ, for any use of services, number of 

provider visits, and expenditures.  The arbitrary error bounds are provided in column (1).  When 

, Δ is point-identified as the self-reported gap obtained from taking the data at face value.  

For example, the gap in the proportion of insured and uninsured that used services in July 1996 is 

point-identified as .  The gaps in the number of provider 

visits and expenditures are point identified as 0.186 and $77, respectively.  Ninety-five percent 

1v =

( 1 1) ( 1 0) 0 098P U I P U I= | = − = | = = .

 
12Kreider and Pepper (2007) study how labor force participation varies with disability status given a lack 

of knowledge of any particular respondent’s true disability status.  Our Proposition 1 extends their 

Proposition 2 by considering continuous outcomes and by assessing identification for values of v greater 

than 0 within unverified classifications.  Their proposition, however, is more general in the dimension that 

they do not impose our identifying assumption that all verified cases are accurate; they allow for the 

possibility of errors within verified cases. 
13 Gauss programs are available from the authors upon request. 
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confidence intervals for the gap in any use, number of visits, and expenditures are calculated as 

[0.083, 0.112], [0.136, 0.237], and [$47, $107], respectively.14  

 Under arbitrary errors, identification of these utilization gaps deteriorates rapidly as v 

departs from 1.  For the reference case v = 0.92, for example, the difference in the number of 

provider visits per month may lie anywhere between -0.135 and 0.472, while the difference in 

expenditures may lie anywhere between -$40 and $117 (Table 2).  In neither case is the sign of Δ 

identified, even ignoring the additional uncertainty associated with sampling variability.  In fact, 

without imposing assumptions on the patterns of errors, we cannot identify whether the insured 

were more likely to use services than the uninsured unless v exceeds 0.95 (not shown).  

Similarly, we cannot identify whether the insured had more provider visits unless v exceeds 0.98, 

nor can we identify whether the insured had greater expenditures unless v exceeds 0.99.  This 

represents an important negative result: being almost fully confident in the accuracy of the data 

is not enough, by itself, to be informative about even the sign of the utilization gap between the 

insured and uninsured.   

C. Restrictions on reporting error patterns 

The parameter bounds thus far have allowed for arbitrary patterns of insurance classification 

errors, including the possibility that reporting errors are endogenously related to true insurance 

status or the health care utilization outcome.  In contrast, most economic research presumes that 

measurement error is exogenous to the extent that it exists at all.  In this section, we make 

transparent the identifying power of two common (nonnested) independence assumptions that 

tighten the Proposition 1 bounds.  Then we introduce a weaker alternative assumption that is 

more plausible in our context.   

                                                 
14 Throughout this analysis, we compute confidence intervals around the estimated identification regions 

using methods recently developed by Chernozhukov et al. (2007).  We use balanced repeated replication 

methods to account for the complex survey design (Wolter 1985).  
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 First, a researcher might consider an orthogonality assumption that insurance 

classification errors arise independently of true insurance status: 

 ( 1 ) ( 1P I Z P I∗ ∗ ∗ )= | = = .

∗

 (4) 

This assumption may be relatively innocuous compared with the set of homogeneity and 

exogeneity assumptions imposed in standard parametric frameworks.  Still, stories can be told in 

which this assumption may be violated.  Reporting errors may not be orthogonal to true 

insurance status if, for example, better educated respondents are both more likely to be insured 

and more likely to accurately answer survey questions.  Similarly, Card et al. (2004) provide 

evidence that errors in reporting Medicaid coverage vary with family income, which is also a key 

aspect of Medicaid eligibility.   

 Alternatively, or in combination with (4), a researcher might place restrictions on the 

relationship between insurance classification errors and the use of health services.  In the popular 

classical measurement error framework, reported insurance status does not depend on the level of 

health care utilization conditional on true insurance status: 

  (5) ( 1 ) ( 1 ) for 0 1P I I U P I I I∗ ∗= | , = = | = , .

Aigner (1973) and Bollinger (1996) study this type of “nondifferential” classification error for 

the case of a binary conditioning variable.  When the independence assumption (5) holds, 

Bollinger’s Theorem 1 can be used to show that Δ  is bounded below by the reported utilization 

gap   as long as v exceeds 0.50.  Reflecting well-known 

attenuation bias associated with random measurement error, the magnitude of the reported 

utilization gap represents a downward-biased estimate of the magnitude of the true utilization 

gap.  Berger et al. (1998) impose the nondifferential errors assumption in the only previous 

econometric analysis that allows for misreported insurance status.  

( 1) ( 0)E U I E U I| = − | = ( 0)>

 Bound et al. (2001, p. 3725) note, however, that in general the nondifferential 

measurement error assumption is strong and often implausible.  In our context, the 

nondifferential assumption is most likely to be violated if using health care informs respondents 
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about their true insurance status.  For example, a health care provider may enroll a patient in 

Medicaid.  More generally, a regular user of health services (or a user with high expenditures) 

presumably is more likely to know her insurance status than an infrequent user of services.   

 We propose a weaker alternative assumption on the pattern of reporting errors.  Relaxing 

the nondifferential assumption in (5), we suppose that the probability of misreporting insurance 

status does not rise with the level of health care utilization: 

  (6) 1 0( 1 0 ) ( 1 0P I I U P I I U∗ ∗= | = , ≤ = | = , )

)

0

                                                

  1 0( 0 1 ) ( 0 1P I I U P I I U∗ ∗= | = , ≤ = | = ,

for .  The nondifferential assumption represents a special case.  In the next section, we 

illustrate how the identifying power of this monotone “nonincreasing error rate” assumption 

compares with the standard nondifferential errors assumption.   

1U U≥

D. Restricted error pattern results 

Columns (2)-(4) in Table 2 illustrate the identifying power of these stronger assumptions.  In 

each column, restricting the patterns of reporting errors translates into considerably narrower 

bounds compared with the arbitrary errors case.  We focus primarily on the relatively weak 

“nonincreasing errors” bounds in column (4) that do not require any independence 

assumptions.15   

 Recall that under arbitrary errors, we cannot identify the sign of Δ for provider visits 

unless at least 98% of the unverified responses are known to be accurate; for expenditures, the 

corresponding critical value is 99%.  Under the nonincreasing errors assumption, however, the 

critical values fall dramatically to 78% and 64%, respectively (not shown).  For the reference 

case  under nonincreasing errors, Δ is estimated to lie within [0.133, 0.264] for the mean 0.92v =

 
15We numerically computed bounds under the various assumptions by searching over logically allowed 

combinations of false positives and false negatives { }t t t tθ θ θ θ− ′− + ′+, , , .   
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number of visits per month and within [$68, $85] for expenditures (Table 2).  These bounds for 

visits are 7 percentage points wider than the corresponding nondifferential errors bounds in 

column (3), but they are 48 percentage points narrower than the arbitrary errors bounds in 

column (1).  Similarly, the nonincreasing errors bounds for expenditures are $14 wider than the 

nondifferential errors bounds, but they are $140 narrower than the arbitrary errors bounds.  The 

comparisons are similar after accounting for sampling variability. 

IV. Utilization under Universal Health Insurance 

We now turn to inferences about health care utilization under a hypothetical policy of universal 

health insurance.  Let  denote the amount of health services an individual would have 

used in July 1996 if insured.  This outcome is observed in the data only for sample members who 

are verified to be currently insured; it is unobserved for those verified to be uninsured and for 

those whose insurance status is not verified.  We wish to learn the population’s expected 

utilization if everyone were insured, 

( 1)U I ∗ =

[ ( 1)]E U I ∗ = .  If current insurance status were randomly 

assigned, then the utilization among the currently insured, ( 1)E U I ∗| = , would represent the best 

prediction of the utilization rate under universal coverage.  Since I ∗  is not observed for all 

individuals, we could instead bound ( 1)E U I ∗| =  using the methods derived in the previous 

sections.  As discussed earlier, however, the observed distribution of health insurance coverage 

in the population is not randomly assigned.  Instead, insurance status is affected by 

characteristics potentially related to the use of medical resources. 

 In the absence of random assignment or other assumptions, the quantity [ ( 1)]E U I ∗ =  is 

not identified even if reported insurance status is always accurate.  Unlike identification of the 

conditional utilization rate , identification of the “treatment” outcome ( 1)E U I ∗| = [ ( 1)]E U I ∗ =  

requires knowledge about the counterfactual utilization rate of the uninsured had they instead 

been insured.  Uncertainty about the accuracy of reported insurance status, the focus of the 
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current paper, further complicates identification of counterfactuals.   

To bound the impact of universal coverage on utilization, we begin by using the law of 

total probability to decompose the projected utilization rate under universal coverage into 

verified and unverified current insurance status:  

  (7) [ ( 1)] [ ( 1) 1] ( 1) [ ( 1) 0] ( 0)E U I E U I Y P Y E U I Y P Y∗ ∗ ∗= = = | = = + = | = = .

) )The data identify  and ( 1P Y = ( 0P Y =  but neither utilization term.  The first term involving 

verified insurance status can be written as 

 11 11[ ( 1) 1] ( 1 1) [ ( 1) 0 1](1 )E U I Y E U I Y P E U I I Y P∗ ∗ ∗ ∗= | = = | = , = + = | = , = −  (8) 

where  denotes the status quo insurance rate among verified cases.  All the 

terms in (8) are observed except for the counterfactual expected utilization among the uninsured 

under the status quo, .  Without additional assumptions, this quantity 

may lie anywhere within the support of U , [0

11 ( 1 1P P I Y∗≡ = | = )

[ ( 1) 0 1]E U I I Y∗ ∗= | = , =

sup ]U, .   

Returning to (7) and decomposing the third term involving the unverified cases obtains 

 10 10[ ( 1) 0] ( 1 0) [ ( 1) 0 0](1 )E U I Y E U I Y P E U I I Y P∗ ∗ ∗ ∗= | = = | = , = + = | = , = −  (9) 

where  is the status quo insurance rate among unverified cases.  None of 

the quantities in (9) are identified.  We do not know , and we cannot match health care use 

outcomes to insurance status when insurance status is unknown.  Introducing this framework 

under the implicit assumption that 

10 ( 1 0P P I Y∗≡ = | = )

10P

0v = , Molinari (2007a)’s innovative analysis shows that we 

can learn something about the first term, ( 1 0)E U I Y∗| = , = , if the researcher has outside 

information restricting the range of  (denoted 10P p  in her framework).16  She estimates the 

treatment effect of drug use on employment when drug use is unobserved for part of the sample. 

                                                 
16 In Molinari’s framework,  (our notation) denotes survey nonresponse instead of lack of 

verification. Molinari (2007b) presents a general treatment of the identification problem for a variety of 

measurement issues. 

0Y =
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We extend her analysis in two dimensions when .   0v >

First, an assumption on  translates into internally-generated restrictions on  as a 

function of .  We can write the unobserved insurance rate among unverified cases, , as a 

function of the reported rate and unobserved misclassification rates: 

v 10P

v 10P

  10 ( 1 0) ( 0 0 0) ( 1 0 0)P P I Y P I Z Y P I Z Y∗ ∗= = | = + = , = | = − = , = | = .

Allowing the unidentified terms to vary over their feasible ranges obtains [ ]10 10 10P P P∈ ,  where  

 { }10 ( 1 0) min 1 ( 1 0)P I Y v P I YP ≡ = | = − − , = | =  (10) 

   { }10 ( 1 0) min 1 ( 0 0)P I Y v P I YP ≡ = | = + − , = | = .  

When   is trivially bounded to lie within [00,v = 10P 1], ; at the other extreme when , 

.   

1v =

10 ( 1 0P P I Y= = | = )

 Second, considering a positive value of v allows us to restrict the expected utilization rate 

among the unverifiably truly uninsured, ( 0 0)E U I Y∗| = , = , which in turn allows us to tighten 

Molinari’s bounds on the expected utilization rate among the unverifiably truly insured, 

.  Her framework can be used to provide sharp bounds at  and ( 1E U I Y∗| = , = 0) 0v = 1v = .  

Proposition 2 allows us to fill in identification patterns for values of v between 0 and 1.  For a 

particular value of v, we can bound the population’s use of health services under universal 

coverage as follows:17

Proposition 2. Given  and a known value ( 1 0)P Z Y v∗ = | = ≥ [ ]10 10 10( ) ( )P vP P∈ , v

                                                

, the 

population’s health care utilization rate under mandatory universal insurance coverage is 

 
17 This analysis does not account for potential increases in gross prices for health care resulting from 

universal coverage.  Since such price increases would not increase utilization, these upper bounds on 

should still apply.  For our main analysis, we also assume that insurance coverage to the 

uninsured would be representative of the current mix of public and private coverage available to the 

insured. 

( | 1)E U I =
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sharply bounded as follows: 

 10( 1 1) ( 1 1) ( 0) HE U I Y P I Y P P Y UdG| = , = = , = + = ∫  

 ( 1)E U I ∗⎡ ⎤≤ = ≤⎣ ⎦  (11) 

 10

10

( 1 1) ( 1 1) ( 0)
( 0 1) (1 ) ( 0) sup

LE U I Y P I Y P P Y UdG
P I Y P P Y U

| = , = = , = + =

+ = , = + − =⎡ ⎤⎣ ⎦

∫
 

where 

 

10 2

10

10 1

10

( 0) (1 ) (( ) max 0

( 0) (1 ) ( )( ) min 1

L

H

P U t Y P t vG t v
P

P U t Y P t vG t v
P

)⎧ ⎫≤ | = − − Ω ,
, ≡ ,⎨ ⎬

⎩ ⎭
⎧ ⎫≤ | = − − Ω ,

, ≡ , ,⎨ ⎬
⎩ ⎭

 

 
( )1

10

( 0 0)( )
1 ( 0)

tP U t I Yt v
P P Y

−≤ , = , = −Θ
Ω , ≡

− =
 

 
( )2

10

( 0 0)( )
1 ( 0)

tP U t I Yt v
P P Y

+≤ , = , = +Θ
Ω , ≡ ,

− =
 

{ }10min ( ) ( 1 0) (1 ) ( 0) ( 0 0)t v P U t I Y P P Y P U t I Yφ+Θ ≡ , ≤ , = , = , − = − ≤ , = , = , and  

{ }min ( ) ( 0 0)t v P U t I Yφ− ≡ , ≤ , = , =Θ .  

 If  is unknown, the lower and upper bounds in (11) are replaced by the infimum and 

supremum, respectively, of these bounds over values of 

10P

[ ]10 10 10P P P∈ , . 

Proof: See the appendix. 

 The proof follows the general outline of Molinari’s (2007a) Proposition 1 derivation.  Her 

Proposition 1 is similar except that her counterparts for the probability distributions  and LG HG  

implicitly assume that  such that nothing is known about the reliability of unverified 

classifications.  For that case, the bounds in (11) collapse to her bounds after setting  

and  and 

0v =

1( ) 0t vΩ , =

2 ( ) 1t vΩ , = [ ] [ ]10 10 0 1P P, = , .  She also allows for the possibility that the researcher has 
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outside information restricting  to a range narrower than 10P [ ]0 1, , including the possibility that 

 is known.  In that case, something can be learned about 10P [ ( 1) 0]E U I Y∗ = | =  even though 

 and .  Her bounds are as narrow as possible given her imposed assumptions.   1 0Ω = 2 1Ω =

In the special case that current insurance status is known to be accurately measured 

( ), the Proposition 2 bounds collapse to the following well-known bounds (Manski, 1995): 1v =

 ( 1) ( 1) ( 1) ( 1) ( 1) ( 0)sup .E U I P I E U I E U I P I P I U∗⎡ ⎤| = = ≤ = ≤ | = = + =⎣ ⎦  

Given the absence of reporting errors in this case, the width of these bounds depends only on the 

proportion uninsured,  and the uninsured’s upper bound use of services in the 

counterfactual state of being insured, sup . 

( 0)P I = ,

U

 For the binary utilization case, sup  in Proposition 2 is naturally set equal to 1.  Yet 

there is no natural limit to the number of provider visits or dollars spent on medical services.  

Unless a researcher is nevertheless willing to set an upper bound on U , it must be recognized 

that an informative upper bound on 

U

( 1)E U I ∗⎡ ⎤=⎣ ⎦  cannot be logically identified under the weak 

conditions specified in Proposition 2.  For our Proposition 2 empirical results, we set supU to 

1.82 for number of visits and to $862 for expenditures reflecting mean values among individuals 

who (1) perceived themselves to be in poor health at the time of the first interview and (2) were 

verified to be privately insured.  These values reflect the 92nd percentile for visits and the 98th 

percentile for expenditures.  We do not require any assumptions on su  for the Proposition 3 

bounds or monotone instrumental variable (MIV) bounds that follow.  We conservatively treat 

the insurance rate among unverified classifications, P10, as unknown.  Therefore, we allow this 

value to lie anywhere within its logically consistent range 

pU

[ ]10 10P P, , conditional on v (see the last 

part of Proposition 2) . 
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A. Monotonicity Assumptions 

The preceding bounds can be narrowed substantially under common monotonicity assumptions 

on treatment response and treatment selection.  The monotone treatment response assumption 

(MTR), introduced by Manski (1997), specifies that an individual’s utilization is at least as high 

in the insured state as in the uninsured state: 

 ( 1) ( 0i iU I U I∗ ∗ )= ≥ = .

1.

                                                

 (12) 

Given moral hazard, we would expect some individuals to increase their use of health services 

upon becoming insured; presumably, the use of services would not decline.   

Under a monotone treatment selection (MTS) assumption introduced in Manski and 

Pepper (2000), expected utilization under either “treatment” (insured or uninsured) would be at 

least as high among the currently insured as among the currently uninsured: 

  (13) [ ( ) 1] [ ( ) 0] for 0E U I j I E U I j I j∗ ∗ ∗ ∗= | = ≥ = | = = ,

The MTS assumption is related to adverse selection: those who have self-selected themselves 

into the insured state may tend to be more prone to use health services than their uninsured 

counterparts.18  While the MTS assumption would presumably not hold for certain 

subpopulations, we only require that the tendency holds on average for the nonelderly population 

as a whole.   

 In support of the aggregate MTS assumption, public insurance programs already cover 

some of the least healthy populations.  For example, people with substantial disabilities (who 

typically need considerable health care) are often insured by Medicaid or Medicare.  Most states 

also use the Medicaid medically needy option to provide coverage to families with children 

whose health care expenditures are quite substantial relative to their incomes.  More generally, 

those at relatively low risk of needing health services are less likely to seek coverage, as are 

 
18 The MTS assumption relaxes the commonly imposed “exogenous treatment selection” (ETS) 
assumption,  that assumes away the possibility of 
self-selection (see Manski and Pepper 2000, p. 1001).  

[ ( ) 1] [ ( ) 0] for {0 1},E U I j I E U I j I j∗ ∗ ∗ ∗= | = = = | = = ,
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people less predisposed to seek health services.  For example, low demand for insurance may 

partly reflect preferences for avoiding medical care (Vistnes and Monheit 2006).  Using the 

Community Tracking Household Survey, Hirth et al. (2006) estimate that 86% of workers who 

were not offered insurance at their job have low demand for insurance.  Compared with workers 

who are offered insurance at their job, they find that workers who are not offered insurance tend 

to be younger, have lower family incomes, and have less education – all factors associated with 

lower health care use.  In contrast, however, some of the uninsured may have found it difficult to 

obtain insurance at affordable prices due to preexisting conditions.  Yet while medical 

underwriting can be a barrier to obtaining private insurance, data from the 1996 MEPS indicate 

that less than 3% of uninsured adults were “ever denied health insurance because of poor health.” 

 Some evidence of aggregate adverse selection has been reported in parametric studies of 

the effects of insurance.  Using data from the MEPS to estimate a model of private insurance 

coverage and office-based doctor visits, Deb et al. (2006) find that half of the observed lower 

health care use among uninsured adults compared with privately insured adults can be attributed 

to self-selection rather than the lack of insurance.  Dor et al. (2006) find similar evidence of 

selection into private insurance.19  If aggregate MTS does not hold in the population, however, 

then the Proposition 3 upper bound (see below) reverts to the Proposition 2 upper bound.   

 When both MTR and MTS hold, a result in Manski and Pepper (2000, Corollary 2.2) 

implies 

 ( ) ( 1) ( 1)E U E U I E U I∗ ∗⎡ ⎤≤ = ≤ | =⎣ ⎦ .  (14) 

The lower bound on the population’s use of services under universal coverage is ( )E U , the 

status quo national utilization rate in the absence of universal coverage.  The upper bound is the 

status quo utilization rate among those currently insured.  This result combined with the upper 

                                                 
19 However, the findings by Deb et al. (2006) and Dor et al. (2006) rely in part on the types of parametric 

assumptions we are trying to avoid. 
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bound on  derived in Proposition 1 leads to the following proposition: 

Proposition 3. Suppose that the MTR and MTS assumptions hold across the population and 

.  Then the expected use of services under insurance coverage is bounded 

above by 

( 1)E U I ∗| =

( 1 0)P Z Y v∗ = | = ≥

LUdF∫  where  

              
{ }

( 1)( )
( 1) min ( ) ( 0 0)

t
L

t t

P U t IF t
P I v P U t I Y

α
α φ α

+

+ +

≤ , = −
= ,

= − + − , > , = , =
 

 
{ }

{ }{ }
min ( ) ( 1 0) if 0
max 0 min ( 1 0) ( ) ( 0 0) otherwise

L
t

t

v P U t I Y
P U t I Y v P U t I Y

φ δ
α

φ
+

⎧ , ≤ , = , = <⎪= ⎨ , ≤ , = , = , − > , = , =⎪⎩
 

and ( 1) ( 1)L
t P U t I P U t I v( )δ φ≡ ≤ , = − > , = − . 

In the empirical work that follows, we also consider the additional identifying power of the 

independence and nonincreasing errors assumptions considered in Section III.C.  

B. Universal Coverage Results 

The fraction of the nonelderly population that used health services in July 1996 was 0.206, and 

the mean number of provider visits and expenditures were 0.412 and $99, respectively.  We are 

interested in placing worst-case bounds on average utilization outcomes under a policy of 

mandated health insurance coverage.  Our main analysis presumes that new coverage extended to 

the uninsured would be representative of the current mix of public and private coverage available 

to the insured.  Later, we consider policies that would cover the uninsured by expanding public 

programs.   

 In the absence of monotonicity or independence assumptions, the Proposition 2 bounds 

apply.  Point estimates of these bounds, along with 95% confidence intervals, are presented in 

Table 3, column (1). Under the standard implicit assumption that insurance status is reported 

accurately, , we estimate that the fraction of the nonelderly population using health services 

in July if everyone became insured would lie in the range [0.182, 0.374], with 95% confidence 

1v =
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interval [0.173, 0.383].  In percentage terms, the impact would lie within the range [-12%, 

+82%], with 95% confidence interval [-16%, +86%].  The estimated upper bounds on mean 

provider visits and expenditures per month are 0.712 (+73%) and $258 (+161%), respectively, 

which rise to 0.735 (+78%) and $281 (+184%) after accounting for sampling variability.  In each 

case, the identification uncertainty associated with unknown counterfactual outcomes is much 

greater than the uncertainty associated with sampling variability.  Clearly, we cannot learn much 

about the impact of universal coverage without imposing stronger assumptions, even if there is 

no uncertainty about the accuracy of status quo classifications.  Figures 1-3 trace out the 95% 

confidence intervals for any use, visits, and expenditures, respectively, across all values of ν 

between 0.5 and 1.  As v departs from 1, the Proposition 2 bounds naturally become even wider.   

 The Proposition 3 bounds apply when MTR and MTS are imposed.  As seen in Table 3, 

column (2) and the figures, the bounds narrow dramatically compared with column (1).  The 

lower bounds rise to the status quo utilization rates of 0.412 visits and $99 per month.  Similarly, 

the upper bounds decline, but they continue to depend on the value of v.  When , for 

example, the mean number of visits under universal coverage would rise to no more than 0.503 

(a 22% increase), while per capita expenditures would rise to no more than $124 (a 25% 

increase).   

0.92v =

These bounds can be narrowed further under stronger assumptions about the patterns of 

reporting errors.  Columns (3) and (4) in Table 3 present bounds on ( 1)E U I ∗⎡ ⎤=⎣ ⎦  under the 

orthogonality and nondifferential errors assumptions, respectively, discussed in Section III.C.  

We focus especially on the more plausible “nonincreasing errors” assumption in which the 

prevalence of insurance status misreporting falls weakly with the level of utilization.  These 

results are presented in Column (5).  When 0.92v = , the mean number of visits per month 

among the nonelderly population would rise to no more than 0.463 (a 12% increase) under 

universal coverage, while per capita monthly expenditures would rise to no more than $117 (an 

18% increase). 
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C. Monotone Instrumental Variables 

We next use monotone instrumental variables (MIV) techniques developed by Manski and 

Pepper (2000) and extended by Kreider and Pepper (2007) to assess how the Proposition 3 

bounds can be narrowed when combined with monotonicity assumptions linking utilization 

outcomes and observed covariates such as age or health status.  Consider age and use of health 

services.  The incidence of many health conditions rises with age, and many health conditions 

are persistent once developed.  These tendencies suggest that, on average, utilization among 

adults under universal coverage would be nondecreasing in age.  If this assumption holds, then 

we can improve upon the previously derived bounds by enforcing the restriction that upper 

bounds identified for younger groups cannot exceed upper bounds identified for older groups. 

 We treat age and general health status as MIVs.  We divide the population into 18 age 

groups: 0-30, 31-32, 33-34, ..., 63-64. 20  Within each age group, we assume that use of services 

under universal coverage would be nondecreasing in reported worse general health across the 

following categories: poor/fair, good, very good, and excellent.  Formally, consider the 

utilization rate within some age group,  (the extension to multiple MIV dimensions is 

straightforward).  The age MIV assumption implies the following inequality restriction:  

'age

 ( ) ( ) ( )1 2 1' 1 ) 1 ') 1age age age E U I age E U I age E U I age∗ ∗ ∗⎡ ⎤ ⎡ ⎤ ⎡≤ ≤ ⇒ = | ≤ = | ≤ = |⎣ ⎦ ⎣ ⎦ ⎣ 2 )⎤ .⎦

                                                

    (15) 

This mean monotonicity condition for an instrument relaxes the more typical (and stronger) 

mean independence assumption.  Under mean independence, the inequalities across the 

expectations in (15) would be replaced with equalities (Manski and Pepper 2000).  In our 

application, however, it is not obvious where to find instruments that would satisfy mean 

 
20 For the youngest group, we conservatively choose an age range that extends well into adulthood.  

Newborns tend to use substantial care, but then the use of services tends to decline with a child’s age as 

the frequency of recommended preventive care visits decreases.  Use of services tends to rise again in 

adulthood with the onset of chronic conditions. 
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independence.   

 The conditional expectations in (15) are not identified, but they can be bounded using the 

methods described above.  Let ( )LB age  and  be the known lower and upper bounds, 

respectively, given the available information on  in computing these bounds, we 

assume that MTR and MTS continue to hold.  (Under the MTS assumption, note that the 

treatment I* is itself an MIV.)  Then using Manski and Pepper (2000, Proposition 1), we have 

(UB age)

( );E U I age∗| ,

 ( )
21

1 2''
sup ( ) 1 ') inf ( )

age ageage age
LB age E U I age UB age∗

≥≤

⎡ ⎤≤ = | ≤⎣ ⎦ .  (16) 

The MIV bound on expected utilization under universal coverage is obtained using the law of 

total probability: 

  (17) 
1

1
''

( '){ sup ( )}
age ageage

P age age LB age
≤

=∑

 ( )1E U I ∗⎡ ⎤≤ = ≤⎣ ⎦  

 
2

2''
( '){ inf ( )}

age ageage
P age age UB age

≥
= .∑  

Thus, to find the MIV bounds on the utilization rate, one takes the appropriate weighted average 

of the lower and upper bounds across the different values of the instrument.  This MIV estimator 

is consistent but biased in finite samples.  To account for this bias, we employ Kreider and 

Pepper’s (2007) modified MIV estimator that estimates and adjusts for finite-sample bias using 

Efron and Tibshirani’s (1993a) nonparametric bootstrap correction method.21  

 While there is substantial debate in the literature about the appropriateness of self-

reported health variables in regression models of employment (see, e.g., Bound 1991), the MIV 

assumption does not require reported health status to be an unbiased indicator of true health 

                                                 
21 See Kreider and Pepper (2007) for estimation details. 
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status or to be exogenously reported.  What is required is that utilization under universal 

coverage would be nondecreasing in age and reported health status.22   

 The MIV assumptions cannot be verified by the data because the expectations in (15) 

involve unobserved counterfactual utilization outcomes; moreover, we do not observe status quo 

insurance status in the presence of reporting errors.  The joint assumption that  and MIV-

MTS hold, however, potentially can be rejected by the data using a test similar to one suggested 

by Manski and Pepper (2000, footnote 9).  For each age group,  and health category, , 

the following inequalities must hold: 

1v =

,jage kH

                  
( )

( )' ' ' '

| 1, , ( 1) | 1, ,

( 1) | 1, , | 1, ,  for ', '.

j k j k
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Thus, in the absence of measurement error, ( )| 1, ,j kE U I age H=  should be monotonic in age 

and reported health.  For each pair of adjacent age and health status groups among the reportedly 

insured, we conducted a one-sided test of whether utilization is decreasing in age and/or in worse 

health.  We conducted identical tests for the probability of service use, number of visits, and 

expenditures.  One test for visits was rejected at the 5% significance level, but this is not 

statistically significant after accounting for the multiplicity of tests.  As seen in Table 4, the 

nonelderly population’s use of hospital or ambulatory services among the reportedly insured is 

roughly monotonic in age and perceived health status.  After accounting for sampling variability, 

                                                 
22 Health status is routinely included as an explanatory variable in parametric studies of the effects of 

insurance on service use and expenditures, along with an implicit assumption of homogeneity of effects 

across individuals.  While reported health status is difficult to quantify in surveys and may be 

mismeasured, reported general health has external validity in that it predicts mortality and changes in 

functioning (Idler and Benyamini 1997; Idler and Kasl 1995).  We do not use reports of chronic 

conditions, which tend to be misreported; the uninsured are especially likely to underreport conditions 

because they are less likely to seek care and acquire diagnoses (Baker et al. 2004; Miller et al. 2004).   
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we cannot reject the hypothesis that utilization is monotonic in these attributes.  This is 

consistent with the many studies that have found that reported health status strongly predicts 

service use and expenditures (Balkrishnan et al. 2000; Bierman et al. 1999; DeSalvo et al. 2005; 

Miilupalo et al. 1997).   

D. MIV Results 

MIV results are presented in the last two columns of Table 3, assuming MTR and MTS continue 

to hold.  The identifying power of the MIV assumption can be assessed by comparing columns 

(2) and (6) for the case of arbitrary error patterns and by comparing columns (5) and (7) for the 

case of “nonincreasing errors.”   We focus on the latter comparison for 0.92.v =   In column (5), 

we estimate that the fraction of the nonelderly population using health services in a month would 

rise no more than 13% above the status quo to 0.232.  Under the additional MIV assumption in 

column (7), we estimate that this fraction would rise no more than 7% to 0.226.  Improvements 

in the upper bounds for mean number of visits and expenditures are similar.  Under the MIV 

assumption, the upper bound on the number of visits per month improves from 0.463 to 0.444, 

and the upper bound on expenditures improves from $117 to $115.  Thus, in this setting, visits 

would increase no more than 8% under universal coverage and expenditures per capita would 

increase no more than 16%.  In what follows, we refer to these estimates as our preferred bounds. 

E. Expanding Public Coverage  

To this point, our analysis presumes that the package of health benefits made available to the 

uninsured under universal coverage would reflect the mixture of benefits available to the 

privately and publicly insured under the status quo.  Many recent proposals for extending health 

insurance to the uninsured, however, involve expansions of existing public programs like 

Medicaid.  As part of our sensitivity analysis, we investigate how the estimated bounds in Table 

3 would change if we focus attention on policies that would cover the uninsured through 
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expansions of public insurance.  To do so, we repeat the preceding nonparametric bounds 

analysis over the subsample of individuals classified as uninsured or publicly insured.  Within 

this subsample, we estimate upper bounds on utilization under a policy that extends public 

insurance to the uninsured.  Upper bound utilization rates (for any use, visits, and expenditures) 

for the entire nonelderly population are then computed as a weighted average of these upper 

bounds for the non-privately insured and the status quo utilization rates of the privately insured.   

 This approach requires two simplifying assumptions.  First, we assume that reports of 

private coverage are accurate; any insurance classification errors are confined to errors among 

the reportedly uninsured and publicly insured.  For cases in which validation data are available in 

the MEPS, Hill (2007/2008) finds that private insurance is very accurately reported – most 

respondents are aware of whether or not they have private coverage.  In contrast, there is 

evidence of more extensive misreporting of public coverage in surveys (Call et al. 2007; Card et 

al. 2004; Davern et al. 2007).  In our restricted sample that excludes the privately insured, the 

proportion of inaccurate insurance classifications is likely to be higher.  To account for this 

greater uncertainty, we replace the thresholds 0.92v =  and 0.84v =  considered in the main 

analysis with the lower thresholds 0.89v =  and 0.77.v =  

 Second, our approach presumes that service use by the currently privately insured would 

not rise due to the expansion of public insurance.  Like the studies by Hadley and Holahan 

(2003) and Miller et al. (2004), we do not attempt to estimate the potential consequences of 

“crowd out” in which some people with private coverage might switch to the newly available 

public coverage.  Based on the literature reviewed by Duchovny and Nelson (2007), switchers 

from private policies would likely comprise between a quarter to a half of new enrollees under an 

expanded public insurance program.  Our derived upper bounds in this section are valid if the 

switchers would use no more care, on average, under their new public policies.  While public 

programs that require small or no premium payments are potentially attractive to many private 

policyholders, a priori it is not clear whether on balance differences in benefits and providers 
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would differentially attract less healthy, privately insured people to public coverage or repel 

them.  Medicaid and SCHIP programs tend to have generous cost sharing and cover more 

services than private insurance, which would disproportionately attract the less healthy.  On the 

other hand, Medicaid typically pays providers lower fees than private insurance, and lower fees 

reduce provider willingness to participate in the Medicaid program and reduce enrollees’ access 

to care (Cohen 1993; Mitchell 1991).23  Econometric studies find similar access to care in public 

and private programs (Long et al. 2005; Selden and Hudson 2006), which suggests that any 

incentive or disincentive for less healthy individuals to switch from private to public coverage is 

likely small.24  If, on balance, healthier privately insured people (or people otherwise less prone 

to use care) would be attracted to public coverage, then our estimates remain valid upper bounds.  

If the opposite is true, then the bounds depend on supU and hence would be wide.    

 Table 5 presents our estimated upper bounds on the impacts of expanding public 

coverage.  The estimates are broadly similar to those presented in Table 3, but the upper bounds 

that incorporate MTR and MTS are uniformly higher for a given degree of confidence in the 

data.  These higher values do not imply that health care expenses would necessarily be higher 

under public expansions than under a mixture of public and private expansions.  Instead, the 

higher upper bounds reflect more uncertainty about the impacts of public expansions.  Recall 

from Table 1 that the status quo use of health services is greater among the publicly insured than 

among the privately insured.  These differences are reflected in the upper bounds.  Moreover, the 

confidence intervals are wider for expanding public coverage than for covering the uninsured 

with a mix of private and public insurance.  These wider intervals reflect smaller samples of 

                                                 
23 Hadley and Holahan (2003/2004) provide evidence that public coverage reduces health expenditures 

relative to private coverage, consistent with lower fees paid to providers by Medicaid than by private 

insurance.   
24 Several econometric studies of service use find no differential impact of private relative to public 

coverage for a variety of populations and measures of service use (Glied et al. 1998; Hadley and Holahan 

2003; Kaestner 1999; Long et al. 2005; Selden and Hudson 2006). 
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people reporting public coverage than people reporting any insurance.   

 When  and the MIV assumption is not imposed, the upper bound on the mean 

number of monthly provider visits per month by the nonelderly population under universal 

coverage rises from 0.448 with a mix of private and public coverage (Table 3) to 0.473 with 

expanded public coverage (Table 5).  The upper bound on mean monthly expenditures rises from 

$114 to $121.  When the MIV assumption is additionally imposed, the upper bound on visits 

rises from 0.440 to 0.457, and the upper bound on expenditures rises from $114  to $120.  Our 

preferred results presented in column (7) impose MIV with nonincreasing errors.  When 

, the fraction of the nonelderly population using services during a month under 

expanded public insurance would rise no more than 14% to 0.235, the mean number of monthly 

visits would rise no more than 22% to 0.503, and mean monthly expenditures would rise no more 

than 26% to $125.   

1v =

0.89v =

V. Comparisons with Parametric Studies 

Parametric point estimates of increased health care utilization under universal coverage lie within 

our preferred estimated bounds.  These estimates, which impose MTR, MTS, MIV and 

“nonincreasing errors” are reported in Table 3, column (7) with 0.92v =  when expanded 

coverage involves a mixture of public and private insurance and in Table 5; they are reported in 

column (7) with  when public coverage is extended to the uninsured.   0.89v =

 In parametric studies, Miller et al. (2004) and Hadley and Holahan (2003) estimate that 

expanding public programs to cover all the uninsured would increase annual total expenditures 

between 9% and 10%.  Our corresponding nonparametric upper bound when  is 26%.  

Their estimates, like our own, do not account for any crowding out of private coverage.  Their 

models assume no measurement error, and self-selection into insured status is allowed only 

through a set of observed characteristics.  One likely reason our worst-case upper bounds are 

substantially higher than their point estimates is that we do not impose the homogeneity 

0.89v =
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assumption that the impact of insurance coverage on utilization is identical across individuals 

with the same observed characteristics.  Miller et al. and Hadley, and Holahan also estimate that 

covering the uninsured with private insurance would increase annual total expenditures between 

11% and 17%, depending on their specific assumptions.  For Massachusetts, Blumberg et al. 

(2006) estimate the impact of potential expansions that would resemble the mixture of private 

and public coverage expansions enacted in that state.  They estimate that expenditures would 

increase by about 12%.25  Our corresponding upper bound when 0.92v =  is 16%.     

 Buchmueller et al. (2005) review studies of the impacts of insurance on the amount of 

service use.  Relying on a variety of comparison methods, parametric studies find that having 

insurance increases visits among the uninsured between 16% and 106%.  More recent studies, 

however, find a narrower range of effects.  Selden and Hudson (2006) estimate that expanding 

public insurance to cover uninsured children would increase their annual probability of having an 

ambulatory visit by 54%, corresponding to an increase of about 7% across the nonelderly 

population as a whole.  They find that private coverage would increase the annual probability by 

61%, corresponding to an increase of about 8% across the population as a whole.  Estimates in 

Deb et al. (2006) suggest that expanding private insurance to uninsured adults would increase 

their number of office-based visits by about 46%, corresponding to an increase for the adult 

population of about 5%.  Hadley and Holahan (2003), who do not account for unobserved 

factors, estimate that public coverage would increase the annual number of office-based visits 

among the uninsured by 41%, while private insurance would increase visits by 30%.  Their 

estimates correspond to increases of 5% and 4%, respectively, among all nonelderly.  For 

expansions involving a mixture of private and public insurance, our estimated upper bound on 

the increase in monthly office-based and hospital outpatient visits is 8%.    

                                                 
25 They model premiums, rather than health care expenditures, so their estimates implicitly include 

insurance loading as well as expenditures for health care services. 
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VI. Conclusion 

Policymakers have long been interested in identifying the consequences of uninsurance for 

access to health care and the potential impacts of universal coverage (e.g., Institute of Medicine 

2003).  Identification of policy outcomes, however, is confounded by both the unobservability of 

counterfactuals and the potential unreliability of self-reported insurance status.  To account for 

these two distinct types of uncertainty, we developed a nonparametric framework that extends 

the literature on partially identified probability distributions and treatment effects.  Using the 

new analytical results, we provided tight bounds on the impact of universal health insurance on 

provider visits and medical expenditures.  As part of the paper’s contribution, we showed how to 

partially identify the conditional mean of a random variable for the case that a binary 

conditioning variable – in our case health insurance – is subject to arbitrary endogenous 

measurement error.   

 Our conservative statistical approach provides informative bounds on parameters of 

interest without imposing parametric assumptions.  We began by corroborating self-reported 

insurance status for a nonrandom portion of the MEPS sample using outside information from 

insurance cards and follow-back interviews with employers and insurance companies.  We 

allowed for the possibility of insurance reporting errors within the remainder of the sample and 

illustrated the sensitivity of our empirical results to alternative verification, monotonicity, and 

independence assumptions.  For our preferred estimates, we introduced a “nonincreasing errors” 

assumption that relaxes the strict nondifferential independence assumption embodied in the 

classical errors-in-variables framework.  In our application, the weaker monotonicity assumption 

retains much of the identifying power of the independence assumption while allowing for the 

possibility that using health services may inform a patient of her true insurance status.   

 Our primary analysis considers the impact of extending insurance to the uninsured using 

the mix of public and private coverage prevalent under the status quo.  Programs intended to 

cover the uninsured in Massachusetts, Maine, and Vermont, and proposals by some presidential 
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candidates, would cover the uninsured with both private and public insurance.  We estimate that 

the fraction of the nonelderly population using ambulatory or hospital services would rise no 

more than 9% under universal coverage.  We further estimate that per capita monthly provider 

visits would rise by no more than 8%, and mean expenditures per month would rise no more than 

16%.  These estimated upper bounds rely on an assumption that no more than 8% of unverified 

insurance classifications are misreported.  While the accuracy of unverified insurance responses 

cannot logically be known, we have relaxed the standard implicit assumption that all 

classifications are known to be accurate.  Under our preferred monotonicity assumptions, we find 

that our estimates are not particularly sensitive to the degree of reporting error within plausible 

ranges.  This suggests that, contrary to some assertions, uncertainty about the number of 

uninsured may not be a major impediment to developing programs to cover the uninsured.  Our 

estimated upper bounds on the effects of expanding public coverage, however, are not as tight.    

 Our analysis has several limitations.  First, the cost of covering the uninsured will depend 

in part on the generosity of benefits, but our treatment effect approach ignores heterogeneity 

across plan types in treating insurance as binary.  Second, our most informative bounds rely on 

an unverifiable assumption that, on average, households who tend to use more health services 

have already self-selected themselves into the insured state.  While we impose this assumption 

only across the nonelderly population as a whole (allowing for the possibility that this tendency 

is reversed within some subpopulations), the validity of the assumption cannot be directly 

verified.  Third, our methods are less useful for estimating the cost of covering an additional 

person.  Marginal analyses require stronger assumptions about the characteristics of the newly 

insured.  Finally, the health care system continues to evolve, and our 1996 data (which contain 

the best available validation information) were gathered before SCHIP was implemented.     

 The methods developed in this paper can be applied to a wide range of topics that involve 

identification of conditional expectations or treatment effects given uncertainty about the 

accuracy of the conditioning variable.  Our framework, for example, offers an alternative 
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approach to Blau and Gilleskie’s (2001) parametric analysis of the impact of employer-provided 

retiree health insurance on retirement outcomes.  In the Health and Retirement Study data used in 

their study, about 13 percent of the respondents nearing retirement age said they were unsure 

about whether they had retiree insurance – thus forming a natural subpopulation of respondents 

to be characterized as providing unreliable treatment information.  The methods in this paper 

could be used to bound the effects of retiree insurance on employment, informing policymakers 

about the potential consequences of allowing retirees younger than 65 to purchase Medicare 

coverage.  More generally, we expect this developing line of research to improve researchers’ 

understanding of the consequences of nonclassical measurement error for inferences, which 

should in turn yield more informed policy analyses.
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Appendix. 

Proof of Proposition 1. To place bounds on Δ, we begin by logically determining the lowest 

feasible value of .  Differentiating the right hand side of (3), we find that this 

quantity is increasing in 

( 1)P U t I ∗≤ | =

tθ
+′ , the unobserved fraction of individuals with U  misclassified as 

being insured, and in 

t>

tθ
− , the unobserved fraction of individuals with U t≤  misclassified as 

being uninsured.  As a worst-case possibility for the lower bound, we must therefore set 

 to obtain: 0t tθ θ+ −′ = =

 
( 1)( 1)
( 1)

t

t t

P U t IP U t I
P I

θ
θ θ

+
∗

+ −

≤ , = −
≤ | = ≥ .

′= − +
 (18) 

While tθ
+  and tθ

−′  are unobserved, their ranges are restricted.  The unobserved fraction that was 

falsely classified as insured, , cannot exceed the observed fraction that 

was classified as insured with unknown insured status.  Nor can this fraction exceed the total 

allowed fraction of misclassified cases, 

( 1t P U t I Zθ + = ≤ , = , = 0)∗

( ) (1 ) ( 0)v v P Yφ ≡ − = .  Similarly, the unobserved 

fraction of individuals that was falsely classified as being uninsured, 

, cannot exceed the observed fraction that was classified as being 

uninsured with unknown insured status; nor can it exceed the total fraction of misclassified 

cases: 

( 0t P U t I Zθ −′ = > , = , = 0)∗

 
{ }

{ }
0 min ( ) ( 1 0)

0 min ( ) ( 0 0)

t t

tt

v P U t I Y

v P U t I Y

θ φ θ

θ φ θ

+ +

−−

≤ ≤ , ≤ , = , = ≡

′ ′≤ ≤ , > , = , = ≡ .
 

To find the lower bound of , we must find the minimum feasible value for the 

right-hand side (18).  Therefore, for any candidate value of 

( 1)P U t I ∗≤ | =

tθ
+ , we need tθ

−′  to attain its 

maximum allowed value conditional on tθ
+ :  

 { }min ( ) min ( ) ( 0 0)t t t tv v P U t Iθ φ θ θ φ θ⎧ ⎫′− + ′− +⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

= − , = − , > , = , =Y .  
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The objective then becomes one of minimizing  

 
{ }

( 1)
( 1) min ( ) ( 0 0)

t

t t

P U t I
P I v P U t I Y

θ
θ φ θ

+

+ +

≤ , = −
= − + − , > , = , =

 (19) 

over feasible values of tθ
+ .   

Define , the critical value of ( ) ( 0 0)o
t v P U t I Yθ φ+ ≡ − > , = , = tθ

+  that makes the two 

arguments in the min  function equal.  First consider values of o
t tθ θ+ +≤ .  For such values, the 

derivative of (19) with respect to tθ
+  is negative; therefore, we can exclude as potential 

candidates any values of tθ
+  less than min max 0 min o

t t tθ θ θ
⎧ ⎫⎧ ⎫+ + +⎪ ⎪ ⎪⎪
⎨ ⎨ ⎬⎬

⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭
≡ , , o

t t.  For θ θ+ +>

( )

, the derivative 

has the same sign as  

  (20) ( 1) ( 1)L
t P U t I P U t I vδ φ≡ ≤ , = − > , = − .

When this quantity is negative, we must raise tθ
+  to its maximum feasible value, tθ

+ ; otherwise, 

we set tθ
+  equal to mintθ

+ .  Similar logic provides an upper bound on ( 1 1)P U I ∗≤ | = .  After 

defining ( 1) ( 1)H
t P U t I P U t I v( )δ φ≡ > , = − ≤ , = − , the preceding results establish Proposition 1. 

Proof of Proposition 2.  Using Molinari’s (2007a, p. 9) decomposition for the case of missing 

observations, we begin by writing the distribution of U  among unverified cases as a weighted 

average of the distributions among unverified insured and uninsured cases: 

  (21) 10 10( 0) ( 1 0) ( 0 0)(1P U t Y P U t I Y P P U t I Y P∗ ∗≤ | = = ≤ | = , = + ≤ | = , = − .)

First consider a particular value of 10 (0 1)P ∈ , .  Solving for the fraction consuming U  among 

the unverified currently insured implies 

t≤

 10

10

( 0) ( 0 0)(1( 1 0) P U t Y P U t I Y PP U t I Y
P

∗
∗ ≤ | = − ≤ | = , = −

≤ | = , = = .
)

 (22) 

The quantity  in the right-hand-side can be rewritten as ( 0 0)P U t I Y∗≤ | = , =
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1 ( 0)

t tP U t I YP U t I Y
P P Y

θ θ+ −
∗ ≤ , = , = + −

≤ | = , = = .
− =

 (23) 

The upper bound on this quantity is obtained by setting 0tθ
− =  and tθ

+  equal to its maximum 

feasible value.  From Section 3.A, we know t tθ θ+ +≤ .  Combined with the requirement that 

, the value of ( 0 0P U t I Y∗≤ | = , = ≤) 1 tθ
+  is restricted to lie in the range 0 tθ

+≤ ≤ Θt
+  (where 

t
+Θ  is defined in the proposition).  The lower bound is obtained by setting  and 0tθ

+ = tθ
−  equal 

to its maximum feasible value, where tθ
−  is restricted to lie in the range 0 tθ

−
t
−≤ ≤ Θ .  Thus, 

 in (23) is bounded to lie within ( 0P U t I Y∗≤ | = , = 0) [ ]1 2( ) ( )t v t vΩ , ,Ω , .  Varying 

 in (22) within this feasible range reveals that ( 0P U t I Y∗≤ | = , = 0) ( 1 0)P U t I Y∗≤ | = , =  must 

lie within the range [ ]( ) ( )L HG t v G t v, , , .26  Integrating across values of t , expected health care 

utilization among the unverifiably truly insured is bounded as follows: 

 ( 1 0)H LUdG E U I Y UdG∗≤ | = , = ≤∫ ∫ .  (24) 

Continuing with the case , applying this result to the first term in (9) and varying 

 within [0

10 (0 1)P ∈ ,

[ ( 1) 0 ]E U I I Y j∗ ∗= | = , = sup ]U,  for 0 1j = ,  in (8) and (9) yields the Proposition 2 

bounds.  These bounds also apply when  is 1 or .  In the former case,  

in (9) is identified as  since 

10P 0 ( 1) 0)E U I Y∗⎡ ⎤= | =⎣ ⎦

( 1 0) ( 0)E U I Y E U Y∗| = , = = | =

10 10( 0) ( 1 0) ( 0 0)(1 )E U Y E U I Y P E U I Y P∗ ∗| = = | = , = + | = , = − .  For , we only know 

that 

10 0P =

[ ]( 1) 0) ( 1) 0E 0) 0 supU I Y E U I I Y U∗ ∗ ∗⎡ ⎤ ⎡ ⎤= | = = = | , = ∈ ,⎣ ⎦ ⎣ ⎦

                                                

= .   

 
26Note that  also directly places restrictions on 0v > ( 1 0)P U t I Y∗≤ | = , = . However, we can show that 

the direct restrictions on this quantity represent a subset of the restrictions imposed on it indirectly via the 

restrictions on . ( 0 0)P U t I Y∗≤ | = , =
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Table 1 

Reported Insurance Status, Service Use, Expenditures, and Verification of Insurance Status:   

Nonelderly Population July 1996 

 Insurance Status Reported by Family  

 Insured   

 Private Public Overall Uninsured Overall 

Percent of Sample  69.1 11.7        80.7        19.3     100.0 

Mean Ambulatory Provider Visits 0.425* 0.580*          0.448*          0.262        0.412 

Percent Using Hospital or Ambulatory Services 22.1* 25.1*        22.5*        12.7       20.6 

Mean Expenditures for Hospital and 
Ambulatory Services $107* $154*    $114*      $36     $99 

Percent Verified by Insurance Cards, Policy 
Booklets, Employers, or Insurance Companies 82.5* 64.3*        80.2*        11.7       67.0 

Number of Observations  11,984       2,788 14,772   4,079 18,851 

DATA: Medical Expenditure Panel Survey Household Component and linked Insurance Component, 1996.  Sample members age 0 to 64 as of 
July, 1996.  Ambulatory provider visits include medical provider office visits, hospital outpatient visits, and emergency room visits. 

* Statistically different from uninsured at the 0.01 level, two-tailed test. 

 

 



 

Table 2 
 

Bounds on the Monthly Utilization Gap Between the Insured and Uninsured, Nonelderly Population July 1996 
        

Assuming the Following Patterns of Insurance Classification Errors: Lower Bound on the 
Proportion of 

Unverified Cases  
Reported Accurately 

(v) 

(1) 
Arbitrary 
 Errors a 

(2) 
Orthogonal 

Errors b 

(3) 
Nondifferential 

Errors c 

(4)  
Nonincreasing in 

Utilization d 

 I. Probability of Using Any Hospital or Ambulatory Services 

v =1   [ 0.098,  0.098] † [ 0.098,  0.098] [ 0.098,  0.098] [ 0.098,  0.098] 
   [ 0.083   0.112] ‡ [ 0.083   0.112] [ 0.083   0.112] [ 0.083   0.112] 

v =0.92 [-0.034,  0.229] [ 0.052,  0.216] [ 0.098,  0.113] [ 0.071,  0.120] 
 [-0.046   0.241] [ 0.035   0.233] [ 0.081   0.130] [ 0.055   0.136] 

v =0.84 [-0.080,  0.239] [ 0.012,  0.225] [ 0.098,  0.133] [ 0.037,  0.140] 
 [-0.093   0.253] [ 0.002   0.241] [ 0.081   0.150] [ 0.021   0.157] 

v =0.50 [-0.512,  0.281] [-0.384,  0.228] [ 0.098,  0.193] [-0.348,  0.229] 
 [-0.551   0.342] [-0.511   0.333] [ 0.079   0.210] [-0.422   0.292] 

 II. Mean Number of Visits 

v =1 [  0.186,    0.186] [  0.186,    0.186] [  0.186,    0.186] [  0.186,    0.186] 
 [  0.136     0.237] [  0.137     0.235] [  0.137     0.235] [  0.137     0.235] 

v =0.92 [ -0.135,    0.472] [  0.024,    0.276] [  0.186,    0.251] [  0.133,    0.264] 
 [ -0.192     0.529] [ -0.038     0.338] [  0.137     0.300] [  0.083     0.314] 

v =0.84 [ -0.238,    0.493] [ -0.079,    0.289] [  0.186,    0.324] [  0.066    0.347] 
 [ -0.304     0.559] [ -0.144     0.355] [  0.137     0.373] [  0.013    0.400] 

v =0.50 [ -1.761,    0.581] [ -0.676,    0.289] [  0.186,    0.324] [ -0.989,    0.461] 
 [ -2.109     0.929] [ -0.770     0.389] [  0.137     0.373] [ -1.251    0.723] 

 III. Mean Hospital and Ambulatory Expenditures ($) 

v =1 [    77,      77] [    77,       77] [  77,       77] [  77,       77] 
 [    47     107] [    45      110] [  45      110] [  45      110] 

v =0.92 [   -40,    117] [    22,     104] [  77,       80] [  68,       85] 
 [   -83     160] [    13      139] [  45      112] [  35      118] 

v =0.84 [   -67,    122] [     -9,     105] [  77,       85] [  56,      95] 
 [  -118     173] [   -23      139] [  45      117] [  20        131] 

v =0.50 [ -607,    145] [   -71,     105] [  77,       88] [-167,     121] 
 [ -863     401] [ -145      179] [  45      121] [-297      251] 

NOTES: a No restrictions; b imposes P(I*=1|Z*=0)=P(I*=1|Z*=1); c imposes P(I=1|I*) = P(I=1|I*,U); 
d imposes P(I=1|I*=0,U1) ≤ P(I=1|I*=0,U0) and P(I=1|I*=0,U1) ≤ P(I=1|I*=0,U0) for U1 ≥ U0 where 
U = use, visits, or expenditures; I* = true insurance status; I = reported insurance status; Z* = 1 if 
I* = I.  Insurance status is verified for 67% of the sample. 

† Point estimates of the population bounds. 
    ‡ 95% confidence intervals for the identification region estimated using methods in Chernozhukov, 
   Hong, and Tamer (2007)  



Table 3 

Bounds on the Monthly Utilization Rate of the Nonelderly Population If the Uninsured Became Insured, 1996 
 

  Upper Bounds Assuming Monotone Treatment Response (MTR) and Monotone Treatment Selection (MTS) 

With No Monotone Instrumental Variables (MIV) and  
the Following Patterns of Insurance Classification Errors: With Age and Health MIV: Lower Bound on 

the Proportion of 
Unverified Cases  

Reported 
Accurately (v) 

(1) 
Arbitrary Errors, 
No Monotonicity 

Assumptions 

(2) 
Arbitrary 

Errors 

(3) 
Orthogonal 

Errors 

(4) 
Nondifferential 

Errors 

(5) 
Nonincreasing 
in Utilization 

(6) 
Arbitrary 

Errors 

(7) 
Nonincreasing 
in Utilization 

 I. Probability of Using Any Hospital or Ambulatory Services  (status quo = 0.206) 

v =1   [ 0.182,  0.374]† 0.225 0.225 0.225       0.225       0.221 0.221 
   [ 0.173   0.383]‡ 0.232 0.232       0.232    0.232    0.228 0.228 

v =0.92   [ 0.155,  0.422]    0.246 0.244 0.228       0.232       0.234 0.224 
   [ 0.145   0.432] 0.254 0.252 0.235       0.240       0.241 0.231 

v =0.84   [ 0.153,  0.448] 0.255 0.245 0.231 0.241 0.241 0.229 
   [ 0.143   0.459]    0.262 0.253 0.240 0.249 0.248 0.237 

v =0.50   [ 0.153,  0.506] 0.291 0.245 0.248 0.268 0.277 0.256 
   [ 0.142   0.516] 0.299       0.253 0.257       0.276       0.285 0.264 

 II. Mean Number of Visits  (status quo = 0.412) 

v =1   [ 0.362,  0.712] 0.448        0.448        0.448 0.448 0.440 0.440 
   [ 0.339   0.735] 0.468 0.468        0.468 0.468 0.459 0.460 

v =0.92   [ 0.305,  0.779]    0.503        0.461        0.456        0.463        0.483 0.444 
   [ 0.283   0.801]    0.524 0.481 0.476        0.485        0.504 0.465 

v =0.84   [ 0.305,  0.827]    0.520        0.462        0.465        0.479        0.506 0.469 
   [ 0.283   0.849]    0.541        0.481 0.486        0.499        0.527 0.490 

v =0.50   [ 0.305,  0.985]    0.600        0.462        0.488 0.554 0.577 0.535 
   [ 0.283   1.006]    0.622        0.481        0.509        0.577        0.590 0.559 

 



  Upper Bounds Assuming Monotone Treatment Response (MTR) and Monotone Treatment Selection (MTS) 

With No Monotone Instrumental Variables (MIV) and  
the Following Patterns of Insurance Classification Errors: With Age and Health MIV: Lower Bound on 

the Proportion of 
Unverified Cases  

Reported 
Accurately (v) 

(1) 
Arbitrary Errors, 
No Monotonicity 

Assumptions 

(2) 
Arbitrary 

Errors 

(3) 
Orthogonal 

Errors 

(4) 
Nondifferential 

Errors 

(5) 
Nonincreasing 
in Utilization 

(6) 
Arbitrary 

Errors 

(7) 
Nonincreasing 
in Utilization 

 III.  Mean Hospital and Ambulatory Expenditures  (status quo = $99) 

v =1    [$92,  $258]  $114     $114 $114 $114 $114 $114 
    [  69     281]   139   139   139   139  140  140 

v =0.92    [  76,    284]          124          118          114          117  120  115 
    [  52     308]          149          142          139         143  146  141 

v =0.84    [  76,    306]          129          118          114   120  126  117 
    [  52     331]          154          142          140         148  152  144 

v =0.50    [  76,    394]       149   118          116          136  140  129 
    [  52     417]   179       142          141          167  170  158 

NOTES: Monotone treatment response: an uninsured individual’s use would not decline if she became insured; monotone treatment selection: 
under universal coverage, the currently insured would use at least as much services as the currently uninsured.  Contaminated sampling 
imposes P(I*=1|Z*=0)=P(I*=1|Z*=1), nondifferential errors imposes P(I=1|I*) = P(I=1|I*,U), and nonincreasing error rates imposes 
P(I=1|I*=0,U1) ≤ P(I=1|I*=0,U0) and P(I=1|I*=0,U1) ≤ P(I=1|I*=0,U0) for U1 ≥ U0 where U = use, visits, or expenditures; 
I* = true insurance status; I = reported insurance status; Z* = 1 if I* = I.  Monotone instrumental variables estimates assume use and 
expenditures are nondecreasing in age among those older than 30 and nondecreasing in perceived worse health status. 

DATA: Medical Expenditure Panel Survey Household Component and linked Insurance Component, 1996.  Sample members age 0 to 64 as of 
July, 1996.  

†Point estimates of the population bounds 
 ‡ 95% confidence intervals for the identification region estimated using methods in Chernozhukov, Hong, and Tamer (2007) 

 



 

Table 4 
 

Nonelderly Population’s Use of Hospital or Physician Services by Age and 

Perceived Health Status: Reportedly Insured in July, 1996 

 Perceived Health Status 

Age Excellent Very Good Good Poor or Fair 

0 to 29 16.1 17.4 23.6 29.7 

30 to 34 15.2 21.1 21.6 40.5 

35 to 40 16.9 20.4 29.4 41.4 

40 to 44 18.3 22.8 27.4 42.1 

45 to 50 18.4 27.2 26.8 49.8 

50 to 54 20.2 28.0 26.5 51.2 

55 to 60 30.4 29.3 32.7 46.0 

60 to 64 24.2 35.8 38.4 52.6 

DATA:  Medical Expenditure Panel Survey Household Component, 1996.  Sample 
members age 0 to 64 as of July, 1996 reportedly covered by insurance.   



Table 5 

Upper Bounds on the Monthly Utilization Rate of the Nonelderly Population If the Uninsured Became Publicly Insured, July 1996 
 

  Assuming Monotone Treatment Response (MTR) and Monotone Treatment Selection (MTS) 

With No Monotone Instrumental Variables (MIV) and  
the Following Patterns of Insurance Classification Errors: With Age and Health MIV: Lower Bound on 

the Proportion of 
Unverified Cases  

Reported 
Accurately (v) 

(1) 
Arbitrary Errors, 
No Monotonicity 

Assumptions 

(2) 
Arbitrary 

Errors 

(3) 
Orthogonal 

Errors 

(4) 
Nondifferential 

Errors 

(5) 
Nonincreasing 
in Utilization 

(6) 
Arbitrary 

Errors 

(7) 
Nonincreasing 
in Utilization 

 I. Probability of Using Any Hospital or Ambulatory Services  (status quo = 0.206) 

v =1   [ 0.182,  0.374]† 0.230 0.230       0.230       0.230       0.224 0.224 
   [ 0.173   0.383]‡ 0.238 0.238    0.238    0.238    0.234 0.234 

v =0.89   [ 0.171,  0.405]    0.267 0.258       0.239       0.249       0.259 0.235 
   [ 0.161   0.415] 0.275 0.266       0.248       0.258       0.270 0.250 

v =0.77   [ 0.171,  0.405] 0.294 0.287 0.248 0.258 0.281 0.244 
   [ 0.161   0.415]    0.303 0.297 0.257 0.267 0.293 0.256 

v =0.50   [ 0.171,  0.405] 0.299 0.287 0.250 0.258 0.289 0.247 
   [ 0.161   0.415] 0.309       0.297       0.259       0.268       0.302 0.260 

 II. Mean Number of Visits  (status quo = 0.412) 

v =1   [ 0.358,  0.708] 0.473        0.473        0.473        0.473        0.457 0.457 
   [ 0.335   0.732] 0.497 0.497 0.497 0.497 0.483 0.483 

v =0.89   [ 0.335,  0.770]    0.587        0.534        0.493        0.518        0.572 0.503 
   [ 0.314   0.791]    0.614 0.561 0.517        0.547        0.604 0.536 

v =0.77   [ 0.335,  0.789]    0.683        0.555        0.524        0.563        0.660 0.545 
   [ 0.313   0.812]    0.722        0.583 0.556        0.595        0.703 0.582 

v =0.50   [ 0.335,  0.789]    0.690        0.572        0.525 0.571 0.672 0.556 
   [ 0.313   0.812]    0.729        0.603        0.556        0.601        0.715 0.590 

 



  Assuming Monotone Treatment Response (MTR) and Monotone Treatment Selection (MTS) 

With No Monotone Instrumental Variables (MIV) and  
the Following Patterns of Insurance Classification Errors: With Age and Health MIV: Lower Bound on 

the Proportion of 
Unverified Cases  

Reported 
Accurately (v) 

(1) 
Arbitrary Errors, 
No Monotonicity 

Assumptions 

(2) 
Arbitrary 

Errors 

(3) 
Orthogonal 

Errors 

(4) 
Nondifferential 

Errors 

(5) 
Nonincreasing 
in Utilization 

(6) 
Arbitrary 

Errors 

(7) 
Nonincreasing 
in Utilization 

 III.  Mean Hospital and Ambulatory Expenditures  (status quo = $99) 

v =1    [ $92, $258]  $122     $121     $121     $121     $120  $120 
    [   69      281]   155   154   154   154  156  155 

v =0.89    [   83,     281]        149          135          123          131  138  125 
    [   59      304]        186          167          155         167  177  164 

v =0.77    [   83,     294]        167          139          124          141  150  133 
    [   59      317]        208          172          157         180  194  170 

v =0.50    [   83,   294]       167   141   124          141  152  135 
    [   59    317]   208       173       157         180  196  179 

NOTES: Monotone treatment response: an uninsured individual’s use would not decline if she became insured; monotone treatment selection: 
under universal coverage, the currently insured would use at least as much services as the currently uninsured.  Contaminated sampling 
imposes P(I*=1|Z*=0)=P(I*=1|Z*=1), nondifferential errors imposes P(I=1|I*) = P(I=1|I*,U), and nonincreasing error rates imposes 
P(I=1|I*=0,U1) ≤ P(I=1|I*=0,U0) and P(I=1|I*=0,U1) ≤ P(I=1|I*=0,U0) for U1 ≥ U0 where U = use, visits, or expenditures; 
I* = true insurance status; I = reported insurance status; Z* = 1 if I* = I.  Monotone instrumental variables estimates assume use and 
expenditures are nondecreasing in age among those older than 30 and nondecreasing in perceived worse health status. 

†Point estimates of the population bounds 
 ‡ 95% confidence intervals for the identification region estimated using methods in Chernozhukov, Hong and Tamer (2007) 

DATA: Medical Expenditure Panel Survey Household Component and linked Insurance Component, 1996.  Sample members age 0 to 64 as of 
July, 1996.   

 

 



Figure 1 
 

Bounds on the Fraction of the Nonelderly Population that Would Have Used Any  Hospital or Ambulatory Services 
Nonelderly Population If the Uninsured Had a Mix of Private and Public Insurance, July 1996 
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NOTES: MTR = monotone treatment response: an uninsured individual’s use would not decline if she became 
insured.  MTS = monotone treatment selection: under universal coverage, the currently insured 
would use at least as much services as the currently uninsured.  Orthogonal errors imposes 
P(I*=1|Z*=0) =P(I*=1|Z*=1), nondifferential errors imposes P(I =1|I*) = P(I =1|I*,U), and nonincreasing 
error rates imposes P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) and P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) for U1 ≥ U0 
where U = use, visits, or expenditures; I* = true insurance status; I = reported insurance status; Z* = 1 
if I* = I.  Vertical dotted lines reflect proposed values of v motivated in the text.  Insurance status is 
verified for 67% of the sample.  Confidence intervals for the bounds were computed using methods 
provided by Chernozhukov, Hong, and Tamer (2007). 
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Figure 2 
 

Bounds on the Nonelderly Population’s Mean Number of Provider Visits 
Nonelderly Population If the Uninsured Had a Mix of Private and Public Insurance, July 1996 
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insured.  MTS = monotone treatment selection: under universal coverage, the currently insured would 
use at least as much services as the currently uninsured.  Orthogonal errors imposes P(I*=1|Z*=0) 
=P(I*=1|Z*=1), nondifferential errors imposes P(I =1|I*) = P(I =1|I*,U), and nonincreasing error rates 
imposes P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) and P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) for U1 ≥ U0 where U = 
use, visits, or expenditures; I* = true insurance status; I = reported insurance status; Z* = 1 if I* = I.  
Vertical dotted lines reflect proposed values of v motivated in the text.  Insurance status is verified for 
67% of the sample.  Confidence intervals for the bounds were computed using methods provided by 
Chernozhukov, Hong, and Tamer (2007). 

 
 

 
DATA:     Medical Expenditure Panel Survey Household Component and linked Insurance Component, 1996.   
                  Sample members age 0 to 64 as of July, 1996.  



Figure 3 
 

Bounds on the Nonelderly Population’s Mean Hospital and Ambulatory Expenditures 
Nonelderly Population If the Uninsured Had a Mix of Private and Public Insurance, July 1996 
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NOTES: MTR = monotone treatment response: an uninsured individual’s use would not decline if she became 
insured.  MTS = monotone treatment selection: under universal coverage, the currently insured would 
use at least as much services as the currently uninsured.  Orthogonal errors imposes P(I*=1|Z*=0) 
=P(I*=1|Z*=1), nondifferential errors imposes P(I =1|I*) = P(I =1|I*,U), and nonincreasing error rates 
imposes P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) and P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) for U1 ≥ U0 where U = 
use, visits, or expenditures; I* = true insurance status; I = reported insurance status; Z* = 1 if I* = I.  
Vertical dotted lines reflect proposed values of v motivated in the text.  Insurance status is verified for 
67% of the sample.  Confidence intervals for the bounds were computed using methods provided by 
Chernozhukov, Hong, and Tamer (2007). 
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