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Abstract. We develop a stylized dynamic model of highway policing in which
a non-racist police officer exhibits a cognitive bias: relative overconfidence. The officer
is given incentives to arrest criminals but faces a per stop cost which increases when
the racial mix of her stops differs from that of the population. Every period, she
observes the racial composition of jail inmates (generated from arrests made by her
peers) and forms estimates about the crime rates of each race. In some settings, her

overconfidence leads her to overestimate the crime rate of one race relative to another
causing the long-run racial composition of the jail population to deviate from the “fair”
one (one where the racial mix in jails is identical to that in the criminal population).
We compare this to a situation where officers have detailed stop data on each race,
similar to data being currently collected in many US states.

1. Introduction

The words “discrimination” and “prejudice” are fairly tightly interlinked; in fact a standard

dictionary definition of the former is “unfair treatment of a person or group on the basis of

prejudice”. The “neoclassical models of discrimination” due to Becker (1971) argue that a

major source of discrimination is personal prejudice: People act as if they have a taste for

discrimination. A powerful result that emerges from this paradigm is the following: Since

discrimination is potentially costly, if competitive forces are at work, the discriminators

would be punished and not survive in the long run. Subsequent to Becker (1971), much

work has focused on statistical prejudgment or “statistical discrimination” which does not

arise from prejudice, but rather when certain perceived group characteristics are statis-

tically projected onto individuals. Standard labor economics textbooks blame statistical
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discrimination on the tests used to screen people: maybe the test underpredicts for one

group, or even when it predicts correctly on average, it does a much poorer job of pre-

dicting for one group as opposed to another. Unlike prejudicial discrimination, statistical

discrimination may survive even in the long run (Moro and Norman, 2004).

This paper explores one possible way in which statistical discrimination may arise and

persist in an environment where the tests are not at fault. To that end, it borrows from

a burgeoning literature in economics and psychology on heuristics and cognitive biases

and shows how statistical discrimination may be influenced by these. According to psy-

chologists, cognitive biases appear when people make probabilistic judgements but their

inferences violate the very core of rationality: Bayes rule. We focus our discussion us-

ing a bias that was discussed even by Adam Smith: overconfidence. Formally, relative

overconfidence bias is the practice of systematically overestimating the accuracy of one’s

decisions and the precision of one’s knowledge relative to peers.1 This paper studies the

role of a relative overconfidence bias in the specific context of racial profiling and persis-

tent racial discrimination. It lays out the structure of a model in which police officers have

no innate prejudice against a race and yet “unfair” racial discrimination emerges because

police officers suffer from a relative overconfidence bias while receiving incentives to catch

criminals.2

Psychologists have a long tradition of studying and documenting that humans in general

suffer from overconfidence (for a survey see Yates (1990)). They also find that people were

more confident of their predictions in fields where they have self-declared expertise (Heath

and Tversky 1991). There is an extensive literature in psychology documenting the fact

that police officers are in fact overconfident. Specifically numerous studies document that

police officers perform no better than laymen at detecting criminals during interviews, but

that their confidence in their judgement is inflated, see for example DePaulo and Pfeifer

(1986), Meissner and Kassin (2002) and Garrido, Masip and Herrero (2004). In addition,

Mullin (1995) reviews a study of Scottish police which finds “detective Sergeants, as a

group, think they know a lot more than they actually do!”

1This phenomenon is well-documented and is believed to be widespread in society. For example, Babcock
and Loewenstein (1997) write, “well over half of survey respondents rate themselves in the top 50 percent
of drivers, ethics, managerial prowess, productivity, and a variety of desirable skills.” In a more recent
study, Glazer and Weber (2005) offer empirical evidence that relative overconfidence matters; they find
that investors who believe they are above average in terms of investment skills trade more frequently.

2Note that there are many other types of cognitive biases we could have chosen to examine in this context:
Imperfect recall, moral overconfidence (as suggested by a referee) and confirmatory bias to mention a few.
Relative overconfidence seems to be a natural place to start because it is well-documented, even among
police officers.
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The use of racial profiling by the police as a crime-prevention tool has been a topic of

debate for several years now. It first became a national issue in the media when it was

suspected that highway troopers stopping cars on the I-80 corridor were making heavy use

of race as a proxy for possible criminality. By now, it has become generally accepted that

at least some racial profiling is practiced by police around the country. Those who oppose

racial profiling as a crime-fighting tool find it unreasonable to simply use race, without

any additional indication of criminal behavior, as probable cause. Others argue that if

members of one race are statistically more likely to be involved in a certain crime, racial

profiling has to be an important tool when fighting crime.

We examine the issues surrounding racial profiling as a crime-prevention tool in the

context of “high discretion interdiction” (Persico, 2002). We will interpret our model

in the context highway stops.3 We assume that police officers are not racist; they only

suffer from a relative overconfidence bias. The relative overconfidence takes the following

form: Any officer believes she is better at apprehending criminals than all other officers.

Specifically, while in actuality any officer apprehends all the criminals she encounters,

she assumes all other officers only manage to incarcerate a fraction of the criminals they

interdict, presumably because they bungle up crime investigations etc.

We assume, without loss of generality, that the percentage of criminals is marginally

higher among blacks. In addition, we assume that the police do not know these percentages,

and use the racial distribution of jail inmates to estimate them. The officers are given

incentives to arrest as many guilty people as possible, but they also face a per stop cost

which increases whenever the proportion of people they stop from one racial group deviates

from the proportion of this group in the whole population. The cost is imposed equally

regardless of which race is oversampled. This seems reasonable in a world where there is

outrage over every alleged instance of reported racial profiling and where the public’s faith

in the police is low, especially among minorities. We posit that individual officers, when

deciding whom to stop, care only about maximizing their revenue. In this framework, we

show that there is long-run excess incarceration of the more criminal race, compared to

their true share of the criminal population. In other words, if 11% of whites commit crimes,

but only 10% of blacks do, in the long run, whites will comprise more than 11/21 of the

incarcerated population. In that sense, jail rates will be “unfair”.

The assumed relative overconfidence bias of the police affects this result in the following

manner. An officer maximizes her revenue by equating the marginal benefit of a stop to

3Traffic stops make up 52% of citizen interaction with police in the US (Langan et al, 2001).
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the marginal cost of deviating from strict random sampling. The bias makes her think that

a fraction of the criminals stopped by other officers do not end up in jail. That is, to her,

other officers are less efficient than her in convicting criminals, and she assumes that they

know this. This implies that she perceives that other officers have lower marginal revenue

of an additional stop than she does. Since blacks are being oversampled (compared to strict

random sampling) due to their higher crime rate, the cost can be reduced by stopping less

blacks at the margin. Thus, she imagines that other officers are indeed stopping fewer

blacks than she is. The jail data causes her to overestimate the black crime rate. To

clarify, consider the following example. Suppose, in actuality, 10 blacks and 10 whites are

stopped, and as a result, 2 blacks and 2 whites land up in jail. That is, the crime rates

across blacks and whites are actually 20%. Now if the officer, using the above argument,

believes the jail rates are a consequence of 8 blacks and 12 whites being stopped, she will

estimate the black (white) crime rate to be 25% (16.7%). This last effect increases when

the level of overconfidence increases.

In our model blacks are stopped more frequently than they would if fully rational police

officers were practicing statistical discrimination. This result is consistent with the findings

in Hernándes-Murillo and Knowles (2004), where it is shown that there is in fact an excess

sampling of minorities, above and beyond what can be justified on efficiency grounds.4 This

excess sampling of minorities can be explained by racism on the part of the police; this

paper offers an alternative explanation. In fact, an interesting implication of the results we

obtain is that over-incarceration of a specific ethnic group can occur, even if officers are not

racist in the least. This aspect is important because substantial resources have been and

are now being dedicated to ensuring that individual police officer do not harbor racism.

As such it is of importance to assess whether this approach alone necessarily solves the

problem of discrimination. We show that as long as officers are provided with incentives

to catch as many criminals as possible, over-incarceration is purely a result of optimizing

behavior on the part of non-racist police. Higher overconfidence can also worsen the racial

imbalance in jails. Our model, which features a fully dynamic evolution of policer officers’

perception of racial criminality, also highlights the crucial role played by the incentives to

catch criminals in the long run level of incarceration. More precisely, although racial jail

imbalance is a natural consequence of our statistical discrimination model, we show that

it is worsened when officers become more overconfident.
4This work extends a paper by Knowles et al. (2001), where the opposite result was obtained, mainly

due to the fact that their data did not discriminate between low and high discretion interdiction.



Can Racially Unbiased Police Perpetuate Long-Run Discrimination? 5

Our paper is part of a burgeoning literature in economics that explores the consequences

of departures from Bayesian rationality on belief formation. Many of these contributions

attempt to explain the causes overconfidence in human behavior. For instance, Rabin

and Schrag (1999) offers an early model of an agent who is subject to confirmatory bias.5

They show, in particular, that this agent exhibits overconfident behavior. Bénabou and

Tirole (2002) develop a model where overconfidence is the result of endogenously chosen

selective recall. More recently, Van den Steen (2004) shows that overconfidence can be an

equilibrium behavior for strictly rational agents if they hold differing priors. Closer to our

setup, Brocas and Carillo (2005) presents a model in which relative overconfidence arises

naturally in a setup where agents learn about their own ability.6 A closely related strand

of this literature takes rational biases as a starting point and attempts to describe their

economic and institutional consequences. Both Barber and Odean (2001) and Biais et.al

(2005) study traders who have overconfidence in their own judgements and their impact

on financial markets. They both find that overconfident traders trade more and have a

reduced trading performance. Similarly, Landier and Thesmar (2005) study the features of

financial contracts passed between investors and entrepreneurs and show that they result

from the overoptimistic nature of the entrepreneurs. To the best of our knowledge, our

paper is the first to connect a cognitive bias with discriminatory practices.

While our model shares certain aspects of belief formation and self-fulfilling negative

discrimination with many other papers, such as Farmer and Terrel (1996), Acemoglu (1995),

Coate and Loury (1993), and more recently, Verdier and Zenou (2001), the similarities are

somewhat superficial. These models possess the common feature that there is a principal

(often an employer) who acts upon a negative belief and takes a discriminatory action

against the agent. This action by the principal, in turn, makes it optimal for the party

who is discriminated against to take such actions as to make the principal’s “prophecy”

self-fulfilling. In our setup, when the current generation of police use incarceration data

to decide on which race to interdict more frequently, they may perpetuate their mistaken

belief against the over-represented race, but at a cost: the cost of deviating from strictly

random sampling. The aforementioned papers do not model this cost. Two additional

points of contrast deserve mention here. First, we clearly demonstrate that long-run dis-

crimination against a race can be obtained even without the assumption of a priori negative

5A person who suffers from confirmatory bias tend to interpret ambiguous information as evidence
confirming her current hypothesis.

6Zabojnik (2004) and Santos-Pinto and Sobel (2004) obtain results with similar flavor.
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beliefs. That is, the very existence of a common and well documented rational bias is suf-

ficient to generate a long-run discriminatory outcome. Second, because we do not discuss

issues relating to the supply of crime, we are, per force, silent on whether the race that

is discriminated against truly ends up becoming more criminal, thereby “justifying” the

discrimination.7

2. A model of updating with overconfidence

2.1. The environment. Consider a situation where at each date t = 1, 2, ...,∞, a

fraction γ of the population is black and the remaining fraction is white. Let ci, i = b, w

be the unknown, time-invariant, true percentage of criminals among the black and white

populations, respectively. Note that since the number of convictions are influenced by

the behavior of the police and self-reported crime rates are notoriously unreliable, these

numbers are unknown in practice. Without loss of generality, we will assume throughout

that cb > cw.
8 , 9

We model highway stops as follows: A police officer can legally stop any car, and

subsequently determine with 100% accuracy whether the occupant is guilty of a serious

offense, like drug smuggling. In that case, the person is always convicted and spends the

remainder of the period in jail. Alternatively, if stopped, an innocent person is immediately

released and not stopped for the rest of the period. We assume that the officer receives a

compensation of $x for each guilty person he catches, and nothing otherwise. The $x is a

proxy for all incentive rewards, such as pay increases, promotions, medals, etc.

The choice to model a highway stop is driven by two factors: the majority of data on

racial profiling has been collected in the context of highway stops and the more discretion

officers have, the more pronounced the racial profiling becomes.10 This is demonstrated by

7Persico (2002) discusses the “general strain theory” and how unfairness in police practices may itself
encourage crime among those being unfairly treated.

8Note that here we deviate from Persico (2002), who assumes that in equilibrium cb = cw. This is the
natural outcome in his model, since he assumes that there is no cost associated with stopping only members
of one race. This assumption implies that if cb > cw, only blacks will be stopped, which, in turn, will lead
to the crime rate of whites to rise. When stopping only members of one race is costly to the officer, this
may not be the equilibrium outcome.

9Our model is not meant to capture an important part of the work routine of highway officers, namely

that of DWI or DUI offenses. There are at least two reasons for this. First, most DIW offenders do not

end up in jail. Second, it is unclear whether the assumption cb > cw is appropriate when one considers

these crimes, since most DWI offenses are committed by white drivers. We thank an anonymous referee for

pointing out these points.
10A study by John Lamberth shows that 98.1% of all cars on a stretch of the New Jersey Turnpike are

exceeding the speed limits. (See New Jersey v. Soto, 1996) This makes it reasonable to assume that police
can stop any car passing by. Typically these violations are used as cause to stop the vehicle, but after the
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an example in Verniero and Zoubek (1999): “[...] the Public Defender’s statistical expert

compare tickets issued [...] by three different State Police Units: (1) the Radar Unit,

which [...] exercises comparatively little discretion; (2) the Tactical Patrol Unit, which [...]

exercises somewhat greater discretion; and, (3) the Patrol Unit, which [...] exercises the

most discretion. [...] the Radar Unit was found to have issued 18% of its tickets to African

Americans, the Tactical Patrol Unit issued 23.8% of its tickets to African Americans, and

the Patrol Unit issued 34.2% of its tickets to African Americans.”

The officer makes a predetermined number n of highway stops each period. If the

officer expends no special effort, he stops a racial mix which corresponds to the population

proportion, that is γn blacks and (1− γ)n whites. At a cost, however, he can change these

proportions. Let St
b denote the proportion of the people he stops in period t who is black.

11

The associated cost function is C
¡
γ, St

b

¢
= γ

2 −St
b

³
1− 1

2γS
t
b

´
. This is the cost per stop of

deviating from strictly random sampling. Note that C (.) obtains its minimum at St
b = γ,

is convex, and symmetric around St
b = γ.12

A discussion of the cost function is in order. We assume that the cost function obtains

its minimum at γ because random stopping is easier for the police officer, since there is

no need to establish the race of the motorist before pulling him over, nor is there any

need to wait for a driver of the right ethnic group. An example of the effort associated

with determining the race of the driver can be found in the following quote in Verniero

and Zoubek (1999): “[...] some troopers positioned their vehicles perpendicular to the

roadway at night to spotlight the occupants of moving vehicles. [...] this latter practice

(which renders radar guns less effective or useless) would seem to support the suspicion

that officers had taken race and ethnicity into account.” At a deeper level, our cost function

tries to capture the inherent feeling of outrage many people share regarding the use of race

as an instrument of statistical discrimination.13 Since many of these people ultimately help

elect sheriffs and other police personnel, the average police officer on the street is indirectly

vehicle has been stopped it is searched for drugs and weapons or other signs of more serious offenses.
11 In a variant of this model, S could be the portion of work day that the police officer devotes to patrol

one neighborhood rather than another. Similarly to the racial fraction, it can be argued that the police
officer has some discretion in the choice of S. There is again a moral hazard component here, in the sense
that it is difficult to monitor accuteraly where and for what exact reason the police officer is in a given
neighborhood.
12The symmetry of the cost function implies that it is equally costly to discriminate against either race.
13Note that we implicitly assume that (cb − cw) does not affect the cost function. It is plausible that

society is more tolerant of unequal treatment when (cb − cw) is large. This could be incorporated into our
model by assuing that the cost depends directly on (cb − cw) in a decreasing fashion. If this effect is strong
enough it has the potential to overturn out results.
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forced to recognize this outrage in her own decision-making.14

Before moving on, it is useful to formally define our notion of the fair steady state.

This is one where the long run racial composition of the prison population is identical the

racial composition of the criminal population, in and out of jail. The proportion of inmates

who is black at the fair steady state is therefore F ∗ = cbγ
cbγ+cw(1−γ) . This provides a utopian

benchmark to which we compare various long run outcomes.15 This is also the steady state

which would obtain in the model if we disallowed incentives.

2.2. The officer’s optimization problem.

Full information, no overconfidence. Initially we consider, as a benchmark, the

case where cb and cw are known and where there is no overconfidence. The officer’s period

t expected per stop payoff is:

R
¡
St
b

¢
= St

b · cb · x+
¡
1− St

b

¢
· cw · x−

µ
γ

2
− St

b

µ
1− 1

2γ
St
b

¶¶
. (1)

If cb = cw the optimal choice is clearly S∗b = γ; in this case, the racial distribution of the

incarcerated population will correspond to the racial distribution of the criminal population

in general. If cb 6= cw, the optimal S∗b is easily seen to be S
∗
b = γ + xγ (cb − cw) . This

suggests that if blacks in fact engage in more criminal activity than whites, more than γn

of the people the officer stops will be black. Using S∗b , we can calculate the steady state

number of white and black inmates, denoted by PFI
b and PFI

w respectively. Each officer

stops S∗bn ((1− S∗b )n) blacks (whites), and incarcerates cbS
∗
bn (cw (1− S∗b )n) black (white)

criminals. With a total of m officers, the steady state jail populations are PFI
b = cbS

∗
bnm

and PFI
w = cw (1− S∗b )nm. The steady state proportion of inmates who is black is given

by

JFIb ≡ PFI
b

PFI
b + PFI

w

=
γcb (1 + x (cb − cw))

cbγ + cw (1− γ) + xγ (cb − cw)
2 .

14Four officers in Oklahoma were named in a suit because they had stopped relatively more blacks than
the population proportions of the state. The suit was dropped when the statisticians on the defence team
demonstrated that many drivers on the particular highway were in fact driving with Texas plates, and since
Texas has a larger proportion of blacks, the stop data could be the result of random sampling.
15Katherine Kersten implies a similar definition when she argues that “... to determine whether Minnesota

has “too many” male inmates, we must compare the proportion of males in the prison population with the
proportion of males in the criminal population, not the population at large...” in her 2001 article in The
Weekly Standard. Persico (2002) employs the definitions that both groups should be investigated with the
same intensity, which in our setup would lead to a fair outcome. Gary S. Becker provides a somewhat
different definition in his July, 2000 article in Business Week “... if stops of blacks and whites uncover
evidence at about the same rate, that suggests the police are using reasonable criteria for deciding whom
to stop and search.” This will never occur in our model unless crime rates are indentical, and even then
this may not be the best definition of fairness. See Chakravarty (2002) for a detailed discussion on this.
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It is easy to verify that JFIb > F ∗ if x > 0. Given the incentives provided to the officer,

it is optimal for her to stop more of the higher crime race than she would under random

sampling. She continues to stop some whites, because the cost of stopping only blacks

exceeds its benefit. In the absence of incentives (x = 0), the full information steady

state is identical to the fair steady state. At the fair steady state the total number of

inmates is (γcb + (1− γ) cw)nm, while at the full information steady state the number of

inmates is strictly greater, namely PFI
b + PFI

w =
³
cbγ + cw (1− γ) + xγ (cb − cw)

2
´
nm.

This difference, then, is purely due to the introduction of incentives to catch criminals.

It is worth noting that Persico (2002) and other papers obtain the fair steady state even

though there is no cost to non-random sampling. In these papers, changes in the supply

of crime cause crime rates to eventually equalize rendering random sampling optimal;

consequently, the fair steady state is achieved. We find that when the crime rates cannot

equalize, as is likely the case in the US, it is not possible to obtain the fair steady state

when officers are provided with incentives to arrest criminals.

2.3. Full information, overconfidence. Now consider the slightly more involved case

where the atomistic officer can accurately estimate cb and cw, but suffers from relative

overconfidence. The relative overconfidence expresses itself in the mistaken belief that

other officers only manage to incarcerate a fraction s of the criminals (black or white) that

they encounter. The officer assumes that other officers are aware that their incarceration

rate is s and they take this into account when they optimize. Note that we are assuming

that the incarceration rates is identical for blacks and whites.16

The ability to accurately estimate the crime rates mimics a situation where (as cur-

rently mandated by law in many states) detailed data on the racial composition of stopped

motorists was collected for stops, searches, seizures, and arrest, and made available to in-

dividual police officers. In the absence of overconfidence, this information would enable

the officers to obtain consistent (and very low variance) estimates of the true crime rates.

In effect, they would know the true crime rate, and as a result, the full information steady

state would obtain. However, overconfident officers will still misinterpret the data, and

estimate the crime rates using ĉb =
1
scb and ĉw =

1
scw, since she will assume that only a

fraction s of the criminals are convicted. In that case, the steady state proportion of blacks

16Alternative plausible assumptions could be: "Whites are more cerebral, and hence harder to arrest"
or "Blacks are more violent and hence harder to arrest" or "Whites have better lawyers, and are therefore
harder to convict".
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in jail is

J∗FIO =
γcb +

xγ
s cb (cb − cw)

γcb + (1− γ) cw +
xγ
s (cb − cw)

2 . (2)

The next proposition compares this steady state to that obtained in the previous section.

This result may be interpreted as describing the effect of overconfidence on jail rates.

Proposition 1. :
a) The FIO steady state always has a greater fraction of inmates who is black than the

full information steady state (and hence greater then F ∗).

b) Increasing incentives (x) or higher overconfidence (lower s) will increase the fraction of
black jail inmates.

c) FIO is identical to the fair steady state when there are no incentives to catch criminals
(x = 0).

d) The total number of criminals caught under FIO exceeds the total number of criminals
caught under the full information steady state.

The proposition states that overconfidence increases the problem of over-incarceration

of blacks.

2.4. Unknown crime rates, overconfidence. Now consider the more general case

where the atomistic officer does not know cb and cw and suffers from relative overcon-

fidence. We assume that the officer forms an estimate of these probabilities (bcb and bcw
respectively) using published jail data.17 Based on the estimates formed from period

t − 1 jail rates, the officer stops a fraction St
b = γ + xγ

¡bct−1b − bct−1w

¢
blacks in period

t. Now consider an officer with incarceration rate s. A fraction eSt
b of the drivers she

stops will be black; then eSt
b = γ + sxγ

¡bct−1b − bct−1w

¢
. For future use, we assume s > s̄ ≡

max{−1+
√
1+8cb
2 ,

−(1−γ)+
√
(1−γ)2+4γcw
2γ } (note that s̄ < 1) and 1

2
1

x(cb−cw)+1 < γ < 1
x+1 . The

former condition guarantees the existence of an interior steady state and the latter ensures

that St
b is a strictly positive fraction.

In any period t, there are P t
b blacks and P

t
w whites in jail. Since the officer is atomistic,

17The reasons for using jail data as opposed to only her own data could be many. For example the fact
that jail data provides significantly more observations or that local crime rates fluctuate due to movement
of criminals. Mostly, however, we consider this assumption a proxy for the fact that officers’ beliefs are
influenced by briefings, discussions with their colleagues etc.
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she believes that these jail numbers are created as follows:

P t
b = scb eSt−1

b nm,

P t
b = scw

³
1− eSt−1

b

´
nm.

Note that she perceives eSt−1
b to be the fraction of stopped drivers who is black. Thus, her

estimate of cb should satisfy

P t
b = sbctb eSt−1

b nm, (3)

and similarly

P t
w = sbctw ³1− eSt−1

b

´
nm. (4)

Notice that her estimates of criminality among the races is tainted by her overconfidence

directly through s and indirectly through eSb. Clearly, since all the officers in reality have
an incarceration rate of 1, the jail numbers are actually generated in the following manner:

P t
b = cbS

t−1
b nm, (5)

P t
w = cw

¡
1− St−1

b

¢
nm (6)

Thus, at date t, the estimates bctb and bctw are generated by the following two equations:
bctb = cbS

t−1
b

seSt−1
b

(7)

and

bctw = cw
¡
1− St−1

b

¢
s
³
1− eSt−1

b

´ . (8)

Now, define bkt ≡ bctb − bctw, and plug the expression for eSt−1
b into (7) and (8). We can then

simplify the system to the following non-linear, first-order difference equation:18

sbkt = cb

³
1 + xbkt−1´
1 + sxbkt−1 −

cw

³
1− γ − xγbkt−1´

1− γ − sxγbkt−1 , t = 1, 2, ... (9)

Define k∗ as the steady state value of bkt and J∗b as the steady state value of the proportion
of blacks in jail, P ∗b

P∗b +P
∗
w
. Our main result can be stated as follows:

18At time 1, we will assume that there is an existing jail population, P 0
b and P 0

w. The model is thus
initiated by the officer calculating her first estimates, maximizing revenue and determining the optimal
number of blacks (and whites) to stop. It turns out that the composition of the initial jail population does
not affect the long run jail rates.
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Proposition 2. :
a) There exists a unique, interior, steady state k∗, such that 0 < k∗ < 1.

b) The steady state proportion of blacks in jail (J∗b ) is greater than the corresponding
proportion under full information with overconfidence (JFIOb ), and hence greater than the

fair rate (F ∗).

c) As the reward for arrests (x) increases, the steady state proportion of blacks in jail (J∗b )
increases.

d) If there are no incentives (x = 0), the fair steady state is obtained.
e) The total number of criminals caught under the steady state with overconfidence exceeds
the total number of criminals caught under the FIO steady state.

Proposition 2 states that in the long run, blacks will be overrepresented in the jail

population, more than what can be justified by their assumed higher crime rate. The

intuition for this result is as follows: An officer’s overconfidence bias causes her to believe

that other officers manage to incarcerate only a fraction of the criminals they stop. Thus

she perceives that the marginal benefit of each of their stops is lower than her own. Payoff

maximization would entail that they reduce their marginal cost; which they can do by

stopping less blacks at the margin, since that would reduce the cost of deviating from

random sampling. Consequently, she underestimates the number of black drivers stopped,

and overestimates the black crime rate implied by the jail data.

As the incentives increase the overincarceration of blacks worsens. As x increases,

marginal revenue increases, but the marginal cost is left unchanged. At the optimum,

then, more blacks can be stopped. Similarly, when all incentives are removed, revenue is

maximized when the police practice random sampling; the fair steady state results.

The overestimated black crime rate relative to the white causes more blacks to be

stopped than would have been the case under full information. Since blacks are assumed

to have a higher crime rate, the result is a higher jail population overall.19 Thus, our result

points to a clear trade-off between fairness and efficiency, an issue we take up in Bunzel

and Marcoul (2005).

Before proceeding further, it is important to touch on two items, the stability and

certain comparative static properties of the steady state. Table 1 presents results of simu-

19This result contrasts with the results in Persico (2002), where he finds that if both races have the same

population fraction of criminals (an equilibrium free-entry-into-crime condition in his static model) and if

one group is policed with less intensity, then forcing the police to increase the intensity of interdiction on

that group could raise both fairness and effectiveness.
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lation exercises which suggest that for a wide range of parameters, k∗ is locally stable. How

does k∗ respond to an increase in the overconfidence parameter, s? Figures 1-3 confirm our

intuition: as the level of overconfidence increases, the excess jailing of blacks increases as

well. Figures 4 and 5 depict the steady state as a function of x.

3. Conclusion

We develop a stylized dynamic model of highway policing in which a non-racist police

officer exhibits relative overconfidence. The officer is given incentives to arrest criminals

but faces a per stop cost which increases when the racial mix of her stops differs from

that of the population. Each period, she observes the racial composition of jails and forms

estimates about the crime rates of each race. In some settings, her overconfidence leads her

to overestimate the crime rate of one race relative to another causing the long-run racial

composition of the jail population to worsen when compared to the racial composition

which would obtain without overconfidence. We compare the model where overconfident

officers estimate crime rates to a situation where officers have detailed stop data for each

race, similar to data being currently collected in many US states. While such data collection

is shown to go a long way to ameliorate the problem of over incarceration of blacks, the

cognitive bias of the officers (and their incentives) prevent a complete elimination of the

problem. This policy prescription is in direct conflict with the current movement to use

voter initiatives to ban the registration of race in society. The de-facto leader of this

movement, Ward Connerly, argues that racial data collection is not only costly for taxpayers

but more importantly “stigmatize” minorities even further (blacks in particular). He argues

that by focussing public attention on minorities, this type of data collection worsens the

extent of racial discrimination and that all people have a right to “racial privacy.” The

upshot of this line of argument is that the race of an individual is not important and

should not be a matter of public policy. Our position on that subject is that racial data

collection is desirable for the reasons stressed above. Government should not be uninformed

about discrimination practices.20

An issue which shoud be addressed in future research is the paradox that although the

rights of the black population have never been so well guaranteed as they are today, the

racial composition of US jails has never appeared as much in their disfavor. Indeed, African-

20 It is worth noting that other types of biases could provide results which differ from those obtained here.

In particular, as pointed out by a referee, if all officers believe that they are more ethical (less racist) than

their colleagues, this would lead to underestimation of the black crime rate, which in turn would lead to

increased fairness in equilibrium.
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Americans represented about 52% of state prison inmates in 1991, up from 34% in 1960

and 23% in 1926. There is no consensus on the cause of this trend, though Harcourt (2004)

suggests that it has occurred mostly because of a dramatic evolution in the investigatory

search and seizure jurisprudence that has confirmed and reinforced the rights given to

police to use traffic violations as a valid pretext for stop-and-frisk procedures when they

suspect other more severe violations, such as drug trafficking. Such arguments are best

studied in dynamic models of law enforcement.

Another issue which deserves attention in the broader literature on racial profiling is

the trade off between resources spent on stop-and-frisk procedures, which in essence are

a pre-emptive policing technique aimed at avoiding the most disastrous consequences of

crime, and resources spent on “ex post” policing, i.e., after the crime has been committed.

We leave these issues for future research.
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Appendix

A. Proof of Proposition 1
Proof of a) J∗FIO is greater than the full information steady state if

J∗FIO =
γcb

¡
1 + 1

sx (cb − cw)
¢

γcb + (1− γ) cw +
γx
s (cb − cw)

2 >
γcb (1 + x (cb − cw))

cbγ + cw (1− γ) + xγ (cb − cw)
2 = JFIb ⇔

1 > s,

which holds by assumption.
Proof of b) We need to show that ∂J∗FIO

∂x > 0 and ∂J∗FIO
∂s < 0. Simple differentiation

provides

∂J∗FIO
∂x

=
γcbcw (cb − cw) sh

γcb + (1− γ) cw − xγ
s (cb − cw)

2
i2 > 0,

∂J∗FIO
∂s

= − γxcbcw (cb − cw)h
γcb + (1− γ) cw − xγ

s (cb − cw)
2
i2 < 0.

Proof of c) Simply set x = 0 in the expression of J∗FIO and the result is evident.
Proof of d) The total number of criminals caught under FIO is

PFIO
b + PFIO

w =
³
γcb + (1− γ) cw +

γx

s
(cb − cw)

2
´
nm.

The total number of criminals caught under the full information steady state is
PFI
b + PFI

w =
³
cbγ + cw (1− γ) + xγ (cb − cw)

2
´
nm., so

PFIO
b + PFIO

w > PFI
b + PFI

w ⇔
γcb + (1− γ) cw +

γx

s
(cb − cw)

2 > cbγ + cw (1− γ) + xγ (cb − cw)
2

1 > s,

which holds by definition of s.

B. Proof of Proposition 2
Proof of a) From (9), we know the steady state value of k, k∗ is defined by:

sk∗ =
cb (1 + xk∗)

1 + sxk∗
− cw (1− γ − xγk∗)

1− γ − sxγk∗
. (10)

The task is to show that if s̄ ≤ s ≤ 1, then there exists a unique k∗ in the interval (0; 1).
To this end we will need the following two lemmas:
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Lemma 3. If s ≥ y1 =
−1+
√
1+4(1+x)xcb
2x , there is at least one steady state in the interval

(0; 1).

Lemma 4. If s > y2 =
−(1−γ)+ ((1−γ)2+4cwγx(1−γ+xγ))

2xγ there is an even number of steady
states in the interval [−1, 0] .

Proof of Lemma 3: We start by rewriting the steady state definition (10) in the following
manner:

(1 + xsk) (1− γ − γxsk) sk = cb(1+xk) (1− γ − γxsk)−cw (1− γ − γxk) (1 + xsk) . (11)

First notice that there is at most 3 steady states.
Define the left (right) hand side of (11) as LHS (RHS). By plugging k = −1, 0, 1 into

the definitions of LHS and RHS, we obtain

LHS|k=−1 = −s (1− xs) (1− γ + xγs) (12)
RHS|k=−1 = cb(1− x) (1− γ + xγs)− cw (1− γ + xγ) (1− xs) (13)

LHS|k=0 = 0 (14)
RHS|k=0 = (cb − cw) (1− γ)

LHS|k=1 = (1 + xs) (1− γ − xγs) s

RHS|k=1 = cb(1 + x) (1− γ − xγs)− cw (1− γ − xγ) (1 + xs)

It is obvious from (14) that RHS|k=0 > LHS|k=0. Therefore, for a single steady state to
occur in the interval (0, 1), it is necessary that the LHS and RHS cross in the interval.
This occurs if RHS|k=1 < LHS|k=1. The implied condition is

1 + x

1 + xs
cb −

1− γ − xγ

1− γ − xγs
cw < s.

It is possible to show that this is satisfied if and only if s > w, where w is implicitly defined
by

(1 + x) (1− γ − xγw) cb − (1− γ − xγ) (1 + xw) cw − w (1 + xw) (1− γ − xγw) = 0.

We will instead work with a sufficient condition which provides a somewhat neater condi-
tion, namely

1 + x

1 + xs
cb < s,

which can be written as

s ≥ y1 =
−1 +

p
1 + 4 (1 + x)xcb
2x

. (15)
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It is easily seen that 0 < y1 < 1. Thus, for any s ∈ (y1, 1), (15) will hold with strict
inequality.
Proof of Lemma 3: Since RHSk=0 > LHS|k=0, there will be an even number of steady
states between −1 and 0 if RHSk=−1 > LHS|k=−1. From (12) and (13) we obtain

cb(1− x) (1− γ + xγs)− cw (1− γ + xγ) (1− xs) > −s (1− xs) (1− γ + xγs)⇔
(16)

s > cw
(1− γ + xγ)

(1− γ + xγs)
− cb

(1− x)

(1− xs)
.

Simple algebra verifies that a sufficient condition for this to hold is that

s > y2 =

− (1− γ) +

r³
(1− γ)2 + 4cwγx (1− γ + xγ)

´
2xγ

.

Note that y2 < 1.
Proof of Proposition 2: First recall that there is at most 3 steady states. Now, if

s ≥ max (y1, y2) , by Lemma 3, there is either 1 or 3 steady states between 0 and 1, and we
know from Lemma 4 that there is an even number of steady states between −1 and 0. We
now have to determine whether there are 1 or 3 steady states between 0 and 1.We will do
this by determining whether we can document one or more steady states in the intervals
(−∞;−1) and (1;∞). To that end note that

limLHSk→∞ = −∞,

limLHSk→−∞ = +∞,

limRHSk→∞ = −∞,

limRHSk→−∞ = −∞.

Recall that RHSk=−1 > LHS|k=−1. Thus, since limRHSk→−∞ < limLHSk→−∞, there
must be at least one steady state in the interval (−∞;−1). This rules out the possibility
of three steady states in the interval (0; 1), and thus there must be only one. This leaves
one steady state, but since there is an even number of steady states between −1 and 0, we
can confirm that there are no steady states in this interval. Together with Lemmas 3 and
4, the conclusion is that there is exactly one steady state in each of the intervals (−∞;−1)
and (0; 1) and no steady state in the interval [−1; 0].

Proof of b) Now turn the attention to the steady state between 0 and 1. The steady
state jail populations can be described by the following equations:

P ∗b = cb (γ + xγk∗)nm

P ∗w = cw (1− γ − xγk∗)nm

These, in turn, provide the steady state jail rate for blacks:

J∗b =
P ∗b

P ∗b + P ∗w
=

γcb (1 + xk∗)

cbγ + cw (1− γ) + (cb − cw)xγk∗
.
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Recall that the full information steady state jail rate for blacks is defined as JFIOb =
γcb(1+ 1

s
x(cb−cw))

γcb+(1−γ)cw+γx
s
(cb−cw)2

. We thus need to find the conditions under which J∗b > JFIOb .

J∗b > JFIOb ⇔
γcb (1 + xk∗)

cbγ + cw (1− γ) + (cb − cw)xγk∗
>

γcb
¡
1 + 1

sx (cb − cw)
¢

γcb + (1− γ) cw +
γx
s (cb − cw)

2 ⇔

k∗ >
1

s
(cb − cw) . (17)

Since 0 < k∗ < 1, the following inequality holds.

1− S∗b
1− eS∗b < 1 <

S∗beS∗b .
It then follows from (10) that

k∗ =
cb
s

S∗beS∗b − cb
s

1− S∗b
1− eS∗b >

1

s
(cb − cw) ,

and hence, from (17), we know that J∗b > JFIOb .
Proof of c) At date t ≥ 1, the difference equation in k is given by

kt = f (kt−1) =
cb (1 + xkt−1)

s (1 + sxkt−1)
− cw (1− γ − xγkt−1)

s (1− γ − sxγkt−1)
.

Note that

dkt
dkt−1

=
x (1− s)

s

µ
cb

(1 + sxk)2
+

cwγ (1− γ)

(1− γ − sxγk)2

¶
> 0.

It is routine to check that

d

dx

µ
dkt
dkt−1

¶
=
(1− s)

s

µ
cw

γ (1− γ) (1− γ + sxγk)

(1− γ − sxγk)3
+ cb

1− sxk

(1 + sxk)3

¶
> 0.

The steady state is defined as the intersection between the 45◦ degree line and f (·).
Since k = f (0) = cb−cw

s > 0, when a positive steady state exists, f (k) will cross the 45◦

degree line from above. An increase in x will leave the curve unchanged at 0, but increase
the slope everywhere. Hence the level of the steady state will increase (see Figure A1).
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Figure A1: Effect on the steady state from an increase in x

Proof of d) Simply plug x = 0 into the expression of J∗b to obtain the result.
Proof of e) The total number of criminals caught at the steady state is

P ∗b + P ∗w = (γcb + (1− γ) cw + (cb − cw)xγk
∗)nm.

Under full information with overconfidence, the total number of criminals caught is

PFIO
b + PFIO

w =
³
γcb + (1− γ) cw +

γx

s
(cb − cw)

2
´
nm.

Since, by (17), k∗ > (cb − cw) , it is evident that P ∗b + P ∗w > PFIO
b + PFIO

w .
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Table 1: Numerical results, cb = 0.21, cw = 0.11

γ x s k∗ ∂kt
∂kt−1

(k∗) R (Sb (k
∗))

0.20 0.50 0.30 0.45 0.25 0.06

0.40 0.50 0.30 0.49 0.31 0.07

0.60 0.50 0.30 0.60 0.46 0.07

0.40 1.00 0.30 0.83 0.56 0.05

0.20 0.50 0.50 0.23 0.11 0.06

0.40 0.50 0.50 0.23 0.13 0.07

0.60 0.50 0.50 0.25 0.19 0.08

0.20 1.00 0.50 0.25 0.19 0.13

0.40 1.00 0.50 0.27 0.25 0.15

0.20 1.50 0.50 0.29 0.26 0.19

0.40 1.50 0.50 0.32 0.36 0.21

0.20 2.00 0.50 0.32 0.31 0.24

0.20 2.50 0.50 0.36 0.34 0.29

0.20 3.00 0.50 0.39 0.36 0.32

0.20 0.50 0.70 0.15 0.05 0.07

0.40 0.50 0.70 0.15 0.06 0.08

0.60 0.50 0.70 0.16 0.08 0.09

0.20 1.00 0.70 0.16 0.09 0.13

0.40 1.00 0.70 0.16 0.11 0.15

0.20 1.50 0.70 0.16 0.12 0.20

0.40 1.50 0.70 0.17 0.16 0.23

0.20 2.00 0.70 0.17 0.14 0.26

0.20 2.50 0.70 0.18 0.17 0.33

0.20 3.00 0.70 0.19 0.18 0.39

0.20 0.50 0.90 0.11 0.01 0.07

0.40 0.50 0.90 0.11 0.01 0.08

0.60 0.50 0.90 0.11 0.02 0.09

0.20 1.00 0.90 0.11 0.02 0.13

0.40 1.00 0.90 0.11 0.03 0.15

0.20 1.50 0.90 0.12 0.03 0.20

0.40 1.50 0.90 0.12 0.04 0.23

0.20 2.00 0.90 0.12 0.04 0.26

0.20 2.50 0.90 0.12 0.05 0.33

0.20 3.00 0.90 0.12 0.05 0.40


