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Abstract
This paper takes a discrete-time adaptation of the continuous-time matching economy described in

Pissarides (1990, 2000), and computes the solution to the dynamic planning problem. The solution
is shown to be completely characterized by a first-order, non-linear map. We show that the map
admits a unique stationary solution which is dynamically unstable. Oscillatory solutions are possible
but there is no possibility of periodic solutions. The planner picks the initial condition that places
the economy directly on the steady state. Our results are in sharp contrast to received wisdom on
out-of-steady-state dynamics in the continuous-time decentralized version of the Pissarides model
where adjustment to the steady state is non-instantaneous, and overshooting of vacancies is possible.

∗We thank an anonymous referee for extremely useful remarks and to Rob Reed for many discussions.
†Please address all correspondence to: Joydeep Bhattacharya, Department of Economics, 260 Heady Hall, Iowa State

University, Ames, IA 50011-1070, USA. E-mail: joydeep@iastate.edu; Ph: 1-515-294-5886; fax: 1-515-294-0221

1



1 Introduction

This paper takes as a starting point Ljungqvist and Sargent’s (2000; Chapter 19) discrete-time adapta-
tion of the continuous-time matching economy described in Pissarides (1990, 2000) and computes the
solution to the dynamic planning problem. To the best of our knowledge, we are the first to investi-
gate the dynamic properties of the planning solution in the standard textbook model of labor market
search. The solution is shown to be completely characterized by a first-order, non-linear scalar differ-
ence equation. The main contribution of this paper is to show that a) there is a unique stationary
solution, b) it is locally unstable, and c) oscillatory solutions are possible but there is no possibility
of periodic solutions. The implication is strong and clear: in an economy characterized by search and
matching frictions, an omniscient social planner has no option but to “jump” to the stationary solution
straightaway. These results also suggest that merely delegating the job of coordinating labor market
search activity to a planner immediately renders an economy immune to any kind of indeterminacies or
endogenous fluctuations. 1

Several papers in the literature have investigated the possibility of non-stationary solutions in search
models of the labor market. The seminal papers in this area are Drazen (1988) and Diamond and
Fudenberg (1989); both build on Diamond (1982) and prove the existence of stable limit cycles in
a model where there are frictions in coordinating trade, and the matching technology is subject to
increasing returns. More recently, Mortensen (1999) revisits the standard textbook model of search and
matching in the labor market as described in Pissarides (1990) but introduces an increasing returns
to scale production technology to generate multiple long-run unemployment equilibria and stable limit
cycles.2 Shimer and Smith (2001) explore optimal matching policies in constant returns to scale search
economies with heterogenous agents and find the possibility of non-stationarity.

The current endeavour is different from the previous literature in three important ways. First, the
focus here (as in Shimer and Smith, 2001) is on the planning solution as opposed to the “decentralized”
solution (the focus of the other aforementioned papers). In particular, there is no free entry condition
for firm entry to contend with, nor is there a wage-rent sharing equation derived from protocols of Nash
bargaining. To the best of our knowledge, we are the first to investigate the dynamic properties of the
planning solution in the standard Pissarides (2000) model. Recall that the dynamics of the decentralized
solution (as explored for the continuous-time case in Chapter 1.7 of Pissarides, 2000) is characterized
by a system of two differential equations, and that the unique steady state is a saddle point. There, the
perfect foresight path in the neighborhood of the equilibrium is unique: a unique set of initial conditions
place the economy on the saddle path and non-instantaneous adjustment to equilibrium takes place from
there. In fact, overshooting of vacancies is even possible. In contrast, we find that the dynamics of
the planning solution is characterized by a scalar non-linear difference equation and the unique steady
state is locally unstable. The planner chooses the initial condition to place the economy directly on
the steady state; adjustment is instantaneous and no overshooting is possible. Thus there is one and
only one planning solution. This last result is of great importance since the famed Hosios condition, a
comparison of the social optimum to the market outcome, always done at the steady state which we
have now shown is the only possible equilibrium.

The second departure from the previous literature is that neither the production nor the matching
technologies in our model exhibit any increasing returns. Finally, unlike the continuous-time framework

1This result is of independent interest because planning solutions, even in models without any externalities, are not
always immune to endogenous fluctuations. See the characterization of chaotic planning solutions to the Ramsey optimal
growth model as enunciated in Boldrin and Montruchhio (1986), and more recently in Mitra, Majumdar, and Nishimura
(2000).

2Mortensen (1999) assumes that match productivity is an increasing function of the aggregate number of matches. This
generates the needed increasing returns in production.
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used by Mortensen (1999) and Shimer and Smith (2001), we use the discrete-time adaptation.3 This
is important when contrasted again with the decentralized solution to the continuous-time matching
economy. There firms create or destroy vacancies instantaneously so as to ensure that the value of a
new vacancy is always zero. In our setup, however, vacancies created this period with a cost affect
employment next period and this introduces a time delay that is not present in the continuous time
environment.

The plan for the rest of the paper is as follows. Section 2 outlines the Pissarides (2000) model of
search and matching in labor markets. Section 3 contains a detailed analysis of the main difference
equation alluded to earlier. Proofs of some central results are to be found in the appendices.

2 The Model

The model (and the notation) is based entirely on Ljungqvist and Sargent’s (2000) discrete-time adapta-
tion of the continuous-time matching economy described in Pissarides (1990, 2000). Let t = 0, 1, 2, 3, ...
index time. There are two types of agents: workers and firms. There is a continuum of identical workers
of measure 1. These workers are all infinitely-lived, they discount the future at the rate β, and are
risk-neutral. Workers potentially get matched with a firm; the result of such a match is output y.4 Each
firm may employ at most one worker. A firm incurs a vacancy cost of c in each period when looking for
a worker. A match between a worker and a firm gets dissolved with an exogenously-specified probability
s. An unmatched worker is an unemployed worker; such a worker enjoys the current utility from leisure
of amount z.

Matches are brought together by a standard matching technology connecting only unemployed job
seekers with open vacancies. The number of successful matches in a period is given byM(ut, vt) where
ut is the total measure of unemployed workers looking for jobs, and vt is the number of vacancies or
firms looking for employees. The matching function is increasing in both arguments, concave, and
homogenous of degree one. For all that we present below, we will assume a standard constant returns
to scale formulation,

M(ut, vt) = Auαt v
1−α
t A > 0, α ∈ (0, 1) (1)

where A is a scale parameter. The parameter α is the elasticity of the matching function with respect to
the measure of unemployed workers. Let θt ≡ vt/ut indicate the measure of labor market tightness, or
the ratio of vacancies to unemployed workers. Then define q (θt) ≡M(ut, vt)/vt denote the probability
with which a vacancy gets filled at date t. It follows that q (θ) = Aθ−α < 1 must hold. Similarly, the
probability that an unemployed worker gets matched at date t is given by θq (θ) = Aθ1−α < 1. Finally,
define nt+1 as the total number of employed workers at the start of t+ 1. Then, it follows that

nt+1 = (1− s)nt +M(ut, vt) = (1− s)nt + q (θt) vt. (2)

The number of people with jobs at the beginning of t + 1 include the number of undissolved matches
which were formed at the start of t that survived onto the start of t+1 [given by (1− s)nt] in addition
to the new matches formed at t. The following lemma [for proof see Appendix A] will be useful below.

Lemma 1 Unless A < 1 obtains, either q (θ) > 1 or θq (θ) > 1 for all θ will be true.

3The discrete-time version of the Pissarides (1990) search-and-matching story has also been employed by Merz (1995),
Andolfatto (1996), Shi and Quan (1999), Cooley and Quadrini (1999), Cole and Rogerson (1999), Yuan and Li (2000), and
Yashiv (2000), among others.

4 In the decentralized equilibria, the match surplus is divided between the worker and the firm according to some
bargaining protocol. Below we assume that the planner cares only about the match output y, and not the division of the
match surplus.
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Lemma 1 demonstrates that for the employment probability to be well-defined, A must lie between
0 and 1. This restriction on the scale parameter A is an artifact of the discrete-time nature of the model
economy.

A planner’s problem could then be outlined as follows. Assume that the planner chooses an allocation
that maximizes the discounted value of output and leisure net of vacancy costs. The principal tensions
are as follows. An extra vacancy adds a cost, makes it easier for unemployed workers to find jobs,
but makes it harder for firms to find workers. Employed workers “lose” leisure utility. More output
is produced if the extra vacancy creates more matches. The planner takes all this into account when
choosing the number of vacancies. Following Ljungqvist and Sargent (2000; p. 578), the planner chooses
vt and next period’s employment level, nt+1 by solving (P) where (P) is defined by

max
{vt,nt+1}∞t=0

∞X
t=0

βt [ynt + z (1− nt)− cvt] (P)

subject to (2), given a n0. The Lagrangian can be written as

£ =
∞X
t=0

½
βt [ynt + z (1− nt)− cvt] + λt

∙
(1− s)nt + q

µ
vt

1− nt

¶
· vt − nt+1

¸¾
where λt is the Lagrange multiplier on (2). Then, the first-order conditions with respect to vt and nt+1
for an interior solution are given by

−βtc+ λt
£
q0 (θt) θt + q (θt)

¤
= 0 (3)

and
−λt + βt+1 (y − z) + λt+1

£
(1− s) + q0 (θt+1) θ

2
t+1

¤
= 0 (4)

In Appendix B, we show that the second order conditions hold. In addition, we verify that (3) and (4)
reduce to the following first-order difference equation in θ :

aθαt+1 − bθt+1 = θαt − d (5)

where
a ≡ β (1− s) ∈ (0, 1) (6)

b ≡ Aαβ ∈ (0, 1) (7)

using Lemma 1, and

d ≡ A(1− α)β (y − z)

c
> 0. (8)

Equation (5) is the law of motion for the index of labor market tightness in the economy under the
planner’s solution. Such a sequence for θ must additionally satisfy q(θ) ∈ (0, 1) , and n < 1. As is clear
from (5), it is clearly convenient to study the backward dynamics as it is derived explicitly from the first
order conditions more easily than the more standard forward dynamics; in fact, θt is easily described
as a function of θt+1 while the relationship of θt+1 to θt is typically a correspondence.5

Before proceeding further, it is instructive to contrast the “final product” i.e., eq. (5) with something
similar that can be obtained in the decentralized continuous-time matching economy of Pissarides (2000).

5Analysis of such backward difference equations are common. See for example, Grandmont (1985) and Michener
and Ravikumar (1998) for analysis of perfect foresight backward dynamics in the overlapping generations model and a
representative agent cash-in-advance model respectively.
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As described in Chapter 1 of Pissarides (2000), such an economy may be ultimately reduced to a system
of two differential equations in the (u, θ) space. There is a unique stationary solution and it is a saddle
point. Under perfect foresight, the initial conditions on unemployment and tightness must place the
economy on the saddle path from where noninstantaneous adjustment to the steady state follows. As we
show below, eq. (5) in contrast is a one-variable difference equation, with a unique stationary solution;
the planner must pick a initial condition to place the economy instantaneously on this steady state.

3 Stationary and non-stationary solutions

Given values of n0 and θ0 (or v0), eq. (5) completely characterizes the unique trajectory of θ and all
other endogenous variables.6 In other words, the backwards dynamics of this model can be characterized
by the continuous four-parameter family of maps g : [0, θmax]→ [0, gmax] , where

g (θ) = (aθα − bθ + d)
1
α , (α, a, b, d) ∈ (0, 1)× (0, 1)× (0, 1)× (0,∞) , (9)

and θmax =
¡
αa
b

¢ 1
1−α and gmax is implicitly defined as the lowest positive root of the following equation:

agαmax − bgmax + d = 0.

The first derivative of the map can be calculated as

g0 (θ) = (aθα − bθ + d)
1−α
α

µ
aθα−1 − b

α

¶
, θ ∈ [0, θmax] ,

which implies that g is unimodal with a unique maximum at θmax ≡
¡

b
aα

¢ 1
α−1 .

Lemma 2 The map g(θ) has a unique stationary solution (θss) implicitly defined by

aθαss − bθss = θαss − d.

Note that it is not possible to obtain a closed form expression for θss. Below, we prove that θss is
locally unstable.

Proposition 1 θss is asymptotically stable in the non-standard backward dynamics implying it is un-
stable in the usual forward dynamics.

The implication is clear and powerful. The only stationary solution to the planner’s problem is
dynamically unstable. The planner must pick the initial conditions in such a way as to place the economy
directly and immediately on the steady state. Hence, there is only one solution to the planner’s problem
and it is the stationary solution.

Finally, we prove that the planning solution may exhibit oscillatory behavior but never any cycles.

Proposition 2
−1 < g0 (θss) < 1

It follows from Proposition 2 that since g0 (θss) < 0 is possible, the planning solution may exhibit
oscillatory behavior; however, since the oscillations are damped in the backward dynamics, they are
necessarily undamped in the usual forward dynamics. Furthermore, since g0 (θss) can never equal −1 or
go below −1, possibility of two or higher period cycles are ruled out.

6Ljungqvist and Sargent (2000; p. 578) assume that the planner just knows n0. However, only if θ0 is additionally
known can we compute the entire unique solution sequence {θt}∞t=1 . From there, using (2), it is then possible to compute
the optimal sequences {vt}∞t=0 , {ut}

∞
t=1 , and {nt}

∞
t=1 . To compute the steady state θss, however, information on θ0 is not

needed.
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4 Concluding remarks

This paper studies the planning solution to the standard Pissarides (1990, 2000) “textbook model” of
search and matching in labor markets. We show that the planning solution is completely characterized
by a first-order, non-linear scalar difference equation. There is a unique stationary solution. In fact, it
is the only possible solution. The steady state is dynamically unapproachable from a arbitrary set of
initial conditions. The planner sets the initial condition to place the economy directly on the steady
state. Additionally, the planning solution may exhibit oscillatory behavior but never any cycles. These
results are contrasted with those obtained for the decentralized version of the Pissarides (2000) model.

6



Appendix

A Proof of Lemma 1

Re-writing the conditions that q (θ) < 1 and θq (θ) < 1, we get

q (θ) = Aθ−α < 1⇔ θ >

µ
1

A

¶− 1
α

,

and

θq (θ) = Aθ1−α < 1⇔ θ <

µ
1

A

¶ 1
1−α

That is, θ must lie in the interval
³¡

1
A

¢− 1
α ,
¡
1
A

¢ 1
1−α
´
. For this interval to be non-empty, we require

¡
1
A

¢− 1
α <

µ
1

A

¶ 1
1−α
⇔ 1 <

µ
1

A

¶ 1
1−α+

1
α

⇔

1 <

µ
1

A

¶
⇔ A < 1.

If A is greater than one, it must therefore be the case that either q (θ) or θq (θ) is greater than 1.¥

B Second Order Conditions for (P)

It is easy to verify that the second derivatives of the Lagrangian are

∂2£

∂v2t
=

λt
1− nt

£
2q0 (θt) + q00 (θt) · θt

¤
∂2£

∂n2t+1
=

λt+1
1− nt+1

£
2q0 (θt+1) · θ2t+1 + q00 (θt+1) · θ3t+1

¤
∂2£

∂vt∂nt+1
=

∂2£

∂nt+1∂vt
= 0

Therefore the sufficient conditions for a local maximum to obtain are that ∂2$
∂v2t

< 0 and ∂2$
∂n2t+1

< 0. Using

q0 (θ) = −αAθ−α−1, and q00 (θ) = α (α+ 1)Aθ−α−2,

we can write

∂2£

∂n2t+1
=

λt+1αAθ
α+1
t+1

1− nt+1
[−2 + (α+ 1)]

∂2£

∂v2t
=

λtαAθ
−α−1
t

1− nt
[−2 + (α+ 1)]

Clearly both of these are negative since 0 < α < 1.
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C Derivation of Equation (5)

From (3), we obtain the following expression for λt :

λt =
βtc

q0 (θt) θt + q (θt)
(A1)

Using (A1) for period t and period t+ 1, we can insert this expression into (4):

− βtc

q0 (θt) θt + q (θt)
+ βt+1 (y − z) +

βt+1c

q0 (θt+1) θt+1 + q (θt+1)

£
(1− s) + q0 (θt+1) θ

2
t+1

¤
= 0

Inserting the expressions for q (θ) and q0 (θ) (recall that q (θ) = Aθ−α) and re-arranging, we get:

β (y − z) +
βc

−αAθ−αt+1 +Aθ−αt+1

£
(1− s)− αAθ−α+1t+1

¤
=

c

−αAθ−αt +Aθ−αt
(A2)

From here, straightforward manipulation yields

(1− s)βθαt+1 − αAβθt+1 = θαt −
(1− α)Aβ (y − z)

c
,

which immediately provides the desired expression in (5).¥

D Proof of Lemma 2

Re-writing the equation which defines the steady state, we get:

(a− 1) θαss + d = bθss (A3)

First note that the function on the left hand side of (A3) takes the value d > 0 when θ = 0, while the
right hand side of (A3) starts out at 0. Further more the left hand side is strictly decreasing, as a < 1,
and the right-hand side is strictly increasing as b > 0. This implies that if a steady state exists, it will
be unique.

Furthermore, since a < 1
lim
θ→∞

((a− 1) θα + d) = −∞

and since b > 0
lim
θ→∞

bθ = +∞,

there exists a θ̄ such that
(a− 1) θ̄α + d < bθ̄.

Since both the left hand side and the right hand side are continuous, a standard fixed point argument
will establish that a steady state exists. We have thus established that the map g (θ) has a unique
stationary solution.¥
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E Proof of Propositions 1 and 2.

Note that if g0 (θss) ∈ (−1, 1) , the map is stable in the backwards dynamics, and therefore it is unstable
in the forward dynamics. Therefore the proof of both propositions will be complete if we can show
that g0 (θss) ∈ (−1, 1) . Using the definition of θss, namely that θss = (aθαss − bθss + d)

1
α , as well as the

definition of the parameters, we get the following expression for g0 (θss) :

g0 (θss) = (aθαss − bθss + d)
1−α
α

µ
aθα−1ss − b

α

¶
= θ1−αss

µ
aθα−1ss − b

α

¶
=

µ
a− b

α
θ1−αss

¶
= β (1− s)−Aβθ1−αss = β (1− s− θssq (θss))

Now, since 0 < β < 1, 0 < s < 1, and 0 < q (θ) < 1, it is immediately clear that g0 (θss) ∈ (−1, 1) .¥
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