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An ordinal approach to characterizing efficient allocations

Abstract: The invisible hand theorem relates nothing about the attributes of the optimal

allocation vector.  In this paper, we identify a convex cone of functions such that order on vectors

of exogenous heterogeneity parameters induces component-wise order on allocation vectors for

firms in an efficient market.  By use of functional analysis, we then replace the vectors of

heterogeneities with asymmetries in function attributes such that the induced component-wise

order on efficient allocations still pertains.  We do so through integration over a kernel in which

the requisite asymmetries are embedded.  Likelihood ratio order on the measures of integration is

both necessary and sufficient to ensure component-wise order on efficient factor allocations

across firms.  Upon specializing to supermodular functions, familiar stochastic dominance orders

on normalized measures of integration provide necessary and sufficient conditions for this

component-wise order on efficient allocation.  The analysis engaged in throughout the paper is

ordinal in the sense that all conclusions drawn are robust to monotone transformations of the

arguments in production. 

Keywords: arrangement monotone, functional analysis, market structure, ordinal analysis,            

                    simplex, symmetry

JEL classification: D2, C6, L1



1.  Introduction

Recent years have seen much success in developing an understanding of how optimizing

firms respond to a change in the economic environment.  Of particular significance has been the

body of work by Topkis (1978), Vives (1990), Milgrom and Roberts (1990, 1996), Milgrom and

Shannon (1994), and Athey (2000) on the optimal behavior of firms when choice variables and 

environmental parameters take values on lattice or allied algebraic structures.  Appealing aspects

of this suite of methods include the facility with which it accommodates vector valued decision

variables and environmental parameters, and also the generality of the functional forms to which

it applies.

If the comparative statics of decision vectors are of interest to economists, then the level

vectors should also be of interest.  As an example, let two optimizing firms produce a single

homogeneous good.  If firm A uses more labor than firm B then will the technology also require

that firm A also use more capital than firm B?  Little is known about the classes of functions that

impose a certain order on the optimum level vectors of factors used by firms in a market.  The

question should be of importance in understanding both industry structure and the determinants

of comparative performance within an industry.  It should also be of importance as a foundation

in identifying the rents that accrue to factors in production.

The intent of this paper is to establish conditions under which discernible order on the

heterogeneities among firms maps into discernible order on the decisions that these firms would

make in an efficient equilibrium.  The issue addressed, and also the approach taken, is closest to

the assortative matching literature due to Becker (1973).  In his model, couples match off in the

marriage market in a manner that maximizes aggregate household production.  If male and

female productivity types can be totally ordered in a single dimension and if the household

production technology is supermodular, then efficient sorting will involve high types matching

with high types and low with low.  Kremer (1993) and Lazear (2001) have applied assortative

matching to understand equilibrium production structures and surplus distribution, while Shimer

and Smith (2000) have studied the robustness of assortative matching under search frictions.  In



2

each of these models, however, quite specific functional structures are assumed, while the

dimensionality of the functions is low.  This paper will provide a general framework for

considering the matching of factors in production in the absence of frictions.

In the first main section, Section 2, we will explain a pre-ordering, as well as the associated

class of functions, that is tailored to elicit order on decision vectors in an efficient equilibrium. 

In the class of functions, which go under the label ‘multivariate arrangement increasing’ or MAI,

heterogeneities among firms are parameterized as vectors.  The class contains the Schur-concave

functions when arguments sum.  It also contains functions that may be represented as the sum of

evaluations of a supermodular function, as well as functions that may be represented as the

product of eveluations of a log-supermodular function.  As with the lattice theory of

optimization, our approach is analytically robust in that it requires no assumptions concerning

concavity, differentiability, or even continuity.  Further, it is particularly well-suited to resource-

constrained allocation problems such as the type of problem one would hope that a decentralized

market solves.  But the approach also has much to relate about agent-level decisions such as

portfolio allocation or the allocation of time across opportunities.

In the second main section, we extend the analysis to identify a class of non-parametric

functions for which the insights of Section 2 pertain.  This is done by building embedded

structural asymmetries into the multivariate function such that order on analytic properties of the

function map into order on the vectors of decisions that are supported in an efficient equilibrium. 

The line of approach is a linear functional analysis of convex cones in the manner of Athey’s

(2000) study of comparative statics under uncertainty, but in quite a different context and with

some distinguishing features.  Her use of linear functionals has the end of developing a robust

framework for identifying comparative statics inferences under stochastic dominance

innovations.  Our use has the end of providing a robust approach to ‘building’ structural

asymmetries into multivariate deterministic functions.  One distinguishing feature pertains to the

use of separating hyperplanes.  Whereas in her analysis the concern is with identifying the



    1 As such, our approach has much in common with the theory of building mathematical objects from

fundamental regions through reflection group operations.  Benson and Grove (1971) present the

foundations of this topic, while Ronan (1989) provides a more specialized treatment. 

    2 As will become apparent, the nature of the theory to be developed implies that the levels of stock

endowments are of no analytical importance.
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existence of a separating hyperplane, in our study symmetry considerations place restrictions on

the sort of separating hyperplane at issue.  As we seek to rank efficient factor choices across

firms, bisectors in the allocation simplex assume particular importance.  Reflections through

these bisectors are used to construct asymmetries in the multivariate function.  The asymmetries

arise because the replications of a ‘fundamental’ reference region in the factor domain are

imperfect.1

The final main section focuses on the supermodular sub-class of MAI functions.  We

suppose that aggregate production in a market can be represented as the linear sum of

productions across heterogeneous firms where the heterogeneities are arguments in the common

production technology and where production is supermodular in factors.  We then show how,

after a normalization, univariate and multivariate dominance partial orderings on sources of

heterogeneities across firms map into order in efficient factor allocations across firms.  The

approach taken establishes the strong analogies between our theory of efficient allocation in

equilibrium and the theory of comparative statics.  The paper concludes with a discussion on

open research issues.

2.  Arrangement monotonicity

Our interest is in asymmetries across arguments of a function such that determinate

implications for the efficient allocation of fixed stocks of resources can be deduced.  There are n

active firms in a market where each firm produces a single homogeneous good.  The market’s

resource stocks are given by the array  where X ' {Px
1
, Px

2
, . . . , Px

r
} 0 (ún)

r
Px
i
·P1 ' X̄

i
œ i 0Ω

r
'

 and where each  is a constant.2  Each vector , describes how the ith{1,2 , . . . ,r} X̄
i

Px
i
, i 0Ω

r
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X
0
' {Px

1
, Px

2
} '

1 3

4 1

2 0

, Θ
0
' {Pθ

1
,Pθ

2
,Pθ

3
,Pθ

4
} '

2 1 3 3

3 0 4 2

4 2 1 1

, (2.1)

Y
0
' {Px

1
, Px

2
:Pθ

1
,Pθ

2
,Pθ

3
,Pθ

4
} '

1 3 : 2 1 3 3

4 1 : 3 0 4 2

2 0 : 4 2 1 1

. (2.2)

resource is allocated across the n firms.  The array is denoted as the allocation array where each

row is a firm’s decision vector.  The jth coordinate in the vector  is identified as  where thePx
i

x
i, j

array entry represents the jth firm’s utilization of the ith resource.  The origin of heterogeneities is

in the array , which is called the character array.  The economicΘ ' {Pθ
1
,Pθ

2
, . . . ,Pθ

s
} 0 (ún)

s

distinction between the arrays is that whereas each , may vary on the simplex Px
i
, i 0Ω

r
Px
i
·P1 ' X̄

i

, the character array is exogenous to decisions made in the market.  The concatenatedœ x
i
$ 0

array  is labeled the market array.Y ' X :Θ

To illustrate, for  let n ' 3

with 

Read horizontally, the array data is firm-specific.  The jth firm’s decision and character vectors

are given by  and , respectively.  For example, firm 2 has character vector Px( j ) Pθ( j ) Pθ(2) '

 and decision vector .  Read vertically, the array data is either a resource(3,0,4,2) Px(2) ' (4,1)

allocation profile across firms (the first two columns) or a character profile across firms.

Our immediate concern is with how, in an efficient market, arrays  and  relate.  ItX Θ

transpires that the multivariate arrangement increasing order on  elicits a form of order on Θ X

when the available production technology is of a certain structure.  For vector , define  asPx Px8

the rearrangement of  such that the kth smallest among the ordinate values is the kth ordinate. Px

Thus, if  then .  The following concept is a variant by Kim andPx ' (3 ,2.5 ,4)) Px8 ' (2.5 ,3 ,4))



    3 The concept of multivariate arrangement increasing is a generalization of a bivariate ordering due to

Hollander, Proschan, and Sethuraman (1977).  Technically, the order is a pre-ordering rather than a

partial ordering because anti-symmetry only holds up to a vector permutation.  But the distinction is of no

consequence in our analysis because symmetry will allow us to treat vector permutations as being

identical.
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Proschan (1995) of a definition by Boland and Proschan (1988):3

Definition 2.1.  For a given pair of vectors with n-dimensional vector arguments {Px
1
, Px

2
, . . . , Px

w
}

and , define   if there{Pz
1
, Pz

2
, . . . , Pz

w
} 0 ú

n×ún× . . . ×ún
' (ún)

w
{Px

1
, Px

2
, . . . , Px

w
} '

a
{Pz

1
, Pz

2
, . . . , Pz

w
}

exists a permutation B of  such that (1,2, . . . ,n) Px
kπ
' {x

kπ(1)
,x

kπ(2)
, . . . ,x

kπ(n)
}) ' {z

k1
,z

k2
, . . . ,z

kn
})

 for each .  Define  if and only if there exists a' Pz
k

k ' 1,2, . . . ,w {Px1, Px2, . . . , Pxw} #
a
{Pz1, Pz2, . . . , Pzw}

finite number, t, of elements  such that{Py
1
2 , Py

1
3 , . . . , Py

1
w}, . . . ,{Py

t

2 , Py
t

3 , . . . , Py
t

w} 0 (ún)
w&1

(a)  and , and{Px1, Px2, . . . , Pxw} '
a
{Px18, Py

1
2 , . . . , Py

1
w} {Pz1, Pz2, . . . , Pzw} '

a
{Px18, Py

t

2 , . . . , Py
t

w}

(b) for each  there exists a pair of coordinate indices, c and d with , suchj ' 1,2, . . . , t c < d

that  may be obtained from  by interchanging the c and d{Px18, Py
j

2 , . . . , Py
j

w} {Px18, Py
j&1
2 , . . . , Py

j&1
w }

coordinates of every vector  such that  where  is the vth coordinate in vectorPy
j&1
k y

j&1
k,c > y

j&1
k,d y

j&1
k,v

 (such an operation of obtaining  from  is said to be aPy
j&1
k {Px18, Py

j

2 , . . . , Py
j

w} {Px18, Py
j&1
2 , . . . , Py

j&1
w }

basic rearrangement).  If , then we say that  is larger inX ' {Px1, Px2, . . . , Pxw} #
a
{Pz1, Pz2, . . . , Pzw} ' Z Z

the multivariate arrangement increasing order than .X

Example 2.1.  For  as given in (2.1), note that  is in increasing order when readΘ Pθ
1
' (2,3,4))

from top to bottom.  This is not, however, true of , , or  . Pθ
2
' (1,0,2)) Pθ

3
' (3,4,1)) Pθ

4
' (3,2,1))

Notice, though, that the first two arguments of  are aligned with the corresponding argumentsPθ
1

of , i.e, .  To align all of the first two arguments up across all of the fourPθ
3

(2&3)(3&4) > 0

character dimensions, transpose the 1 with the 0 in  and transpose the 3 with the 2 in  toPθ
2

Pθ
4

obtain 



    4 See footnote 3 on the distinction between a pre-order and a partial order.
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Θ
1
'

2 0 3 2

3 1 4 3

4 2 1 1

. (2.3)

Θ
2
'

2 0 3 2

3 1 1 1

4 2 4 3

, Θ
3
'

2 0 1 1

3 1 3 2

4 2 4 3

. (2.4)

The array is still not perfectly aligned because the 2nd and 3rd arguments in the columns for

 and  do not align with those in the columns for  and .  That is, ,Pθ
3

Pθ
4

Pθ
1

Pθ
2

(3&4)(4&1) < 0

, , and .  Two more sets of transpositions will(3&4)(3&1) < 0 (1&2)(4&1) < 0 (1&2)(3&1) < 0

exhaust all opportunities to improve alignment.  Specifically,  where Θ
1
6 Θ

2
6 Θ

3

When all opportunities to transpose in a manner that increases the arrangement pre-order have

been exhausted, as in , then the array is said to be maximally arranged.4Θ
3

To best explain the order, and how it relates to other concepts of order, we pose the

definition in an alternative manner:

Lemma 2.1.   if and only if  {Px b
1 , Px

b
2 , . . . , Px

b
w} #

a
{Px c

1 , Px
c
2 , . . . , Px

c
w} {Px b

i , Px
b
j } #

a
{Px c

i , Px
c
j } œ (i , j ) 0

.Ω
w
×Ω

w
, i … j

 

All proofs have been placed in the Appendix.  As we will shortly show, it is not a

coincidence that this pair-wise presentation of the definition bears a striking resemblance with a

description of the supermodularity property.  Milgrom and Roberts (1990, Theorem 2) have

demonstrated that a multivariate function where all second-order cross-derivatives exist



    5 Alternatively, we could have studied only functions that are strictly monotone in the MAI order.  Or a

set concept of optimality could have been introduced in the manner of Veinott’s strong set order

(Milgrom and Shannon 1994).
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everywhere is supermodular if and only if all these derivatives are (weakly) positive on the

domain of support.

The form of production technology that is monotone under the MAI order is given as 

Definition 2.2.  A function  is said to be (weakly) multivariate arrangementg(Z ): (ún)
w
6 ú

increasing (decreasing) if  whenever .g(X ) #($) g(Z ) X #
a
Z

Multivariate arrangement increasing (decreasing) functions are said to be MAI (MAD)

functions.  A member of the set of MAI (MAD) functions may be denoted as g( @ ) 0MAI

.  Of course, the negative of an MAI function is MAD.(MAD)

Since Definition 2.2 asserts that the MAI order induces a weak improvement in the function

value, the function may have a common value over a set of partially ordered array arrangements. 

Thus, any optimum allocation should be viewed as a set that may not be a singleton.  To reduce

repetition of qualifiers concerning inferences that will be drawn about efficient factor allocations,

we make5 

Assumption 2.1.  Among the partially ordered arrangements that support equal values of

economic surplus, only the largest in the MAI order will be considered.

Some examples of MAI functions will provide a sense of why the attribute should be of

interest to economists.

Example 2.2.  Schur-concave functions of the form 



    6 Supermodular functions are formally defined in Section 4.
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F(X ) ' F(Px1, Px2, . . . , Pxw) ' g'w

i'1xi,1,'
w

i'1xi,2, . . . ,'
w

i'1xi,n 0MAD. (2.5)

F(X ) ' F(Px1, Px2, . . . , Pxw) ' j
n

j'1 g(x1, j,x2, j, . . . ,xw, j) 0MAI. (2.6)

F(X ) ' k
n

j'1 g(x1, j,x2, j, . . . ,xw, j) (2.7)

Here X is a cross product of simplices on the intervals of positive real numbers, X ' {Px
1
, . . . , Px

w
}

. This functional specification has been employed by0 ×
w

i'1{Pxi 0 ú̄
n

%
:'n

j'1xi, j ' X̄
i
œ i 0Ω

w
}

Atkinson (1970) in his seminal work on income distribution, and also by Chambers and Quiggin

(2000) in their studies of the firm under uncertainty.

Example 2.3.  When  is supermodular, then the sum6g( · ):ún
6 ú

Since the property ‘increasing’ is ordinal, if  is log-supermodular, it follows fromg( · ):úw
6 ú

%

(2.6) that the product 

is MAI.

Notice that all these functions are permutation invariant in the sense that F(Px π
1 , Px

π
2 , . . . , Px

π
w ) /

 where  is any of the  permutations of the vector arguments.  In ourF(Px
1
, Px

2
, . . . , Px

w
) œ π π n!

context, this means that how the firms are labeled is irrelevant.

Example 2.4.  In this example, and in contrast to much of the paper’s content, we study the

decision of an individual.  The issue is decision-making under uncertainty, and we will use the

MAI concept to model a multivariate distribution.  The risk averse individual allocates a fixed

stock of her wealth across investment opportunities.  The dimensionality of the heterogeneities is

given by the w states of nature, and the arrangement order at issue concerns how asset returns in a
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‹(Pαb
(
:Θb ) ' µ & ½λj

n

i'1 j
n

j'1 α
b
(, iα

b
(, jCov(Pθ

b
i
, Pθb

j
) . (2.8)

given state are ordered.  Also in contrast with the remainder of this paper, the inference drawn in

this example pertains to welfare rather than allocation.  The asset portfolio holder allocates $1

wealth among n assets with the objective of maximizing a function that is linear in the first two

moments of portfolio returns.  The return on the ith asset, , is given by  where eachi 0Ω
n

Pθb
i
0 ú

w

of the w states is equiprobable.  The multivariate distribution may be represented as the array Θb

.  The investor’s optimum allocation is assumed to be , an interior point(Pθb1,
Pθb2, . . . ,

Pθb
n
) 0 (úw)

n
Pαb
(

on the simplex .  Allocation to the ith asset in the optimal vector is identified as{Pα 0 ú
n

%
: Pα·P1 ' 1}

 under character array .  The vector of mean returns is given by , i.e., mean returnsαb
(, i Θb

Pµb
' µP1

are common, while the coefficient of risk aversion is written as the positive number .  Expectedλ

utility may then be expressed as 

We seek to compare ex-ante investor welfare under  with that under the alternativeΘb

distribution as represented by  where the ex-ante optimal allocation vector isΘc
' (Pθc1,

Pθc2, . . . ,
Pθc
n
)

then given by .  This vector is also assumed to be interior on the simplex.  Applying LemmaPαc
(

2.1 to the covariance terms, we have  for .  Indeed, relation ‹(Pαc
(
:Θb) $ ‹(Pαc

(
:Θc) Θb

#
a
Θc Θb

#
a

 is both necessary and sufficient to infer  when  can assume any (notΘc
‹(Pαc

(
:Θb) $ ‹(Pαc

(
:Θc) Pαc

(

necessarily interior) value on the allocation simplex.  Since  need not be ex-ante optimal underPαc
(

multivariate distribution , the chain of inequalities can be extended to Θb
‹(Pαb

(
:Θb) $ ‹(Pαc

(
:Θb)

 so that the investor has an ex-ante preference for the distribution that is not as well$ ‹(Pαc
(
:Θc)

arranged.  Put simply, multivariate distribution  is possessed of less systemic risk than .Θb Θc

Example 2.5.  To illustrate the relevance of the order for understanding allocation vectors,

suppose that three firms produce a single good using two inputs and that all three markets are

efficient.  The market production function is  where  is an array of fourF(Px
1
, Px

2
:Θ):ú18

6 ú̄
%

Θ
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Y
1
'

1 3 : 2 0 3 2

2 0 : 3 1 1 1

4 1 : 4 2 4 3

. (2.9)

2 0 3 2

4 2 4 3
,

3 1 1 1

4 2 4 3
. (2.10)

character vectors as in Example 2.1, and where .  Observe that the second and thirdF( · ) 0MAI

rows are ordinally aligned in , i.e., , and .  However, the alignmentΘ
2

3 < 4, 1 < 2, 1 < 4 1 < 3

does not extend to the allocation array when the market array is , as given in EquationX
0
:Θ

2

(2.2), because  and .  Upon invoking Assumption 2.1, market array  cannot4 > 2 1 > 0 X
0
:Θ

2

represent an efficient equilibrium because one can (weakly) increase output by transpositions

 and  to obtain the market array 4 : 2 1 : 0

These transpositions do not violate any resource constraints because the value  is invariant toPx
i
@P1

the order of summation.  Array  cannot represent an efficient equilibrium because anX
0
:Θ

2

alternative position on the cross-product of simplices  dominates it.  Whatever the efficientPx
1
× Px

2

equilibrium is, it is not .X
0
:Θ

2

To generalize on Example 2.5, commence with an inspection of the character array only, ,Θ

and identify some set of rows (there may be more than one such set of rows) that, by themselves,

are maximally arranged according to Definition 2.1.  Eliminate all other rows so that what

remains is really a sub-array of the character array.  Label the residual reduced array as an aligned

character sub-array (ACsA).  The corresponding market array is called an extended ACsA. 

Absent other conditions, this extended ACsA need not be aligned in all arguments.

As an illustration, and with reference to Example 2.5, for character array  there are two Θ
2

non-trivial ACsA.  These are row pair 1 and 3 as well as row pair 2 and 3, and are presented in

sequence below 
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4 1 : 3 1 1 1

2 0 : 4 2 4 3
. (2.11)

For row pair 2 and 3, when the market array is  then the extended ACsA is X
0
:Θ

2

As this ACsA is not maximally arranged, it will not arise in an efficient economy.  Whatever the

equilibrium in a first-best allocation, it is not consistent with (2.11).  To formalize, we make

Assumption 2.2.  Allocation is efficient.

In the general setting, the observation concerning induced order in the extended ACsA may

be stated as

Theorem 2.1.  Under assumptions 2.1 and 2.2, if the market production function is MAI then an

extended ACsA in equilibrium must be maximally arranged.

Put another way, if allocation is efficient then the allocation component of the extended ACsA

inherits the order that all ACsAs are constructed to possess. 

Example 2.6.  Upon occasion, a vector of characters will become a decision vector.  Suppose

that firms in a market have been allocated SO
2
 emissions permits, but cannot trade them, and that

the second column in array (2.11) represents the endowed emissions permits for two firms.  The

character array, now comprised of the five right-most columns in (2.11), is not an ACsA.  If,

however, a market in these permits is legalized, then the second column enters the allocation

component of the extended sub-array rather than the character component and the narrower

character component is an ACsA.  Theorem 2.1 now applies, so that if an allocation is (permit

endowment constrained) efficient then the lower firm (firm 3) will always use more of the first



    7 The authors know of one paper, by Proschan and Leysieffer (1992), that studies MAI functions

(when ) with tools from functional analysis.  Their concern is with problems in statisticalr ' s ' 1
analysis, and their findings do not overlap with ours.  The concept of rank densities that they work with

may, however, be of utility in future studies of economic allocation.

    8 Throughout, we treat as equivalent all measures that are equal almost everywhere.
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and the second (i.e., permit) factors in production than will the upper firm (firm 2).  That is,

 where vector order relation  is understood to mean the(x
1,3
,x

2,3
) ' Px(3) $ Px(2) ' (x

1,2
,x

2,2
) $

usual coordinate-wise order.  In this example , and in general  since each firmPx( j ) 0 ú̄
2

%
Px( j ) 0 ú̄

r

%

uses r factors in production.  This component-wise ordering on factor use across firms will be

referred to as the strong order on factor use.

3.  Representation through measures

Technological heterogeneities are unlikely to present themselves in explicit parametric form. 

To establish the generality of the insights provided by definitions 2.1 and 2.2, we will extend the

theory of MAI functions by constructing non-parametric functions such that the inferences in

Theorem 2.1 remain valid.7  It has been observed by Marshall and Olkin (1979, p. 162) that

arrangement increasing functions are convex cones.

Definition 3.1. [Aliprantis and Border (1999, p. 180)] Set T is a convex cone if it is convex, and

if  implies  for every .x 0 T αx 0 T α 0 ú̄
%

This observation is important because it allows us to view the character parameters in MAI

functions as degenerate measures that may be generalized.  Specifically, instead of  we mayΘ

conceive of a continuous, positive, finite measure  on the s character vectors, andG(Θ): (ún)
s
6 ú

use it to ascribe a linear functional  for the production technology inH[X :G(Θ)]: (ún)
r
×G(Θ) 6 ú

r factors where8 



    9 Our proofs involve reflections across a bisector that partitions a fundamental region on the measure’s

support.  This fundamental region is given as  or one of its permutations.  Theθ
1
< θ

2
< . . . < θ

n
n!

independence assumption, while very useful in modeling reflections across bisectors, is not essential. 

Using an approach in Shanthikumar and Yao (1991), we could also study how dependent measures affect

allocation.  Dependent measures are considerably more difficult to work with, especially for measures

with more than two character arguments.

    10 See, e.g., Milgrom (1981) or Landsberger and Meilijson (1990).
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H[X :G(Θ)] ' mF(X :Θ) dG(Θ) . (3.1)

Concerning , we assume that it has support on .  Upon suppressingΘ [θ
l
, θu]

n
d ú

n, θ
l
< θu

 in presentation, the function is written as .  In the functional analysis toG(Θ) H[X ]: (ún)
r
6 ú

follow, we refer to  as the kernel and  as the multivariate measure.  It is sought toF(X :Θ) G(Θ)

ascertain properties on the measure such that the asymmetries underpinning Theorem 2.1, as it

applies to an MAI kernel, persist in , i.e., in .H[X :G(Θ)] H[X ]

To facilitate development of the main insights, it will be assumed in the initial analysis that

 so that .  We will also assume that the measure is comprised of the product ofs ' 1 Θ '
Pθ
1

independent measures.

Assumption 3.1.  For ,  where  is the variable of integration fors ' 1 G(Θ) '(n

j'1Gj
(θ1, j) θ

1, j

 and  each  is a continuously differentiable, positive, finite measure on G
j
(θ

1, j
) G

j
(θ

1, j
) [θ

l
, θu]

with  and . dG
j
(θ) /dθ ' g

j
(θ) $ 0 G

j
(θ

l
) ' 0

Thus, heterogeneities (i.e., asymmetries) involving interdependence between factor

allocations are expressed only in the kernel.9  An order relation on (probability) measures that has

proven to be of considerable utility in contract theory and elsewhere in economics is the

monotone likelihood ratio order.10  It will also prove useful in our study of efficient allocation. 

Definition 3.2.  Under Assumption 3.1, let 
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D3.2 a)  be nondecreasing over the union of the supports of the measures (with g
1
(θ) /g

2
(θ) k /0

ascribed the value 4 whenever , or equivalentlyk 0ú
%

D3.2 b)  for all .g
1
(v)g

2
(u) $ g

1
(u)g

2
(v) v $ u

Then  is said to be larger than  in the likelihood ratio (LR) order, and is denoted byG
1
(θ) G

2
(θ)

.G1(θ) $
lr
G2(θ)

Notice that while  is required, in contrast with probability measures we do notG
j
(θ)$ 0

require that  be common across .  This makes no difference, however, in Definition 3.2G
j
(θu) Ω

n

because properties D3.2 a) and D3.2 b) are scale invariant so that the distinction between a

probability measure and a finite measure is not germane.  Our central result in this section is  

Theorem 3.1.  Under assumptions 2.1, 2.2, and 3.1, let  and let  be as given ins ' 1 H[X :G(Θ)]

(3.1).  Then  if and only if .Px( j ) $ Px(k ) œ F(X :Θ) 0MAI G
j
(θ) $

lr
G

k
(θ)

The multivariate measure does admit evaluations of the ‘character parameters’ such that the

kernel would suggest that  is not optimal.  But the  relation across variates in thePx( j ) $ Px(k ) $
lr

multivariate measure ensures that the weightings on these out-turns are more than offset by

weightings on the hidden character parameters such that  is optimal.  To bePx( j ) $ Px(k )

completely clear about how Theorem 3.1 may be viewed as an extension of Theorem 2.1,

suppose that, up to a permutation of , the independent univariate measures may be ordered asΩ
n

  .  Then  may be considered to be MAI in a functionalG
1
(θ) $

lr
G

2
(θ) $

lr
. . . $

lr
G

n
(θ) H[X :G(Θ)]

sense on the array  whereby function  replaces the jth evaluation of the single vector inX :θ
1

G
j
(θ)

the character array.

Example 3.1.  The subject of analysis need not be an efficient market in which exchange occurs. 

The key supposition, Assumption 2.2, is also satisfied when an efficiently operating market is



    11 The definitions below are summarized from Milgrom and Shannon (1994) and also Topkis (1998).
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Max
Px mU(Px @

Pθ
1
)(n

i'1dGi
(θ

1, i
) , s.t. x

i
> 0 œ i 0Ω

n
, Px @P1 ' 1, (3.2)

replaced by a rational individual seeking to optimize the allocation of a finite resource stock,

such as the hours in a day or available wealth.  Landsberger and Meilijson studied the portfolio

allocation problem

where function  is increasing and where the  are now probability measures.  KernelU( @ ) G
j
(θ)

 is then MAI.  Consequently, their finding that F(X :Θ) ' U(Px @Pθ
1
) G1(θ) $

lr
G2(θ) $

lr
. . . $

lr
G

n
(θ)

implies the allocation  follows from Theorem 3.1 above. x
1
$ x

2
$ . . . $ x

n

4.  Supermodular market

Among the sub-classes of MAI functions outlined in examples 2.2 and 2.3, the sub-class that

lends itself most readily to an analysis of efficient equilibrium was given in equation (2.6), i.e.,

the sum of character differentiated supermodular functions.  This should not be surprising given

the strong implications of the supermodularity assumption in the theory of comparative statics. 

Before engaging in a formal analysis of efficient allocation when market-level output can be

represented as in specification (2.6), we will remind the reader of some of the principal technical

features of lattice theory as it applies to optimization.11

Definition 4.1.  A lattice, L, is a set that is closed under two binary operations.  These are the

least upper bound operation  and the greatest lower bound operation , such that for allº ¸

elements  the following postulates are satisfied: i) to every ordered pair  ofa, b, c 0 L (a,b)

elements is assigned a unique element  and also a unique element , ii)  andaºb a¸b aºb ' bºa

, iii)  and , iv)  anda¸b ' b¸a (aºb)ºc ' aº (bºc) (a¸b)¸c ' a¸ (b¸c) a¸ (aºb) ' a

.aº (a¸b) ' a
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Definition 4.2.  Given a lattice L and a partially ordered set T, the function  ish( · ):L 6 ú

supermodular if for all .  Function  hasa, b 0 L, h(a) % h(b) # h(aºb) % h(a¸b) h( · ):L×T 6 ú

increasing differences in  if for  is monotone non-decreasing(x , t ) 0 L×T x
%
$ x , g(x

%
, t ) & g(x , t )

in t where  is the lattice order.$

Milgrom and Shannon (1994) have shown that if  is supermodular on L withh( · ):L×T 6 ú

increasing differences on  then the set of maximizing arguments on L is monotone non-L×T

decreasing in evaluations of T.  When  is the metric space , then their result applies toL×T ú
r%s

any continuously differentiable function such that all  second-order cross-(r%s) (r%s&1) /2

derivatives are positive.  In our study of efficient allocation equilibria, the algebraic structure of

our choice set is the direct product of simplices.  It is readily shown that this direct product is not

a lattice.  Nonetheless, it will be shown that their finding bears striking similarities with the

conclusions that we will draw for the attributes of allocation equilibria when market production

is of the form (2.6).  For the allocation problem and when heterogeneities among firms are

represented through vector arguments, as in Section 2 above, then the MAI pre-order (up to re-

permutations) on the character array provides the partially ordered set, T, of interest.  We seek

now, however, to identify pertinent attributes of partially ordered sets, and the associated

ordering, when the character array has been replaced by a multivariate measure.  That is, we seek

a result in the manner of Theorem 3.1 when the MAI market surplus function has been

specialized to be supermodular.

To formalize the technical environment underpinning the market, we define 

Definition 4.3.  Let the jth firm’s production function be of the form h(x
1, j
, . . . ,x

r, j
:θ

1, j
, . . . , θ

s, j
)

where  is supermodular in  and has increasing differences in .  Then theh( @ ) Px( j ) Px( j ),Pθ( j )

market is said to be a supermodular market. 
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Notice the additive separability of form (2.6) in factors so that firms do not impose

production externalities on each other, except through the aggregate allocation constraint.  This is

in contrast with an arbitrary Schur-concave function, as given in Example 2.2 above, and it is this

additive separability that makes the supermodular market a particularly convenient form of MAI

market surplus function to work with.

Before developing our results, we need to clarify our notation to identify increasing

differences between allocations and sources of heterogeneity among firms.  Our interest, as in

Athey’s study of stochastic dominance, is in convex cones of functions.  For the moment, we will

confine our attention to the situation where there is just one character argument.  Write  ifp
1
' 1

a function is continuously differentiable and (weakly) increasing in that character argument,

 if it is continuously differentiable and decreasing, and  if it is not assumed top
1
' &1 p

1
' 0

possess either property.  Generally, write  if the function’s kth derivative in the characterp
k
' 1

argument exists and is uniformly positive,  if it exists and is uniformly negative, andp
k
' &1

 if it is not assumed to possess either property.  Now write the vector p
k
' 0 Pp ' (p

1
,p

2
,p

3
, . . . )

where the vector terminates at the kth ordinate whenever .  Written in this way,p
l
' 0 œ l > k

vector  represents a cone of functions where the cone is generated from the function’s analyticPp

properties along one dimension.  Thus,  is understood to represent the cone of twicePp ' (1 ,&1)

continuously differentiable, increasing and concave functions in one dimension. 

Definition 4.4.  Consider a supermodular market where the firm production technology, ,h( @ )

has just one character argument.  Function  is said to possess property  ifh(x
1, j
, . . . ,x

r, j
:θ

1, j
) P& Pp

.dh(x1, j, . . . ,xr, j:θ1, j) /dxi, j 0 Pp œ i 0Ω
r
, œ Px( j ) 0 ú̄

r

%

Associated with each property  there is a stochastic ordering that increases the expectedPp

value of that class of functions.  For example, if , then the order in question is thePp ' (0 ,&1)

mean-preserving contraction.  If, instead,  then the order in question is second-degreePp ' (1 ,&1)
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stochastic dominance.  While the independent univariate measures written in Assumption 3.1 do

not conform to the unit integration requirement of probability measures, a normalization that

arises naturally for supermodular kernels will ensure that they do.  Writing ,Ĝ(θ) / G(θ) /G(θu)

we denote the dominance order relation  whenever Ĝ
j
(θ) $

P&Pp
Ĝ

k
(θ) *θ

u

θ
l

h(θ)dG
j
(θ) /G

j
(θu) $

.  This notation is of relevance in our approach to allocation*θ
u

θ
l

h(θ)dG
k
(θ) /G

k
(θu) œ h(θ) 0 Pp

because dominance relations among normalized independent measures provide the partial

ordering that we require to implement a measure generalization of Theorem 2.1 that has been

specialized for a firm-level production function which is supermodular in factors.

Theorem 4.1.  Under assumptions 2.1, 2.2, and 3.1, let  and let  be as in (3.1)s ' 1 H[X :G(Θ)]

where the kernel is that for a supermodular market.  Further, suppose that the supermodular

function  has property .  Then  for all such kernels if and only if h( @ ) P& Pp Px( j ) $ Px(k ) Ĝ
j
(θ) $

P&Pp

.Ĝ
k
(θ)

Example 4.1.  Let  be supermodular in .  Then property  h(x
1, j
,x

2, j
:θ

1, j
) (&x

1, j
,x

2, j
, θ

1, j
) Ĝ

j
(θ) $

P&(1)

 implies  and .  If  where  and Ĝ
k
(θ) x

2, j
$ x

2,k
x
1, j
# x

1,k Ĝ1(θ) $
P&(1)

Ĝ2(θ) $
P&(1)

. . . $
P&(1)

Ĝ
n
(θ) x

1, j
x
2, j

are the jth firm’s respective labor and capital allocations, then the firm’s univariate character

measure, , may be thought of as an indicator for the firm’s use of technologies thatG
j
(θ)

substitute capital in for labor.

We close this section by generalizing the character array to contain an arbitrary finite number

of character vectors so that the kernel has  arguments rather than the  arguments studiedr%s r%1

in Theorem 4.1.  Suppose that firm-level production for the jth firm is given by 

 which is supermodular in all arguments.  Extending the measure onh(x
1, j
, . . . ,x

r, j
:θ

1, j
, . . . , θ

s, j
)

firm characters accordingly, let the possibility of dependence in characters within a firm exist,

but preclude dependence across firms. 



    12 Because monotonicity is not imposed on the reference class of functions, , the supermodularm( @ )

order must fix the marginal distributions so that we need not be concerned with the monotonicity status

of   in .h( @ ) θ
i, j
, i 0Ω

s

    13 See Theorem 2.5 in Müller and Scarsini (2000) or Table 1 in Athey (2000).
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Assumption 4.1.   where each  is a continuouslyG(Θ) '(n

j'1Gj
(θ1, j, . . . , θs, j) G

j
(θ

1, j
, . . . , θ

s, j
)

differentiable, positive, finite measure on  with .[θ
l
, θu]

s
G

j
(θ

l
, . . . , θ

l
) ' 0 œ j 0Ω

n

With , the pertinent dominance relation isĜ
j
(θ

1, j
, . . . , θ

s, j
) ' G

j
(θ

1, j
, . . . , θ

s, j
) /G

j
(θu, . . . , θu)

the supermodular order as defined in Shaked and Shanthikumar (1997).12

Definition 4.5.  Positive, finite, normalized measure  is said to be larger thanĜ
j
(θ

1, j
, . . . , θ

s, j
)

positive, finite, normalized measure  in the supermodular order [and written asĜ
k
(θ

1,k
, . . . , θ

s,k
)

] if Ĝ
j
(θ1, . . . , θs) $

sm
Ĝ

k
(θ1, . . . , θs) *m(θ

1
, . . . , θ

s
) dĜ

j
(θ

1
, . . . , θ

s
) $ *m(θ

1
, . . . , θ

s
) dĜ

k
(θ

1
, . . . , θ

s
)

for all supermodular functions  for which the integrations exist. m(θ
1
, . . . , θ

s
)

This class of measures is precisely that which induces allocative order across firms when

allocation is efficient.

Theorem 4.2.  Under assumptions 2.1, 2.2, and 4.1, let  be as in (3.1) where theH[X :G(Θ)]

kernel is that for a supermodular market.  Suppose too that ,d 3h( @ ) /dx
i, j
dθ

k, j
dθ

l, j
$ 0 œ i 0Ω

r

.  Then  whenever œ (k , l ) 0Ω
s
×Ω

s
, k … l Px(u ) $ Px(v ) Ĝ

u
(θ1, . . . , θs) $

sm
Ĝ

v
(θ1, . . . , θs) , (u ,v ) 0

.Ω
n
×Ω

n
, u … v

Example 4.2.  The indicator product function  is supermodular.  Together withI
{θ1$ θ̄1}

I
{θ2$ θ̄2}

 and , the function set , can be used as an infinite& I
{θ1$ θ̄1}

& I
{θ2$ θ̄2}

I
{θ1$ θ̄1}

I
{θ2$ θ̄2}

, (θ̄
1
, θ̄

2
) 0 ú

2

dimensional basis for constructing arbitrary supermodular kernels in .13  Let ú
2
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Θb
' {Pθ1,

Pθ2} '

1 4

2 3
(4.1)

Θc
'

1 3

2 4
. (4.2)

and perform the MAI ordered transposition to 

This increase along the partial ordering weakly increases the value of  '2
j'1I{θ1, j$ θ̄1}

I{θ2, j$ θ̄2}
œ

 while the independent univariate measures have not changed.  Let(θ̄
1
, θ̄

2
) 0 ú

2

 satisfy the conditions in Theorem 4.2.  Then, after , firm 2 inh(x
1, j
, . . . ,x

r, j
:θ

1, j
, . . . , θ

s, j
) Θb

6 Θc

an efficient supermodular market will use more of all resources than will firm 1.  The

rearrangement  has acted as a discrete increase in the supermodular order on the bivariateΘb
6 Θc

measure of character variables.  Compared with when it does not apply, the partial order relation

 will tend to concentrate market production toward firm 2 in this exampleĜ2(θ1, θ2) $
sm
Ĝ1(θ1, θ2)

since it is generally assumed that a firm’s production will increase in factor use.

Example 4.3.  Suppose that the jth firm’s supermodular firm-level production

 is transformed to  whereh(x
1, j
, . . . ,x

r, j
:θ

1, j
, . . . , θ

s, j
) h[g

1
(x

1, j
), . . . ,g

r
(x

r, j
):g

r%1
(θ

1, j
), . . . ,g

r%s
(θ

s, j
)]

each , is monotone in the same direction.  Then  remainsg
m
( @ ) , m ' 1,2 , . . . ,r%s h[ @ ]

supermodular in its original arguments so that Theorem 4.2 continues to apply.  Since the

property ‘monotone’ is ordinal, this example demonstrates the ordinal nature of the approach

taken in this paper.  Returning to Definition 2.1, if each of the w vectors is transformed by the

univariate function  where all w such functions are monotone in the same direction, theng
m
( @ )

order among arrays is preserved.



21

5.  Conclusion

The path taken in our theory of efficient resource allocation across firms in an industry

‘builds’ asymmetries into a firm’s production technology through the use of linear functionals. 

The end has been to draw inferences concerning the factor allocations a social planner would

make.  While the underlying algebraic structure of the choice set available to the social planner

differs from that countenanced by the micro-agent in the theory of optimization on a lattice, the

similarities in other regards are marked.  Both frameworks model decisions in an ordinal manner. 

Partly as a consequence, in both frameworks the typical regularity assumptions of

differentiability, convexity, and even continuity may be dispensed with.  Supermodular functions

play an important role in both approaches, although in neither case are supermodular functions

the most general functions for which the respective theory applies.  Most importantly, both are, in

one form or another, applications of separating hyperplane results.  It would seem then that the

analyst seeking an integrated theory of optimal economic choices in equilibrium might first turn

to convex analysis.

Unfortunately, the theory of MAI functions has not developed far beyond the initial inquiry

of Hollander, Proschan, and Sethuraman (1977) and the later multivariate extension due to

Boland and Proschan (1988).  It is the opinion of the authors that a systematic development of

classes of functions with built-in structural asymmetries will shed light on a variety of economic

problems.  In the international trade literature, for example, it would seem that comparative

advantage may be represented as an asymmetry in the available technologies.  The theory of

comparative advantage, however, involves trade in two or more goods.  A remarkable feature of

our single market model is that we could ignore price effects in output markets.  This is due, at

least in part, to the fact that our theory relates nothing about cardinal measures of factor use since

factors may flow out of the studied output market.  While our results remain valid in an efficient

general equilibrium, an inquiry into the consequences of technical asymmetries for relative factor

and product prices in general equilibrium would necessitate a more robust framework in which to
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model the asymmetries.  Output price effects would also have to be accommodated in a single

market where firms have some market power.  Perhaps the most immediate extension of this

ordinal approach would involve the treatment of production externalities.  In particular, how do

production externalities affect the divergence between efficient equilibria and market-supported

equilibria?
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Appendix

Proof of Lemma 2.1.  We will demonstrate the forward implication first.  The definition of

multivariate arrangement order in the sense of  requires that, when comparing a pair of#
a

coordinates across every vector in an array, they can only be transposed if the transposition

increases their alignment with an arbitrarily chosen reference ‘base’ vector.  In particular, let the

base vector be .  Then an increase in the multivariate  order requires that, when comparing aPx b
i #

a

pair of coordinates across vector , the pair can only be transposed if the transposition increasesPx b
j

the vector’s alignment with vector .  Because  and  are distinct vectors chosen arbitrarilyPx b
i Px b

i Px b
j

among , the forward implication must hold.Px b
k , k 0Ω

w

Now suppose that  does not imply{Px b
i , Px

b
j } #

a
{Px c

i , Px
c
j } œ (i , j ) 0Ω

w
×Ω

w
, i … j

.  Then there would exist some , and some{Px b
1 , Px

b
2 , . . . , Px

b
w} #

a
{Px c

1 , Px
c
2 , . . . , Px

c
w} (i , j ) 0Ω

w
×Ω

w
, i … j

array of vectors such that  does not adhere when  {Px b
i , Px

b
j } #

a
{Px c

i , Px
c
j } {Px b

1 , Px
b
2 , . . . , Px

b
w} #

a

 is satisfied.  But the ‘every’ part of the definition ensures that there cannot exist{Px c
1 , Px

c
2 , . . . , Px

c
w}

such a pair , when  is satisfied. ~(i , j ) 0Ω
w
×Ω

w
, i … j {Px b

1 , Px
b
2 , . . . , Px

b
w} #

a
{Px c

1 , Px
c
2 , . . . , Px

c
w}

Proof of Theorem 3.1.  The line of approach is the extension of a symmetry argument that has

been used in the probability order literature by, for example, Shanthikumar and Yao (1991) and

elsewhere in economics and finance (see Kijima and Ohnishi 1996, or Lapan and Hennessy

2001).  The proof proceeds in three steps.  The first clarifies the relevance of Theorem 2.1 to the

analysis.  The second proves that  implies  for all MAI kernels.  TheG
j
(θ) $

lr
G

k
(θ) Px( j ) $ Px(k )

third proves that if  is not true then there exists an MAI kernel such that the strongG
j
(θ) $

lr
G

k
(θ)

set order on factor use  is not true.  Px( j ) $ Px(k )

Step 1: We seek a concept of total order, , in the sense that if , then$
(

G
j
(θ) $

(

G
k
(θ)

efficiency requires that .  Because the kernel is MAI and the character array is aPx( j ) $ Px(k )

vector, we can readily appeal to the finding in Theorem 2.1 for intuition.  That is, if θ
1, j
$ θ

1,k

then, in the parametric case of Theorem 2.1, under efficiency it must be that . Px( j ) $ Px(k )
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H[X :G(Θ
τ
)] & H[X :G(Θ)] ' mθ1,k$θ1, j

F(X :Θ) dG(Θ
τ
) % mθ1,k<θ1, j

F(X :Θ) dG(Θ
τ
)

& mθ1,k$θ1, j
F(X :Θ) dG(Θ) & mθ1,k<θ1, j

F(X :Θ) dG(Θ)

' mθ1,k$θ1, j
[F(X :Θ) & F(X :Θ

τ
)] [dG(Θ

τ
) & dG(Θ)]

' mθ1,k$θ1, j
[F(X :Θ) & F(X :Θ

τ
)] [g

j
(θ

1,k
)g

k
(θ

1, j
) & g

j
(θ

1, j
)g

k
(θ

1,k
)] (

n

t'1,
t… j, t…k

g
t
(θ

1, t
) (

n

t'1

dθ
1, t
.

(A.1)

Alternatively, if  then, in the parametric case, it must be that .  In either case,θ
1, j
# θ

1,k
Px( j ) # Px(k )

and ignoring firms other than the jth and kth, the efficient allocation will be maximally arranged. 

Independence (i.e., Assumption 3.1) in measure allows us to consider just two firms.  The steps

to follow will show that  is precisely the order property on a pair of positive, finite, univariate$
lr

measures such that the measures act as if they were a point in .ú
2

Step 2: Now consider , written as H[X :G(Θ)]

.  Interchange the jth and kthH[X :G
1
(θ

1,1
)×G

2
(θ

1,2
)× . . . ×G

j
(θ

1, j
)× . . . ×G

k
(θ

1,k
)× . . . ×G

n
(θ

1,n
)]

evaluations in the character vector to obtain 

.  To abbreviate, write theH[X :G
1
(θ

1,1
)×G

2
(θ

1,2
)× . . . ×G

j
(θ

1,k
)× . . . ×G

k
(θ

1, j
)× . . . ×G

n
(θ

1,n
)]

latter as  where the subscripted  is understood to represent the transposition ofH[X :G(Θ
τ
)] τ

parameter evaluations.  Using the fact that variables of integration are just placeholders, it is

readily shown that the difference between integrals can be written as

where the continuous differentiability of the finite measures allows us to double count the

evaluation .  From step A,  ensures that the first part of the integrandθ
1, j
' θ

1,k
F(X :Θ) 0MAI

after the final equality is negative when .  From Definition 3.2, the second part of thatPx( j ) $ Px(k )

integrand is positive when .  Then .  Alternatively,G
j
(θ) $

lr
G

k
(θ) H[X :G(Θ

τ
)] # H[X :G(Θ)]

observe that the rows in the market array may be interchanged so that what matters is how a

firm’s decision vector matches its character vector.  Therefore, if (A.1) is true then we may write
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H[X :G(Θ
τ
)] & H[X :G(Θ)] ' [g

j
(θ̂

1,k
)g

k
(θ̂

1, j
) & g

j
(θ̂

1, j
)g

k
(θ̂

1,k
)] (

n

t'1,
t… j, t…k

G
t
(θu) (A.2)

G
k
(θu)mh[Px( j ):θ] dGj

(θ) % G
j
(θu)mh[Px(k ):θ] dGk

(θ) (A.3)

 where  represents allocation array  but where the jth and kth firmsH[X
τ
:G(Θ)] # H[X :G(Θ)] X

τ
X

interchange their decision vectors.  Thus, with , efficiency requires that .G
j
(θ) $

lr
G

k
(θ) Px( j ) $ Px(k )

Step 3: Suppose that  is not true on an interval of strictly positive LebesgueG
j
(θ) $

lr
G

k
(θ)

measure, , satisfying .  We will proceed by constructing a violation on a particularL θ
1, j
$ θ

1,k

extreme point of the cone of MAI functions.  In particular, let  on interval F(X :Θ) ' 1

,T [ θ̂
1, j
,∆θ

1, j
, θ̂

1,k
,∆θ

1,k
] ' {(θ

1, j
, θ

1,k
): θ̂

1, j
# θ

1, j
# θ̂

1, j
% ∆θ

1, j
, θ̂

1,k
& ∆θ

1,k
# θ

1,k
# θ̂

1,k
, ∆θ

1, j
> 0

 and let  otherwise.  Here,∆θ
1,k

> 0, θ̂
1, j
> θ̂

1,k
} œ θ

t
0 [θ

l
, θu], t ó {i, j}, œ Px( j ) $ Px(k ) F(X :Θ) ' 0

the set bounds are chosen such that .  ByL ' X×[θ̂1, j, θ̂1, j%∆θ1, j]×[θ̂1,k&∆θ1,k, θ̂1,k]×[θl, θ
u]

s&2

construction, .  Now, in the context of (A.1), take  toF(X :Θ) 0MAI Lim
∆θ1, j60,∆θ1,k60

F(X :Θ)

obtain

when .  Clearly, while this  is MAI the difference in expression (A.1) isPx( j ) $ Px(k ) F(X :Θ)

strictly positive when .  Then any allocation other than those satisfying Px( j ) $ Px(k ) Px( j ) $ Px(k )

will be supported in the market.  Thus,  is also necessary for the allocationG
j
(θ) $

lr
G

k
(θ)

inference to be valid for all MAI functions. ~

Proof of Theorem 4.1.  Again, independence allows us to confine the analysis to two firms.  We

seek conditions under which we can apply Theorem 2.1, but where the character parameters are

functions rather than scalars.  We seek a partial ordering of  with respect to  such that,G
j
(θ) G

k
(θ)

if the measures are so ordered, the expression 

cannot be improved upon through re-allocations of factors across firms.  Upon division, we

require that 
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mh[Px( j ):θ] dĜj
(θ) % mh[Px(k ):θ] dĜk

(θ) (A.4)

V [Px( j ):γ
j
] ' mh[Px( j ):θ] dĜj

(θ) , (A.5)

cannot be improved upon.

The linear functionals can be re-parameterized so that supermodularity is preserved in a

functional sense.  Write 

where  indexes, in ascending order, a chain in the dominance order of interest.  Thus, byγ 0 ú

definition,  if and only if .  We know from Definition 4.4, the fact thatĜ
j
(θ) $

P&Pp
Ĝ

k
(θ) γ

j
$ γ

k

monotonicity is preserved under integration with respect to a positive measure, and use of an

interchange in the order of differentiation, that  is monotone non-V [Px( j ):γ
j
] & V [Px( j ):γ

k
]

decreasing in each factor whenever .  Applying Theorem 2.1, we have the true assertion:γ
j
$ γ

k

when  then it must be that  if (A.4) cannot be improved upon.  As usual, theγ
j
$ γ

k
Px( j ) $ Px(k )

converse can be demonstrated by picking out extreme points on the cone of functions. ~

Proof of Theorem 4.2.  From the conditions in the Theorem, we know that  isdh( @ ) /dx
i, j

supermodular in  for each .  From Definition 4.5, if the supermodular partial order isPθ( j ) i 0Ω
r

parameterized by scalar  so that  whenever the function partial ordering  γ γ
u
$ γ

v
Ĝ

u
(θ1, . . . , θs) $

sm

 is true then  isĜ
v
(θ

1
, . . . , θ

s
) V [Px(u ):γ

u
] ' *h(x

1,u
, . . . ,x

r,u
:θ

1
, . . . , θ

s
) dG

u
(θ

1
, . . . , θ

s
)

supermodular in .  The result then follows from applying Theorem 2.1. ~(x
1
, . . . ,x

r
, γ

u
)


