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An Algebraic Theory of the Multi-Product Firm

Summary: The typical firm produces for sale a plural number of distinct product lines.  This

paper characterizes the composition of a firm’s optimal production vector as a function of cost

and revenue function attributes.  The approach taken applies mathematical group theory and

revealed preference arguments to exploit controlled asymmetries in the production environment. 

Assuming some symmetry on the cost function, our central result shows that all optimal

production vectors must satisfy a dominance relation on permutations of the firm’s revenue

function.  When the revenue function is linear in outputs, then the set of admissible output

vectors has linear bounds up to transformations.  If these transformations are also linear, then

convex analysis can be applied to characterize the set of admissible solutions.  When the group of

symmetries decomposes into a direct product group with index , then the characterizationκ 0 ù

problem separates into  problems of smaller dimension.  The central result may be strengthenedκ

when the cost function is assumed to be quasiconvex.

Keywords and Phrases: Convex analysis, cost structure, group algebra, group majorize,

symmetry breaking.

JEL Classification Numbers: D2, C6, L2. 



    1 Coase (p. 402) writes "But it is clearly important to investigate how the number of products produced

by a firm is determined, while no theory which assumes that only one product is in fact produced can have

very great practical significance."

    2 For concerns about bias in their methodology, see Graham et al. (2002).

1  Introduction

Arguably, the firm that produces multiple products for sale is more representative of observed

production activities than the firm that produces a single product for sale.  Transactions costs

analysis, in focusing attention on firm organization, intra-firm incentives structures and

externalities, has explained many salient features of the firm.  While the make-or-buy decision 

has been studied in detail, an item on the Coase (1937) agenda that has received comparatively

little attention is the decision to produce more than one product for sale.1  This is unfortunate in

light of the prevalence of the firm attribute.

Firms may produce two or more products for a number of reasons.  The transactions costs

motives for product diversification emphasize the trade-off between scope economies due to

production externalities or technical cost inefficiencies in single-product firms and the

organizational costs of internalizing these activities.  For developed countries with dense capital

and state-contingent markets, the risk management motive for diversification has been widely

dismissed.  However, academic debates on other plausible merits of a diversified firm have not

been resolved.  Berger and Ofek (1995) identify a stock market discount on conglomerate firms,

in the period 1986 through 1991, relative to an imputed value were the firm’s businesses traded

as separate stock.2  They point to agency problems in intra-firm capital allocation as the cause. 

While not completely discounting this thesis, Klein’s (2001) study of conglomerates supports

Alchian’s (1969) argument that conglomerates can utilize information more efficiently than can

external markets when allocating capital to specific uses.  In particular, this may have been the

case for conglomerates during the 1960s.  Maksimovic and Phillips (2002) also find empirical

evidence suggesting efficient capital allocation within the conglomerate firm.

Laux (2001) motivates diversification as a mechanism to mitigate an executive
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compensation problem.  Limited liability renders it difficult for an owner to encourage

performance enhancing decisions by a risk-neutral manager.  Rather than deter shirking by

increasing the default (efficiency) wage and then penalizing severely for measured output

deficiencies, the owner might increase the number of projects under the manager.  Rewards on

these other projects can be used to bond the manager, and so overcome the limited liability

problem while lowering the expected cost of doing so.

Multi-good production might enhance a firm’s market power in a number of ways.  For

instance, Bernheim and Whinston (1990) demonstrated how collusion might be more readily

supported when oligopolists compete in two or more markets.  Whinston (1990) showed how a

monopolist that elects to produce a second good for an imperfectly competitive market may

increase profits by a tying strategy that forces competitors to exit.  Concerned with the role of

incumbency in market dynamics, Carlton and Waldman (2002) proposed some strategic roles for

tying.  It may be used to preserve a monopoly in the presence of technical change, and it may also

be used to dominate a new market.

Exclusively technical motives for multi-product activities are also readily conjectured.  In

agriculture, crop rotations can act to mitigate pest problems, conserve moisture, promote soil

tilth, enhance soil nutrient status, and better sequence time commitments during busy periods.  In

mining, forestry or fishing, heterogeneity in raw materials imply that production activities may

yield a variety of elements, minerals or species.  In manufacturing, scope economies in

purchasing, advertising or product development can provide motives for manifold outputs. 

These scope economies can arise in somewhat subtle forms.  For example, Mitchell (2000) has

pointed to scope economies in learning as a motive for multi-product firms, and he also models

the idea that technological dissimilarities limit the firm’s incentive to diversify.

The fact that a large fraction of production as final goods originates from non-specialist

firms is relevant for a number of government policies.   In the case of imperfectly competitive
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markets, the effects of power in multiple markets on anti-competitive behavior is a concern. 

Sometimes too environmental externalities may be at issue.  For example, the computation of

optimal output and input taxes must acknowledge the effects on all markets.  Further, any

constraint on a firm’s production patterns will have implications for equilibrium output prices.

In all of the above, it is not just the fact that a firm elects to produce two or more goods for

sale that is relevant.  The comparative intensities of production matter.  Yet apart from a long

empirical tradition in the duality literature, as in Fuss and McFadden (1978), little is known

about the determinants of vector valued outputs.  We claim that heterogeneity together with the

related phenomenon of symmetry comprise an important determinant of this key facet of firm

behavior.

To develop our thesis, this paper provides a framework for analyzing the product mix that a

firm elects to produce.  We will do so by inferring bounds on the firm’s optimal decision vector

in output space from the pertaining cost and revenue functions.  The key assumption is that some

weak symmetry property is possessed by the firm’s multi-product technology.  This symmetry

property can be weak in two senses.  First, the arguments of the technology’s cost function can

undergo symmetry breaking transformations before any concept of symmetry need be invoked on

the resulting ‘pseudo-cost’ functional.  Second, the type of symmetry that is required to exist on

this pseudo-cost functional may be far weaker than the usual notion of symmetry, permutation

symmetry, whereby a function is invariant under any permutation of argument values in the

function.

The tools most suitable for our problem originate in group algebra and convex analysis.  The

latter set of tools are at the foundations of modern production, consumption and equilibrium

theory.  In general equilibrium theory, the former set of tools have been applied by Balasko

(1990) to study sunspot equilibria.  Groups have also been used by Koopmans et al. (1964), Sato

(1976), Vogt and Barta (1997), and others to study time preferences, production, and



    3 We note also that groups on topologies arise in the mathematical study of fixed points (Munkres,

2000).  While elements of algebraic topology are widely used in game theory, as in Herings and Peeters

(2001), a formal group theory approach does not appear to have been used.

    4 See, e.g., the textbook by Schervish (1995).

4

aggregation.  That line of research, however, is in the tradition of analytic functional equations. 

It seeks attributes on functions such that certain derivative properties, such as integrability,

aggregability, and separability, are satisfied by a function representation of a preference structure

or a technology.3  Their studies relate nothing about level vectors, e.g., when does a firm produce

at least twice as many tons of product A than product B?

Our present research seeks to identify structure on the level vectors of production decisions. 

The approach that we take has much in common with the equivariance theory of statistical

analysis.4  The sorts of questions that are asked in equivariance theory may pertain to the class of

objective functions (i.e., expected loss functions) such that a given statistic-conditioned decision

rule is invariant to the measurement units.  There, the focus is on the performance of a decision

rule so as to remove rules that perform poorly.  We, however, have our profit maximization

decision rule at hand, and are content with it.  Our focus is, rather, on the description of that

decision rule as it relates to parameters in the objective function.  Thus, while the statistics

literature restricts the properties that the decision consequences may have in order to refine the

set of objective functions that one might wish to consider, we fix on a decision rule and then

explore the decision consequences.

The most closely related research is that due to Hennessy and Lapan (2003a).  In a general

permutation group framework, they identify bounds on the output allocation vector for a multi-

plant firm that seeks to minimize the cost of producing a single homogeneous good.  Using a

similar tool kit, Lapan and Hennessy (2002) and Hennessy and Lapan (2003b) have analyzed the

portfolio allocation problem.  There, symmetric (2002) and general permutation (2003b) group

structures on a vector of random returns were shown to provide bounds on the fund allocation



5

vector, as well as inferences on welfare, diversification, and fund separation. 

This paper commences with a presentation of the structure that is assumed on the multi-

output firm’s profit maximization problem.  The firm need not be a price-taker, although stronger

deductions can be made if price-taking is assumed.  Having formalized the problem in Section 2,

we overview some of the relevant concepts from finite group theory.  Section 4 assumes, apart

from some group invariance, only that the pseudo-cost functional is monotone.  Our central result

is a dominance relation for points on the hull that a particular group generates when it is applied

to the optimum decision vector.  A particular instance of this result provides conditions under

which the ratio of product A to product B that a price-taking firm sells is in excess of some

number, say two.  Similar results can be generated for a firm that produces in a multi-product

monopoly environment, or when product markets have mixed structures.

Section 5 specializes to price-taking and to linear transformations on the pseudo-cost

functional’s arguments.  There, we apply methods from convex analysis to study the structure of

admissible regions in output space.  These regions are convex, can be decomposed into a

particular vector sum of sets, and must contain a specific translated ray.  An admissible region

need not be a polyhedral cone.  The defining conditions for an admissible region are

decomposable into a collection of disjoint conditions if the group is decomposable into a direct

product of a group family and if the argument sets on which each family member acts are

disjoint.  The final analysis section makes the additional assumption of cost function

quasiconvexity.  Then, by use of group majorization relations, the central dominance relation for

points on a group-generated hull that includes the optimum can be extended to points in that

convex hull.  The paper concludes with discussions on extensions and empirical issues.

2  Problem

A profit maximizing multi-product firm receives revenue  where the ith output isR(q
1
,q

2
, . . . ,q

n
)
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represented by .  In order to admit flexibility when modeling cost asymmetries across outputs,q
i

we do not specify the cost function directly.  Instead we model it as a ‘pseudo-cost’ functional

where outputs have been transformed before entering the functional.  This pseudo-cost functional

is given by

where , and  is the closed n-dimensional positive orthant on real numbers. Ω
n
' {1,2 , . . . ,n} ú̄

n

%

Input prices are fixed and are suppressed to conserve on notation.  The  are continuouslyH
i
(@)

differentiable on , with .  They are also invertible[0 , 4) dH
i
(q) /dq ' h

i
(q) 0 (0 , 4) œ q 0 [0 , 4)

with .q
i
' H&1

i
(µ

i
) ' J

i
(µ

i
)

By substitution we may define , but there is no loss ofD(Pq ) ' C[H
1
(q

1
),H

2
(q

2
), . . . ,H

n
(q

n
)]

generality in studying  rather than  because both have the same solution up to theC(Pµ) D(Pq )

 transformations.  The advantage of using the form  is that the transformations H
i
(@) C(Pµ) H

i
(@)

allow flexibility in designing  such that it has symmetries of a particular type.  TheseC(Pµ)

symmetries can be exploited in a manner to be elaborated upon shortly.  Any inferences drawn on

the optimal choice of  can then be inverted through the bijections provided by the  in orderPµ H
i
(@)

to relate equivalent inferences on the optimal choice of .Pq

The transformations capture unidimensional asymmetries in the production technology, but

inter-dimensional asymmetries in the technology may also arise.  We employ group theory to

capture asymmetries across dimensions.  To this end, and throughout the paper, we make

Assumption 1.   is increasing and -symmetric.C(@): ú̄
n

%
6 ú̄

%
G̃

In the section to follow, we will define and discuss the sorts of -symmetry properties ofG̃
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max
Pµ 0 ú̄

n

%

R[J
1
(µ

1
),J

2
(µ

2
), . . . ,J

n
(µ

n
)] & C(µ

1
,µ

2
, . . . ,µ

n
) .

(2)

interest.  As an illustration, the most readily described is permutation symmetry which we label

as -symmetry.  When viewed as a group acting on function arguments, as represented by theS̃
n

index set , group  is called the symmetric group on .  With this symmetry property,Ω
n

S̃
n

Ω
n

 where  is any one of the  permutations on a given (transformed) output vectorC(Pµ) ' C(Pµ
g
) Pµ

g
n!

.  Because the extent of symmetry that -symmetry admits is quite large, the set of costPµ 0 ú̄
n

%
S̃
n

functions that satisfy it is comparatively small.  The formal treatment of permutation group

theory will impose less extensive symmetry, and so will typically admit larger sets of cost

functions that satisfy some -symmetry property.G̃

The agent’s revenue function is given by , and we assert R[J
1
(µ

1
),J

2
(µ

2
), . . . ,J

n
(µ

n
)]

Assumption 2.   is increasing.R(q1,q2, . . . ,qn
): ú̄

n

%
6 ú̄

%

The agent’s decision problem, which we identify as (P), is then to5

For a given competitive environment, and assuming an interior optimum, identify the optimum

as  or  where .  Notice that, while we do not allow strategic interactions amongPµ( Pq( q(

i ' J
i
(µ(i )

firms, the specification is otherwise quite general.  For example, the firm may be a price-taker in

all its output markets, a monopolist in all its output markets, or a price-taker in some and a

monopolist in the remaining set.

Our interest is in understanding what revealed preferences, together with symmetry property

, can relate about the admissible values of .  A particular case of interest is whereG̃ q(

i ' J
i
(µ(i )
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max
Pµ 0 ú̄

n

%

j
n

i'1 p
i
J
i
(µ

i
) & C(µ

1
,µ

2
, . . . ,µ

n
) . (3)

the firm is a price-taker in all of its output markets and receives the exogenous unit price p
i
> 0

for the ith output.  Then the problem, which we label as (P’), is

While the optimizations in (P) and (P’) rely on tools from analysis, our interest is in the

optimized vector.  There, we will demonstrate how algebraic properties on the optimized

objective function can be used to identify order on the decision vector.

3  Algebraic concepts

Our approach involves exploiting an iso-cost contour in  so that preferences over decisionPq 0 ú̄
n

%

vectors are confined to preferences over revenue function evaluations.  When the cost function

obliges, then an iso-cost contour can be generated by permutations on the arguments.  Cost

invariances may be depicted through group operations.

Definition 1.  A group, , is a set of elements, G, together with a single-valued binaryG̃

operation, *, such that the structure satisfies all of

I) closure; G is closed with respect to *,

II) identity element;  such that ,› e 0 G g(e ' e(g ' g œ g 0 G

III) inverse elements;  there exists a unique element, labeled , such that œ g 0 G g&1 0 G g(g&1

,' g&1
(g ' e

IV) associativity; , where the operations ing
1
( (g

2
(g

3
) ' (g

1
(g

2
)(g

3
œ g

1
,g

2
,g

3
0 G

parentheses occur first. 

Thus a group is a set of operations together with a composition operation such that the whole



    6 Here, the cycle notation  represents the argument bijection .  For group element (i , j ,k ) i 6 j 6 k 6 i g
1

, the other four arguments are fixed and are omitted in the cycle notation.  Group element ' (1 ,2) g
3
'

 asserts that bijections  and  occur simultaneously.(1 ,2) (5 ,6) 1 : 2 5 : 6

9

structure satisfies four structural properties.  These properties are ideal for studying invariance, in

our case a fixed cost level.  To be quite specific about what a group element  does, in ourg 0 G

context it acts on a set.  This is the set of arguments , and the group performs a bijection onΩ
n

.  We write  if group element  replaces the ith argument of a function with the pre-Ω
n

g(i ) ' j g

existing jth argument.

Example 1.  Pseudo-cost function  is -symmetric, i.e., invariant, under permutationC(Pµ) S̃
3

group  when .  This is true because, by iterating theS̃
3

C(µ
1
,µ

2
,µ

3
) ' C(µ

2
,µ

1
,µ

3
) ' C(µ

3
,µ

2
,µ

1
)

transposition operations we have  also. C(µ
1
,µ

2
,µ

3
) ' C(µ

1
,µ

3
,µ

2
) ' C(µ

2
,µ

3
,µ

1
) ' C(µ

3
,µ

1
,µ

2
)

The group has  elements, one for each permutation under which the pseudo-cost functional3! ' 6

is invariant.  That is, the cardinality of set ,  and which we refer to as the order of theS
3

*S
3
*

group, is 6.  Returning to the invariance , let the pertinent groupC(µ
1
,µ

2
,µ

3
) ' C(µ

2
,µ

3
,µ

1
)

element that takes  to  be .  Then , and .(µ
1
,µ

2
,µ

3
) (µ

2
,µ

3
,µ

1
) ĝ ĝ(1) ' 2, ĝ(2) ' 3 ĝ(3) ' 1

Example 2.  Cost function  is invariant under , theC(q
1
, . . . ,q

6
) ' Ĉ(q

1
%q

2
,q

3
%2q

4
,q

5
%q

6
) G̃

a

group that allows  to permute with  only and  with  only.  The transposition of  withq
1

q
2

q
5

q
6

q
3

 does not generate an invariance because  is not quite symmetric.  The group has fourq
4

q
3
% 2q

4

elements.  In cycle notation, write e as the identity element, , , and  g
1
' (1 ,2) g

2
' (5 ,6) g

3
'

 so the set of group operations is .6(1 ,2) (5 ,6) G
a
' {e ,g

1
,g

2
,g

3
}

If, however, we re-labeled , then the modified cost function is symmetric inq̂
4
' 2q

4

transpositions of  with .  In this way, we may extend the group to include also ,q
3

q̂
4

g
4
' (3 ,4)

, , and .  By checking each of theg
5
' (1 ,2) (3 ,4) g

6
' (3 ,4) (5 ,6) g

7
' (1 ,2) (3 ,4) (5 ,6)

conditions in Definition 1, it is readily demonstrated that  is a group, under the same operationG̃
b



    7 Finite permutation groups are easy to work with and illustrate.  Our analysis can be extended to model

all transformations on an argument vector that preserve a well-defined iso-cost contour.  This approach

would, perhaps, be best studied using continuous transformation groups.
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as , when the element set is .G̃
a

G
b
' {e ,g

1
,g

2
,g

3
,g

4
,g

5
,g

6
,g

7
}

In Example 2, there is clearly a strong connection between groups  and . G̃
a

G̃
b

Definition 2.  A subgroup  of group  is a group with element set H such that H̃ G̃

I) H is a subset of set G

II) G and H are closed under the same operation *.  

The subgroup relation is written as . H̃ ¥ G̃

Thus, .  The large literature on groups has been applied to many object sets.  As weG̃
a
¥ G̃

b

have seen in examples 1 and 2, in our case we seek only to permute a set of finite order; the set of

arguments in a cost function.7  The descriptive terminology for this context is given as follows:

Definition 3.  Let  be a finite non-empty set of objects with cardinality .  A bijection of Ω
n

n Ω
n

onto itself is called a permutation of .  The set of all such permutations forms a group underΩ
n

the composition of bijections.  This is the symmetric group of , and is denoted by .  GroupΩ
n

S̃
n

 is said to act on set .  Any subgroup of  is called a permutation group.S̃
n

Ω
n

S̃
n

Example 3.  In Example 2, let  so that .  All are subgroups of .G
c
' {e ,g

1
} G̃

c
¥ G̃

a
¥ G̃

b
S̃
6

At this point we are in a position to make assertions about problems (P) and (P’).

4  Monotone cost
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R[J1(µ
(

1),J2(µ
(

2), . . . ,Jn(µ
(

n)] $ R[J1(µ
(

g(1)),J2(µ
(

g(2)), . . . ,Jn(µ
(

g(n))] œ g 0 G . (4)

R[J1(µ
(

1),J2(µ
(

2), . . . ,Jn(µ
(

n)] & C(µ(1,µ
(

2, . . . ,µ
(

n) $

R[J1(µ
(

g(1)),J2(µ
(

g(2)), . . . ,Jn(µ
(

g(n))] & C(µ(g(1),µ
(

g(2), . . . ,µ
(

g(n)) œ g 0 G . (5)

A simple revealed preference argument readily establishes a system of inequalities that any

optimal solution must satisfy.

Theorem 1.  For (P) under assumptions 1 and 2, then 

Proof.  By revealed preference, we have

Cancellation, due to cost functional -symmetry, then yields the result for each . ~G̃ g 0 G

Notice that the evaluations of the cost functional are on those permutations of  that renderPµ(

the cost functional invariant.  It is for this reason that the convexity status of  is of noC(Pµ)

relevance to the finding.  Indeed, even monotonicity on  and on  are not necessary andC(Pµ) R(Pq )

are only imposed because they are almost certainly true in the economic context of interest to us.

The inequalities in (4) generate an unconstrained admissible region, , for solution setA(Pq()

 where ‘admissible region’ is to be interpreted as the region in which we have found that thePq(

solution must live.  We do not yet assert that it can live at any point in the admissible region, but

we will return to this issue in the section to follow.  We can, however, impute implications for

the impact of quantity restrictions on firm profits.  Let  be a constraint set on firmV(Pq )

production activities such that a chosen output vector must satisfy  to comply withPq( 0 V(Pq )

laws on firm behavior.
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j
n

i'1 p
i
J
i
(µ(i ) $ j

n

i'1 p
i
J
i
(µ(g(i )) œ g 0 G . (6)

Corollary 1.1.  For (P) under assumptions 1 and 2

I) if  then firm profits are policy constrained.A(Pq()_V(Pq ) ' i

II) if , then firm profits are not policy constrained.A(Pq() f V(Pq )

This constraint set might involve a prohibition on monoculture wheat production in order to

reduce soil erosion externalities.  Or it might involve a local government requirement that a home

builder construct 20% of houses in a sub-division to be affordable for mid-income families. 

Upon specializing to price-taking behavior in all markets, we have

Corollary 1.2.  For (P’) under assumptions 1 and 2, then 

To obtain a sense of what relation (6) means, suppose that we let  so that  g(i ) ' j J
i
(µ(g(i )) '

.  The expression is a quantity in the  dimension.  It is the quantity of  thatH&1
i [Hj

(q(

j )] q
i

q
i

delivers the same argument value in the ith argument of  as  does in the jth argument ofC(Pµ) q(

j

.  We will exploit this observation after presenting an illustration of the Theorem.  A furtherC(Pµ)

specialization of Corollary 1.2, as given in Example 4 below, is quite instructive and provides a

basis for much of the analysis to follow.

Example 4.  Suppose that the pseudo-cost functional is -invariant, and that ,S̃
n

H
i
(q

i
) ' α

i
% β

i
q
i

.  Permutation group element , which is defined as that under which theβ
i
> 0 œ i 0Ω

n
g
jk

pseudo-cost functional’s arguments are mapped according to , is an element of set . j : k S
n

Therefore, upon applying Corollary 1.2 and cancelling terms, we have
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p
j

β
j

&
p
k

β
k

α
j
& α

k
% β

j
q(

j & βkq
(

k $ 0. (7)

This bound might be interpreted as a law of comparative supply; if the ‘normalized price’ of the

jth good exceeds that of the kth good, then the ‘normalized level’ of the jth good exceeds that of the

kth good.

If it is known that , then we have the upper bound . p
j
/β

j
$ p

k
/β

k
q(

j $ (αk % βkq
(

k & αj) /βj

Suppose that  while .  Define  and  so that the upperα
j
> α

k
β
k
< β

j
b
0
' (α

j
&α

k
) /β

k
b
1
' β

j
/β

k

bound may be written as .  Then, together with the two non-negativityq(

k # b0 % b1q(

j

requirements  and , the admissible region may be described as the semi-open regionq(

j $ 0 q(

k $ 0

A in Figure 1.  In this example, the positive parts of all rays through the origin are contained in A

whenever the ray’s slope is no larger than , while the unbounded convex region has twob
1

vertices. 

If in addition, it is known that , then -invariance allows usp
j
/β

j
$ p

k
/β

k
œ j < k , j ,k 0Ω

n
S̃
n

to assert  for any pair of ordinates .  In particular, if α
j
% β

j
q(

j $ αk % βkq
(

k j < k β
i
' β œ i 0Ω

n

then  where the bounding lines have unit slopes.  Instead, if q(

j $ q(

k % (αk&αj) /β α
i
' α œ i 0Ω

n

then  whenever .  In this case, theβ
j
q(

j $ βkq
(

k œ j < k , j ,k 0Ω
n

p
j
/β

j
$ p

k
/β

k
œ j < k , j ,k 0Ω

n

, can be thought of as efficiency coefficients and the bounding conditions all passβ
i
, i 0Ω

n

through the origin.  Since , we have  so that the kthp
j
/β

j
$ p

k
/β

k
p
j
q(

j $ p
k
q(

k œ j < k , j ,k 0Ω
n

product revenue is less than or equal to the jth product revenue.  Notice that each output is

distinguished by two sources of asymmetries, i.e., supply and demand side.  Yet, due to the

symmetries of the symmetric group and the fact that the cost function location shifters are

common, product revenues may be ranked in ascending order according to a single index, ,p
i
/β

i

.  Due to the problem’s structure this composite index is, in a statistical sense, minimali 0Ω
n

sufficient because no additional information is obtained about the rank order of revenues by



    8  On minimal sufficient statistics, see Schervish (1995, p. 92).

    9 This proof is placed in the Appendix, together with other proofs that require some work.
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H&1
i (µ̃) & H&1

i (µ̂) $ H&1
j (µ̃) & H&1

j (µ̂) whenever 0 < µ̂ # µ̃ . (8)

considering the demand and supply parameters separately.8

The intent of Example 4 was to bring out some of the implications of symmetry that the

general transformation functions  might obscure.  However, stronger assertions may beH
i
(q)

established without recourse to linear transformations of the arguments.  One approach is to view

the transformations as positive, finite measures on  so that existing work in probability theoryú̄
%

may be invoked.

  

Definition 4.  Positive, finite, invertible measure  is said to be larger in the dispersiveµ
i
' H

i
(q

i
)

order than positive, finite, invertible measure  ifµ
j
' H

j
(q

j
)

The partial order relation is written as .  H
i
(q) $

disp
H

j
(q)

The order, a variant of which is discussed in Shaked and Shanthikumar (1994), is of interest

because the expressions  and  enter relation (6) in a linear manner.9H&1
i (µ) H&1

j (µ)

  

Theorem 2.  For (P’) under assumptions 1 and 2, let .  Then  whenever  ifg
ij
0 G µ(i $ µ

(

j p
i
$ p

j

and only if

I) , or equivalentlyH
i
(q) $

disp
H

j
(q)

II)  is increasing in q, or equivalentlyH&1
i [Hj

(q)] & q

III) .h
j
[H&1

j (µ)] $ h
i
[H&1

i (µ)] œ µ $ 0
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Part III) provides, perhaps, the best intuition for the result.  At equivalent levels of pseudo-

output, i.e., the levels entering the pseudo-cost functional, the transformations provide a bias

toward a lower marginal cost for the ith product than for the jth product.

Example 5.  If  and  with , then  because it canH
i
(q) ' β

i
q H

j
(q) ' β

j
q 0 < β

i
< β

j
H

i
(q) $

disp
H

j
(q)

be seen from part II) that expression  must be increasing.  Theorem 2 then concludesβ
j
q /β

i
& q

that  whenever .  Notice that this example is consistent with Example 4 whenβ
i
q(

i $ βjq
(

j p
i
$ p

j

.  Example 4, in fact, generates somewhat stronger results because it exploits theα
i
' α œ i 0Ω

n

ray property in .  In Example 4, inference  may be drawn whenever H
i
(q) ' β

i
q β

i
q(

i $ βjq
(

j p
i
$

, so that  is admissible.β
i
p
j
/β

j
p
i
< p

j

That  and  are dispersively ordered is just the assertion of the fact thatH
i
(q) ' β

i
q H

j
(q) ' β

j
q

distinct uniform probability distributions can be dispersively ordered.  Other examples of

dispersive order are readily confirmed.  Two univariate normal distributions with distinct

variances are dispersively ordered regardless of their means.  Also, for the family of measures

 we have that  whenever .  This is because we mayH
i
(q) ' H(α

i
% β

i
q) H

j
(q) $

disp
H

k
(q) β

j
# β

k

insert  into (8).[H&1(µ)&α
i
] /β

i
' q ' H

&1
i (µ)

5  Linear transformations and monotone cost

In this section we assume that  under problem (P’).  We do this becauseH
i
(q

i
) ' α

i
% β

i
q
i

findings in the large literature on linear algebra can then be applied.  For an arbitrary permutation

group, and where the transformations are linear, use of Corollary 1.2 shows that the solution set

must satisfy the system of  inequalities, n % *G*
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j
n

i'1

p
i

β
i

× α
i
& α

g(i )
% β

i
q(

i & βg(i )q
(

g(i ) $ 0 œ g 0 G ,

q(

i $ 0 œ i 0Ω
n
.

(9)

j
n

i'1

p
i

β
i

× α
i
& α

g(i )
% β

i
q(

i & βg(i )q
(

g(i ) $ 0 œ g 0 G , (10)

C(Pµ) ' Ĉmax[µ
1
,µ

2
, . . . ,µ

n
] , (11)

j
n

i'1

p
i

β
i

× β
i
q(

i & βg(i )q
(

g(i ) $ 0 œ g 0 G ,

q(

i $ 0 œ i 0Ω
n
.

(12)

For future reference we will write the solution set to the group-generated inequalities,

as .  Notice that for the identity element, e, inequality (10) reduces to the trivial ,‹(Pα,Pβ, G̃ ) 0 $ 0

and may be discarded. 

Example 6.  To see that the bounds in system (9) may be tight, consider 

where  is increasing.  Then, since output prices are strictly positive, any Ĉ(·): ú̄
%
6 ú̄

%
µ
i
… µ

j

would violate profit maximization for interior solutions.  Therefore, .  In thisµ(i ' µ
(

j œ i , j 0Ω
n

case, all  group  generated bounds in system (9) are satisfied with equality.*G* G̃

Following Solodovnikov (1980), system (9) may be decomposed through successive

simplifications.  Commence with the inhomogeneous inequalities as given in system (9).  Next,

develop a set of homogeneous inequalities by removing the constant terms in each equation, i.e.,

by setting .  The homogeneous system of inequalities is  α
i
' α œ i 0Ω

n
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j
n

i'1

p
i

β
i

× β
i
q(

i & βg(i )q
(

g(i ) ' 0 œ g 0 G ,

q(

i ' 0 œ i 0Ω
n
.

(13)

The latter system can be further simplified by imposing equalities for each of the weak

inequalities so that 

This homogeneous system of equalities clearly has a unique solution, .q(

i ' 0 œ i 0Ω
n

Solodovnikov’s analysis of system (9) is of relevance to our study because he makes much use of

the concept of a normal system. 

Definition 5. [Solodovnikov (1980, p. 30)] A system of linear inequalities is said to be normal if

the corresponding system of homogeneous equations has only the zero solution.

Thus, system (9) is normal.  The solution to the system may be broken into two steps:

STEP 1: Take some n equations from the  equations in (9), the system of inhomogeneousn % *G*

inequalities.  Replace the inequalities with equalities, and solve that sub-system.  Do this for all

sub-systems comprised of consistent and independent equations, i.e., that give unique solutions

as quantity points in .  There are at most  such sub-systems.  For eachún (n%*G* )! / (n!*G*!)

solution, return to system (9) and validate that it satisfies the larger system.  If it does not, then

discard it.  The remaining solutions could be called vertices for the system.  Let there be  suchm

points, with , and label them  with  and .  Write them # (n%*G* )! / (n!*G*!) V
i

i 0Ω
m

V
i
0 ú̄

n

%

convex hull of these points as .ÚV
1
,V

2
, . . . ,V

m
á

STEP 2: Take all sub-systems of  equations from the  equations in (13), the systemn&1 n % *G*
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T ' ÚV
1
,V

2
, . . . ,V

m
á % ÚE

1
,E

2
, . . . ,E

r
á . (14)

of homogeneous equalities.  There are at most  such sub-systems. (n%*G*)! / [(n&1)! (*G*%1)!]

Solve each sub-system, where each solution set may be written as a line in .  If a non-zeroún

point on this line satisfies system (12), then place the point in set .  All equations in systemE

(13) pass through the origin.  When such a point satisfies system (12), then one half of the line

satisfies system (12).  Suppose that  where .  Label ther ' *E* (n%*G*)! / [(n&1)! (*G*%1)!] $ r

elements of set  as , and construct the convex set of points  that canE E
i
, i 0Ω

r
ÚE

1
,E

2
, . . . ,E

r
á

be written as .'r

i'1r
i
E
i
, r

i
0 ú̄

%

Proposition 1.  System (9) is normal, and the solution set

I) is convex, 

II) may be represented as 

where the addition operation is the vector addition of sets.

The solution set may or may not be a convex polyhedral cone, a characterization that would

be particularly convenient to work with. 

Definition 6. [see Solodovnikov (1980, p. 21)] A convex polyhedral cone is the intersection of a

finite number of half-spaces whose bounding planes all pass through a common point, called the

vertex of the cone.

Example 7.  Returning to Figure 1 and Example 4, where , we see that thep
j
/β

j
$ p

k
/β

k

described region is not a convex polyhedral cone.  It has two vertices,  and V
1
' (0 ,0) V

2
'

.  The homogeneous system solved in step 2 has two edges,  whereby  and (0 ,b
0
) E

1
q
k
' 0 E

2
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Pq( '
θ&α

1

β
1

,
θ&α

2

β
2

, . . . ,
θ&α

n

β
n

œ θ $max[α
1
,α

2
, . . . ,α

n
] . (15)

whereby .  The equation  is not an edge because there exists no non-zero point onq
k
' b

1
q
j

q
j
' 0

 that satisfies both  and .  The convex hull of vertices is given by  q
j
' 0 q

k
$ 0 q

k
# b

1
q
j

ÚV
1
,V

2
á '

.  Set  is the convex polyhedral cone with vertex (0 ,0)λ % (0 ,b
0
) (1&λ) , λ 0 [0 ,1] ÚE

1
,E

2
á (0 ,0)

and generated by the pair of halfspaces , .q
k
$ 0 q

k
# b

1
q
j

Set  is not a polyhedral cone because the extreme points on segmentÚV
1
,V

2
á % ÚE

1
,E

2
á

, are both vertices.  The vertices only coincide when .  If(0 ,0)λ % (0 ,b
0
) (1&λ), λ 0 [0 ,1] α

j
' α

k

we were to amend Example 4 so that , then  and the non-negativity constraint α
j
< α

k
b
0
< 0 q

k
$ 0

would not bind.  In that case the only vertex would be .((α
k
&α

j
) /β

j
, 0)

The propositions to follow in this section will clarify some of the attributes of solution set

(14).  Because system (10) is group-generated, the inequalities are not arbitrary.  Inspection of

group-generated system (10) clarifies that these bounding hyperplanes possess Pq
0
'

 as a common point.  In particular, the point  is either the unique(&α
1
/β

1
,&α

2
/β

2
, . . . ,&α

n
/β

n
) Pq

0

vertex or a ‘shadow’ vertex that is inadmissible only due to one or more non-negativity

constraint.  This endows the solution set with a particular structure.  For this reason the solution

set could plausibly be a convex polyhedral cone, i.e., all bounding planes among the n % *G*

linear constraints pass through a common point.  Some development of this observation

establishes two results.

Proposition 2.  The solution set to system (9) is not bounded.  Further, it contains all points on

the semi-open line segment 
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Proposition 3.  The admissible region

I) is given by  where  is a convex polyhedral cone with vertex .‹(Pα,Pβ, G̃ )_ ú̄n

%
‹(Pα,Pβ, G̃ ) Pq

0

II) contains the origin if and only if .  This condition is'n

i'1( p
i
/β

i
) (α

i
& α

g(i )) $ 0 œ g 0 G

satisfied if , or if .α
i
' α 0 ú œ i 0Ω

n
( p

i
/β

i
& p

j
/β

j
) (α

i
& α

j
) $ 0 œ i , j 0Ω

n

III) is the convex polyhedral cone generated by system (10) if  and the max[α
1
,α

2
, . . . ,α

n
] # 0 β

i

are all distinct.

That (15) satisfies the system can be verified by insertion to obtain equality for each of the

group-generated inequalities.  Unboundedness is a consequence of the unboundedness of the

semi-open line segment, .  Part I) of Proposition 3 re-organizes the set ofθ $max[α
1
,α

2
, . . . ,α

n
]

bounding hyperplanes.  Parts II) and III) draw implications when the non-negativity constraints

are all binding, as in part II), or are all slack, as in part III).

Example 8.  In Figure 2, where the context is the same as in Figure 1 except that now , theα
j
< α

k

admissible region (in dimensions  and ) is a convex polyhedral cone.  This is because theq
j

q
k

constraint  does not now bind, as has been explained in Example 7.q
k
$ 0

Depending on the group order, and also the dimension and values of the parameter vectors Pα

and , it may be difficult to study the solution set for system (9).  Therefore, it would be of somePβ

interest to ascertain when it is possible to simplify the solution set.  It is possible to do so when

the group of symmetries is, in some sense, separable.  To this end we introduce

Definition 7. [see Hungerford (1974, p. 59)] Let , be a family (i.e., a set) ofG̃
i
, i 0Ω

I

permutation groups with respective orders .  Form the direct product  with order . n
i

×Ii'1G̃
i

ΠI
i'1ni

Then  forms a group under component-wise composition.  This is called the directG̃ ' ×Ii'1G̃
i
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product group.

Example 9.  For the pseudo-cost functional , suppose that first twoC(Pµ) ' C(µ
1
,µ

2
,µ

3
,µ

4
,µ

5
)

arguments permute, i.e., .  This invariance correspondsC(µ
1
,µ

2
,µ

3
,µ

4
,µ

5
) / C(µ

2
,µ

1
,µ

3
,µ

4
,µ

5
)

to a group of order 2, and we call it  with element set  where the first element isG̃1 G1
' {e1,g1

1}

the identity.  Suppose also that the invariances related to the other three arguments are given by

group  with element set  where  corresponds to the identity invarianceG̃2 G2
' {e2,g2

1,g
2
2} e2

,  corresponds to the invariance  C(µ
1
,µ

2
,µ

3
,µ

4
,µ

5
) / C(µ

1
,µ

2
,µ

3
,µ

4
,µ

5
) g2

1 C(µ
1
,µ

2
,µ

3
,µ

4
,µ

5
)

, and  corresponds to the invariance / C(µ
1
,µ

2
,µ

4
,µ

5
,µ

3
) g2

2 C(µ
1
,µ

2
,µ

3
,µ

4
,µ

5
) /

.  Then the direct product group  is of order 6.  It may beC(µ
1
,µ

2
,µ

5
,µ

3
,µ

4
) G̃ ' ×2i'1G̃

i

represented by the elements  [i.e., identity invariance  (e1,e2) C(µ
1
,µ

2
,µ

3
,µ

4
,µ

5
) /

],  [i.e., ],  [i.e.,C(µ
1
,µ

2
,µ

3
,µ

4
,µ

5
) (g1

1,e
2) C(µ

1
,µ

2
,µ

3
,µ

4
,µ

5
) / C(µ

2
,µ

1
,µ

3
,µ

4
,µ

5
) (e1,g2

1 )

],  [i.e., C(µ
1
,µ

2
,µ

3
,µ

4
,µ

5
) / C(µ

1
,µ

2
,µ

4
,µ

5
,µ

3
) (g1

1,g
2
1) C(µ

1
,µ

2
,µ

3
,µ

4
,µ

5
) /

], , and .C(µ
2
,µ

1
,µ

4
,µ

5
,µ

3
) (e1,g2

2 ) (g1
1,g

2
2 )

Direct product groups are of interest because they identify fault lines along which the

dimensions of problem (9) may be reduced.  In particular, in Example 9 note that the path that

each argument in a cost functional may take is strictly smaller than argument set .  ToΩ
5

formalize the idea that the argument set may be partitioned according to the paths taken when

operated on by group elements, we employ the definitions of the orbit of an argument, a G-space,

and a decomposable group. 

Definition 8.  For group  acting on , the orbit of , which is labeled , is the subsetG̃ Ω
n

k 0Ω
n

O
k

of  that  replaces the kth coordinate with.  That is, write  as the element of  thatΩ
n

G̃ i ' g(k) Ω
n

group element  replaces  with.  Then .  g k O
k
' {i 0Ω

n
:g(k) ' i , g 0 G}
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Definition 9. [See Cameron (1999, p. 2)] For group  acting on , a G-space is a set G̃ Ω
n

∆ fΩ
n

(called a G-set) together with a function  satisfying the conditions γ :∆×G 6 ∆

a) γ(γ(α ,g
i
) ,g

j
) ' γ(α ,g

i
(g

j
) œ α 0 ∆, œ g

i
, g

j
0 G

b) .γ(α ,e) ' α œ α 0 ∆

In Example 1, the only G-set for  acting on  is  itself when the function is just theS̃
3

Ω
3

Ω
3

group acting on the G-set, .  No other  will do because no other  isγ(α ,g
i
) ' g

i
(α) ∆ fΩ

3
∆ fΩ

3

closed under group .  In Example 2,  has the G-set .  It also has the G-sets S̃
3

G̃
a

{1,2} {5 ,6}

and .  Notice that, for permutation groups in general, if an element of  is in two G-{1 ,2 ,5 ,6} Ω
n

sets for the same group then one of the G-sets must contain the other.  This is because a G-set

must contain either all the elements of an argument’s orbit or none of the elements of the orbit.

Definition 10. [See Hungerford (1974, p. 83)] A permutation group  is said to beG̃

decomposable if there exists a family of permutation groups, , such that . G̃
i
, i 0Ω

I
G̃ ' ×Ii'1G̃

i

This decomposition need not be unique.  

Proposition 4.  Let  be the group of invariances on the pseudo-cost functional where  isG̃ G̃

decomposable such that , and where each  acts only on G-set , one for eachG̃ ' ×Ii'1G̃
i G̃ i ∆

i

family member with .  Then system (9) decomposes into I sub-systems∆
j
_∆

k
' i œ j , k 0Ω

I

such that the admissible region for the values of the arguments represented by the G-set  ∆
i
, i 0

, is independent of arguments outside that set.Ω
I

Example 10.  Let the direct product group and pseudo-cost functional be as in Example 9. 

Further, for convenience let the transformations be linear with .  Then system (9)α
i
' α œ i 0Ω

5
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p
1
q(

1 % p
2
q(

2 $
p
1

β
1

β
2
q(

2 %
p
2

β
2

β
1
q(

1 ,

q(

1 $ 0, q(

2 $ 0,

(16')

p
3
q(

3 % p
4
q(

4 % p
5
q(

5 $
p
3

β
3

β
4
q(

4 %
p
4

β
4

β
5
q(

5 %
p
5

β
5

β
3
q(

3 ,

p3q(

3 % p4q(

4 % p5q(

5 $
p3

β3
β5q(

5 %
p4

β4
β3q(

3 %
p5

β5
β4q(

4 ,

q(

3 $ 0, q(

4 $ 0, q(

5 $ 0.

(16'')

decomposes into the sub-system with non-trivial conditions

and the sub-system with non-trivial requirements

The admissible regions are mutually separated so that the prices and productivities for one set of

arguments have no effect on the admissible region for the other set of arguments.

6  Quasiconvex cost

As far as the approach that we have taken is concerned, the quasiconvexity property carries with

it particularly useful structure on the level sets.  Specifically, quasiconvexity of the cost

functional allows a pre-ordering on vectors called G-majorization to be employed to advantage.

Assumption 3.   is increasing, quasiconvex and -symmetric.C(@): ú̄
n

%
6 ú̄

%
G̃

The group majorization, or G-majorization, pre-ordering is the means by which we will
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R[J
1
(µ(1),J2(µ

(

2), . . . ,Jn(µ
(

n)] $ R[J
1
(µ

1
),J

2
(µ

2
), . . . ,J

n
(µ

n
)] œ Pµ 0,(Pµ() . (17)

exploit this additional structure.

Definition 11. [From Marshall and Olkin (1979, p. 422)] Let  be a group of linearG̃

transformations mapping  to .  Then  is group majorized by  with respect to group ,ún ún Pz α Pz β G̃

written as , if  lies in the convex hull of the orbit of  under the group .Pz α ˜
G̃
Pz β Pz α Pz β G̃

For solution vector  to problem (P), write the convex hull as  where  Pµ( ,(Pµ() ,(Pµ() ' {Pµ: ›

.  The following generalization ofPα 0 ú*G*, α
i
$ 0 œ i 0Ω*G* ,'

*G*
i'1 αi ' 1, Pµ ''

g0GPα· Pµ
(

g}

Theorem 1 is readily demonstrated.

Theorem 3.  For (P) with assumptions 2 and 3, then 

The finding extends Theorem 1 in the following sense.  If quasiconvexity on the cost

functional is assumed, in addition to -symmetry and monotonicity, then dominance a) relativeG̃

to all group-generated points that define a convex hull may be strengthened to dominance b)

relative to all points on and in the convex hull.  That is, any point in the convex hull of Pµ(

garners (weakly) lower revenue.

7  Discussion

The intent of this paper has been to show that a study of a firm’s production decision vector

which emphasizes the presence and absence of structural symmetries can reveal much about what

sorts of decisions are optimal.  The appeal of the approach arises from the simple and intuitive

consequences that fall out of accepting some form of group symmetry.
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Nonetheless, one might wonder how the results might hold up under more general

production environments.  For example, our treatment of preferences was elementary.  Caplin

and Nalebuff (1991), who study unimodal measures of product attribute demands, provide a

more realistic framework for viewing product preferences.  Their analysis, which is founded on

what the Brunn-Minkowski theorem has to say about the measure of a convex set in , has aúm

strong geometry and algebra orientation.  Much of the recent work on measures of convex sets

has employed group theory [Tong (1980); Dharmadhikari and Joag-Dev (1988); Bertin et al.

(1997)].  It may be feasible to link a variant of the Caplin-Nalebuff demand structure with our

production structure to draw inferences about equilibrium pricing decisions for a multi-market

monopolist.

A general treatment of the multi-product firm in oligopoly markets will likely be more

challenging.  Quite apart from the larger set of strategic environments that present themselves,

there is the issue of accommodating the strategic interactions themselves.  For firms producing a

single, homogeneous good, Salant and Shaffer (1999) and others have exploited the symmetric

group to develop a theory of equilibrium.  Approaches that employ group theory or G-

majorization theory in a more formal manner may provide the modeler with sufficient lattitude to

glean useful additional insights.

Concerning the prospects for empirical inquiry into the forms taken by symmetries and

asymmetries in technologies and preferences, we note that the interest among statisticians in

symmetry has given rise to a large literature on testing for various symmetries and asymmetries. 

This literature includes, for example, work by Neuhaus and Zhu (1998) who develop a test for

symmetry under reflection groups, and by Koltchinskii and Li (1998) who develop a test for

spherical symmetry.

The above line of research seeks to establish a general framework for the study of

equilibrium level vectors in economic decision analysis.  A central feature of this framework
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involves the exploitation of invariance along a level curve.  In the theory of comparative statics

for economic systems, much use has been made of the related notion of the iso-quant.  It would

be of interest to establish how a theory of equilibrium level vectors might relate to the theory of

monotone comparative statics.  Observations on how levels and sensitivities of equilibrium

vectors relate will surely assist in establishing a coherent and integrated characterization of

equilibrium decisions.
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Appendix

Proof of Theorem 2.  For the reversed implication in part a), by invoking Corollary 1.2 we apply

group element  in inequality (6) to obtaing
ij

This is true for all , so that it is true for .  Therefore, p
i
$ p

j
p
i
' p

j

From Definition 4, it follows that if  then , i.e., .  To seeH
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the reversed implication, let  and .  Again we can choose over the interval µ(i $ µ
(

j p
i
$ p

j
p
i
$ p

j

and it is convenient to choose .  Again we arrive at inequality (A.2), which must be truep
i
' p

j

for all .  But this is the definition of the dispersive order, so that we have .µ(i $ µ
(

j H
i
(q) $

disp
H

j
(q)

To verify parts b) and c), we follow the obvious routes as given in Shaked and Shanthikumar

(1994).  Relation (8) is true if and only if  is increasing in .  Uponz(µ) ' H&1
i (µ) & H&1

j (µ) µ

substituting in , the monotonicity of  generates the equivalent condition thatµ ' H
j
(q) H

j
(q)

 be increasing in q.  Given that we have already assumed that the transformationH&1
i [Hj

(q)] & q

function derivatives exist, a straightforward differentiation of , together with a little algebra,z(µ)

yields the equivalent expression as given in part c). ~

Proof of Proposition 1.  The property of ‘normal’ follows from the definition.  For convexity,

pick points  and  that satisfy system (9).  Clearly  alsoPq
a

Pq
b

Pq
c
' λ Pq

a
% (1&λ) Pq

b
, λ 0 [0 ,1]

satisfies the system.  For part b), see page 54 in Solodovnikov (1980). ~
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Proof of Proposition 3.  Part a) is just a re-statement of the conditions that define the admissible

region.  The if implication of the first assertion in part b) follows from the insertion of Pq(
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In part c), if  then .  We will show that the solution to systemmax[α
1
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2
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] # 0 Pq
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(9) is in the shifted positive orthant .  If we can show this, then the inequalities  inPq( $ Pq
0
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(9) are slack and may be ignored.  The demonstration will be done by perturbations in the locality

of the vertex.  In particular, consider the point , where thePq
1
' Pq

0
% (0 ,0 , . . . , ε , . . . ,0)), ε > 0

only non-zero entry in vector  is at the ith ordinate.  Suppose too, and without(0 ,0 , . . . , ε , . . . ,0))

loss of generality, that  for some .  For this group element, and for the point ,β
g(i )
> β

i
g 0 G Pq
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compute the bound

to obtain

Thus, any hyperplane through vertex  and parallel to any of the n axes does not intersect thePq
0

convex polyhedral cone.  That is, if the cone’s vertex were translated to the origin then the cone
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