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Abstract

We describe a simulation-based algorithm for Bayesian estimation of structural
effects in models where the outcome of interest and an endogenous treatment variable
are ordered. Our algorithm makes use of a reparameterization, suggested by Nandram
and Chen (1996) and Li and Tobias (2005) in the context of a single equation ordered-
probit model, which significantly improves the mixing of the standard Gibbs sampler.
We illustrate the improvements afforded by this new algorithm in a generated data
experiment, examine the implications of “defult” priors for the reparameterized model
parameters on priors for the “structural” coefficients, and also make use of our methods
in an empirical application. Specifically, we take data from the National Longitudinal
Survey of Youth (NLSY) and investigate the impact of maternal alcohol consumption
on early infant health. Our results show clear evidence that the health outcomes of
infants whose mothers drink while pregnant are worse than the outcomes of infants
whose mothers never consumed alcohol while pregnant. In addition, the estimated
parameters clearly suggest the need to control for the endogeneity of maternal alcohol
consumption.



1 Introduction

The isolation of “structural,” “causal” or “treatment” effects is a topic of central impor-

tance to economics and the social sciences. In recent years, we have witnessed an explosion

of applied work in virtually all subfields of economics that seeks to identify and estimate

“causal” impacts of various endogenous variables on outcomes of interest. For example (and

to name just a few), recent studies have attempted to identify the effect of education on

wages [e.g., Ashenfelter and Krueger (1994), Card (1999)], the effect of family size on female

labor supply [e.g., Angrist and Evans (1998)], the effect of maternal inputs on subsequent

outcomes of children [e.g., Li and Poirier (2001,2003a,2003b,2003c)], and the effect of health

insurance on medical expenditure and number of physician visits [e.g., Munkin and Trivedi

(2003)].

All empirical studies in this literature seek to surmount a common problem and share a

similar statistical structure. In each case, based on our understanding of the institution

under study, we are concerned that factors not directly observable by the researcher are

potentially correlated with both the endogenous variable and the outcome of interest. To

provide a specific and widely studied example, unobserved “ability” may affect the quantity

of education that an individual chooses to receive, and at the same time, higher ability

individuals may receive higher wages in the labor market. If this correlation is not properly

accounted for, then estimates of the “causal” impact of education on wages will confound the

true structural premium paid for education with an effect arising from a premium paid to

unobserved ability. This correlation among the unobservables leads to a violation of mean-

independence assumptions and consequently, default estimation methods like OLS are biased

and inconsistent.

To overcome this potential problem of confounding on unobservables, many researchers have

made use of instrumental variable (IV) estimators. While empirical researchers have become

quite adept in choosing their instruments, and in many cases offer compelling stories as

to the validity of the instruments employed, in another sense, IV studies are somewhat

limiting. First, IV estimation methods typically focus only on the causal effect of interest

and do not seek to recover other parameters of the full statistical model. For example,

IV studies typically do not quantify the degree of confounding on unobservables, which is

seemingly a parameter of significant interest. Second, it is often difficult to move beyond
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estimation to conduct policy experiments or out of sample predictive exercises unless the

full statistical model is supplied and estimates of parameters associated with that model are

obtained. Finally, there is growing awareness of problems associated with weak instruments

[e.g., Staiger and Stock (1997)] and an increasing emphasis on the proper interpretation of

the IV estimator when returns are heterogeneous or the model is nonlinear [e.g., Imbens and

Angrist (1994)].

In this paper, we aim to make an additional contribution to this literature and investi-

gate a particular “treatment effects” or “causal”1 effect model where both the outcome and

endogenous variable of interest are generated by nonlinear specifications.2 Specifically, we

investigate the particular case of a two equation triangular simultaneous equations model

where both the outcome and a potentially endogenous variable appearing in that outcome

equation are ordered in nature. In such a setting, proper implementation of IV is greatly

complicated by the nonlinearity of the model, and as a result, the nonlinearity may often be

ignored in empirical practice.3

In this paper we employ a simulation-based Bayesian estimator for fitting such an ordered

outcome model which contains an ordered endogenous variable, building upon the results in

Li and Tobias (2005). Though standard tools for posterior simulation (namely the Gibbs

sampler) can be directly applied to fit this model, it has been shown in the simplified con-

text of a single-equation ordered probit that the standard Gibbs sampler suffers from slow

mixing due to high degrees of correlation between the cutpoints and latent data.4 This slow

mixing problem is likely to be even more severe in our elaborated system of ordered outcome

equations.

1Our repeated use of the word “causal” may be something of an abuse of language. In the context of this
study, a “causal” effect model is an empirical specification that seeks to consistently estimate parameters
of the structural equation system (most notably the slope coefficient on the endogenous variable) in the
presence of unobserved confounding. This use of language seems consistent with its current use in the
applied literature, where “causal” effects are reported to be obtained when a convincing instrument or
natural experiment has been used to surmount the endogeneity problem.

2Though our focus on models of this particular type may seem restrictive, there are many possible
applications of such a model. For example, empirical researchers routinely worry about the endogeneity of
education, which is often available as an ordered variable in a data set based on highest degree attained.
When outcomes of interest such as health status, insurance status, or earnings are also available categorically,
then the specification we consider here would be directly applicable for modeling such data.

3For example, it is somewhat common to see linear probability models used in models with endogeneity
concerns even when the outcome of interest is binary or discrete. One possible explanation is that estimation
is greatly simplified if the outcome is continuous. Thus, in some cases, computational simplicity appears to
come at the expense of remaining true to the observed data.

4See, e.g., Cowles (1996).
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Our estimation algorithm, which we feel is useful for other studies sharing a similar structure,

mitigates this slow mixing problem by making use of a reparameterization building off the

suggestion of Nandram and Chen (1996). Among other benefits, this reparameterization

effectively eliminates one unknown cutpoint from each ordered equation so that, for example,

if both the outcome and the endogenous variable take on only three values, the model will

contain no unknown cutpoints. In addition, the reparameterization eliminates restrictions

initially imposed on the structural covariance matrix (which can complicate a posterior

simulator), and thus posterior simulation for the (reparameterized) covariance matrix can

proceed using standard conjugate analysis.

We apply our techniques in practice to investigate the impact of maternal alcohol consump-

tion during pregnancy on infant health during the first year of life. Our study makes use

of rich data provided in the National Longitudinal Survey of Youth (NLSY). Both alcohol

consumption and infant health (proxied by the number of months during the first year that

the mother took the child to the doctor due to illness) are recorded as ordered variables in

the NLSY data we employ, and thus our application fits directly into the framework of our

maintained model. Unlike the majority of biomedical research on this topic, we recognize

that maternal alcohol consumption may be endogenous, and thus allow for potential con-

founding on unobservables, even conditioned on a variety of controls.5 For our instrument,

which is assumed to have a structural effect on maternal alcohol consumption but no effect

on infant health given our included controls, we exploit data on whether or not the mother

has a biological parent who has a drinking problem or is an alcoholic.6 Our argument is

that individuals with at least one parent with a drinking problem would be more likely to

drink themselves, while grandparental alcohol consumption patterns will have no structural

effect on infant health conditioned on the health status and alcohol consumption patterns

of the mother. We find that alcohol consumption has a large negative impact on number

of doctor visits during the first year of life, and also find significant evidence regarding the

endogeneity of maternal alcohol consumption.

5For research in the biomedical literature, see, for example, Jacobson et al (1993, 1994) and Goldschmidt
et al (1996). Notable exceptions include the careful and general structural equations analyses of Li and Poirier
(2001, 2003a,2003b,2003c) who examine the impact of a variety of endogenous maternal inputs (including
alcohol use) on early and subsequent child outcomes. Unlike our work, however, Li and Poirier focus on a
different set of birth outcomes (such as birth weight, birth length, gestational age and childhood test scores)
and model variables that are either continuous or binary.

6This determination is subjective, as the mothers in the sample are asked whether or not either of her
parents had or has a “drinking problem.”

3



The outline of the paper is as follows. The following section describes the empirical specifi-

cation and our suggested reparameterization. A generated data experiment illustrating the

performance of our posterior simulator is presented in section 3 and a description of the data

used in our empirical investigation is provided in Section 4. Section 5 contains the empirical

results of our application, and the paper concludes with a summary in section 6. Technical

details regarding our posterior simulator are completely provided in the appendix.

2 The Model

In general terms, the model we consider is a two-equation system containing two endogenous

variables, denoted y and r. Both of these variables are discrete and ordered with yi ∈
{1, 2, · · · , Y } and ri ∈ {1, 2, · · · , R} ∀i. In our two equation system, we consider the case

of a triangular model where y has a structural dependence on r, and r is generated from

a reduced form specification. To formally account for the discrete, ordered nature of each

response we begin with a latent variable representation of the model:

zyi = xyiβy + driθ + εyi (1)

zri = xriβr + εri, (2)

where dri is the 1×R dummy variable vector for ri which contains a one in the rth
i column

and zeros elsewhere. We interpret the parameter vector θ as quantifying the treatment effect

of levels of r on y. In our triangular system, like other “causal” effect models with continuous

outcome and endogenous variables, we model the endogeneity of ri by permitting correlation

between εy and εr. Throughout this paper, we therefore assume7

[
εyi

εri

]
iid∼ N

[(
0
0

)
,

(
1 σyr

σyr 1

)]
, (3)

where the error variances in each of the latent variable equations have been normalized to

unity for identification purposes.

We relate the observed ordered y and r variables to the latent zy in (1) and zr in (2) through

the restrictions:

yi = j iff γj < zyi ≤ γj+1, j = 1, 2, · · · , Y (4)

7Of course standard computational tricks, such as the addition of mixing variables to the disturbance
variance function, can be used to generalize the distributional assumption employed.
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and

ri = k iff γ̃k < zri ≤ γ̃k+1, k = 1, 2, · · · , R. (5)

For identification purposes, we also impose standard restrictions on certain values of the

cutpoints γj and γ̃k, namely: γ1 = γ̃1 = −∞, γ2 = γ̃2 = 0 and γY +1 = γ̃R+1 = ∞.

2.1 Estimation

While one could simply use a standard Gibbs sampler to fit the above model (upon specifying

a prior for all of the model parameters), there is a potential concern associated with adopting

such an approach. As described in Cowles (1996) in the context of a simplified one-equation

ordered probit model, use of the standard Gibbs sampler in applications of moderate size can

suffer from slow mixing due to high correlation between the simulated cutpoints and latent

data. This slow mixing problem is likely to be even more severe in our two-equation ordered

outcome model with an endogeneity problem. We will provide rather striking evidence of

this slow mixing problem in the generated data experiments of the following section.

In attempt to mitigate the high degree of autocorrelation in our posterior simulations, we

choose to work with a reparameterization of the model, building off the suggestion of Nan-

dram and Chen (1996), which both improves the performance of the posterior simulator and

offers some computational simplifications. In this regard it will prove useful to first separate

the largest two unknown cutpoints γY and γR from the remaining vector of cutpoints. We

accomplish this by assembling the remaining sets of cutpoint parameters associated with y

and r into the following (Y − 3)× 1 and (R− 3)× 1 vectors (respectively),

γ = [γ3 γ4 · · · γ(Y−1)]
′ and γ̃ = [γ̃3 γ̃4 · · · γ̃(R−1)]

′.

Finally, we let δ = [β′y β′r γ′ γ̃′ γ2
Y γ̃2

R σyr]
′ denote the vector of parameters in our model.8

Before discussing our strategy for reparameterization, it is instructive to first derive the joint

posterior for the “structural” parameters of this model. With an eye toward our eventual

8Because both the covariates xyi and the dummy variable vector dri enter equation (1) linearly, we
simplify our notation henceforth by including the dummy variable vector dri in the covariates xyi, and by
including the parameter vector θ in the coefficients βy.
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reparameterization, we employ priors for these parameters of the following forms:

βy|γY ∼ N(0, γ2
Y Vy) (6)

βr|γ̃R ∼ N(0, γ̃2
RVr) (7)

γj|γY ∼ U(0, γY ), j = 3, 4, · · · , Y − 1 (8)

γ̃k|γ̃R ∼ U(0, γ̃R), k = 3, 4, · · · , R− 1 (9)

γ2
Y |σyr ∼ G[a, 2h1(1− σ2

yr)] (10)

γ̃2
R|σyr ∼ G[a, 2h2(1− σ2

yr)] (11)

p(σyr) ∝ (1− σ2
yr)

a−(3/2), |σyr| < 1, (12)

with G denoting a Gamma distribution9 and U(x1, x2) denoting the uniform distribution

over the interval [x1, x2].

Perhaps with the exception of (12), these prior specifications take somewhat nonstandard

forms. In particular, the priors in (6) and (7) include the largest cutpoints γY and γR in the

variance function for βy and βr, respectively, and in (10) and (11), specify correlation between

the largest cutpoints and the covariance term σyr. The prior does not impose a sequential

ordering truncation on the cutpoints γj and γ̃j, other than to say that all of these cutpoints

must be smaller than the largest cutpoint in the model.10 The prior does, however, impose

that the covariance matrix in (3) is positive definite since |σyr| < 1. As we will show below,

use of these particular priors for the “structural” parameters proves to be computationally

advantageous, as they will imply the use of “standard” conjugate priors for parameters in

our reparameterized model. We will revisit this point and take up a more detailed discussion

of the priors in (6) - (12) following our discussion of this reparameterization.

The priors described above, combined with the complete data likelihood implied by (1)-(3)

give the augmented posterior distribution of the model parameters and latent data. This

augmented posterior can be shown to be of the form:

p(δ, zy, zr|y, r) ∝ {
n∏

i=1

φ2

[(
zyi

zri

)
;

(
xyiβy

xriβr

)
,

(
1 σyr

σyr 1

)]

× I(γyi
< zyi ≤ γyi+1)I(γ̃ri

< zri ≤ γ̃ri+1)}p(δ),

9See, e.g., Poirier (1995, page 98). With this parameterization x ∼ G(a, b) implies p(x) ∝ xa−1 exp(−x/b).
10This point does not seem to be too problematic, since in most empirical work, improper priors on the

cutpoints are often employed. These ordering restrictions will also be imposed in our posterior simulator
through our choice of proposal density.
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with I(·) denoting the standard indicator function and φk(x; µ, V ) denoting a k-dimensional

normal density for x with mean µ and variance V . The prior density p(δ) is given in equations

(6) - (12).

2.2 A Reparameterization

Let us now take the augmented joint posterior just discussed, and consider making a change

of variables. Specifically, let

σy = 1/[γ2
Y ], β∗y =

√
σyβy, z∗y =

√
σyzy, γ∗ =

√
σyγ

and

σr = 1/[γ̃2
R], β∗r =

√
σrβr, z∗r =

√
σrzr, γ̃∗ =

√
σrγ̃, σ̃yr =

√
σy

√
σrσyr.

With a bit of work, one can derive that the Jacobian of the transformation from [δ zy zr] to

[δ∗ z∗y z∗r ] (with δ∗ ≡ [β∗′y β∗′r γ∗′ γ̃∗′ σy σr σ̃yr]
′) is σ−[ky+(Y−3)+n+5]/2

y σ−[kr+(R−3)+n+5]/2
r , with

ky and kr denoting the number of elements in βy and βr, respectively.

Adding this Jacobian term to our previous expression of the joint posterior, and completing

our change of variables, we obtain

p(δ∗, z∗y , z
∗
r |y, r) ∝ {

n∏

i=1

φ2

[(
z∗yi

z∗ri

)
;

(
xyiβ

∗
y

xriβ
∗
r

)
,

(
σy σ̃yr

σ̃yr σr

)]

× I(γ∗yi
< z∗yi ≤ γ∗yi+1)I(γ̃∗ri

< z∗ri ≤ γ̃∗ri+1)}p(δ∗),

where the priors for the transformed parameters take on the convenient forms:11

β∗y ∼ N(0, Vy) (13)

β∗r ∼ N(0, Vr) (14)

γ∗j ∼ U(0, 1), j = 3, 4, · · · , Y − 1 (15)

γ̃∗k ∼ U(0, 1), k = 3, 4, · · · , R− 1 (16)

Σ∗ ∼ IW (2a,H) (17)

where IW denotes an inverted Wishart distribution,

Σ∗ ≡
[

σy σ̃yr

σ̃yr σr

]
, H ≡

[
h1 0
0 h2

]
,

11Note that the transformed cutpoints γ∗j and γ̃∗k must lie between 0 and 1, and thus the uniform priors
in (15) and (16) are quite natural choices.
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and a, h1 and h2 are the hyperparameters employed in prior specifications (10)-(12).

We argue that there are several advantages to working with this reparameterization. First,

as discussed in Nandram and Chen (1996) in the context of a single equation ordered probit,

and clearly demonstrated in the following section for this system of ordered equations, the

rescaling helps to mitigate correlation between the simulated cutpoints and latent data and

thus improves the performance of our posterior simulator. Second, the reparameterization

effectively eliminates one cutpoint from each equation in the model. For example, if there

are three ordered choices for both y and r (i.e., Y = 3 and R = 3), then there are no un-

known cutpoints in this specification; sampling the cutpoints follows from standard sampling

of elements of the covariance matrix and no additional Metropolis-within-Gibbs steps are

required. Finally, our reparameterization eliminates the diagonal restrictions on the covari-

ance matrix in (3) and produces an unrestricted covariance matrix for the transformed latent

data. This simplifies posterior simulation of the covariance parameter σyr, which can not

be drawn using standard conjugate (i.e., inverse Wishart) sampling given the restrictions on

the diagonal elements in (3).

Given the computational benefits afforded by the reparameterization, our recommended em-

pirical approach is to use the reparameterized model as the working model, yet to proceed

with caution, as the priors employed for the transformed parameters could potentially have

unexpected implications for priors regarding the structural parameters. To this end, the

priors in (6)-(12) are particularly useful, since they provide the implied priors on the struc-

tural coefficients of interest. Our view is that with suitably chosen hyperparameters, the

implied priors on the structural coefficients are still sensible and suitably diffuse, and any

costs associated with the choice of prior are more than outweighed by the computational

benefits offered by the reparameterization.

To investigate features of the priors in (6)-(7) in more detail, one can derive the following

marginal moments for the largest cutpoints γ2
Y and γ2

R:12 E(γ2
Y ) = h1(2a − 1), E(γ2

R) =

h2(2a− 1), Var(γ2
Y ) = 2h2

1(2a− 1) = 2h1E(γ2
Y ) and Var(γ2

R) = 2h2
2(2a− 1) = 2h2E(γ2

Y ). In

terms of the marginal prior for σyr in (12), it is a reasonably “default” choice with a prior

mean of zero and a variance equal to 1/[2a]. The prior is symmetric about zero and has a

12This follows by noting from (12) that ψ ≡ (1− σ2
yr) has a Beta(a− [1/2], [1/2]) density. Using the mean

and variance of this random variable, one can then derive the unconditional prior mean and variance of γ2
Y

and γ2
R.
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mode equal to zero for a ≥ 3/2.13 The marginal priors for βr and βy can be made suitably

“flat” by simply choosing Vr and Vy to be diagonal with large elements on the diagonal. In

our empirical work, we settle on a = 2, h1 = h2 = 1, Vy = 1000Iky , and Vr = 1000Ikr . This

implies a reasonably diffuse prior on the covariance parameter σyr, with a mean of zero and

a variance of 1/4. With these hyperparameter values, we also obtain E(γ2
Y ) = E(γ̃2

R) = 3,

and Var(γ2
Y ) = Var(γ̃2

R) = 6.

3 A Generated Data Experiment

We illustrate the potential benefits of working with our reparameterization through a gen-

erated data experiment. Specifically, we generate 5,000 observations from the following

three-alternative [i.e., (Y = R = 3)] ordered equation system:

zyi = βy0 + x1iβy1 + I(0 < zri ≤ γ̃)θ1 + I(γ̃ < zri)θ2 + εyi

zri = βr0 + x1iβr1 + x2iβr2 + x3iβr3 + εri,

where x1i, x2i and x3i are drawn independently from a N(0, 1) distribution, and [εyi εri]
′ are

drawn jointly from a bivariate normal distribution with

[
εyi

εri

]
iid∼ N

[(
0
0

)
,

(
1 −.5
−.5 1

)]
.

For the regression parameters, we set βy0 = 0.5, βy1 = −0.4, βr0 = 0.3, βr1 = −0.6, βr2 = 0.2

and βr3 = −0.5. For the “causal” effects (i.e., the impacts of the endogenous variable r on

y), we set θ1 = 1 and θ2 = 2. The latent variables zy and zr are related to the observed

ordered variables y and r through the following restrictions:

yi =





1 if zyi ≤ 0
2 if 0 < zyi ≤ γ
3 if γ < zyi

and ri =





1 if zri ≤ 0
2 if 0 < zri ≤ γ̃
3 if γ̃ < zri

.

Finally, we choose the cutpoint values as follows: γ = 3 and γ̃ = 2.14

13It seems quite natural to us to center the model over a specification where endogeneity is not a problem
(i.e. σyr = 0), yet to remain reasonably vague with this prior belief and permit the data to reveal that
endogeneity is a concern.

14Under this design, 15.1%, 79.1%, and 5.8% of the y’s fall into the categories of y = 1, y = 2, and y = 3,
respectively. Additionally, 41.4%, 49.3%, and 9.3% of the r’s have the values of r = 1, r = 2, and r = 3,
respectively.
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Table 1: True values and posterior estimates of the parameters, using reparameterized Gibbs
sampler and standard Gibbs sampler

True Reparameterized Gibbs Sampler Standard Gibbs Sampler
Value E(β|D) Std(β|D) P(β > 0|D) E(β|D) Std(β|D) P(β > 0|D)

βr0 0.3 0.284 0.0203 1 0.148 0.0278 1
βr1 -0.6 -0.621 0.0195 0 -0.433 0.03 0
βr2 0.2 0.192 0.0165 1 0.0736 0.0108 1
βr3 -0.5 -0.505 0.018 0 -0.192 0.0171 0
βy0 0.5 0.427 0.0633 1 -0.353 0.0195 0
βy1 -0.4 -0.349 0.0319 0 0.0829 0.015 1
θ1 1 1.1 0.0676 1 1.29 0.0597 1
θ2 2 2.1 0.129 1 2.46 0.117 1
γ̃ 2 1.99 0.0368 1 1.3 0.104 1
γ 3 2.96 0.0672 1 1.27 0.0761 1
σyr -0.5 -0.538 0.0424 0 -0.972 0.00177 0

To evaluate the potential merits of using such a reparameterization, we fit the model using

both our reparameterized Gibbs sampler and the standard Gibbs sampler. In each case, we

use the priors described in (13)-(17) with hyperparameter values chosen as described in the

previous section. Though not explicitly derived here, the standard Gibbs sampler involves

sequentially simulating the cutpoints from their complete conditional distributions, which

are uniform with bounds depending on the values of the neighboring cutpoints and latent

data. For each parameterization, we ran the corresponding sampler for 1,000 iterations and

discarded the first 200 draws as the burn-in period.

Results of this experimental exercise are summarized in Figure 1 and Table 1. In Figure 1,

we plot the lagged autocorrelations up to order 20 for several selected parameters: βr0, γ and

σyr. As can be clearly seen from the figure, the posterior simulations from our recommended

algorithm mix quite well and the lagged autocorrelations drop away reasonably quickly.15 In

sharp contrast, the lagged autocorrelations obtained when using the standard Gibbs sampler

exhibit much slower rates of decay, thus requiring substantially more simulations in order

to obtain an equivalent level of numerical precision. In fact, for the cutpoint parameter γ,

the lagged correlations were approximately 1 even up to order 50. Specifically, we found the

lagged autocorrelations to be 0.9995, 0.9987, 0.9978, 0.9971 and 0.9963 at orders 10, 20, 30,

40 and 50, respectively.

15The lagged correlations for σyr were found to be approximately 0 for lag orders exceeding 30.
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Figure 1: Lagged Autocorrelations of simulated posterior draws for βr0, γ and σyr, using
reparameterized Gibbs sampler (RGS) and standard Gibbs sampler (SGS)
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Table 1 shows how this slow mixing problem can potentially lead to misleading inference

regarding the regression and variance parameters. Clearly, the posterior means of the para-

meters obtained using the standard Gibbs sampler do not match the actual values used to

generate the data, while estimates obtained using the reparameterized sampler match the

actual values quite closely. In our view, this example clearly illustrates the limitations asso-

ciated with use of the standard Gibbs sampler in our ordered equation system, and motivates

the potential benefits afforded by working with our suggested reparameterization.

4 The Data

In the following section we provide an illustrative application of the described methodology

using rich data provided by National Longitudinal Survey of Youth (NLSY79). This data

set is a widely-used panel survey of young men and women ranging in age from 14-22 in the

base year of the survey (1979), and contains a wealth of information on the labor market

experiences, family background characteristics, health outcomes and other demographic in-

formation of the sampled individuals. In this study, we focus primarily on variables related

to fertility and associated health outcomes, and describe the variables of primary interest

below.

During the 1982 and 1983 interview waves, the NLSY significantly expanded its set of ques-

tions related to fertility. These expanded questions provide unusually rich information on

maternal inputs during pregnancy and a variety of birth outcomes including birth weight,

birth length, and information regarding early infant health. Most importantly for the pur-

poses of our application, questionnaires in 1983 asked the female respondents to report

(when appropriate) the frequency of alcohol consumption during her most recent pregnancy.

In the data set, the alcohol consumption measure is recorded as a categorical (and naturally

ordered) response: the mothers choose among 7 different categories which range from no

alcohol consumption to consuming alcohol nearly every day.16 Additionally, in this wave of

interviews, the mothers in the sample are asked to provide information on the early health

outcomes of the youngest child. For the purposes of this paper, we focus on the number of

16The raw NLSY data actually contain 8 different categories. Due to the small number of mothers
found in the highest consumption categories, we chose to group the respondents in the “Nearly Every Day”
consumption category and the “Every Day” category into a single group. Our highest consumption group
which combines these two categories is labeled “Nearly Every Day.”
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months during the first year of life that the child was taken to the doctor for reasons related

to illness or injury, and use this variable as our measure of infant health. By “number of

months,” we mean an aggregation of a set of 12 individual indicators that denote if the

child was taken to see the doctor during her first month of life, during her second month of

life, etc.17 This variable is, again, discrete and ordered and fits into the framework of the

model described in the previous section.18 In terms of the model and notation described in

(1) and (2), we make use of this data to investigate the “causal” effect of maternal alcohol

consumption r on infant health y.

In the absence of an instrumental variable - some characteristic that is correlated with ma-

ternal alcohol consumption but has no structural effect on infant health conditioned on the

employed controls - the parameters of the model in (1) and (2) are identified based on main-

tained distributional assumptions and the nonlinearity of the model. In empirical practice,

of course, we prefer to make use of such an instrumental variable (when available) so that

identification does not rely solely on functional form assumptions. To this end, we are able to

gather information on whether or not the respondent’s (i.e., the mother’s) biological mother

or father “has been an alcoholic or problem drinker at any time in their life,” and argue that

this variable can serve as an adequate instrument. Aside from environmental factors that

would seem to generate correlation between the alcohol consumption of parents and their

children, there is a growing awareness in the medical literature that alcoholism, like many

other diseases, has a genetic component (e.g., NIAAA 2003). Seemingly, then, a strong case

can be made that this instrument should be correlated with maternal alcohol consumption.

We also argue that grandparental alcohol consumption should have no structural effect on

infant health conditioned on maternal alcohol consumption and other included maternal

17This variable may not be an ideal indicator of infant health for two reasons. First, it may be the case
that the number of months the child was taken to the doctor is a poor proxy for the overall number of visits
during the first year of life. (That is, one child may have gone to the doctor 10 times in a particular month
but still be recorded as only visiting the doctor 1 month of her first year of life.) We believe, however, that
this problem is likely to be minor and our indicator should be strongly correlated with the overall number of
physician visits. Second, for a child to visit the doctor for reasons related to illness, she must both be sick
and the mother must actually make the effort to take the child to the doctor. That is, a child may be ill
frequently, but a particular mother may simply choose not to take that child to visit the doctor. As described
in the following section, we attempt to mitigate this last concern by controlling for maternal “indifference”
through correlation between the errors in equations (1) and (2).

18Though one might be tempted to treat number of visits as, say, a count variable, there is an upper limit
on the number of possible visits in this application. This leads us to specify a latent variable specification,
as in (1), which is assumed to generate the observed health status variable. Of course, there is also the
possibility of measurement error with these data, as the alcohol consumption and infant health variables
could be miscategorized. We do not take up this issue in this paper, but defer it as the subject for future
work.
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characteristics such as education, “ability,” family income, age and, importantly, a proxy for

maternal health.19

In addition to the key variables listed above, we also include age of the mother at the time of

childbirth, highest grade completed by the mother, an “ability” (test score)20 measure, family

income and an indicator for whether or not there are other (older) children present in the

household in equations (1) and (2). These controls are added to account for characteristics of

the mother that we believe may be associated with maternal alcohol consumption and infant

health. After restricting our attention to models with complete data21 for the requisite

variables, we are left with a final sample of 1,124 observations. Descriptive statistics for

variables used in our final sample are provided in Table 2.

4.1 The Endogeneity of Maternal Alcohol Consumption and a
Conceptual Framework

In equation (1) zyi is a latent variable which is assumed to generate our observed infant

health outcome, number of months during the first year of life in which the child visited the

doctor for reasons related to illness or injury. As discussed in the previous section, this latent

variable can be decomposed into two parts: one part which proxies the true health status

of the child and another portion which picks up the mother’s willingness to take the child

to the doctor for a given health level. To this end, we think that the error term εyi in (1)

contains a mother-specific component (which is potentially correlated with observed maternal

alcohol consumption), which quantifies the level of (for lack of a better term)“indifference”

of the mother. That is, for a given health status of the child, more indifferent mothers are

probably less likely to make the effort to take their children to the doctor, resulting in fewer

observed doctor visits on average. This “indifference,” of course, is also likely to have a

19Of course, one might argue that grandparental alcohol consumption influences maternal health indepen-
dently of her decision to drink, and this unobserved maternal health may also affect infant health. As a
result, the instrument would not be exogenous. To this end, we construct a proxy for maternal health as a
dummy variable indicating if there are any health problems that prevents the mother from working at a job
for pay, or limits the kind or the amount of work she can do on a job for pay prior to 1983. Though this
may not be an ideal health status proxy, our belief is that it may pick up significant maternal health issues
which, potentially, could arise due to the alcohol consumption patterns of her parents.

20This ability measure is the AFQT score provided in the NLSY. This score is included after first being
standardized by age.

21In cases where the age of the youngest child at the time of the interview was less then a year, we deleted
these observations, as they could not provide information on doctor visits for the full 12 month period.
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positive effect on the propensity to consume alcohol during pregnancy, thus contributing to

a negative correlation between the errors in (1) and (2). On the other hand, more indifferent

mothers are probably less likely to perform acts that are typically associated with positive

health outcomes for the child (e.g., encouraging exercise, providing a well-balanced diet),

thus increasing the latent index zyi and increasing the number of observed doctor visits. The

latter part of this story is suggestive of a possible positive correlation between the errors in

(1) and (2). A priori, we are not sure which of these two effects should dominate, but both

stories suggest the potential for correlation among the outcome errors in our system and

thus motivate the need to control for the endogeneity of alcohol consumption.

Relatedly, in some cases the coefficients on the observables in our health outcome equation

(1) may be difficult to interpret. To show why this might be the case, let us introduce

an illustrative conceptual model which formally incorporates the effects described in the

previous paragraph:

zyi = α1Hi + α2Pi + ε̃yi (18)

Hi = x1iβ1 + driθ1 + νi (19)

Pi = x2iθ2 + ωi (20)

zri = xriβ + Ii + ε̃ri (21)

Equation (18) writes the latent variable generating observed doctor visits, zyi, as a combina-

tion of two factors: the “true” (but, unfortunately, unobserved) child health status, denoted

Hi, and an effect arising from a second variable Pi, which denotes the mother’s unobserved

propensity to take the child to the doctor (for a given health level). Both of these variables

combine to form an overall index, which is assumed to generate the observed number of

doctor visits. Quite naturally, we expect α1 < 0 and α2 > 0 so that children in poorer health

are likely to have more doctor visits, and mothers with a predisposition to have their child

examined by a physician at the onset of an illness are more likely to take their children to

the doctor.

In equation (19), infant health level H is written as a function of observables x1 and dr,

the latter denoting the observed amount of maternal alcohol consumption. Similarly, in

(20) Pi is written as a linear function of observables x2 [which could potentially contain the

covariates in (19)]. In the final equation, the latent variable generating alcohol consumption

zr is written as a function of observables xr, and we have decomposed the error term into
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unobserved maternal “indifference” I and a random error ε̃r. As discussed previously, we

expect that unobserved “indifference” I is negatively correlated with both ω and ν.

Of course, upon substituting the equations for H and P into equation (18), the four equation

system in (18)-(21) reduces to our two equation ordered system as in (1) and (2). The

resulting sign of the correlation between the final composite errors of the two equations is

unclear, though we have strong reason to suspect that a non-zero correlation may exist. As

an additional concern, if x1 and x2 share common elements, then the coefficients appearing

on those variables common to (19) and (20) must be interpreted as picking up the combined

contribution of those covariates on both H and P . For example, it seems reasonable to

expect that having other children in the household may lower infant health H (since the

infant will typically be exposed to more illnesses), but at the same time, the experience

of having children before may make the mother more confident in handling health issues

without needing to see a doctor (thus lowering P ). So, this variable would presumably be

present as a covariate in both equations H and P (with offsetting effects on our observed

outcome variable), and upon estimating the model in (1) and (2), we are not able to identify

its individual contribution to each of these equations.

We are less concerned, however, about drawing correct conclusions regarding the “signifi-

cance” of our alcohol consumption variable, the primary covariate of interest. In particular,

if one were to argue that maternal alcohol consumption should also be included as an ex-

planatory variable in the equation generating P , then presumably it would be negatively

correlated with P - mothers who are more likely to drink probably have a lower propensity

to take their children to the doctor, holding other factors constant. Therefore, if we find

that the coefficient estimates on maternal alcohol consumption in (1) are positive, then it

must be the case that maternal alcohol consumption has a negative effect on infant health;

there is no other way to obtain such a positive coefficient under the seemingly reasonable

assumptions that α1 < 0, α2 > 0 and alcohol consumption correlates negatively with P .22

As we describe in the following section, we find strong evidence of positive coefficients as-

sociated with maternal alcohol consumption, and thus draw the conclusion that maternal

alcohol consumption has a negative and significant impact on early infant health.

22Upon substitution, the “final” coefficient on the alcohol consumption variable is of the form α1θ1+α2θ2r,
where θ2r denotes the coefficient on the alcohol consumption variables in (20). If α1 < 0, α2 > 0, θ2r < 0
and the entire sum is found to be positive, then it must be the case that θ1 < 0 so that maternal alcohol
consumption has a negative impact on infant health.

16



5 Empirical Results

Before providing coefficient estimates from our preferred simultaneous equations model, it

is, perhaps, useful to present estimates obtained when considering equations (1) and (2)

separately. Such an estimation procedure would be appropriate if σyr = 0, thus eliminating

the need to control for the endogeneity of maternal alcohol consumption. This assumption

is often implicitly made in biomedical research on this topic, as single-equation methods are

routinely used, and mean independence assumptions are assumed to hold given the inclusion

of sufficient controls.

Results of these equation-by-equation ordered probit analyses are presented in Table 3. What

is most important to note from this first pass at the data are the coefficients on the maternal

alcohol consumption variables.23 As we can see from the table, children of mothers consuming

moderate to large amounts of alcohol while pregnant (i.e., drinking at least once or twice a

week while pregnant) tend to experience more doctor visits during the first year of life than

children whose mothers never consumed alcohol. The evidence in this regard, however, is not

overwhelming, as we find small posterior probabilities that the coefficients for the highest

consumption categories are positive (with the exception of the highest consumption group).

In addition, there is little evidence that children whose mothers consumed small to moderate

quantities of alcohol while pregnant are associated with any increase in the number of doctor

visits. Of course, one might question these results and suspect that selection bias remains

an important concern, as unobservable confounding may still exist even with the given set

of controls. If the correlation among the unobservables in equations (1) and (2) is negative,

for example, (as could be the case if more indifferent mothers have a higher propensity to

drink and are also less likely to take their children to the doctor when sick), then we might

suspect that the single-equation ordered probit estimates actually understate the true impact

of alcohol consumption on infant health. To this end, we now take up the case of our more

general model which allows for the endogeneity of maternal alcohol consumption.

23Mothers who report to have “never” consumed alcohol while pregnant are the excluded group, so the
coefficients on the remaining dummies should be interpreted as relative to that group.
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5.1 Posterior Results for the Two Equation System

We fit our system of ordered outcomes using the posterior simulator described in the appen-

dix. This posterior simulator makes use of Gibbs steps to simulate the majority of parameters

in the model, but uses Metropolis-within-Gibbs steps based on Dirichlet proposal densities

to simulate the transformed cutpoints γ∗ and γ̃∗. The posterior simulator is run for 20,000

iterations and the first 4,000 are discarded as the burn-in. Coefficient posterior means, stan-

dard deviations, probabilities of being positive, and point estimates of marginal effects are

provided in Table 4.24

The top panel of Table 4 presents posterior results for the parameters of equation (2) describ-

ing the quantity of alcohol consumption during pregnancy. We first see that the instrument,

an indicator denoting if the mother had a biological parent who was a “problem drinker

or alcoholic” is strongly correlated with maternal alcohol consumption. Mothers with at

least one parent who was a problem drinker are approximately 9 percent more likely to con-

sume at least some amount of alcohol during pregnancy than those mothers whose parents

were not problem drinkers. Somewhat surprisingly, the coefficients associated with the other

variables are often insignificant and typically possess unexpected signs. The coefficients as-

sociated with education and test scores, for example, are positive, and for the case of test

scores, have a very low posterior probability of being negative. As can be seen from the

magnitude of the marginal effect estimates, however, we should not make too much of these

positive coefficients, since these variables seemingly play minor roles in explaining maternal

alcohol consumption decisions.

Posterior results for our health outcome equations are presented in the bottom panel of Table

4. Most importantly, we see positive coefficients associated with our maternal alcohol con-

sumption variables, and these coefficients are generally increasing with the level of alcohol

consumption. Specifically, mothers who reported to “drink nearly every day” during their

pregnancies are estimated to take their children to the doctor nearly 7 more months during

the child’s first year of life than mothers who report “never” consuming alcohol while preg-

nant. Those children of mothers consuming “small” but positive amounts of alcohol while

pregnant (say, fewer than 3 or 4 days a month) are estimated to experience approximately

24For the sake of brevity, we do not present posterior information regarding the cutpoints from each
equation, though these details are available upon request.
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1.5 additional physician visits than children of mothers who completely avoid alcohol while

pregnant. Older and more educated mothers tend to have children associated with more

doctor visits, while more experienced mothers (i.e., those who have had children before)

tend to make fewer physician visits. Again, similar to our discussion in the previous sec-

tions, these variables are likely to proxy a mother’s unobserved propensity to take the child

to the physician rather than reflecting a structural effect related to infant health. Finally,

we also note that our proxy for maternal health status (denoted “Health Problem” in Tables

3 and 4) plays some role in our equation describing the number of observed doctor visits.

In particular, children of mothers who report having a health problem limiting their ability

to work are associated with approximately .2 additional doctor visits per year, potentially

suggesting that maternal health (or lack thereof) is, perhaps to a small degree, transmitted

to the child. We also reiterate that the inclusion of our proxy for maternal health in (1)

helps to strengthen our claims regarding the validity of our instrument - we argue that grand-

parental alcohol consumption plays no structural role in predicting infant health conditioned

on maternal alcohol consumption, a proxy for maternal health and other employed controls.

We conclude by noting that the magnitude of the impacts of maternal alcohol consumption

from our joint estimation procedure are larger than those suggested by our previous single

equation analyses. We expected to observe such an increase if selection bias was indeed

an important concern, and in particular, if there was a negative correlation between the

unobservables of equations (1) and (2). The last row of Table 4 provides rather strong

evidence that a non-zero correlation exists. The posterior mean of the correlation between

the errors of our two equations is -.31, and the marginal posterior density places most of

its mass over negative values (i.e., the posterior probability that the coefficient is negative

is .943). This result clearly suggests the need to allow for the potential of unobservable

confounding in our application, even with a reasonably rich set of employed controls.

6 Conclusion

We have described a new simulation-based Bayesian algorithm for fitting “treatment” effect

models when both the outcome of interest and the endogenous “treatment” variable are

ordered. We showed in generated data experiments how this new posterior simulator (based

on a rescaling transformation) can lead to improved mixing of the simulated parameters
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relative to use of the standard Gibbs sampler. This rescaling transformation was also shown

to simplify some of the posterior computations, and in the specific case where there are

3 possible alternatives for either outcome, the need for “traditional” methods to simulate

cutpoints associated with that variable is eliminated. It is our hope that the algorithm

provided will be useful to other empirical researchers seeking to estimate treatment effect

models with a similar structure.

Using data from the National Longitudinal Survey of Youth (NLSY) we also applied our

methods in practice and investigated the effect of maternal alcohol consumption on early

infant health. Our results revealed clear evidence that the health outcomes of infants whose

mothers consumed alcohol while pregnant were worse than the outcomes of infants whose

mothers never consumed alcohol while pregnant. In addition, the estimated parameters

of our model clearly suggested the need to allow for the endogeneity of maternal alcohol

consumption when seeking to identify its effect on early infant health.
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Appendix: The Gibbs Algorithm

We employ the Gibbs sampler to fit the model described by (1) and (2). As mentioned in section
2, to improve the performance of the standard sampler, we follow Nandram and Chen (1996) and
introduce a rescaling transformation in each of the ordered outcome equations. Specifically, we
introduce the reparameterizations:

σy = 1/[γ2
Y ], β∗y =

√
σyβy, z∗y =

√
σyzy, γ∗ =

√
σyγ

and
σr = 1/[γ̃2

R], β∗r =
√

σrβr, z∗r =
√

σrzr, γ̃∗ =
√

σrγ̃, σ̃yr =
√

σy

√
σrσyr.

Multiplying the latent variable equation in (1) on both sides by √σy, multiplying (2) on both sides
by
√

σr, and using the parameterization above, we obtain an equivalent model of the form

z∗yi = xyiβ
∗
y + uyi (22)

z∗ri = xriβ
∗
r + uri (23)

with yi = j if γ∗j < z∗yi ≤ γ∗j+1 and ri = k if γ̃∗k < z∗ri ≤ γ̃∗k+1. The Normality assumption in (3)
implies [

uyi

uri

]
iid∼ N(02,Σ) where Σ =

[
σy σ̃yr

σ̃yr σr

]
(24)

and σ̃yr ≡ σyr
√

σy
√

σr. In the algorithm below, we employ blocking steps where the transformed
cutpoints and transformed latent data are drawn together in a single block to improve the overall
performance of our sampler.

Gibbs Algorithm

1. Sample the coefficients β∗ = [β∗′y β∗′r ]′:

β∗|Ξ−β∗ , Data ∼ N(Dβdβ, Dβ),

where Ξ−θ denotes all the parameters other than the parameter θ, Dβ = [X ′(Σ∗−1 ⊗ In)X +

V −1
β ]−1, dβ = X ′(Σ∗−1 ⊗ In)z∗ + V −1

β β0, X =

(
Xy 0n×kr

0n×ky Xr

)
, Vβ =

(
Vy 0ky×kr

0kr×ky Vr

)
,

β0 =

(
0ky×1

0kr×1

)
, and z∗ =

(
z∗y
z∗r

)
.

2. Sample the truncation points in the doctor visit equation, {γ∗j }Y−1
j=3 , from its conditional posterior

marginalized over z∗y :

p({γ∗j }Y−1
j=3 |Ξ−{γ∗j }Y−1

j=3 ,z∗y
, Data) ∝

n∏

i=1

[Φ([γ∗yi+1 − µy|r]/
√

σy|r)− Φ([γ∗yi
− µy|r]/

√
σy|r)],

where Φ denotes the cumulative distribution function of the Normal density, µy|r ≡ xyiβ
∗
y +

σ̃yrσ
−1
r (z∗ri − xriβ

∗
r ), and σy|r ≡ σy − σ̃2

yrσ
−1
r . Following the reasoning of Nandram and Chen
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(1996), we use a Dirichlet proposal density to sample the differences between cutpoint values,
qj ≡ γ∗j+1 − γ∗j , j = 3, · · ·Y − 1, and then solve back for {γ∗j }. Specifically, we sample a candi-
date value, say {qcan

j }Y−1
j=3 ∼ Dirichlet({αjnj + 1}Y−1

l=3 ), where “can” denotes the candidate draw,
{αj}Y−1

j=3 = 0.1 are tuning parameters, and nj ≡
∑n

i=1 I(yi = j), j = 3, · · ·Y − 1 are the numbers
of individuals falling into each category of the outcome variable. The probability of accepting the
candidate draw is min(R, 1), where

R = [
n∏

i=1

Φ([γcan
yi+1 − µy|r]/

√
σy|r)− Φ([γcan

yi
− µy|r]/

√
σy|r)

Φ([γyi+1,l−1 − µy|r]/
√

σy|r)− Φ([γyi,l−1 − µy|r]/
√

σy|r)
][

Y−1∏

j=3

(
qj,l−1

qcan
j

)αjnj ],

and “l−1” denotes the current value of the algorithm.

3. Sample the latent outcome in the doctor visit equation, z∗yi, i = 1, 2, · · ·n, from the complete
conditional:

z∗yi|Ξ−z∗yi
, Data

ind∼ TN(γ∗yi
,γ∗yi+1]

(µy|r, σy|r),

where TN(a,b](µ, σ) denotes a Normal distribution with mean µ and variance σ truncated to the
interval between a and b.

4. Sample the cutpoints relevant to the drinking frequency equation from the posterior conditional
for {γ̃∗k}R−1

k=3 marginalized over z∗r :

p({γ̃∗k}R−1
k=3 |Ξ−{γ̃∗

k
}R−1

k=3
,z∗r

, Data) ∝
n∏

i=1

[Φ([γ̃∗ri+1 − µr|y]/
√

σr|y)− Φ([γ̃∗ri
− µr|y]/

√
σr|y)],

where µr|y = xriβ
∗
r + σ̃yrσ

−1
y (z∗yi−xyiβ

∗
y), and σr|y = σr− σ̃2

yrσ
−1
y . As in step (2) we use a Dirichlet

proposal density to sample the differences between the cutpoints q̃k ≡ γ̃∗k+1 − γ̃∗k , k = 3, · · ·R − 1,
and specifically sample these differences from a Dirichlet({α̃kñk + 1}R−1

k=3 ) proposal density, where
{α̃k}R−1

k=3 = 0.05 are the tuning parameters and ñk ≡
∑n

i=1 I(ri = k), k = 3, · · ·R − 1 are the
numbers of individuals falling into each category of the outcome variable. The probability of
accepting the candidate draw is min(R, 1), where

R = [
n∏

i=1

Φ([γ̃can
ri+1 − µr|y]/

√
σr|y)− Φ([γ̃can

ri
− µr|y]/

√
σr|y)

Φ([γ̃ri+1,l−1 − µr|y]/
√

σr|y)− Φ([γ̃ri,l−1 − µr|y]/
√

σr|y)
][

R−1∏

k=3

(
q̃k,l−1

q̃can
k

)α̃kñk ].

5. Sample the latent outcomes in the drinking frequency equation:

z∗ri|Ξ−z∗ri
, Data

ind∼ TN(γ̃∗ri
,γ̃∗ri+1]

(µr|y, σr|y),

for i = 1, 2, 3, · · · , n.
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6. Sample the covariance matrix Σ∗:

Σ∗|Ξ−Σ∗ , Data ∼ IW

(
2a + n, {H−1 +

n∑

i=1

[(z∗yi − xyiβ
∗
y) (z∗ri − xriβ

∗
r )]′[(z∗yi − xyiβ

∗
y) (z∗ri − xriβ

∗
r )]}−1

)
.

After each iteration we rescale all the parameters by dividing √σy into β∗y and {γ∗j }Y
j=3, and by

dividing
√

σr into β∗r and {γ̃∗k}R
k=3. We provide the posterior summary statistics for these coefficients

in the tables.
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Table 2: Descriptive statistics: drinking frequency equation and doctor visit equation

Drinking Frequency Equation
Sample Mean Standard Error

Number of days drinking per montha 0.806 2.33
Raceb

Hispanic 0.165 0.371
Black 0.335 0.472

Cognitive test score 0 1
Education 11.4 1.85
Age 20.1 2.21
Having children before 0.387 0.487
Biological parent alcoholic 0.298 0.457

Additional Covariates in
Doctor Visit Equation

Sample Mean Standard Error
Number of months treated for illness 1.57 2.45
Youngest child female 0.476 0.499
Family income ($10,000) 1.57 1.2
Health problem 0.369 0.483

aThe listed descriptive statistics are the overall sample mean and standard error of drinking frequency.
The mothers reported their drinking frequencies during pregnancies in one of the following categories: never
[0], less than once a month [1], about once a month [2], 3 or 4 days a month [3], 1 or 2 days a week [4], 3 or
4 days a week [5], and nearly every day [6].

bFor race, the excluded group are whites.
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Table 3: Single equation estimates: drinking frequency equation and doctor visit equation

Drinking Frequency Equation
E(β|D) Std(β|D) P(β > 0|D) ∆P(r > 1|∆xr, D)a

Constant -0.997 0.392 0.00456
Race

Hispanic -0.216 0.11 0.0241 -0.0735
Black -0.0364 0.096 0.351 -0.0125

Cognitive test score 0.103 0.0452 0.989 0.0383
Education 0.0121 0.0256 0.682 0.00447
Age 0.0197 0.0187 0.853 0.00726
Having children before 0.0727 0.0842 0.806 0.0271
Biological parent alcoholic 0.211 0.0783 0.997 0.0804

Doctor Visit Equation
E(β|D) Std(β|D) P(β > 0|D) Marginal Effectb

Constant -1.02 0.357 0.00175
Race

Hispanic 0.00391 0.0944 0.515 0.016
Black -0.324 0.0869 0.000125 -0.528

Cognitive test score -0.0435 0.0426 0.155 -0.0804
Education 0.0429 0.0228 0.97 0.0847
Age 0.0472 0.0171 0.997 0.0927
Having children before -0.0727 0.0755 0.166 -0.129
Youngest child female -0.0656 0.0653 0.157 -0.118
Family income ($10,000) -0.0129 0.0294 0.33 -0.0237
Health problem 0.103 0.0677 0.94 0.213
Drinking frequency

Less than once a month 0.154 0.0902 0.954 0.326
About once a month -0.0372 0.128 0.385 -0.0555
3 or 4 days a month -0.13 0.15 0.193 -0.218
1 or 2 days a week 0.0591 0.165 0.641 0.143
3 or 4 days a week 0.162 0.327 0.692 0.435
Nearly every day 1.1 0.587 0.969 3.42

aThe quantity ∆P(r > 1|∆xr, Data) measures the marginal effect of any control variable xr on the
probability of having any alcohol consumption during pregnancy P(r > 1).

bThis quantity measures the marginal effect of any control variable on the number of months in the first
year during which the youngest child was treated by doctor for illness.
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Table 4: Simultaneous equation estimates: drinking frequency equation and doctor visit
equation

Drinking Frequency Equation
E(β|D) Std(β|D) P(β > 0|D) ∆P(r > 1|∆xr, D)a

Constant -1.01 0.389 0.004
Race

Hispanic -0.211 0.108 0.0251 -0.0717
Black -0.0104 0.096 0.46 -0.00325

Cognitive test score 0.109 0.045 0.992 0.0409
Education 0.00766 0.0256 0.619 0.00293
Age 0.0219 0.0189 0.877 0.00812
Having children before 0.0677 0.0833 0.792 0.0256
Biological parent alcoholic 0.241 0.0754 0.999 0.0916

Doctor Visit Equation
E(β|D) Std(β|D) P(β > 0|D) Marginal Effectb

Constant -1.07 0.349 0.001
Race

Hispanic 0.047 0.0971 0.689 0.107
Black -0.3 0.0875 0.000188 -0.521

Cognitive test score -0.0663 0.0435 0.0646 -0.13
Education 0.0405 0.0223 0.965 0.0837
Age 0.0408 0.0174 0.991 0.0843
Having children before -0.0833 0.0755 0.133 -0.158
Youngest child female -0.0609 0.0617 0.16 -0.116
Family income ($10,000) -0.0109 0.028 0.352 -0.0208
Health problem 0.0971 0.0642 0.937 0.208
Drinking frequency

Less than once a month 0.526 0.235 0.97 1.41
About once a month 0.493 0.336 0.921 1.37
3 or 4 days a month 0.503 0.401 0.892 1.45
1 or 2 days a week 0.809 0.472 0.943 2.48
3 or 4 days a week 1.09 0.627 0.946 3.54
Nearly every day 2.11 0.818 0.986 6.9

Correlation: σyr = ρyr -0.312 0.184 0.0571

aThe quantity ∆P(r > 1|∆xr, Data) measures the marginal effect of any control variable xr on the
probability of having any alcohol consumption during pregnancy P(r > 1).

bThis quantity measures the marginal effect of any control variable on the number of months in the first
year during which the youngest child was treated by doctor for illness.
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