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Abstract

This paper provides a new approach to testing cointegration parameters in a single-
equation cointegration environment. The novelty is in improving over the well-known
heteroscedasticity and autocorrelation consistent (HAC) robust standard errors using
fixed bandwidth (fixed-b) asymptotic theory and adapting it to the cointegration envi-
ronment. It is shown that the standard tests still have asymptotic distributions free of
serial correlation nuisance parameters regardless of the bandwidth or kernel used, even
if the regressors in the cointegration relationship are endogenous. Using asymptotic
power and finite sample size simulation experiments, a specific kernel and bandwidth
choice is recommended. Finite sample simulations comparing the size and power of the
test using the fixed-b asymptotics to some of the currently popular tests are performed.
These simulations confirm that the well-known size distortion of the standard tests can
be greatly reduced. Finally, the newly developed test is employed to investigate the
standard money-demand relationship for US data.
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1 Introduction

In this paper, we consider univariate models where time series data are generated by unit

root processes and the variables captured by these data series are cointegrated. Among the

many applications of such models are estimation of money demand, testing of the Purchas-

ing Power Parity hypothesis, and examination of the expectations hypothesis governing the

term structure of interest rates.1 It is well known that heteroscedasticity and serial corre-

lation are almost always present in the aforementioned type of data, and unless properly

dealt with, impair the ability of the researcher to conduct proper statistical inference.2

The standard single-equation approach used to deal with heteroscedasticity and serial

correlation is to estimate the correlation structure of the error terms using non-parametric

heteroscedasticity and autocorrelation consistent (HAC) estimators.3 These estimators

furnish consistent estimates of the correlation structure, allowing inference on the coin-

tegrating vector to be carried out using conventional tests. Inference conducted in this

manner leads to pivotal tests, and is robust to heteroscedasticity and serial correlation of

unknown form. Even though tests that use HAC estimators are valid asymptotically, they

typically display substantial size distortions.4 Assuming that size distortions are a problem

in non-stationary models as well, it is apparent that there may be significant benefits from

improving upon this procedure.

Recent efforts have been made to improve upon the HAC approach in standard (sta-

tionary) regression models. The first paper in this literature was Kiefer, Vogelsang and

Bunzel (2000) where a new test based on the Bartlett kernel with bandwidth equal to

sample size was developed. Continuing this line of research, Bunzel, Kiefer and Vogelsang

(2001) extended the theory to non-linear, stationary regression models and Kiefer and

Vogelsang (2002) developed the new fixed bandwidth (fixed-b) asymptotic theory. In the

case of a cointegration relationship with exogenous regressors, applying fixed-b asymptot-

ics would have been a straightforward extension of the theory in the standard regression

model. However, when the regressors are allowed to be endogenous, the task is non-trivial.
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The principle behind the fixed-b theory is to let b = M/T where T is the sample size

and M is the truncation lag or bandwidth used in the HAC estimator. The standard

assumptions would require that b → 0, but fixed-b asymptotics instead assumes that the

truncation lag is a fixed proportion of the sample, i.e., that b is fixed. This approach has

several advantages. First, it improves the asymptotic approximation, resulting in reduced

size distortions. Second it provides an asymptotic distribution which depends on the band-

width and kernel, thus providing us with better tools for choosing these parameters. We

show that tests based on the Daniell kernel with b = 0.2 provides excellent finite sample

size while sacrificing the least possible power.

To demonstrate the properties of the selected test statistics, we carry out a set of

finite sample simulations, which compare the size and power of the test using the fixed-

b asymptotics to some of the currently used tests in the literature. These comparisons

document that the new asymptotic theory can provide us with tests that have vastly

improved size properties even in small samples, although the size improvements come at

the cost of some power.

In the empirical application we use the recommended test statistic to investigate the

long-run money-demand relationship for the US. A thorough examination was provided by

Stock and Watson (1993). Their results were subsequently re-examined and rejected by

Ball (2001), who used simulations to attempt to counter the usual size inflation. Our results

confirm that Ball’s simulation results were fairly accurate, and that the results obtained

by Stock and Watson can be rejected. Thus, while Ball was able to reach a conclusion

only after extensive simulations which required parametric modelling and estimation of

the error terms, the test we recommend can provide the same conclusion in one step using

a standard software package.

The rest of the paper is organized as follows. In Section 2, we describe the model and

the basic assumptions. The asymptotic distributions are derived and described in Section

3, in Section 4 we perform simulations to determining which kernel and bandwidth should
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be used and in Section 5 we compare the performance of the chosen test statistics to those

commonly used in the literature. In Section 6 we re-consider the money-demand estimation

performed in Ball (2001) using the new test and Section 7 concludes.

2 Preliminaries

Consider the following model containing a single cointegrating relationship as well as some

deterministic variables:

yt = f (t)0 α+X 0
tβ + u1,t, t = 1, ..., T, (1)

Xt = Xt−1 + u2,t,

where f (t) denotes a (k1 × 1) vector of trend functions, Xt is a (k× 1) vector of re-

gressors, and α and β are (k1 × 1) and (k× 1) vectors of parameters respectively. Let 0

denote the transpose, except when it is used in conjunction with the kernel function, where

it will denote the derivative. The following assumptions will be maintained throughout

the paper. Conditional on Xt, u1,t is a scalar, mean zero random process. The sequence

{ut} =
©
(u1,t, u

0
2,t)

0ª does not contain unit roots, but may exhibit serial correlation or
heteroscedasticity.5

At times, it will be useful to stack the first equation in (1) and rewrite it as

y = f (T )α+Xβ + u1. (2)

Here f (T ) is the (T × k1) stacked vector of trend functions, and X is the (T × k) matrix

of regressors. The following notation is required before we state the main assumptions

of the paper. Denote Sct =
Pt

j=1 uc,j , c = 1, 2, St =
Pt

j=1 uj , Γ (j) = E
³
utu

0
t+j

´
,

Γ22 (j) = E
³
u2,tu

0
2,t+j

´
, let wj (r) be a j-vector of independent Wiener processes, and

[rT ] the integer part of rT, where r ∈ [0, 1] . “⇒ ” is used to denote weak convergence.

The first assumption, which follows Vogelsang (1998), is made to rule out ill-behaved
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trend functions, and to provide some useful notation for deriving and stating the asymptotic

distributions.

Assumption 1 : There exists a (k1 × k1) diagonal matrix τT and a vector of func-

tions F , such that τT f (t) = F
¡
t
T

¢
+ o (1) ,

R 1
0 Fi (s) ds < ∞, i = 1, ..., k1, and

det
hR 1
0 F (s)F (s)

0 ds
i
> 0. In addition, f (t) includes a constant term.

Assumption 1 can be relaxed, but as it stands, is sufficiently general to cover most

commonly used models. For later use, let F (T ) be the matrix of the stacked F (t/T )

functions.

The next assumption provides us with the necessary invariance principles, and ensures

that we can estimate (1) consistently, even when the regressors are endogenous.

Assumption 2 : {ut}∞t=1 satisfies the following conditions

(a) E (ut) = 0 for all t.

(b) E
¡
T−1STS0T

¢
→ Ω, a positive definite matrix, as T →∞.

(c) supt (E kutkκ) <∞ for some κ where 2 < κ <∞.

(d) E
¡
T−1 (Sj+T − Sj) (Sj+T − Sj)

0¢→ Ω, as min (j, T )→∞.

(e) {ut}∞t=1 is α− mixing with coefficient −κ/ (κ− 2) .

(f) guu (λ) ≥ ϑIk+1, where ϑ > 0, λ ∈ [0;π] and guu (λ) is the spectral density matrix

of u.6

(g)
P∞

j=−∞ kΓ (j)k <∞

(h)
∞PP

m1,m2=−∞
|kumijkl (m1,m2)| < ∞, where kumijkl (m1,m2) denotes the fourth

order cumulant of ut.

Assumption 2 (a)-(e) has been used extensively in the literature on non-parametric

covariance matrix estimation to ensure that the relevant multivariate invariance principles

hold. These conditions are sufficient to provide the asymptotic distribution of the OLS

estimates of (1) if the regressors are exogenous. Assumption 2 (f)-(h) is made to allow us
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to deal with endogenous regressors in the manner suggested by Saikkonen (1991), Phillips

and Loretan (1991), Stock and Watson (1993) and Wooldridge (1991). A direct implication

(see Saikkonen (1991)) is that we can write u1,t as

u1,t =
∞X

j=−∞
γju2,t−j + vt, (3)

where
P∞

j=−∞
°°γj°° <∞ and vt is a stationary process such thatE

¡
u2,tv

0
t+l

¢
= E

¡
(Xt −Xt−1) v0t+l

¢
=

0, l = 0,±1,±2, ... Following standard procedure, we can thus estimate the model using

Dynamic Ordinary Least Squares (henceforth DOLS), i.e., we estimate

yt = f (t)0 α+X 0
tβ +

pX
s=−p

∆X 0
t−sγs + v̇t, t = p+ 1, ..., T − p, (4)

where ∆Xt = Xt − Xt−1, and v̇t = vt +
P
|j|>p γju2t−j . We are now ready to make the

third and final assumption:

Assumption 3 : Let p→∞ such that p3/T → 0 and T
1
2
P
|j|>p

°°γj°°→ 0.

Saikkonen (1991) shows that if Assumption 3 holds, then (4) is asymptotically equiva-

lent to7

yt = f (t)0 α+X 0
tβ + vt,

and under Assumptions 1-3, the asymptotic distributions of the least squares estimates of

α and β are well known.8

To conduct inference on β using the DOLS estimates, the standard procedure is to

estimate the asymptotic covariance matrix using non-parametric covariance matrix (HAC)

estimates and then form Wald or t−type tests. Specifically, if we denote the Cholesky com-

position of Ω by Ω
1
2 =

⎡⎣ σ σ12

σ21 Λ

⎤⎦ , an estimate of σ is required. The HAC estimators

of σ take the general form

σ̂2 =

T−p−1X
j=−(T−p−1)

k (j/M) Γ̂j , where Γ̂j =

⎧⎨⎩ 1
N

PT−p
t=j+1 v̂tv̂t−j , for j ≥ 0

1
N

PT−p
t=−j+1 v̂t+j v̂t, for j < 0

. (5)
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Here N = T − (2p + 1), v̂t are the residuals from (4), M is called the bandwidth or

the truncation lag, and k (x) is a kernel function satisfying k (x) = k (−x) , k (0) = 1,

|k (x)| ≤ 1, k (x) continuous at x = 0 and
R 1
0 k

2 (x) dx < ∞. For σ̂2 to be consistent, it is

necessary that M → ∞ and M/T → 0 as T → ∞. Since the standard asymptotic tests

are based on consistent estimates of σ2, the choices of kernel and bandwidth do not enter

the asymptotic distribution of the test statistic. While this may be convenient, it has been

well documented in the literature that these choices affect the finite sample behavior of σ̂2

and hence the finite sample performance of the test statistic. In the next section, we will

apply the fixed bandwidth (fixed-b henceforth) asymptotic theory introduced by Kiefer and

Vogelsang (2002). Using this asymptotic theory, the asymptotic distribution of σ̂2 depends

directly on the choice of bandwidth and kernel. This dependence can help provide some

guidance to the applied researcher regarding the choices of kernel and bandwidth through

local asymptotic power comparisons.

3 Fixed-b asymptotics.

Although the standard methods of asymptotic testing make use of a consistent estimator of

σ, this is not required to carry out valid testing. In its place, any stochastic variable with

an asymptotic distribution proportional to σ can be utilized to obtain a pivotal statistic.

Thus, the assumption that M/T → 0, which is required for consistency, can be relaxed.

Following Kiefer and Vogelsang (2002), we instead assume that M is directly proportional

to T , such that M = [bT ] and develop this asymptotic theory for the cointegration model.

The limiting distribution of σ̂2 will depend on the specific bandwidth (now fully determined

by the parameter b) and kernel used to construct the estimator. This dependence improves

the asymptotic approximation, which shows up in the simulations in the form of smaller

size distortions than tests where b→ 0.

To proceed we provide the following definition, which describes two different types of

kernels.
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Definition A kernel is labelled Type 1 if k (x) is twice continuously differentiable every-

where and as a Type 2 kernel if k (x) is continuous, k (x) = 0 for |x| ≥ 1 and k (x) is

twice continuously differentiable everywhere except at |x| = 1.

In addition, we will consider the Bartlett kernel separately. The following lemma provides

the asymptotic distribution of σ̂2 under fixed-b asymptotics and for various choices of

kernels. To state the asymptotic distributions, we define

V (r) = w1 (r)−
Z r

0
F (s)0 ds

µZ 1

0
FX (s)FX (s)0 ds

¶−1 Z 1

0
FX (s) dw1 (s)

−
Z r

0
wk (s)

0 ds

µZ 1

0
wF
k (s)w

F
k (s)

0 ds

¶−1 Z 1

0
wF
k (s) dw1,

where wF
k (s) is defined as the residual from the projection of wk (s) on the subspace

generated by F (s) in the Hilbert space of square integrable functions on [0,1] with the

inner product (f, g) =
R 1
0 fg. Correspondingly, F (s)

X is the residual from the projection

of F (s) onto the space generated by wk (s) .

Lemma 1 If k is Type 1,

σ̂2 ⇒ −σ2
R 1
0

R 1
0 k

∗00 (r − s)V (r)V (s) drds.

If k is Type 2

σ̂2 ⇒ σ2
³R R

|r−s|<b−k∗00 (r − s)V (r)V (s) drds+ 2k∗
0
− (b)

R 1−b
0 V (r + b)V (r) dr

´
,

where k∗ (x) = k
¡
x
b

¢
, and k∗

0
− (b) is the derivative of k

∗ (x) from below at b.

If k is the Bartlett kernel,

σ̂2 ⇒ σ2 · 2b
hR 1
0 V (r)

2 dr −
R 1−b
0 V (r)V (r + b) dr

i
.

The proof of Lemma 1 follows that of Kiefer and Vogelsang (2002), but with the added

complication that endogenous regressors are present, and therefore some additional work

is required to determine the asymptotic distribution of the partial sums of the residuals.

The asymptotic distribution of σ̂2 is proportional to σ2 and depends on the bandwidth and

kernel as expected.
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Using Lemma 1, hypotheses of the form H0 : Rβ̂ = β0, can be tested using the standard

Wald test.9 In what follows R is a non-stochastic restriction matrix of dimension q×k and

rank q. The Wald test for H0 is defined as

W = T
³
Rβ̂ − β0

´0 h
σ̂2RQ−1fXR

0
i−1 ³

Rβ̂ − β0

´
, where

QfX =

⎛⎝ 1
T

⎡⎣ f (T )0 f (T ) f (T )0X

X 0f (T ) X 0X

⎤⎦⎞⎠ .

The corresponding one-dimensional t−test can be obtained in the usual manner. Theorem

2 below states the asymptotic distribution of W under fixed-b asymptotics.

Theorem 2 Suppose Assumptions 1, 2, and 3 hold. Then, under H0,

W ⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
³
−
R 1
0

R 1
0 k

∗00 (r − s)V F (r)V F (s) drds
´−1

W̃X if k is type 1

UF (k, b)−1 W̃X if k is type 2³
2
b

hR 1
0 V

F (r)2 dr −
R 1−b
0 V F (r)V F (r + b) dr

i´−1
W̃X if k is Bartlett

where

W̃X =
R 1
0 ŵ

F
q (s)

0 dŵF
1 (s)

³R 1
0 ŵ

F
q (s) ŵ

F
q (s)

0 ds
´−1 R 1

0 ŵ
F
q (s) dŵ

F
1 (s) ,

V F (r) = ŵF
1 (r)−

R r
0 ŵ

F
q (s)

0 ds
³R 1
0 ŵ

F
q (s) ŵ

F
q (s)

0 ds
´−1 R 1

0 ŵ
F
q (s) dŵ

F
1 (s) ,

and

UF (k, b) =
R R

|r−s|<b−k∗00 (r − s)V F (r)V F (s) drds+ 2k∗
0
− (b)

R 1−b
0 V F (r + b)V F (r) dr.

This theorem demonstrates that it is possible to obtain pivotal test statistics with the

fixed-b assumption. The asymptotic distribution of the Wald test depends on the kernel

and bandwidth, and through ŵF
q (s) , it also depends on the number of restrictions being

tested, the number of regressors in the model, and the trends included, where standard

b→ 0 asymptotics would have resulted in an asymptotic χ2 distribution. The fact that the

limiting distribution of the test statistic depends upon the choice of bandwidth and kernel

allows us to carry out asymptotic simulations to determine how the bandwidth affects

performance of the test-statistic, something which isn’t possible under the standard χ2
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distribution. These simulations will guide the choices of kernel and bandwidth and are

implemented in Section 4.

4 Choice of Kernel and Bandwidth.

In this section we use simulation experiments to analyze how the performance of the test

statistic varies with the choice of bandwidth and kernel. Ideally, this analysis should be

performed by examining the higher order expansions for the test statistic, but at this

time, these have not been developed for fixed-b asymptotics. The only theory comparing

the fixed-b approach to the standard asymptotics is developed in Jansson (2002), where

it is shown that the fixed-b asymptotics provides a smaller error in rejection probability

than the standard approach in a simple location model with normally distributed errors.

Lacking the required theory at this point in time, we therefore perform the analysis using

simulations. This exercise will culminate in the recommendation of specific choices of both

kernel and bandwidth. Initially, we examine how local asymptotic power of the test statistic

in a simple model varies depending on the choice of kernel and bandwidth. In addition, we

consider finite sample coverage probabilities, since there is likely to be the usual trade-off

between size and power.

4.1 Local Asymptotic Power

Local asymptotic power will be examined in the following simple model:

yt = α+ βxt + u1,t, (6)

xt = xt−1 + u2,t, t = 1, .., T,

where x is exogenous. The first set of simulations determines the asymptotic power of

the t−test for the hypothesis H0 : β = 0. For the asymptotic power analysis, the local

alternative is given by HA : β = T−1c. All tests will be carried out at the 5% level.
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To obtain local asymptotic power, we need the distribution of the t−statistic both

under the null and under the alternative. The distribution under H0 follows directly from

Theorem 2. Under HA the asymptotic distribution of the numerator of the t−statistic is

given by:

T β̂ ⇒ c+ σΛ−1
µZ 1

0
wF (s)wF (s)0 ds

¶−1µZ 1

0
wF (s) dw1 (s)

¶
.

Inserting this expression as well as the asymptotic distributions of σ̂2 from Lemma 1, the

asymptotic distribution of t under HA is

t
HA⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λc/σ+( 1
0 wF (s)2ds)

−1 1
0 wF (s)dw1(s)

− 1
0

1
0 k00(r−s)V F (r)V F (s)drds( 1

0 wFk (s)w
F
k (s)

0ds)
−1 if k is type 1

Λc/σ+( 1
0 wF (s)2ds)

−1 1
0 wF (s)dw1(s)

UF (k,b)( 1
0 wFk (s)w

F
k (s)

0ds)
−1 if k is type 2

Λc/σ+( 1
0 wF (s)2ds)

−1 1
0 wF (s)dw1(s)

2
b

1
0 V F (r)2dr− 1−b

0 V F (r)V F (r+b)dr ( 1
0 wFk (s)w

F
k (s)

0ds)
−1
if k is Bartlett

(7)

All the simulations in this section were performed using sums of N(0, 1) i.i.d. random

variables to approximate the Wiener processes in the distributions. In each case, the pro-

gramming was performed using GAUSS and 50, 000 replications were used. The integrals

were computed as averages over 1500 simulated observation points. The distance from

the null hypothesis, c, was allowed to vary from 2 to 14, and the power was calculated

for b = 0.02, 0.04, ..., 1. Figure 1 depicts the asymptotic power of the Daniell kernel as a

function of b for different values of c. From this figure, it is immediately clear that smaller

b provides better power. The corresponding figures for the Quadratic Spectral (QS), the

Parzen, the Bartlett and the Bohman kernels differ only in the magnitude of the power

loss when b increases, and are hence omitted.

In Table 1, we report the power of all five kernels when b = 0.02. From these numbers,

it is immediately clear that when b = 0.02 the power across kernels is virtually identical.

Intuitively, this is not surprising: The b = 0.02 case is very similar to the asymptotic results

when b → 0, where asymptotic power is identical across kernels and bandwidths. From

Figure 1 and Table 1 it is clear that were we to recommend a kernel and a bandwidth based
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on local asymptotic power alone, we would recommend as small a bandwidth as the data

allows and any convenient kernel.

4.2 Finite Sample Size

Next, we consider how the choice of bandwidth and kernel affects finite sample size. Again

the simulations are based on (6). The errors are generated according to u1t = ρu1t−1+et+

λet−1, where {et} and {u1t} are i.i.d. N (0, 1) , with ρ = 0, 0.8, 0.9 and for λ = −0.8, −0.4,

0, 0.4, 0.8. We report results for T = 50. Figure 2 depicts the size of the test using the

Daniell kernel as a function of the bandwidth, where each curve corresponds to a different

DGP (for reasons of visual clarity only a selection of processes are presented). The graphs

for the other kernels are qualitatively similar and therefore not reported. From Figure 2,

it is clear that the size improves as b increases.10 This implies that we will face a trade-off

between size and power, with the size distortion minimized at b = 1, but the highest power

at b = 0.02.

Before we proceed to recommend a bandwidth choice, we again consider the question of

which kernel to use. Table 2 provides the size for the five kernels when b = 1 across various

data generating processes. From here it is apparent that the Bartlett kernel performs sig-

nificant worse than the other four kernels while the Daniell kernel provides marginally less

size distortion than the rest. As such we should recommend the Daniell kernel with b = 1

if the choice were to be made solely based on finite sample size considerations. Unfortu-

nately, the power loss resulting from using b = 1 as opposed to b = 0.02 is considerable, as

can be seen from Figure 3, which depicts the local asymptotic power of the test when we

use the Daniell kernel with bandwidths b = 0.02 and b = 1 respectively. While we cannot

completely avoid weighing power and size considerations when choosing a bandwidth and

a kernel, we do not actually have to go to the extreme of comparing b = 0.02 and b = 1.

Returning our attention to Figure 2, we see that while size does improve as b increases,

the curve is very flat for most values of b. Specifically, the increased size distortion when
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moving from b = 1 to b = 0.2 is minimal. Similarly the QS kernel sees little differences in

size between b = 0.2 and b = 1, while the Parzen and Bohman kernels have size curves that

remain flat for b ≥ 0.4. From Table 3, we note that among the QS-0.2, Dan-0.2, Parzen-0.4

and Bohman-0.4, the Dan-0.2 still has marginally better size than the other tests.11 Figure

4 in turn demonstrates that these four test have basically the same asymptotic power.

Because of the marginally better size properties, we choose the Dan-0.2 test statistic, but

it is clear that the four statistics we are considering have virtually identical properties. We

are now ready to provide the critical values for the Dan-0.2 test.

4.3 Critical Values

All the critical values in this paper are calculated using sums of N(0, 1) i.i.d. random

variables to approximate the Wiener processes in the distributions. In each case, 50, 000

replications were used, and the integrals were computed as averages over 1, 000 equally

spaced points. Table 4 reports critical values for the Daniell kernel with b = 0.2 for

f (t) = α and f (t) = α0 + α1t. The critical values correspond to the Wald version of the

tests, and as usual critical values for the t version of the test (applicable when q = 1) are

calculated by taking the square root. The table provided here allows for up to six regressors.

5 Monte-Carlo Comparisons

In this section, we will compare the performance of the Dan-0.2 test with some of the

standard HAC tests currently employed. We will do this by finite sample simulations, where

we compare the size and power of the Dan-0.2 with two standard tests. These are a) the

test statistic using the HAC estimator recommended by Andrews (1991), which utilizes the

quadratic spectral kernel and an automatic data-dependent bandwidth selection procedure,

b) the same HAC estimator, but pre-whitened based on a AR(1) model, as suggested by

Andrews and Monahan (1992). These tests are labelled HAC and HAC-pw respectively.
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The simulations are carried out for the model

yt = α+ βxt + u1,t, (8)

xt = xt−1 + u2,t, t = 1, .., T,

where ut is generated according to Φ (L)ut = et, where {et} is i.i.d. N (0,Σe) . As a

benchmark, we report results for the case where the errors are independent and T = 50. In

addition we report results for T = 50, 100 in a case where there is endogeneity present. The

data is generated with α = β = 0, since the results are invariant to this normalization. The

power and size are given for the hypothesis H0 : β = 0, which is performed as a two-sided

test with a nominal level of 5%, and the alternative used is given by HA : β = c.

The case with independent errors corresponds to Φ = 0 and Σe = I2. In this case (8)

is estimated using standard OLS, and the standard t-test, which is the optimal test for

this DGP, is included as well. The tests are carried out at a nominal size of 5%, which

coincides with the actual size of the the Dan-0.2 test, but the finite sample sizes of the t,

HAC and the HAC-pw tests are 6%, 7% and 9% respectively. Figure 5 depicts the finite

sample power of the four tests. From here it is clear that the HAC and the HAC-pw have

virtually identical power, which dominates the power of the Dan-0.2 test statistic. The

HAC tests also slightly dominate the t-test with regards to power. With this benchmark

in mind, we will now add endogeneity to the model.

We model endogeneity following Stock andWatson (1993), whereΦ =

⎡⎣ −.103 −.039
−.062 .643

⎤⎦
and Σe = 0.01×

⎡⎣ .951 .499

.499 1.374

⎤⎦ and (8) is estimated with DOLS. When T = 50, we report
results for p = 1, 2, 3 and when T = 100, we report results for p = 1, .., 5. Tables 5 provides

the finite sample sizes of the three test-statistics for the hypothesis H0 : β = 0, which is

performed as a two-sided test with a nominal level of 5%. From this table it is clear that

using Dan-0.2 strictly dominates any of the other tests in size. In fact, when T = 50, 0.18

is the highest rejection probability obtained by Dan-0.2, while 0.30 is the lowest rejection
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probability obtained by the other two test statistics! It is also worth noting that HAC-pw

strictly dominates the HAC test. In conclusion, the Dan-0.2 test should be chosen for

superior size performance.

An additional point which deserves mention is the fact that choosing the best test

statistic seems far more important that choosing the “right” value of p. For a given test

statistic, size changes by no more than 0.09 depending on the choice of p, while for a given

value of p, size changes by as much as 0.21 depending on the choice of test statistic.

The next step, then, is to compare the power of these three test statistics. Tables 6

and 7 provide the finite sample power for all three statistics for T = 50, p = 1, 2, 3 and

T = 100, p = 1, .., 5 respectively.

In terms of power, the HAC dominates the HAC-pw, which dominates the Dan-0.2 test.

This result is not particularly surprising as the HAC and HAC-pw tests have actual sizes of

50% and 30% respectively with a nominal level of 5%. So while the Dan-0.2 has excellent

size properties, the power performance is weaker than that of the standard HAC test, and

the size power trade-off is still evident, also between the HAC and the HAC-pw tests. It

is evident that the differences between the test statistics are much more pronounced when

there is endogeneity in the data: The size distortion of the standard HAC tests skyrockets,

but their power advantage increases. Again, it is worth noting that the choice of p has very

little impact on the power of the test statistics compared to the choice of the test statistic.

In fact no choice of p maximizes power uniformly for all alternative hypotheses.

In conclusion, the new test statistic provides a test which has approximately correct

size for even very small sample sizes, while still maintaining good power.

6 Money-Demand Estimation

In this section, we will re-examine the long run money demand relationship for the United

States. It is generally accepted that the long-run demand for money is functionally related

to interest rates and national income. The model and data for this application is the same
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as that of Ball (2001), who in turn based his analysis on the seminal work of Lucas (1988)

and Stock and Watson (1993). Ball used the same econometric methods as Stock and

Watson (1993), but extended the data by 9 years and got drastically different results. We

are interested in examining the robustness of the results obtained by Ball.

The model of interest is the following canonical money-demand function:

m− p = α+ θyy + θrr + ε, (9)

where m, p, and y are the logs of the money stock, the price level and real output. r

is the nominal interest rate. m is measured as M1, output as NNP , the price level is

the NNP -deflator and r is the commercial paper rate. Details can be found in Stock and

Watson (1993). Both Ball (2001) and Stock and Watson (1993) have independently verified

that (9) is a valid cointegration relationship. This allows us to proceed with the methods

described in earlier sections of this paper. In this application, we focus on the post-war

era only, utilizing data from 1946 through 1996.

Stock and Watson (1993) had reached the conclusion that the income elasticity (θy)

was near one and the interest semi-elasticity (θr) was approximately −0.1. Ball (2001), on

the other hand, obtains estimates of 0.5 and −0.05 respectively, and with much tighter

standard errors, thus he rejects the values θy = 1 and θr = −0.1 obtained by Stock and

Watson (1993).12

The hypotheses tested by Ball (2001), which we wish to re-visit are: Hjoint : θy = 1

and θr = −0.1, Hy : θy = 1, and Hr : θr = −0.1. Estimating (9) using DOLS and

routine procedures to obtain the standard errors, Ball rejects Hjoint with a p−value less

that 10−14. He then estimates the error structure parametrically and uses these estimates

to perform simulations and obtains more realistic p−values. Through this procedure, he

obtains p−values for Hy and Hr of 0.001 and 0.02 respectively, and for Hjoint, he ultimately

finds a p−value of 0.004. These results indicate that the values obtained by Stock and

Watson, can be rejected and that the usual standard errors are grossly over-estimated. The
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exaggerated standard errors under the null correspond to what we would expect according

to the simulations in earlier sections. Table 8 provides the parameter estimates from the

estimation of (9) with 2 leads and lags of y and r included as regressors as well as the

W−statistics for Hjoint, Hy and Hr. Using Dan-0.2 the p−values are 0.0001 and 0.0006 for

Hy and Hr and 0.0003 for Hjoint. These values are quite similar to the simulation results

reported in Ball (2001), and certainly more realistic than those obtained by standard

methods. If the p−values obtained by the Dan-0.2 test are accurate, the suggestion is that

Ball ultimately underestimates the standard errors of the parameter estimates.

The results obtained in this section should provide confidence in the rejection of the elas-

ticities obtained by Stock and Watson. While there is no way to determine which p−values

are correct, this application in conjunction with the simulations in earlier section of the

paper indicates that realistic p−values can be quickly obtained without explicit paramet-

ric modeling of the unknown error structure and without the time-consuming simulations

performed in Ball (2001).

7 Conclusion

In this paper we have proposed a new test for hypotheses regarding the cointegration

vector in a single-equation cointegration model. The new test is based on the standard

OLS HAC robust covariance estimators and does not require knowledge of the form of

serial correlation in the data The tests we analyze are . We extend the fixed-b asymptotic

framework for HAC robust tests recently proposed by Kiefer and Vogelsang (2002). This

allows us to analyze the power properties of the new test with regards to bandwidth and

kernel choices. We address the traditionally difficult issue of HAC bandwidth choice using

fixed-b asymptotics in conjunction with local to unity asymptotics. Our analysis shows

that among popular kernels, the Daniell kernel with bandwidth 0.2T delivers tests with

size close to the nominal size while retaining good power and hence the Dan-0.2 test is

recommended in practice. The test provides a new tool for investigation of single equation
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cointegration models and it can be computed using any standard package.

We perform finite sample simulation experiments to verify the performance of the test

statistic, and finally we apply the newly developed test to investigate the well known

money-demand relationship.

The test introduced in this paper provides a solution to the size inflation and choice of

bandwidth introduced by the serial correlation in the errors. To estimate the parameters

when the regressors are endogenous, DOLS is used. This, however introduces some issues

that are very similar to the choice of bandwidth. While simulations indicate that the

problems introduced by serial correlation are more severe, a goal for future research should

be to deal with both issues at once. Currently the most promising avenue to achieve this is

to use the Fully Modified estimator introduced by Phillips and Hansen (1990) to estimate

the model and the apply the fixed-b theory to these estimators directly.
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Appendix

A Proof of Lemma 1.

Following Kiefer and Vogelsang (2002), we define

∆2κij =

½
k

µ
i− j

[bN ]

¶
− k

µ
i− j − 1
[bN ]

¶¾
−
½
k

µ
i− j + 1

[bN ]

¶
− k

µ
i− j

[bN ]

¶¾
,

and use this expression to rewrite σ̂2 as

σ̂2 = N−1
N−1X
l=1

N−1
N−1X
i=1

N2∆2κil

³
N−1/2 bSi´³N−1/2 bSl´ , (10)

where bS[rN ] = P[rN ]
t=1 v̂t+p and {v̂t}T−pt=p+1 are the residuals from (4). Note that for (10)

to be valid it must be the case that the residuals sum to zero. Therefore, for the results
which follow to be valid f (t) must include a constant term as assumed in Assumption
1. To establish the asymptotic distribution of σ̂2, it is necessary first to determine the
asymptotic distribution of Ŝ[rN ].

Lemma 3 Under Assumptions 1-3, N− 1
2 Ŝ[rN ] ⇒ σV (r) .

Proof. First define γ = [γ0−p, ..., γ0p]0, which is a (k (2p+ 1)× 1) vector of parameters
and let ∆Zt+p =

£
∆X 0

t−p,∆X
0
t−p+1,...,∆X

0
t+p

¤0 be the corresponding vector of regressors.
Simple matrix manipulations yield:

N− 1
2 Ŝ[rN ] = N− 1

2

[rN ]X
t=1

³
v̇t+p − f (t+ p)0 (α̂− α)−X 0

t+p

³
β̂ − β

´
−∆Z0t+p (γ̂ − γ)

´

= N− 1
2

[rN ]X
t=1

v̇t+p −

⎡⎣ N−1P[rN ]
t=1 f (t+ p)

N−3
2
P[rN ]

t=1 Xt+p

⎤⎦0 ⎡⎣ N
1
2 (α̂− α)

N
³
β̂ − β

´
⎤⎦

−N−1
2

[rN ]X
t=1

∆Z0t+p (γ̂ − γ) (11)
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In what follows, we will show that the last term in the expression for Ŝ[rN ], (11), is OP

³
p2

T

´
and therefore does not affect the asymptotic distribution of Ŝ[rN ]. First rewrite the expres-
sion.

N− 1
2

[rN ]X
t=1

∆Z0t+p (γ̂ − γ) = N− 1
2

[r(T−p)]X
t=p+1

pX
s=−p

u02,t−s (γ̂s − γs)

= N− 1
2
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0
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2

[r(T−p)]X
t=p+1

u2,t−s

⎞⎠
Considering the norm of this expression,

E

°°°°°°N− 1
2
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°°°°°° ≤
pX
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E
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2
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1
2

.

Saikkonen (1991) proved that under Assumption 2, k(γ̂s − γs)k2 = OP

¡
1
T

¢
, thus we con-

centrate on the last term in the product above.

E
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By Assumption 2 g)
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q=p+1−t trΓ22 (q) ≤ C <∞, implying that

N−1P[r(T−p)]
t=p+1

P[r(T−p)]−t
q=p+1−t trΓ22 (q) = OP (1) . We can thus conclude that
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and by Jensen’s inequality, it follows that E
°°°N− 1

2
P[rN ]

t=1 ∆Z
0
t+p (γ̂ − γ)

°°°2 = OP

³
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´
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N

¢
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³
p2

T

´
as desired.

We can now determine the asymptotic distribution of T−
1
2 Ŝ[rN ] from the first two

terms of (11). By Assumptions 1-3 we know from Saikkonen (1991) and Phillips and
Hansen (1990) that⎡⎣ T

1
2 τ−1T (α̂− α)

T
³
β̂ − β

´
⎤⎦⇒

⎡⎣ σ
³R 1
0 F

X (s)FX (s)0 ds
´−1 R 1

0 F
X (s) dw1 (s)

σ (Λ0)−1
³R 1
0 w

F
k (s)w

F
k (s)

0 ds
´−1 R 1

0 w
F
k (s) dw1 (s)

⎤⎦ ,
and ⎡⎣ T−1

P[rN ]
t=1 τT f (t+ p)

T−
3
2
P[rN ]

t=1 Xt+p
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It also follows directly from Assumption 2 that N− 1

2
P[r(T−p)]

t=p+1 v̇t ⇒ σw1 (r) . Since N
T → 1,

it will also be the case that T−
1
2
P[r(T−p)]

t=p+1 v̇t ⇒ σw1 (r) . So it is now established that

T−
1
2 Ŝ[rN ] ⇒ σw1 (r)− σ

Z r

0
F (s)0 ds

µZ 1
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FX (s)FX (s)0 ds
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= σV (r) .

The rest of the proof is split into three cases, corresponding to Type 1, Type 2 and the
Bartlett kernels. It follows directly from Kiefer and Vogelsang (2002) and Lemma 3.

Case 1: k (x) is a Type 1 kernel. By definition of the second derivative, T 2∆2κil −¡
−k∗00

¡
i−l
N

¢¢
→ 0, and using Lemma 3 it follows easily that

σ̂2 = N−1
N−1X
l=1

N−1
N−1X
i=1

N2∆2κilN
−1/2 bSiN−1/2 bSl

⇒ σ2
Z 1

0

Z 1

0
−k∗00 (r − s)V (s)V (r) drds.

Case 2: k (x) is a Type 2 kernel. Following Kiefer and Vogelsang (2002), we use simple
algebra and the definition of ∆2κij to establish that when |i− j| > [bN ] , ∆2κij = 0, and
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when |i− j| = [bN ] , ∆2κij = −k
³
[bN ]−1
[bN ]

´
. Also recall that when |i− j| < [bN ] k (x) is

twice continuously differentiable. We split up the expression of σ̂2 as follows:
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,

where the asymptotic distribution follows directly from Lemma 3 and Kiefer and Vogelsang
(2002).
Case 3: k (x) is the Bartlett Kernel. Here again following Kiefer and Vogelsang (2002),
it can be verified that when |i− j| = 0, ∆2κij = 2

[bN ] , and when |i− j| = [bN ] , ∆2κij =
− 1
[bN ] . Using these expressions and Lemma (3) in (10), we obtain the following limiting

distribution:
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¶
.

B Proof of Theorem 2.

The initial step of the proof will be to re-write the model, projecting out all regressors
which are not related to the hypothesis in question. Then we will prove that the statistic is
numerically unchanged if it is calculated from the re-written model. Finally the expression
ofW obtained from the re-written model will be used to derive the asymptotic distribution
of the statistic.
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To re-write the model, let L =

⎡⎣ R

D

⎤⎦ , where D is chosen such that L has full rank (k),

and define
h
X̃1 X̃2

i
= XL−1 and Z̃ = Z ·

¡
L−1 ⊗ I2p+1

¢
. Using these definitions, Model

(4) can be rewritten in the following manner:

y = f (T )α+
¡
XL−1

¢
(Lβ) +

¡
∆Z ·

¡
L−1 ⊗ I2p+1

¢¢
(L⊗ I2p+1) γ + v̇

= f (T )α+
h
X̃1 X̃2

i⎡⎣ β∗1

β∗2

⎤⎦+∆Z̃γ̃ + v̇

= f (T )α+ X̃1β
∗
1 + X̃2β

∗
2 +∆Z̃γ̃ + v̇

Since X̃1 and X̃2 are linear combinations of X, they too contain unit root processes as long
as the original assumption of just one cointegration relationship is maintained. Furthermore
∆Z̃ contains the leads and lags of the differenced X̃ variables. We will now show that
testing, H0 : Rβ = β0, is equivalent to testing the hypothesis H̃0 : β

∗
1 = β0 in the model

y∗ = X∗
1β
∗
1 +∆Z

∗γ + v̇∗, (E1.1)

where for any matrix G, MG = I −G (G0G)−1G, X̃F
2 = MfX̃2, X

∗
1 = MX̃F

2
MfX̃1, Z

∗ =

MX̃F
2
Mf Z̃, v̇

∗ =MX̃F
2
Mf v̇, and y∗ =MX̃F

2
Mfy.

Lemma 4 The statistic for testing H̃0 : β
∗
1 = β0 from (E1.1) is numerically identical to

the statistic for testing H0 : Rβ = β0 from (4).

Proof. The statistic for testing H̃0 from (E1.1) takes the form

W ∗ = T (β∗1 − β0)
0
h
σ̂2∗

¡
T−1 (X∗

1 )
0X∗

1

¢−1i−1
(β∗1 − β0) ,

and the statistic for testing H0 : Rβ = β0 from (4) can be written as

W = T (Rβ − β0)
0
h
σ̂2RQ−1fXR

0
i−1

(Rβ − β0) .

Since σ̂2 and σ̂2∗ are calculated from just the residuals, we know from the Frisch-Waugh-
Lovell Theorem that they will be identical. In addition, since β∗1 is equal toRβ by definition,
we know that Rβ − β0 = β∗1 − β0. We then need to demonstrate that¡

T−1 (X∗
1 )
0X∗

1

¢−1
= RQ−1fXR

0. (12)
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By definition,¡
T−1 (X∗

1 )
0X∗

1

¢−1
=

³
T−1X̃ 0

1MfMX̃F
2
MfX̃1

´−1
, and

MfMX̃F
2
Mf = Mf

µ
I −Mf X̃2

³
X̃ 0
2Mf X̃2

´−1
X̃ 0
2Mf

¶
Mf

=

µ
Mf −MfX̃2

³
X̃ 0
2Mf X̃2

´−1
X̃ 0
2Mf

¶
,

such that we can write¡
T−1 (X∗

1 )
0X∗

1

¢−1
=

µ
T−1X̃ 0

1

µ
Mf −Mf X̃2

³
X̃ 0
2Mf X̃2

´−1
X̃ 0
2Mf

¶
X̃1

¶−1
. Now look at

RQ−1fXR
0.

RQ−1fXR
0 =

h
0 R

i⎛⎝ 1
T

⎡⎣ f (T )0 f (T ) f (T )0X

X 0f (T ) X 0X

⎤⎦⎞⎠−1 ⎡⎣ 0

(R)0

⎤⎦ .
By the formula for the inverse of partitioned matrices, this simplifies to

RQ−1fXR
0 = R

¡
T−1X 0MfX

¢−1
(R)0 = R

⎛⎝T−1

⎡⎣ X 0
1MfX1 X 0

1MfX2

X 0
2MfX1 X 0

2MfX2

⎤⎦⎞⎠−1 (R)0 .
We will now write R as

R = [I 0]

⎡⎣ R

D

⎤⎦ = [I 0]L.
This expression for R along with the fact that L is invertible, makes it possible to obtain
the following expression:

RQ−1fXR
0 = σ̂2

h
I 0

i ³
T−1

¡
L0
¢−1

X 0MfXL−1
´−1 ⎡⎣ I

0

⎤⎦
= σ̂2

h
I 0

i⎛⎝T−1

⎡⎣ ³Mf X̃1

´0³
Mf X̃2

´0
⎤⎦ hMf X̃1 MfX̃2

i⎞⎠−1 ⎡⎣ I

0

⎤⎦ .
Using the inverse matrix formula yet again, we get

RQ−1fXR
0 =

µ
T−1X̃ 0

1Mf

µ
I −Mf X̃2

³
X̃ 0
2Mf X̃2

´−1
Mf X̃2

¶
Mf X̃1

¶−1
=

µ
T−1X̃ 0

1

µ
Mf −Mf X̃2

³
X̃ 0
2Mf X̃2

´−1
Mf X̃2Mf

¶
X̃1

¶−1
,
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which is exactly identical to the expression for
¡
T−2 (X∗

1 )
0X∗

1

¢−1
, proving that the two test

statistics are numerically identical.
To complete the proof of (a), we thus need to determine the asymptotic distribution

of

W ∗ = T (β∗1 − β0)
0
h
σ̂2∗

¡
T−1 (X∗

1 )
0X∗

1

¢−1i−1
(β∗1 − β0)

= T (β∗1 − β0)
0
h
σ̂2∗

¡
T−2 (X∗

1 )
0X∗

1

¢−1i−1
T (β∗1 − β0) .

Since σ̂2∗ = N−1PN−1
l=1 N−1PN−−1

i=1 N2∆2κil

³
N−1/2 bS∗i ´³N−1/2 bS∗l ´ , where , Ŝ∗t is de-

fined as Ŝt, but for the model in (E1.1), we know

N− 1
2 Ŝ∗[rN ] = N−1

2

[rN ]X
t=1

v̇∗t+p −N− 3
2

[rN ]X
t=1

X∗
1,t+p

³
N
³
β̂
∗
1 − β∗1

´´
−N−1

[rN ]X
t=1

∆Z∗0t+pN
1
2 (γ̂ − γ)

⇒ σ∗ŵF
1 (r)− σ∗

Z r

0
ŵF
q (s)

0 ds

µZ 1

0
ŵF
q (s) ŵ

F
q (s)

0 ds

¶−1 Z 1

0
ŵF
q (s) dŵ

F
1 (s)

= σ∗V F (r) ,

and therefore,
σ̂∗2 ⇒ −σ∗2

R 1
0

R 1
0 k

∗00 (r − s)V F (r)V F (s) drds if k is type 1

σ̂∗2 ⇒ σ∗2(
R R

|r−s|<b−k∗00 (r − s)V F (r)V F (s) drds+ 2k∗
0
− (b)

R 1−b
0 V F (r + b)V F (r) dr) if

k is type 2
σ̂∗2 ⇒ σ∗2 2b

hR 1
0 V

F (r)2 dr −
R 1−b
0 V F (r)V F (r + b) dr

i
if k is Bartlett.

By the definition of X∗
1 ,

¡
T−2 (X∗

1 )
0X∗

1

¢−1 ⇒ µ
Λ∗
Z 1

0
ŵF
q (s) ŵ

F
q (s)

0 ds (Λ∗)0
¶−1

.

The distribution of W ∗ can now be obtained.
If k is Type 1,

W ∗ = T (β∗1 − β0)
0
h
σ̂2∗

¡
T−2 (X∗

1 )
0X∗

1

¢−1i−1
T (β∗1 − β0)

⇒
µ
−
Z 1

0

Z 1

0
k∗00 (r − s)V F (s)V F (r) drds

¶−1
Z 1

0
ŵF
q (s)

0 dŵF
1 (s)

µZ 1

0
ŵF
q (s) ŵ

F
q (s)

0 ds

¶−1 Z 1

0
ŵF
q (s) dŵ

F
1 (s)
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If k is Type 2,

W ∗ = T (β∗1 − β0)
0
h
σ̂2∗

¡
T−2 (X∗

1 )
0X∗

1

¢−1i−1
T (β∗1 − β0)

⇒ σ∗
Z 1

0
ŵF
q (s)

0 dŵF
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0
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0
V F (r + b)V F (r) dr

!
µ
Λ∗
Z 1

0
ŵF
q (s) ŵ

F
q (s)

0 ds (Λ∗)0
¶−1)−1

σ∗
µ
Λ∗
Z 1

0
ŵF
q (s) ŵ

F
q (s)

0 ds (Λ∗)0
¶−1

Λ∗
Z 1

0
ŵF
q (s) dŵ

F
1 (s)

=

ÃZ Z
|r−s|<b

−k∗00 (r − s)V F (r)V F (s) drds+ 2k∗
0
− (b)

Z 1−b

0
V F (r + b)V F (r) dr

!−1
Z 1

0
ŵF
q (s)

0 dŵF
1 (s)

µZ 1

0
ŵF
q (s) ŵ

F
q (s)

0 ds

¶−1 Z 1

0
ŵF
q (s) dŵ

F
1 (s) .

If k is Bartlett,

W ∗ = T (β∗1 − β0)
0
h
σ̂2∗

¡
T−2 (X∗

1 )
0X∗

1

¢−1i−1
T (β∗1 − β0)

⇒ σ∗
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0
ŵF
q (s)

0 dŵF
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ŵF
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C Kernels

Bartlett k (x) =

⎧⎨⎩ 1− |x| for |x| ≤ 1

0 otherwise

Parzen k (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− 6x2 + 6 |x|3 for |x| ≤ 1

2

2 (1− |x|)3 for 12 ≤ |x| ≤ 1

0 otherwise

Quadratic Spectral (QS) k (x) =
25

12π2x2

µ
sin (6πx/5)

6πx/5
− cos (6πx/5)

¶
Daniell k (x) =

sin (πx)

πx

Bohman k (x) =

⎧⎨⎩ (1− |x|) cos (πx) + sin (π |x|) /π for |x| ≤ 1

0 otherwise
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Notes

1See for example De Brouwer and Ericsson (1998), Metin (1998) or Ericsson and Mizon

(1998).

2There are currently two competing frameworks used to estimate such models in ways

that account for serial correlation and heteroscedasticity: the single equation framework

(which forms the basis of this paper), and the systems framework. The systems approach to

estimating cointegrating systems, applies the full information maximum likelihood (FIML)

approach developed in Johansen (1988), Johansen (1991), Johansen and Juselius (1990)

and Johansen and Juselius (1992). While the systems framework does account for serial

correlation and heteroscedasticity, it is somewhat orthogonal to the framework used in this

paper; as such, detailed comparisons between the FIML approach and the one presented

here are beyond the scope of this paper.

3HAC estimators have been thoroughly examined in the literature. Among the major

contributions are Andrews (1991), Andrews and Monahan (1992), Hansen (1992), de Jong

2002, de Jong and Davidson (2000), Newey and West (1987), Robinson (1991) and White

(1984).

4This has been documented through simulations for stationary models in, for example,

Andrews (1991), Andrews and Monahan (1992) and den Haan and Levin (1997).

5Although the model as it is characterized in (1) does not allow for trends in the

regressors, the asymptotic results derived in this paper remain valid for hypotheses on

β if the trends in the regressors are included in f (t) . This stems from the fact that the

test statistic is invariant to projections of subsets of regressors in linear models.

6Note that guu (0) = Ω.

7The bounds on p are similar to those used by Berk (1974), Lewis and Reinsel (1985),

Said and Dickey (1984) and Saikkonen (1991).

8These results were developed by Saikkonen (1991), Phillips and Loretan (1991), Stock

and Watson (1993) and Wooldridge (1991). Phillips and Hansen (1990) provide the results
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when trends are included in the model.

9Hypotheses of the form H0 : Rα = α0 can be dealt with in a similar manner.

10A possible exception is the Bartlett kernel, which might have a slight non-monotonicity

in the size/b relationship.

11QS-0.2 denotes the test using the QS kernel with b = 0.2, Dan-0.2 is the Daniell kernel

with b = 0.2, Parzen-0.4 is the Parzen kernel with b = 0.4 and Bohman-0.4 is the Bohman

kernel with b = 0.4.

12These estimates have serious real world significance. For example, it is important

for the implementation of monetary policy whether the income elasticity is unity or not,

because a less than unity elasticity implies the money stock must grow more slowly than

output if price stability is desired.
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Table 1: Local Asymptotic Power, b = 0.02
c QS Daniell Bohman Parzen Bartlett

0 0.05 0.05 0.05 0.05 0.05
1 0.09 0.09 0.09 0.09 0.09
2 0.18 0.18 0.18 0.19 0.19
3 0.34 0.34 0.35 0.35 0.34
4 0.55 0.56 0.58 0.59 0.57
5 0.77 0.77 0.79 0.80 0.78
6 0.90 0.89 0.91 0.91 0.90
7 0.96 0.96 0.96 0.96 0.96
8 0.98 0.98 0.99 0.99 0.99
9 0.99 0.99 0.99 0.99 0.99
10 1.00 1.00 1.00 1.00 1.00

Table 2: Finite Sample Size, nominal level 5% , b = 1♣

(λ, ρ)♣ Bartlett Parzen Bohman Daniell QS

−0.8, 0.0 0.007 0.035 0.035 0.043 0.043
−0.8, 0.8 0.057 0.057 0.055 0.054 0.054
−0.8, 0.9 0.122 0.082 0.080 0.070 0.070
−0.4, 0.0 0.037 0.053 0.052 0.051 0.051
−0.4, 0.8 0.113 0.078 0.076 0.067 0.068
−0.4, 0.9 0.203 0.121 0.118 0.096 0.096
0.0, 0.0 0.054 0.055 0.054 0.052 0.053
0.0, 0.8 0.124 0.084 0.082 0.071 0.071
0.0, 0.9 0.220 0.130 0.125 0.101 0.102
0.4, 0.0 0.059 0.056 0.057 0.054 0.054
0.4, 0.8 0.131 0.086 0.084 0.074 0.075
0.4, 0.9 0.225 0.132 0.128 0.103 0.104
0.8, 0.0 0.062 0.057 0.058 0.054 0.054
0.8, 0.8 0.133 0.087 0.085 0.073 0.074
0.8, 0.9 0.227 0.135 0.131 0.108 0.109

♣The data is generated according to yt = α+βxt+u1,t, xt = xt−1+u2,t, t = 1, .., 50, where
the errors are u1,t = ρu1,t−1 + et + λet−1, and {et} and {u2,t} are i.i.d. N (0, 1) .
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Table 3: Finite Sample Size Comparison, T=50, nominal size 5%N

λ ρ Dan-0.2 QS-0.2 Bohman-0.4 Parzen-0.4

-0.8 0 0.056 0.054 0.045 0.047
-0.8 0.2 0.054 0.051 0.046 0.049
-0.8 0.4 0.051 0.050 0.046 0.046
-0.8 0.8 0.060 0.060 0.059 0.060
-0.8 0.9 0.083 0.083 0.081 0.084
-0.4 0 0.056 0.056 0.053 0.055
-0.4 0.2 0.053 0.054 0.054 0.054
-0.4 0.4 0.052 0.052 0.052 0.052
-0.4 0.8 0.061 0.061 0.062 0.065
-0.4 0.9 0.080 0.081 0.078 0.084
0 0 0.052 0.052 0.052 0.052
0 0.2 0.049 0.050 0.051 0.051
0 0.4 0.051 0.051 0.052 0.052
0 0.8 0.060 0.061 0.062 0.064
0 0.9 0.078 0.080 0.079 0.084

0.4 0 0.050 0.052 0.051 0.051
0.4 0.2 0.049 0.051 0.051 0.051
0.4 0.4 0.049 0.051 0.051 0.052
0.4 0.8 0.061 0.063 0.063 0.065
0.4 0.9 0.079 0.081 0.078 0.083
0.8 0 0.050 0.051 0.051 0.051
0.8 0.2 0.049 0.051 0.051 0.051
0.8 0.4 0.050 0.049 0.050 0.051
0.8 0.8 0.061 0.063 0.063 0.066
0.8 0.9 0.079 0.081 0.078 0.085

NThe data is generated according to yt = α + βxt + u1,t, xt = xt−1 + u2,t, t = 1, .., T,
where the errors are u1,t = ρu1,t−1 + et + λet−1, and {et} and {u2,t} are i.i.d. N (0, 1) .
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Table 4: Asymptotic critical values for W , Daniell kernel, b = 0.2z

f (t) = α f (t) = α0 + α1t

k q 90% 95% 99% k q 90% 95% 99%

1 1 6.55 10.87 27.22 1 1 9.15 15.66 41.69
2 1 8.33 13.93 36.34 2 1 11.41 19.45 51.21
2 2 16.08 25.22 60.35 2 2 21.95 34.90 87.10
3 1 10.52 17.86 45.66 3 1 14.08 23.90 63.52
3 2 20.60 32.27 75.44 3 2 27.09 44.06 108.15
3 3 29.75 45.63 101.72 3 3 39.70 61.91 149.02
4 1 13.58 23.03 59.88 4 1 17.76 30.67 78.51
4 2 25.60 40.79 96.74 4 2 33.88 53.68 135.34
4 3 36.88 56.64 132.37 4 3 48.97 75.94 182.90
4 4 48.26 72.67 172.21 4 4 64.19 97.55 230.02
5 1 16.01 27.42 68.28 5 1 20.88 35.57 95.07
5 2 30.82 49.26 116.74 5 2 39.38 63.07 158.02
5 3 45.33 69.01 161.09 5 3 58.32 92.10 220.74
5 4 59.11 89.58 196.10 5 4 76.47 117.58 281.99
5 5 72.90 109.51 240.71 5 5 94.45 143.81 345.34
6 1 19.20 32.98 85.75 6 1 24.32 41.19 109.66
6 2 37.02 58.84 141.50 6 2 46.99 75.57 182.81
6 3 54.08 83.63 188.15 6 3 68.50 106.90 253.19
6 4 71.80 108.73 236.97 6 4 89.74 140.09 319.27
6 5 88.43 133.89 286.73 6 5 112.50 172.59 384.05
6 6 104.74 159.14 335.96 6 6 133.69 204.95 455.74

zThese are critical calues for testing the hypothesis H0 : Rβ = β0, where rank (R) = q
with the Wald test using the Daniell kernel in the model: y = f (t)+Xβ+u, whereX : T×k
is integrated of order 1. The critical values were calculated using N(0, 1) i.i.d. random
variables to approximate the Wiener processes in the distributions, 50, 000 replications
were used, and the integrals were computed as averages over 1, 000 equally spaced points.
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Table 5: Finite Sample Size Comparison♣

T = 50 T = 100

p Dan 0.2 HAC HAC-pw Dan 0.2 HAC HAC-pw
1 0.11 0.46 0.30 0.07 0.42 0.18
2 0.15 0.50 0.34 0.08 0.43 0.19
3 0.18 0.54 0.39 0.10 0.45 0.21
4 - - - 0.11 0.47 0.24
5 - - - 0.14 0.49 0.26

♣These are 5% rejection probabilities under the null for the hypothesis H0 : Rβ = β0 in the
model: y = α+ βX + u, where X : T × 1 and Φ (L)ut = et, where {et} is i.i.d. N (0,Σe),

Φ =

∙
−.103 −.039
−.062 .643

¸
and Σe = 0.01×

∙
.951 .499
.499 1.374

¸
.
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Table 6: Finite Sample Power, T=50§

HAC HAC-pw Dan-0.2
c\p 1 2 3 1 2 3 1 2 3

0 0.46 0.50 0.54 0.30 0.34 0.39 0.11 0.15 0.18
2 0.50 0.52 0.55 0.33 0.36 0.40 0.13 0.16 0.20
4 0.55 0.56 0.58 0.38 0.39 0.43 0.16 0.18 0.22
6 0.60 0.60 0.61 0.43 0.44 0.47 0.19 0.22 0.25
8 0.66 0.65 0.65 0.50 0.49 0.51 0.24 0.26 0.30
10 0.72 0.70 0.70 0.57 0.55 0.56 0.30 0.31 0.33
12 0.77 0.75 0.74 0.63 0.61 0.61 0.35 0.36 0.38
14 0.82 0.78 0.77 0.69 0.67 0.66 0.41 0.41 0.43
16 0.85 0.82 0.80 0.74 0.71 0.70 0.46 0.47 0.48
18 0.87 0.85 0.83 0.78 0.75 0.73 0.52 0.52 0.52
20 0.90 0.88 0.86 0.81 0.79 0.77 0.57 0.56 0.56
22 0.92 0.89 0.88 0.85 0.82 0.80 0.62 0.61 0.60
24 0.93 0.91 0.89 0.87 0.85 0.83 0.66 0.65 0.64
26 0.95 0.93 0.91 0.89 0.87 0.85 0.70 0.68 0.68
28 0.96 0.94 0.92 0.91 0.89 0.87 0.73 0.72 0.71
30 0.97 0.95 0.93 0.93 0.91 0.89 0.77 0.75 0.74
32 0.97 0.96 0.94 0.94 0.92 0.90 0.79 0.78 0.77
34 0.98 0.96 0.95 0.95 0.93 0.92 0.82 0.80 0.79
36 0.98 0.97 0.95 0.96 0.95 0.93 0.84 0.83 0.81
38 0.99 0.97 0.96 0.97 0.95 0.94 0.86 0.85 0.83
40 0.99 0.98 0.97 0.97 0.96 0.95 0.88 0.86 0.85
42 0.99 0.98 0.97 0.98 0.97 0.95 0.89 0.88 0.87
44 0.99 0.98 0.97 0.98 0.97 0.96 0.91 0.89 0.88
46 1.00 0.99 0.98 0.99 0.98 0.97 0.92 0.90 0.89
48 1.00 0.99 0.98 0.99 0.98 0.97 0.93 0.91 0.90
50 1.00 0.99 0.98 0.99 0.98 0.97 0.94 0.92 0.91

§These are 5% rejection probabilities under Ha : Rβ = c for the hypothesis H0 : Rβ = 0
in the model: y = α + βX + u, where X : 50 × 1 and Φ (L)ut = et, where {et} is i.i.d.

N (0,Σe) t = 1, .., 50, Φ =
∙
−.103 −.039
−.062 .643

¸
and Σe = 0.01×

∙
.951 .499
.499 1.374

¸
.
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Table 7: Finite Sample Power, T=100F

HAC HAC-pw Dan-2
c\p 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0 .42 .43 .45 .47 .49 .18 .19 .21 .23 .26 .08 .09 .10 .11 .13
2 .45 .45 .46 .48 .49 .21 .21 .23 .24 .26 .09 .10 .11 .12 .14
4 .50 .50 .49 .51 .52 .25 .25 .25 .27 .28 .11 .11 .13 .14 .15
6 .56 .55 .54 .54 .55 .31 .29 .30 .31 .32 .15 .15 .15 .16 .18
8 .62 .60 .59 .59 .59 .37 .35 .35 .36 .36 .19 .18 .19 .19 .21
10 .68 .65 .64 .63 .63 .44 .41 .40 .40 .41 .23 .23 .23 .23 .24
12 .74 .70 .69 .68 .68 .51 .48 .46 .46 .46 .29 .28 .28 .28 .29
14 .79 .75 .73 .72 .71 .57 .54 .52 .51 .51 .34 .33 .33 .33 .33
16 .83 .80 .78 .76 .75 .63 .60 .58 .56 .56 .40 .38 .38 .38 .38
18 .87 .83 .81 .80 .79 .68 .65 .63 .62 .61 .45 .43 .43 .42 .42
20 .89 .87 .84 .83 .82 .73 .70 .68 .66 .65 .50 .48 .47 .47 .47
22 .92 .89 .87 .85 .84 .77 .74 .73 .71 .70 .55 .53 .52 .52 .51
24 .93 .91 .89 .88 .87 .81 .78 .76 .75 .73 .59 .57 .56 .56 .55
26 .95 .93 .91 .90 .89 .84 .82 .80 .78 .77 .63 .61 .60 .60 .59
28 .96 .95 .93 .92 .91 .87 .84 .83 .81 .79 .67 .65 .64 .63 .63
30 .97 .96 .94 .93 .92 .89 .87 .85 .83 .82 .71 .69 .68 .67 .66
32 .98 .97 .95 .94 .93 .91 .89 .87 .86 .84 .75 .73 .71 .70 .70
34 .98 .97 .96 .95 .94 .93 .91 .89 .88 .86 .78 .76 .74 .73 .72
36 .99 .98 .97 .96 .95 .94 .93 .91 .90 .88 .80 .78 .77 .76 .75
38 .99 .98 .97 .96 .96 .96 .94 .93 .91 .90 .83 .81 .79 .79 .78
40 .99 .99 .98 .97 .96 .97 .95 .94 .93 .92 .85 .83 .82 .81 .80
42 .99 .99 .98 .98 .97 .97 .96 .95 .94 .93 .87 .85 .84 .83 .82
44 1.0 .99 .99 .98 .97 .98 .97 .96 .95 .94 .88 .87 .86 .85 .84
46 1.0 .99 .99 .98 .98 .98 .97 .97 .96 .95 .90 .88 .87 .86 .85
48 1.0 .99 .99 .99 .98 .99 .98 .97 .96 .95 .91 .90 .89 .88 .87
50 1.0 .99 .99 .99 .98 .99 .98 .98 .97 .96 .93 .91 .90 .89 .88

FThese are 5% rejection probabilities under Ha : Rβ = c for the hypothesis H0 : Rβ = 0
in the model: y = α + βX + u, where X : 100 × 1 and Φ (L)ut = et, where {et} is i.i.d.

N (0,Σe) t = 1, .., 100, Φ =
∙
−.103 −.039
−.062 .643

¸
and Σe = 0.01×

∙
.951 .499
.499 1.374

¸
.

Table 8: Money-demand estimation.
θy θr

DOLS estimates 0.427 −0.045
W (θy = 1 or θr = −0.05), Dan−0.02 271.6 144.2
W (θy = 1 and θr = −0.05), Dan−0.02 271.6
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Figure 1: Local Asymptotic Power 
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Figure 2: Finite Sample Size,

T = 50, Daniell Kernel,

5% nominal size
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Figure 3: Local Asymptotic Power
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Figure 4: Local Asymptotic Power
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Figure 5: Finite Sample Power

 iid errors, T=50
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