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Abstract 

I exploit a major structural change that has occurred in world soccer to study the impact of 

incentives on outcomes in a strategic setting. A game-theoretic model is developed that 

captures some essential strategic elements of soccer vis-à-vis the number of points awarded 

to a win. The observable implications of the model are tested using a large dataset that spans 

30 years and 35 countries. The empirical results support the theoretical model and show that 

the 3-point system has led to a statistically significant increase in the expected number of 

goals and a decrease in the fractions of drawn matches.  
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I. INTRODUCTION 

The behavior of agents in a strategic contest is a central concern of economic models, and 

the notion of Nash equilibrium (and various extensions and refinements thereof) is the 

guiding principle of analysis. Results in this setting are often sensitive to the structure of the 

interaction, and taking models’ predictions to an empirical test is a notoriously difficult task. 

Contests are the quintessential characteristic of sport, and thus sport situations share a 

number of features with economic problems that arise in many other contexts. Because 

sport competitions have clear-cut rules, competitors are strongly motivated, and relevant 

data is often observable, sport settings are proving to be a fruitful area of empirical inquiry 

to test important tenets of economic models. For example, the notion of Nash equilibrium 

has been put to a direct test by using data on serve choices in tennis matches in Walker and 

Wooders (2001), and Hsu, Huang and Tang (2007); soccer penalty kicks data in Chiappori, 

Levitt and Groseclose (2002) and Palacios-Huerta (2003); and near-post, far-post soccer 

goals in Moschini (2004). The results of these studies are both interesting and encouraging 

and broadly support the notion that players’ choices are in accord with equilibrium 

predictions.  

 In this article I propose to use soccer (association football) data in a new direction, 

to investigate the impact of a major structural change in the organization of soccer 

competitions that took place in the mid-1990s. Most national soccer competitions are 

typically organized as double round-robin tournaments in which every team plays all others 

in its league twice (at home and away). Points earned in every match are added together, and 

rewards are assigned according to the totals earned in the entire competition.1 Unlike some 

other sports, drawn matches are common in soccer, and the point system determines their 

importance relative to victories. The traditional way to handle that was the 2-1-0 system 

whereby a tie was worth half as much as a victory (and a loss was worth nothing). England 

first replaced that with a 3-1-0 system (3 points for a win and 1 point for a tie) starting in the 

1981/82 season in an effort to promote a more attacking brand of soccer. A few other 

countries followed suit in the years that followed, but the new system became widespread 

                                                
1 The chief reward is the championship title, but the final standing carries other rewards and 
penalties. In most countries, teams that finish close to the top may qualify for other 
competitions (e.g., Champions League or UEFA cup in Europe). Also, because most 
national soccer leagues have membership through promotion and relegation (Noll, 2003), 
teams that finish at the bottom are penalized through relegation to the next lower league. 
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after it was embraced by FIFA (Fédération Internationale de Football Association), the 

game’s world governing body, to structure the initial (round-robin) phase of the 1994 world 

cup. In the years that followed, virtually every country adopted the new 3-point system.  

The widespread and systematic introduction of the 3-point system in soccer provides 

an interesting natural experiment to investigate the effects of changing rewards and 

incentives on outcomes in a tournament setting. Did the increased weight given to victories 

translate into more attacking play and goals, as per the hopeful expectation? And is that 

really what one should expect from such a structural change anyway? A few studies that have 

investigated such questions have stressed some negative results. Brocas and Carrillo (2004) 

develop a conceptual model of a soccer match as a two-stage game and cast doubts on the 

expectation that the rule change in question necessarily induces more attack. Their main 

point is that the new system, while encouraging more attack towards the end of the game, 

may also induce teams to play more defensively at the beginning of the game. Correira 

Guedes and Machado (2002) similarly note possible unintended effects of the point system 

change due to asymmetric abilities (underdogs facing rivals of superior abilities may actually 

reduce their level of offense). Garicano and Palacios-Huerta (2005) emphasize the added 

incentive for sabotage tactics that the new point system may induce.  

In this article I reconsider the question of whether the introduction of the 3-1-0 

point system in soccer actually has had significant effects. I start by developing an explicit 

game-theoretic model of soccer wherein the number of points awarded to a win has a 

meaningful role. When a team’s strategic choice applies for the entire soccer match, the 

model emphasizes the supermodular nature of the resulting game. This means that strong 

comparative statics results are possible, and they carry some testable observable implications. 

I then argue that such implications are likely to be robust to the more general view of a 

soccer match as a multi-stage game. Because supermodularity is lost in this multi-stage 

setting, the argument proceeds by considering in some detail the two-stage context suggested 

by Brocas and Carrillo (2004), and by a computational analysis of a fairly general parametric 

specification of the model. Next I test the observable implications of the model empirically 

by utilizing an extensive and original dataset that spans 30 years and 35 countries. The 

empirical results are supportive of the implications of the theoretical model. I find that, 

overall, the 3-point system has led to a statistically significant increase in the expected 
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number of goals and a statistically significant decrease in the fractions of matches that end in 

a draw.  

 

II. THE MODEL 

Models of sporting contests often emphasize the allocation-of-effort problem, in response to 

the incentive structure, as suggested by the study of tournaments originated by Lazear and 

Rosen (1981).2 In our context, however, I find it more appealing to proceed differently by 

taking a team’s amount of effort as given and focusing instead on the allocation of this effort 

to attacking and/or defensive purposes. This is consistent with the empirical finding of 

Ferrall and Smith (1999) who study sport championship series and find that teams play as 

well as possible in a given game, regardless of its strategic importance in the series. Indeed, 

the intended aim of the 3-point system change—to encourage more attacking and less 

defensive play—speaks directly to the choice of effort type. What typically holds teams back 

from a more attacking strategy is not the cost of efforts involved but its risky attribute: a 

more attacking stance not only increases a team’s chances of scoring a goal but also increases 

the prospects of a successful counter-attack by the opposing team and thus increases the 

chances of conceding a goal. The setting here is not unlike typical R&D problems in the 

innovation literature, for which, in addition to the problem of choosing the amount of R&D, 

a critical question concerns the type of R&D projects to pursue, as in Dasgupta and Maskin 

(1987). Insofar as playing with a more attacking strategy is riskier, the problem is also akin to 

the strategic choice of variance discussed by Cabral (2003).  

The model presumes that the teams are engaged in a long championship (usually a 

double round-robin, as noted earlier) with the winner determined by the highest total 

number of points. It is therefore maintained that, in any one match, each team’s objective is 

to maximize the expected number of points in that match. The two teams that compete in 

any one match are labeled A  and B . As in Brocas and Carrillo (2004), each team is assumed 

to choose an action [ ]∈ 0,1ia , { }∈ ,i A B ,  that is taken to represent the degree of 

attacking/defensive play (e.g., the choice of team “formation,” that is, how many defenders, 

midfielders and forwards are fielded and how they are positioned on the pitch). Specifically, 

a more attacking stance attains as → 1ia , and a more defensive stance results as → 0ia .  
                                                
2 Szymanski (2003) and Frick (2003) provide comprehensive reviews of this and related 
issues. 
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The actions chosen by the two teams affect the probability of goals being scored. 

Naturally I assume that a more offensive play by team i  ( → 1ia ) increases the probability 

that this team scores. But because this choice necessarily entails a less defensive posture, it 

also increases the probability that the other team scores. Conversely, a more defensive 

choice for team i  ( → 0ia ) reduces both teams’ probability of scoring. Because for the time 

being the match is modeled as a one-stage game, I work directly with the probability that 

each team scores one goal or more than the other team. Specifically, ( , )i i jp a a  represents the 

probability that team i  scores more goals than the other team ( { }∈ ≠, , ,i j A B j i ), i.e., that 

team i  wins the match. 

The expected number of points for team i , for a given action profile ( , )i ja a , is 

 

⎡ ⎤⋅ + ⋅ + − − ⋅⎣ ⎦( , ) ( , ) 0 1 ( , ) ( , ) 1i i j j j i i i j j j ip a a n p a a p a a p a a   

 

where n  is the number of  points awarded to a win (thus, = 2n  or = 3n ), and, as discussed, 

a loss (which for team i  occurs with probability ( , )j j ip a a ) is awarded zero points, and a 

draw (which occurs with probability − −1 ( , ) ( , )i i j j j ip a a p a a ) is awarded one point. The 

teams’ payoffs can therefore be written as 

 

(1) ( ) = + − −, ; 1 ( 1) ( , ) ( , )i i j i i j j j iU a a n n p a a p a a  ,   { }∈ ≠, , ,i j A B j i . 

 

The characterization of equilibrium clearly will depend heavily on the properties of the 

probability functions ( , )i i jp a a . I make the following explicit assumptions on the scoring 

probability functions: 

 

ASSUMPTION 1.  For all [ ] [ ]∈ ×( , ) 0,1 0,1i ja a  the probability functions ( , )i i jp a a , 

= ≠, , ( )i j A B j i , satisfy 

   (a) ∂ ∂ ≥( , ) 0i i j ip a a a    

   (b) ∂ ∂ ≥( , ) 0i i j jp a a a    

   (c) ∂ ∂ ≤2 2( , ) 0i i j ip a a a     
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   (d) ∂ ∂ ≥2 2( , ) 0i i j jp a a a     

   (e) ∂ ∂ ∂ ≥2 ( , ) 0i i j j ip a a a a    

   (f) ∂ ∂ ∂ = ∂ ∂ ∂2 2( , ) ( , )i i j j i j j i i jp a a a a p a a a a  

where the inequalities in (a)-(c) hold strictly on [ ) [ )∈ ×( , ) 0,1 0,1i ja a . 

 

Hence, Assumptions 1(a) and 1(c) say that the own-scoring probability is an increasing and 

concave function of the own degree of offensive play. Assumptions 1(b) and 1(d) reflect the 

presumption that a team’s offensive play also increases the other team’s scoring possibilities 

and that this relation is convex. Assumption 1(e) maintains that the teams’ attacking choices 

are complementary as far as the probability of producing goals is concerned (i.e., the own 

marginal productivity of offensive play is not decreased by the other team’s offensive 

choice). Assumption 1(f) maintains a degree of symmetry in the probability function (but 

note that I do not assume that the probability functions are the same for the two teams).3 

 The structure of the model developed in the foregoing allows us to claim the 

following strong results. 

 

Proposition 1. Given the foregoing model of a soccer match, a Nash 

equilibrium in pure strategies exists, and its comparative statics entail that an 

increase in the number of points awarded to a victory, from = 2n  to = 3n , 

increases in the attacking choices of both teams.  

 

The proof of this proposition follows immediately from the observation that ours is a 

particular instance of a supermodular game, a class of contests with strategic 

complementarities that has attracted considerably theoretical interest (see Vives, 2005, for a 

comprehensive review). The hallmark of a supermodular game is that of having payoff 

functions that display strategic complementarities both in own strategies and in the strategies 

of rivals. In the one-dimensional action space of interest here, this boils down to payoff 

                                                
3 Assumptions 1(e) and 1(f) are somewhat more general than the corresponding ones in 
Brocas and Carillo (2004). In particular, I do not assume ′ ′′ ′′ ′=( , ) ( , )A Bp a a p a a , 

[ ]′′ ′∀ ∈, 0,1a a , and thus the two teams are allowed to have different strengths.  



 6

functions ( ), ;i i jU a a n  that possess increasing differences in ( , )i ja a , a condition that, in our 

smooth formulation, is equivalent to ∂ ∂ ∂ ≥2 0i j iU a a . Differentiating (1), in view of 

Assumption 1(f), yields 

 

⎡ ⎤∂ ∂ ∂ = − ∂ ∂ ∂⎣ ⎦
2 2( , ; ) ( 2) ( , )i i j j i i i j j iU a a n a a n p a a a a  

  

and thus, given Assumption 1(e), ∂ ∂ ∂ ≥2 0i j iU a a  as long as ≥ 2n . Thus, for our setting in 

which either = 2n  or = 3n , the teams’ payoff functions display strategic complementarities.  

Existence of pure-strategy Nash equilibria, in a more general setting that includes our 

model as a special case, was established by Topkis (1979). The generality of that result stems 

from the fact that both existence of equilibrium and comparative statics results rely simply 

on order structure and monotonicity properties, such as the notion of increasing differences 

(Vives, 1990). The key comparative statics result of Proposition 1 claims that the Nash 

equilibrium solution *
ia  satisfies ∂ ∂ ≥* 0ia n  ( { }∈ ,i A B ). That is, increasing the number of 

points awarded to a win in this game should unambiguously increase the teams’ equilibrium 

attacking choices. The result is predicated upon the teams’ payoff functions ( , ; )i i jU a a n  

displaying increasing differences in ( ),ia n  ( { }∈ ,i A B ). That this property applies is readily 

established by differentiating the payoffs of equation (1), which yields 

 

 ∂ ∂ ∂ = ∂ ∂ ≥2 ( , ) 0i i i i j iU a n p a a a  

 

where the inequality (which holds strictly in the interior of the action set) follows from 

Assumption 1(a).  

Thus, the natural supermodular structure of the model at hand yields strong and 

unambiguous comparative statics results on the effects of the policy rule n  on the strategic 

choices of the contestants. Because the teams’ attacking choices are not directly observable, 

to test such predictions we need to translate their implications into observable outcomes. To 

that end, I focus on two statistics, the probability that a match ends in a draw ( , )i jz a a  and 

the expected number of goals ( , )i jy a a . Given the structure of our model, the probability 
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that the match ends in a draw satisfies ≡ − −( , ) 1 ( , ) ( , )i j i i j j i jz a a p a a p a a . Hence, if the 3-

point rule increases the teams’ attacking choices as per Proposition 1, then, because of the 

monotonicity of scoring probability functions in the contestants’ actions, it follows that the 

probability that a match ends in a draw must decrease.  

To establish unambiguously a link between Proposition 1 and the expected number 

of goals, on the other hand, a bit more structure is required. The difficulty is that, in our 

formulation, the function ( , )i i jp a a  denotes the probability that team i  scores more goals 

than the other team, with the number of scored goals being unspecified. A clear-cut result is 

possible if we re-interpret the model by assuming that at most one goal is scored by either 

team. In such a case, the expected number of goals in a match satisfies 

= +( , ) ( , ) ( , )i j i i j j i jy a a p a a p a a . Because of the monotonicity of scoring probability functions 

in the contestants’ actions, it follows that the expected number of goals ( , )i jy a a  is 

monotonically increasing in actions. I summarize the foregoing as follows.  

 

Proposition 2.  In the model of a soccer match developed in this article, an 

increase in the number of points awarded to a victory, from = 2n  to = 3n , 

leads to (a) a decrease in the probability that a match ends in a draw; and (b) an 

increase in the expected number of goals in a match, provided that ( , )i i jp a a  is 

interpreted as the probability of team i  scoring one goal when the other team 

does not ( { }∈ ≠, , ,i j A B j i ). 

 

Alternatively, the issue of expected number of goals can be addressed more explicitly 

by recasting the soccer match as a multi-stage game, under the assumption that at most one 

goal can be scored by either contestant in any one stage. Such an extension, however, also 

raises the issue of whether the teams’ actions ought to be allowed to adjust to the “state” of 

the game, an issue that I discuss next after considering the following illustration. 

 

A. Example I 

A simple parameterization that fits the structure and assumptions laid out in the foregoing is  
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(2) ( )γ β β⎡ ⎤= + − − +⎣ ⎦
2 2(1 ) 2 2i i j i i jp a a a  ,  = ≠, , ;i j A B j i  

 

where ( )γ ∈ 0,1 2  is a scaling parameter that ensures that actions are mapped into the 

admissible probability space [0,1] , and ( )β β ∈, 0,1i j  are parameters that index each team’s 

strength.  The restriction on the γ  parameter follows by observing that probabilities are 

increasing in either action, and γ+ = 2i jp p at = = 1i ja a . With this parameterization, in fact, 

we have ∂ ∂ ∂ =2 0i j iU a a , implying that a team’s optimal action is actually independent of 

the other team’s action. Upon solving for the optimal action choice one finds 

 

β β β β⎡ ⎤= − + − + − + −⎣ ⎦
* ( 1)(1 ) 1 ( 1)(1 )i i j i ja n n  ,  = ≠, , ;i j A B j i . 

 

Thus, *
ia  is strictly increasing in the number of points awarded to a victory. For instance, if 

teams were of equal strength ( β β=i j ), then 
=

=*
2

1 2i n
a   and 

=
=*

3
2 3i n

a . 

 

III. THE MULTI-STAGE SETTING 

The model laid out in the foregoing leads to the strong conclusion that increasing the 

number of points awarded to a win, from = 2n  to = 3n , should increase the team’s chosen 

degree of attacking efforts. The model is rather simple, of course, and the question arises as 

to how robust the predictions of the model are. An obvious limitation of the model is that it 

is a one-shot game—the two teams choose their actions once, at the beginning of the game. 

To be sure, such a static setting does capture some important strategic elements of a soccer 

match. Players are typically fairly specialized in their skills, and the characteristics of the 

starting eleven players (e.g., the number of defenders, midfielders and forwards that are 

fielded) does entail a degree of precommitment to the possible strategies that a team can 

pursue during the match. On the other hand, teams do retain some capacity to modify their 

degree of offensive play during the match. FIFA rules allow up to three of the starting 

players to be substituted at any point; bringing in a forward to replace a midfielder (or a 

defender), for example, is a common tactical adjustment for teams that are behind in the 
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latter stages of a match. Even with the same set of players, some flexibility remains on how 

they are employed on the pitch to pursue a more (or less) aggressive strategy.  

To model the situation in which teams can change their actions during the course of 

the match, as the “state” of the match evolves, requires consideration of at least two state 

variables: the current score of the match, and the time of play that remains. Rational 

contestants would be expected to adjust their chosen degree of offensive play according to 

whether they are winning, losing, or the current score is a tie. A team that is behind may 

have a stronger incentive to adopt a more attacking formation, and conversely, a team that is 

ahead may want to defend the lead. Furthermore, the relative incentive to attack or defend 

the current score may itself depend on how much time is left to play: when the end of the 

match is imminent, the option to wait to exert the maximum (and riskiest) attacking action 

would seem to be less and less desirable.  

An attractive way to model this dynamic context might be to conceive of the match 

as made up of many stages, and to apply the structure developed earlier to each of the stages. 

The simplest version of that is to suppose, as in Brocas and Carrillo (2004), that the match is 

divided into two periods, and that at most one goal can be scored in each period. The two 

contestants choose actions [ ]∈ 0,1ita , { }∈ ,i A B ,  in stage { }∈ 1,2t . The probability that 

team i  scores in stage t  is written as ( , )i it jtp a a , where the functions ⋅ ⋅( , )ip  continue to 

satisfy the regularity conditions of Assumption 1. In stage = 1t , at the beginning of the 

match, the teams are tied, but in stage = 2t  there are three different possible states of the 

game: team A is ahead (it scored a goal in stage 1) while team B is behind, or team B is ahead 

(it scored in stage 1) while team A is behind, or the two teams are still tied (neither scored in 

stage 1). The payoff to each team in this game clearly depends on the entire action profile 

( )1 2 1 2, , ,A A B Ba a a a . To rule out equilibrium profiles that rely on non-credible threats, the 

natural equilibrium concept in this setting, as discussed in Fudenberg and Tirole (1991), is 

that of Markov Perfect Nash Equilibrium (MPNE), that is, a subgame-perfect Nash 

equilibrium in Markov strategies, whereby only payoff-relevant state variables affect the 

agents’ equilibrium action choices. 

At the beginning of stage 2 , let the number of goals by which a team is behind (or 

ahead) denote the state of the game, so that from the perspective of team i  the state variable 

is { }∈ −1,0,1is  (clearly, + = 0A Bs s ), and denote with ( )2 2 2, ; ,i i j iU a a n s  team i ’s payoff at 
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stage 2 (this is the total payoff because the game ends with this stage). Then the payoff 

functions for the three possible states at = 2t  are  

 

 ( )− =2 2 2 2 2, ; , 1 ( , )i i j i i jU a a n p a a      

 ( ) = + − −2 2 2 2 2 2 2, ; ,0 1 ( 1) ( , ) ( , )i i j i i j j j iU a a n n p a a p a a    

 ( ) = − −2 2 2 2 2, ; ,1 ( , )( 1)i i j j j iU a a n n p a a n     

 

where { }∈ ≠, , ,i j A B j i . So when = 0is , the = 2t  subgame is essentially the same as that 

characterized earlier for the one-stage game. This subgame is supermodular and displays 

increasing differences, so that an increase in n  unambiguously increases the action levels 

chosen by the two teams.  When a team is behind ( = −1is ), the best a team can do is to tie 

by scoring a goal, and hence the payoff to the team is simply the probability of scoring (recall 

that a tie is worth one point). Because by Assumption 1 scoring probabilities are 

monotonically increasing in actions, team i’s best action is found at the boundary of the 

action set, that is, =*
2 1ia . Similarly, when a team is ahead, it does not gain by scoring in the 

last period, but it can lose −( 1)n  points if the other team scores. So the team’s best action is 

to minimize the probability of the other team scoring, which in view of the assumed 

monotonicity of probabilities requires the optimal state-contingent action =*
2 0ia . Given 

these equilibrium actions at stage = 2t , the equilibrium payoffs for the two teams at this 

stage are  

 

 ( )− =*
2 , 1 (1,0)i iU n p      

 ( ) = + − −* * * * *
2 2 2 2 2, 0 1 ( 1) ( , ) ( , )i i i j j j iU n n p a a p a a   

 ( ) = − −*
2 ,1 (1,0)( 1)i jU n n p n     

 

where { }∈ ≠, , ,i j A B j i . The equilibrium at = 1t  therefore hinges on the payoffs 
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( ) ( ) ( ) ( )

( ) ( ) { }

⎡ ⎤= + − ⋅⎣ ⎦
⎡ ⎤− − − ⋅ ∈ ≠⎣ ⎦

* * *
1 1 1 2 2 2 1 1

* *
2 2 1 1

, ; , 0 ,1 ,0 ( , )

,0 , 1 ( , ) , , , , .

i i j i i i i i j

i i j j i

U a a n U n U n U n p a a

U n U n p a a i j A B j i
 

 

From the foregoing expressions it is verified that neither the supermodularity condition 

∂ ∂ ∂ ≥2
1 1 1 0i j iU a a  nor the increasing difference condition ( )∂ ∂ ∂ ≥2

1 1 1 1, ; 0i i j iU a a n a n  need 

hold, in general. Thus, one cannot conclude that increasing the number of points awarded to 

a win necessarily increases the teams’ attacking choices at every stage and state of the game, 

which calls into question the observable implications of Proposition 2.  

 

A. Example II 

The parameterization in equation (2), when applied to the foregoing two-stage model, 

actually yields results that do accord with the predictions of Propositions 1 and 2. But 

consider instead the following parameterization presented in Brocas and Carrillo (2004):  

 

(3) κ= + 2 2i i jp a a  

 

where the parameters κ  and  are strictly positive (ensuring monotonicity). Then it is 

readily verified that an increase in the number of points awarded to a win from = 2n  to 

= 3n  can in fact decrease the equilibrium action choices at stage = 1t . As noted, for = −1is  

and = 1is  we have  =*
2 1ia  and =*

2 0ia , respectively, regardless of the value of n . But for 

= 0is  and for the case of an interior solution, κ
= =

= =* *
1 22 2i in n
a a , κ

=
=*

2 3
2i n

a  and 

( ) ( ) ( )κ κ κ κ κ
=

= − − − +* 2 2
1 3

2 (1 ) 4 (1 ) 4i n
a .  Thus 

= =
<* *

1 13 2i in n
a a  is certainly possible 

and will attain if κ κ− < 2(1 ) 8 . For example, for κ = 0.23  and = 0.5  one finds 

= =
= =* *

1 22 2
0.46i in n

a a , 
=

=*
2 3

0.92i n
a  and 

=
=*

1 3
0.43i n

a . 

Having shown that the result of Proposition 1 need not hold in each of the stages of 

a two-stage game, the question remains as to what that means for the overall outcome of the 

match. Brocas and Carillo (2004) conclude that the average degree of offensive play, that is, 

+* *
1 2( ) 2i ia a , could decrease as the number of points awarded to a win is increased, a case 
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that would require κ κ< −22 (1 ) . But it turns out that this situation cannot arise when one 

accounts for the restrictions on the admissible parameter space. At a minimum one needs to 

ensure that the probability of a draw is nonnegative. Here, for states ≠ 0is  the condition is 

+ ≤(1,0) (0,1) 1i ip p , and for state = 0is  the condition is ≤* *2 ( , ) 1i it jtp a a . The parametric 

restrictions associated with these conditions are κ + ≤2 2  and κ≥ 28 , respectively (the 

latter applies for = 3n  at = 2t ), and in this parametric region it is clear that κ κ> −22 (1 ) . 

Alternatively, one might want to ensure that + ≤( , ) ( , ) 1i i j j j ip a a p a a  holds for all 

∈ ×( , ) [0,1] [0,1]i ja a , which requires κ + ≤2 1 , and also that an interior solution attains for 

both = 2n  and = 3n , which requires κ ≤2 . The relevant parameter region in this case is 

κ< ≤0 1 4  and κ κ≤ ≤ −2 1 2 , again implying that the condition for the average degree of 

offensive play to decline cannot hold. 

More to the point, we are concerned with the implications addressed by Proposition 

2. The current example is of interest because one can show that, with the parameterization in 

(3), it is always the case that the expected number of goals are increased, and the probability 

of a draw is decreased, when the number of points awarded to a win increases from  = 2n  

to = 3n —regardless of whether or not the attacking actions of the teams increase in every 

stage of the game. That is, if *y  denotes the expected number of goals and *z  denotes the 

probability that the match ends in a draw when teams follow their equilibrium strategy, then 

= =
>* *

3 2n n
y y  and 

= =
<* *

3 2n n
z z .  The details of the derivation are somewhat tedious and 

are sketched out in the Appendix. For example, for the specific instance of  κ = 0.23  and 

= 0.5 , which does entail that first-stage actions decrease with = 3n , as noted earlier, one 

finds 
=

=*
2

0.69
n

y , 
=

=*
3

1.03
n

y , 
=

=*
2

0.54
n

z , and 
=

=*
3

0.18
n

z . 

 

B. Computational Results 

Example II is intriguing. It illustrates the point made by Brocas and Carrillo (2004) that the 

one-stage model’s prediction of Proposition 1—namely, that the teams’ attacking actions 

uniformly increase as the number of points awarded to a win increases from = 2n  to 

= 3n —need not extend to each stage of a multi-stage setting. Yet, as discussed, with this 

parametric specification the observable implications of the one-stage model do carry over to 
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the two-stage setting. Specifically, the expected number of goals increases (Proposition 2(b)) 

and the probability of a draw decreases (Proposition 2(a)) as the number of points awarded 

to a win increases from = 2n  to = 3n . How general is this conclusion? Analytical results 

that apply generally appear difficult to establish in our context, in view of the fact that the 

supermodularity condition ∂ ∂ ∂ ≥2
1 1 1 0i j iU a a  and/or the increasing difference condition 

∂ ∂ ∂ ≥2
1 1 0i iU a n  may not hold in stage = 1t . Thus, I investigate the problem at hand with 

an extensive experiment that computes the MPNE given a specific—and fairly general—

parameterization of the probability function evaluated over a large set of possible parameter 

values.   

 The specific parameterization that I use is 

 

(4) ( )γ β β λ φ η⎡ ⎤= + − − + +⎣ ⎦
2 2(1 ) 2 2i i j i i j i jp a a a a a   { }∈ ≠, , ,i j A B j i  

 

where γ > 0  is a scaling parameter that ensures that actions are mapped into the admissible 

probability space ×[0,1] [0,1] , λ ≥ 0  ensures that the probabilities are concave in own action, 

and φ ≥ 0  and η ≥ 0  ensure that probabilities are increasing in the other team’s action. The 

skill parameters β β ≥, 0i j  matter only in their difference β β−i j , which can be of either 

sign. But for probabilities to be increasing in own action we need to restrict attention to 

β β+ − >1 0i j . Also, monotonicity for all ∈[0,1]ia  requires λ ≤ 1  . Note that the 

probability function in equation (4) encompasses the functions used in the two preceding 

examples as special cases. Specifically, (4) reduces to (2) for λ η= =1, 0,  and φ = 1 ; and  

(4) is isomorphic to (3) for λ η= =0, 0  and β β=i j . 

Further parametric restrictions are required to ensure that feasible actions do not 

yield a negative draw probability, and to restrict attention to the parametric domain that 

yields an interior solution when the state of the match is that of a draw.4 Recalling the 

expression for ( )2 2 2, ; , 0i i jU a a n  given earlier, it is verified that for the probability function 

                                                
4 This is not a consistency requirement but is meant to restrict attention to the domain of 
interest. Clearly, if a corner solution 1ia =  were to attain when the teams are tied, implying 
that the teams are already adopting the highest possible attacking choices, there would be 
little scope for the 3-point system. 
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in equation (4), γ β β⎡ ⎤∂ ∂ = − + −⎣ ⎦2 2 ( 1) (1 )i i i jU a n  when evaluated at = =2 2 0i ja a , and thus 

the assumed monotonicity condition β β+ − >1 0i j  guarantees strictly positive equilibrium 

action choices. Similarly, when evaluated at = =2 2 1i ja a  we have 

[ ] ( ){ }γ β λ φ η∂ ∂ = − + − − + −2 2 ( 1) (1 )(1 ) 2i iU a n n . This expression is increasing in n , so the 

restrictive case for us is = 3n . For the expression to be non-positive at = 3n  (entailing 

interior best responses) we therefore need   [ ]β λ η φ+ − + ≤2 (1 )(1 ) . Finally, because 

[ ]γ λ φ η+ = − + +2 2A Bp p  when evaluated at = =2 2 1i ja a , for a non-negative draw 

probability we need [ ]γ λ φ η− + + ≤2 2 1 . 

 The two-stage model with the probability specification of equation (4) involves five 

parameters: γ λ φ η, , ,  and β β β≡ −i j . For each of these parameters I considered 11 distinct 

values, equally spaced on the following supports: [ ]γ ∈ 0.1,0.5 , [ ]β ∈ 0,0.5 , [ ]λ ∈ 0,1 , 

[ ]φ ∈ 0,3  and [ ]η ∈ 0,3 . This gives =511 161,051  possible parameter combinations. Of 

these, I drop the 1,331 parameter combinations for which we have both φ = 0  and η = 0  

(implying violation of Assumption 1(b), i.e., no strategic interaction). For the set of 

parameters that remains, I find that 12,264  parameter combinations satisfy the regularity 

restrictions discussed in the foregoing. For each of these 12,264  parameter vectors, I solved 

for the MPNE of the two-stage game, by using a user-written program coded in MATLAB 7, 

for both the cases of = 2n  and = 3n .5 In addition to the teams’ equilibrium actions, for 

each instance I computed the expected number of goals and the probability that the match 

would end in a draw (the form of these functions for this two-stage setting is given in the 

Appendix). I find that of the 12,264  games solved, in 120  cases the first-stage action choice 

of at least one team is negatively affected, i.e., 
= =

<* *
1 13 2i in n
a a .  Thus, the one-stage model 

prediction that the teams’ attacking choices are increased by an increase in the number of 

points awarded to a win does not extend to all possible situations that arise in the two-stage 

game (although it does apply to 99% of the cases examined). But, in all 12,264  games 

solved, I find that the expected number of goals is never lower with = 3n  than with = 2n , 

                                                
5 The particular algorithm that I implement iterates the maximization of the Nikaido-Isoda 
function (Uryasev and Rubinstein, 1994).  
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and similarly the probability of a draw never increases when the number of points awarded 

to a win increases from = 2n  to = 3n . 

 In conclusion, it seems that the observable implications predicted by the static 

model—specifically the results in Proposition 2—are rather robust and do extend to the 

multi-stage setting for a fairly general parametric specification of the model that has been 

postulated. Thus, I propose to empirically test the implications of Proposition 2(a) and 

Proposition 2(b). 

 

IV. EMPIRICAL RESULTS 

To test the empirically observable predictions of the model, a large data set was collected on 

recorded score outcomes before and after the implementation of the 3-point rule.  The data 

were assembled by compiling information reported by the Rec.Sport.Soccer Statistics 

Foundation (RSSSF). This organization, dedicated to collecting a variety of statistics for 

soccer competitions from around the world, has built a substantial data archive that is 

accessible online.6 From the Foundation’s country-specific annual final tables for the top 

national competitions, a dataset was constructed which includes 35 countries over the last 30 

years. One pre-requisite for a country’s inclusion in this study was the availability of a 

consistent time series of national competition outcomes that spans both the 2-point system 

and the 3-point system. In the end, the sample does include virtually all of the major soccer-

practicing countries, as well as providing a broad geographic representation. The set of 

countries considered, along with the date of their adoption of the 3-point system, is reported 

in Table 1. The choice of the last 30 years ensures that the sample includes comparable 

information for the 2-point and the 3-point systems (specifically, in the final sample, about 

48% of the observations pertain to the 3-point system).  

For each country and each year, the data for the annual national competition were 

used to compute two summary statistics that, in view of Proposition 2, are of direct interest: 

the per-match average number of goals, and the proportion of games ending in a draw. For 

each country and each year, I also recorded the number of teams taking part in the 

competition, as well as the year in which the country first adopted the 3-point rule. A brief 

description of the data is provided in Table 2. For some countries in some years, the 

                                                
6 As of August 2007, the working URL for the Foundation’s Web site was 
http://www.rsssf.com. 
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tournament organization did not have the usual round-robin structure.7 A common feature 

in such cases was an initial phase with round-robin organization, with qualifying teams 

playing a final playoff phase. In those instances, therefore, the average number of goals per 

match and fraction of drawn matches that I computed for that year and that country relied 

only on the round-robin portion of the tournament. I note that 30 years and 35 countries 

give us potentially 1,050 observations. But some observations had to be dropped because in 

that year and country the point system in place was neither the 2-1-0 nor the 3-1-0 system. 

Also, a few national competitions for the last year of the sample (2007) had not yet been 

completed when this study was executed. In the end, therefore, the sample encompasses 

1,028 observations.  

 

A. Expected Number of Goals 

The data at hand is a classic panel data set and lends itself to a straightforward procedure to 

test the hypotheses of interest. To analyze the prediction of Proposition 2(b), that the 

expected number of goals ought to increase under the 3-point system, the most general 

model that I consider is written as  

 

(5) α δ θ= + + +it it it i ity X D e  

 

where ity  is the average number of goals observed in country i  ( = 1,2,..., 35i ) in year 

t ( = 1978,..., 2007t ), itD  is a dummy variable that takes value 1  if the 3-point system is in 

place in country i  at time t  and value 0  otherwise, itX  is a vector of conditioning variables 

(including an intercept) that apply for country i  at time t , θi  is a term that captures 

country-specific effects, ite  is a zero-mean error term that is presumed identically and 

independently distributed across observations, and α δ( , )  are parameters to be estimated. 

The parameter δ  directly relates to the hypothesis of interest: rejection of the null 

hypothesis δ =0 : 0H  (against the alternative δ >1 : 0H ) would provide support for the 

predictions of Proposition 2. 

                                                
7 For example, only starting in 2003 did Brazil adopt the double round-robin structure that is 
the norm in most other countries.  
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 As is standard in the estimation of error-component models, the country-specific 

effects θi  can be regarded as either fixed or random (Wooldridge, 2002). Here only the 

results of the fixed-effects model, which is essentially unaffected by the slight unbalanced 

nature of the data, are reported. But I note that the random-effects model yields essentially 

identical results.  In fact, in all cases the fixed and random effect models are statistically 

indistinguishable according to the standard Hausman test (1978). Estimation results for the 

model in equation (5) are reported in Table 3.8 Four versions of the model are considered. In 

all models the country-specific fixed effects turn out to be highly significant.9 In model I, 

only a constant for the intercept is included in the conditioning vector itX , so that only the 

3-point dummy variable is included in the explanatory variables. The t-ratio of the estimated 

parameter δ̂  of the 3-point dummy variable is 9.63, which would indicate a decisive 

rejection of the null hypothesis δ =0 : 0H . Hence, the evidence from this model is that the 

panel data set is consistent with a significant effect of the 3-point rule in the expected 

direction. 

To investigate the robustness of this conclusion, the model was estimated with some 

additional conditioning variables. In model II, a linear time trend is introduced in the 

conditioning vector. Because the 3-point dummy variable is correlated with time (the simple 

correlation coefficient between the two variables in the sample is 0.81), the general issue 

arises concerning the possibility that the variable itD  might be picking up a secular trend on 

the average number of goals. In fact, such a secular trend clearly is a property of the data 

prior to the introduction of the 3-point system, and, indeed, concern about such a trend was 

arguably a motivation for FIFA to introduce the 3-point system in the mid-1990s. To 

illustrate that trend, for a few leading soccer countries I collected a more extensive dataset 

that covers the entire post-WWII period prior to the introduction of the 3-point system. 

Figure 1 reports the average number of goals and the fractions of drawn matches for four 

leading European soccer countries (France, Germany, Italy and Spain), and Figure 2 reports 

the same statistics for three leading South-American soccer countries (Argentina, Chile and 

                                                
8 Estimation was carried out in TSP 5.0. 
 
9  For example, for model I the F test for a common intercept is F(34,992)=32.23, which 
exceeds the appropriate critical value at virtually any significance level.  
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Uruguay).10 A secular trend toward a decline in the average number of goals per match, as 

well as an increase in the fraction of games ending in a draw, is clearly present. A number of 

reasons might explain this trend, including the increased physical conditioning and athletic 

prowess of professional soccer players (which, coupled with an essentially unchanged soccer 

pitch size, might have increased the effectiveness of soccer defense). Here I are not 

concerned with explaining the dynamics of these trends; rather, I wish to account for such a 

background element in assessing the significance of the 3-point rule effects, and that is 

accomplished by introducing a linear trend among the conditioning variables.  

The introduction of a linear trend among the conditioning variables does change the 

size of the parameter of interest, δ̂ , but leaves its statistical significance level essentially 

unaltered (the t-ratio is now 8.18). The estimated coefficient of the trend variable is itself 

negative, consistent with the existing underlying secular trend prior to the introduction of 

the 3-point system illustrated in Figures 1 and 2.   

Another conditioning variable that was considered in models III and IV is the 

number of teams taking part in the round-robin tournament for which the average statistics 

used as observations were computed. This number turned out to vary both across countries 

and, to some extent, has also varied over time within individual countries (Table 2).11 

Although the effect of tournament-group size was not explicitly considered in the theoretical 

model, it seems likely that the marginal strategic incentive of the 3-point system is reduced 

when fewer teams are involved. (In the limiting case of only two teams, only victory matters, 

and the number of points awarded to it are meaningless.) Another reason that the size of the 

tournament group matters has to do with heterogeneity of teams. As suggested in the 

theoretical model discussed earlier, increased differences across teams increase the expected 

number of goals, ceteris paribus. The presumption here would be that championships with 

many teams may be more heterogeneous than championships with fewer teams (although, 

                                                
10 Data for the other major European soccer country, England, are not used in Figure 1 
because England introduced the 3-point system much earlier (in the 1981/82 season) than 
the four countries used here (see Table 1). Data for the other major South-American soccer 
country, Brazil, are not used in Figure 2 because of the difficulty of assembling a consistent 
time series for the entire period of interest here.  
 
11 Indeed, the smallest (5) and largest (28) group sizes in the sample were both observed in 
Brazil (in years 1982-84 and 2001, respectively). 
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admittedly, the number of teams might be a weak proxy for that effect). Consistent with the 

foregoing discussion, the estimated parameter of this variable turns out to be positive and 

statistically significant at the 0.01 probability level in both models III and IV. In any event, 

inference concerning the parameter of interest is not affected: the hypothesis δ =0 : 0H  is 

consistently rejected, at the 0.01 probability level, across all models. 

The conclusion of this econometric analysis, therefore, is that the 3-point system did 

make a difference, and the added incentive has had a statistically significant impact on the 

expected number of goals. This evidence is quite consistent with the strategic model that was 

postulated and provides support for some basic implications of Nash equilibrium in a 

strategic setting. Although the statistical significance of the effect is strong, the quantitative 

impact of the 3-point rule on goals is (perhaps not surprisingly) somewhat limited. Recalling 

that the overall average number of goals per match in the sample is approximately 2.62, the 

predicted increase in the expected number of goals per match implied by the results of Table 

3 ranges from 5.7% (model I) to 8.5% (model IV).  

 

B. Probability of Drawn Matches 

As noted earlier, in addition to computing the average number of goals for each country in 

each year, the fraction of games that ended in a draw for each of the sample points was also 

computed. Proposition 2(a) can then be tested directly. The analysis proceeds along the same 

lines as for the expected number of goals. The estimated model is 

 

(6) ω ρ μ= + + +it it it i itz X D v  

 

where itz  is the fractions of matches that ended in a draw observed in country i  

( = 1,2,..., 35i ) in year t ( = 1978,..., 2007t ), itD  and itX  are as defined earlier, μi  is the term 

that captures country-specific effects, itv  denotes the zero-mean i.i.d. error term, and ω ρ( , )  

label the parameters to be estimated.  The null hypothesis of interest is ρ =0 : 0H , rejection 

of which (against the alternative ρ <1 : 0H ) would provide support for the predictions of 

Proposition 2(a). As for the case of the expected number of goals, I report the fixed-effect 

estimation results for four models that differ in the set of conditioning variables.  
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 The estimation results for model (6), summarized in Table 4, are quite consistent 

with those of model (5). The introduction of the 3-point system appears to have had a 

statistically significant impact on the expected number of draws in the direction predicted by 

Proposition 2(a). In particular, the null hypothesis ρ =0 : 0H  is rejected at the 0.01 

probability level in all versions of the model. The other conditioning variables also have a 

sign consistent with the effects of Table 3. In particular, allowing for the effect of a time 

trend has a strong impact on the size of the 3-point effect. Recalling that the overall average 

of matches ending in a draw in the sample is approximately 0.27, the quantitative impact of 

the introduction of the 3-point rule implied by the results of Table 4 is a decrease in the 

fraction of drawn matches that ranges from 8.8% (model I) to 16.2% (model IV). The 

impact of the 3-point rule on decreasing the number of matches that end in a draw thus 

appears quantitatively higher than the impact on increasing the expected number of goals. 

 

C. Country-specific Responses 

The results reported in Tables 2 and 3 allow for country-specific fixed effects and maintain a 

common response to the structural change of the 3-point system. In view of the variety of 

styles that different countries bring to the practice of soccer, exploring the implications of 

relaxing this last restriction is of some interest. Thus, the models in equations (5) and (6) 

were re-estimated by allowing for country-specific responses to the 3-point dummy variable 

(i.e., by allowing the parameters δ  and ρ  to vary by country). Table 5 reports the most 

general version of the models in question, which includes trend and number of teams as 

conditioning variables. Perhaps not surprisingly, we find considerable variability in these 

country-specific responses. For the model explaining the expected number of goals, we find 

27 individual responses that are statistically significant at at least the 10% level. Of these, 24 

have the expected positive sign, consistent with the average response of Table 3. Non-

European countries display a consistently positive impact of the 3-point system. European 

countries tend to display a smaller impact, and in a few cases the country-specific effect is 

actually negative. In particular, for Austria, Germany and the Czech Republic the estimated 

impact is negative and statistically significant. 

 For the model explaining the proportion of matches that end in a draw, also reported 

in Table 5, we find that all but 2 of the estimated country-specific responses have the 

expected negative sign (and 27 of these are statistically significant at at least the 10% level). 



 21

Of the two responses with a positive sign, one (for Italy) also appears statistically significant. 

Overall, however, the more disaggregated results of Table 5 are quite consistent with the 

average results reported in Tables 2 and 3.  Of course, the game of soccer is much more 

complex than the simple representation provided by the model of this article, and 

considerable variability in outcomes remains to be explained. But the evidence that I have 

presented nonetheless allows us to conclude that the predictions of Propositions 2 find 

considerable support in the data. The 3-points-for-a-win system does appear to have had a 

statistically significant impact on observed outcomes, although its magnitude is somewhat 

limited and displays considerable variability across countries.  

    

V. CONCLUSION 

In this article I have investigated the impact of a major structural change in the organization 

of soccer competitions that took place in the mid-1990s, specifically the introduction of the 

3-points-for-a-win system. I start by providing a simple game-theoretic representation of the 

relevant strategic setting that is amenable to strong comparative statics predictions. Based on 

both analytical results and numerical computation, I conjecture that the “natural experiment” 

of the 3-points-for-a-win change should have increased the expected number of goals per 

match and decreased the fraction of drawn matches. Such predictions are then evaluated 

empirically by means of a large and original data set that was assembled. By using a panel 

data analysis that spans 35 countries and 30 years, we find that the results are quite 

supportive of the game-theoretic predictions. Specifically, there is a statistically significant 

effect of the 3-points-for-a-win system on both goals scored and expected draws. The 

magnitude of these effects, while not large in an absolute sense, is not inconsequential. The 

most general model with common (across all countries) response to the 3-point system 

yields an estimated increase in number of goals per match of 8.5% and an estimated decline 

in the probability of drawn matches of 16.2%. 

The results of this article should be of interest from several perspectives. First, the 

analysis adds to a small number of existing studies that lend empirical support to the notion 

of Nash equilibrium. Specifically, I show that a game-theoretic approach to modeling 

strategic interactions can provide sharp predictions that are consistent with observed 

behavior. The results are also of interest to the organization of sport competitions. As many 

other studies have shown in other and related settings, incentives do matter, and, given a 
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well defined objective function, it may be possible to improve the entertainment value of 

sporting events by tailoring the rules of the game to a specific desired objective (more goals, 

fewer ties!). 
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TABLE 1. Introduction of the 3-points-for-a-win system 

 
Year * Countries in the sample 

1982 England 

1983 Israel 

1988 Norway and Turkey 

1989 Hungary, Sweden 

1993 Australia, Greece 

1994 Bulgaria, Ireland 

1995 Brazil, Chile, Colombia, Czech Rep.,# Egypt, France, Italy, Romania, 
Russia,§, Scotland, Uruguay 

1996 Argentina, Austria, Belgium, Denmark, Germany,† Mexico, Netherlands, 
Poland, Portugal, Serbia,‡  Spain, Switzerland, Tunisia 

1997 Albania 

 
Notes: * Year refers to the end of the season when the season spans two calendar years (e.g., 

1982 means the 1981/82 season for England). 
  # Czechoslovakia up to 1993. § Soviet Union up to 1991. † Bundesliga (West 

Germany only prior to 1992).  ‡ Yugoslavia prior to 1992. 
 

 

TABLE 2. Description of the panel data set, 35 countries, 1978-2007 

 

 mean s.d. min max 

Season’s average number of 
goals per match 2.62 0.35 1.59 3.83 

Fraction of matches that end 
in a draw 0.27 0.05 0.08 0.43 

Number of teams in round-
robin tournament  16.0 3.18 5 28 

 
Source: Computed from RSSSF archive data. 
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TABLE 3. Estimation results: expected number of goals 

 

Model 3-point  
Dummy Trend Number  

of teams 
2R  

I 0.14800      
(0.01536)   0.546 

II 0.23033 
(0.02815) 

–0.00550 
 (0.00158)  0.552 

III 0.14580       
(0.01522)  0.01745       

(0.00380) 0.556 

IV 0.22330 
(0.02793) 

–0.00517 
 (0.00157) 

0.01686       
(0.00379) 0.560 

Standard errors are reported in parentheses. 
Number of observations = 1,028. 
 

 

TABLE 4. Estimation results: fraction of games ending in a draw 

 

Model 3-point  
dummy Trend Number  

of teams 
2R  

I –0.02402      
(0.00263)   0.446 

II –0.04376      
(0.00480) 

0.00132 
(0.00027)  0.459 

III –0.02390      
(0.00263)  –0.00092      

(0.00066) 0.447 

IV –0.04343      
(0.00480) 

0.00130 
(0.00027) 

–0.00077      
(0.00065) 0.459 

Standard errors are reported in parentheses. 
Number of observations = 1,028. 
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TABLE 5. Country-specific response to 3-point dummy 
 

    Expected Number of Goals          Fractions of Draws 
 estimate      s.e.  p-value estimate      s.e.  p-value 
Trend -0.0055 0.0014 [.000] 0.0013 0.0002[.000] 
N of teams 0.0020 0.0043 [.637] -0.0006 0.0008[.398] 
3-point dummy       
  Albania 0.4559 0.0820 [.000] -0.1315 0.0146 [.000] 
  Argentina 0.3865 0.0807 [.000] -0.0722 0.0143 [.000] 
  Australia 0.3216 0.0815 [.000] -0.0623 0.0145 [.000] 
  Austria -0.1885 0.0800 [.019] -0.0281 0.0142 [.048] 
  Belgium 0.2904 0.0798 [.000] -0.0127 0.0142 [.371] 
  Brazil 0.5471 0.1006 [.000] -0.0578 0.0178 [.001] 
  Bulgaria 0.2168 0.0823 [.009] -0.0793 0.0146 [.000] 
  Chile 0.4670 0.0790 [.000] -0.0736 0.0140 [.000] 
  Colombia 0.1364 0.0808 [.092] -0.0300 0.0143 [.037] 
  Czech Rep. # -0.1982 0.0790 [.012] 0.0224 0.0140 [.110] 
  Denmark 0.2159 0.0801 [.007] -0.0353 0.0142 [.013] 
  Egypt 0.5851 0.0803 [.000] -0.0892 0.0142 [.000] 
  England 0.0823 0.1131 [.467] -0.0410 0.0201 [.041] 
  France -0.0815 0.0790 [.302] -0.0193 0.0140 [.168] 
  Germany † -0.1627 0.0798 [.042] -0.0244 0.0142 [.086] 
  Greece 0.3585 0.0783 [.000] -0.0609 0.0139 [.000] 
  Hungary -0.0032 0.0812 [.968] -0.0581 0.0144 [.000] 
  Ireland -0.1221 0.0809 [.132] -0.0118 0.0144 [.410] 
  Israel 0.5218 0.1036 [.000] 0.0207 0.0184 [.260] 
  Italy 0.5517 0.0794 [.000] 0.0676 0.0141 [.000] 
  Mexico 0.2882 0.0800 [.000] -0.0574 0.0142 [.000] 
  Netherlands 0.0648 0.0798 [.417] -0.0587 0.0142 [.000] 
  Norway 0.4032 0.0865 [.000] -0.0564 0.0153 [.000] 
  Poland 0.3467 0.0798 [.000] -0.0821 0.0142 [.000] 
  Portugal 0.1876 0.0799 [.019] -0.0271 0.0142 [.056] 
  Romania 0.0230 0.0790 [.771] -0.0124 0.0140 [.376] 
  Russia §   0.1842 0.0805 [.022] -0.0353 0.0143 [.014] 
  Scotland 0.1616 0.0790 [.041] -0.0317 0.0140 [.024] 
  Serbia ‡   0.0619 0.0845 [.464] -0.0800 0.0150 [.000] 
  Spain 0.2167 0.0801 [.007] -0.0152 0.0142 [.287] 
  Sweden 0.1674 0.0817 [.041] -0.0385 0.0145 [.008] 
  Switzerland 0.0577 0.0803 [.472] -0.0345 0.0142  [.016] 
  Tunisia 0.1596 0.0803 [.047] -0.0513 0.0142 [.000] 
  Turkey 0.8950 0.0828 [.000] -0.1056 0.0147 [.000] 
  Uruguay 0.5526 0.0799 [.000] -0.0687 0.0142 [.000] 

2R  0.672 0.570
Notes: # Czechoslovakia up to 1993. § Soviet Union up to 1991. † Bundesliga (West Germany 
only prior to 1992).  ‡ Yugoslavia prior to 1992. 
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FIGURE 1. Goals per match and fraction of drawn matches prior to 3-point system:  
  France, Germany, Italy and Spain, 1946/47 to 1993/94 
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FIGURE 2.  Goals per match and fraction of drawn matches prior to 3-point system: 

Argentina, Chile and Uruguay, 1947 to 1994 
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APPENDIX 
 

For the general two-stage soccer model developed in the text, the expected number of goals 

when teams follow their equilibrium strategy is 

 

( ) ( )
( )

= + + + + +

⎡ ⎤+ − − +⎣ ⎦

* * * * *
1 1 1 1

* * * * * * * *
1 1 1 1 2 2 2 2

( , ) 1 (0,1) (1,0) ( , ) 1 (1,0) (0,1)

1 ( , ) ( , ) ( , ) ( , ) .

i i j i j j j i i j

i i j j j i i i j j j i

y p a a p p p a a p p

p a a p a a p a a p a a
 

 

As for a match ending in a draw, this event can arise because both teams fail to score in both 

stages, or because the team that is behind in the second stage scores. Thus, the probability 

that the match ends in a draw when teams follow their equilibrium strategy is 

 

( ) ( )= − − − −

+ +

* * * * * * * * *
1 1 1 1 2 2 2 2

* * * *
1 1 1 1

1 ( , ) ( , ) 1 ( , ) ( , )

( , ) (1,0) ( , ) (1,0) .

i i j j j i i i j j j i

i i j j j j i i

z p a a p a a p a a p a a

p a a p p a a p
 

 

For the specific parametric formulation of Example II, the two teams’ optimal actions at 

both stages, under either regime = 2n  or = 3n , are given in the text. Using that, and the 

foregoing definitions for the expected number of goals and the probability that a match ends 

in a draw, one can express *y  and *z  as functions of the parameters κ  and . It is then 

possible to verify that, for the parametric domain of interest derived in the text, that is, 

κ< ≤0 1 4  and κ κ≤ ≤ −2 1 2 , the claim results follow, that is, 
= =

>* *
3 2n n

y y  and  

= =
<* *

3 2n n
z z . 


