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Abstract

In production economies, the extent to which non-equilibria are blocked depends

on specific rules that allocate authority among shareholders, because a blocking coali-

tion’s resources are affected by the firms it jointly owns with outsiders. Based on a

notion of stochastic blocking, we extend Anderson’s (1978) core convergence theorem

to production economies where preferences and technologies are not necessarily convex.
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1 Introduction

The core convergence theorem, mainly due to Debreu and Scarf [2] and Anderson [1], has

been the justification for competitive equilibrium as the solution concept for privatized ex-

change economies. The corresponding literature on production economies, however, is still

preliminary. With production, a coalition may be interlocked with its outsiders through a

firm they jointly own, so the feasibility of a blocking plan depends on how the control right

on the firm is distributed between the two parties. The central question is how to enrich the

Arrow-Debreu notion of “corporate share” with a rule of corporate governance that allocates

the control on firms.

In a recent paper, Xiong and Zheng [4], we enrich corporate share with a deterministic

interpretation, generalized from realistic special cases such as majority rules: whether a

coalition gets to control a firm or not is predetermined by its total share of the firm; once a

firm’s production plan is decided, a coalition is entitled and obligated to carry out a fraction of

the plan in the proportion of the coalition’s total share. Based on that interpretation, as well

as the replication framework à la Debreu and Scarf relying on strict convexity assumptions,1

we prove in that paper a core convergence theorem for privatized production economies.

In this paper, we offer an alternative, stochastic interpretation for corporate shares.

This interpretation is new in the literature and uncommon in the real world. The strength

of this alternative is that the notion of blocking based on it, stochastic blocking , has led

to stronger core convergence results than the previous approach. We present such a result

in this paper. It is a production-analog of Anderson [1], i.e., a core convergence theorem

for production economies without the convexity assumption, dispensing with the artificial

replication framework.

The idea of stochastic blocking is to think of blocking as an event that the corporate

partnership between a blocking coalition and its outsiders has to be dissolved. Here the stake

is the physical production machine underlying the firm that is about to be dissolved. To

avoid triviality, consider only the case where the machine is indivisible. Then which party

should get the machine after the firm is dissolved? Borrowing the idea from auction theory,

we propose an institutional setting where the machine is awarded to either the coalition or its

1Although the constant-return-to-scale technology is allowed in Debreu and Scarf [2], they assume that

the technology is available to every possible coalition instead of being privatized.
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outsiders with probabilities equal to their shares of the firm. Then a blocking coalition either

has complete control and ownership of a firm or has zero obligation to it. Since the control

rights on firms are ex ante uncertain, the total resources available to a blocking coalition

may be random, but they converge to their expected value as the size of the coalition goes

to infinity. Thus, if a coalition can “block” with the expected value of its total resources, a

sufficiently large replication of the coalition can really block the status quo because the total

resources available to the enlarged coalition approximate the expected value.

To apply this idea to possibly nonconvex economies , where preferences and technolo-

gies are not necessarily strictly convex, we need to overcome the problem How to make

the approximation uniform across all allocations and all economies. Had preferences and

technologies been strictly convex, core allocations would have the equal treatment property

(ETP), so we can talk about the same allocation across economies of various sizes, and it

is meaningful to say: “For every non-equilibrium allocation, we can block it by making the

economy sufficiently large.” Without such strict convexity, by contrast, the ETP no longer

holds, so it is meaningless to talk about the same allocation across economies. Now the task

is to find a sufficiently large economy within which any allocation that sufficiently deviates

from equilibrium conditions is blocked.

This task is achieved by our theorem. The main sacrifice we make for the aforemen-

tioned uniformity is the restriction to the core allocations where the consumption disparity

among individuals has a uniform upper bound across all economies. Nevertheless, our core

convergence result is true for any uniform upper bound for disparity.

Our proof uses two main techniques: (i) the treatment of nonconvexity that Ander-

son [1] developed in his pure exchange model, and (ii) a modified notion of approximate core

that we introduce in §2.5 of this paper.

2 Definitions and Assumptions

2.1 The Primitives

There are a finite set I of individuals, a finite set J of firms, and a finite number l of

goods. Let i be the index for individuals and j for firms. Let Rl
+ be the consumption

set of each individual, let �i be i’s preference relation on Rl
+, ui his utility function, ωi

3



(∈ Rl
+) his endowment, and Yj (⊆ Rl) the production set of firm j. Denote an allocation by

(x, y) := ((xi)i∈I , (yj)j∈J), meaning individual i consumes bundle xi and firm j’s production

plan is yj. An allocation (x, y) is feasible if xi ∈ Rl
+ and yj ∈ Yj for each individual i and

each firm j and
∑

i∈I xi =
∑

i∈I ωi +
∑

j∈J yj. A coalition S is a nonempty set of individuals.

A firm is not a player but is an indivisible technology jointly owned by shareholders.

We make the following assumptions throughout the paper without mentioning them

in our theorem or lemmas. Every individual i is von Neumann Morgenstern rational with

utility function ui strongly monotone on the consumption set Rl
+. For every firm j, 0 ∈ Yj.

Let E denote the above economy, with I the set of individuals and J the set of firms.

Let us measure the size of the economy by n(E) := |I|, i.e., the number of individuals in E ,

assuming that |J | grows in the same rate as |I|. The sets I and J may vary across economies,

but the number l of the kinds of goods is constant.

2.2 Partnership Dissolution

The interlocking problem between a blocking coalition and its outsiders is due to their

partnership in the firms they jointly own. Let us consider a mechanism that disentangles

such interlock by allowing shareholders to dissolve their partnership: If shareholder i dissolves

his partnership in firm j, the technology of the firm, being indivisible, is allocated to either i

or someone else, and is allocated to i with probability θij. Here the winning probability

θij ∈ [0..1] is exogenous and may be unequal to the profit share in the Arrow-Debreu model.

After partnership dissolution, the winner of the technology has complete discretion of what

to do with it and complete ownership of its net output.

For any individual i ∈ I and any firm j ∈ J , define

zi
j :=

 1 if individual i wins firm j in case of partnership dissolution

0 else.
(1)

Assumption 1 The random vector (zi
j)i∈I is independent across firms j. For each firm j,

Prob(zi
j = 1) = θij.

2.3 Stochastic Blocking

A coalition may deviate from a status quo allocation by its members dissolving partnerships

in the firms where they hold shares. For such deviation to be feasible, the coalition needs to
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come up with plans contingent on the allocation of the technologies of the dissolved firms.

A coalition wins a firm j if and only if one of its members wins j in partnership dissolution.

A contingent blocking plan
(
(x′i)i∈S, (y′j)j∈J

)
is a mapping from a realization of ((zi

j)j∈J)i∈I

to a consumption-production plan ((x′i)i∈S, (y′j)j∈J) such that, for every realization of ((zi
j)j∈J)i∈I ,

x′i ∈ Rl
+ for all i ∈ S and y′j ∈ Yj for each firm j, and y′j = 0 if j is not won by S (if S

loses firm j, the outsiders solely own the output of the firm, so j’s production plan from the

perspective of S is equal to 0).

Abusing notations, let ωi also denote the mapping that constantly associates individ-

ual i’s endowment to every realization of ((zi
j)j∈J)i∈I . Let E denote expected values.

Definition 1 (stochastic blocking) A feasible allocation (x, y) is stochastically blocked

by a coalition S if there is a contingent blocking plan
(
(x′i)i∈S, (y′j)j∈J

)
such that E[ui(x

′
i)] >

ui(xi) for all i ∈ S and (for every realization of (zi
j)j∈J)∑

i∈S

x′i =
∑
i∈S

ωi +
∑
j∈J

y′j. (2)

Thus, the resources within a blocking coalition are stochastic and ex post consist of its

total endowments plus the entire technology of every firm won by the coalition, with winning

probability determined by θij. Note that the outsiders of a blocking coalition can always

come up with a feasible consumption plan, because through partnership dissolution neither

party has any duty in the firms controlled by the other party.

2.4 An Illustrative Example

To see why stochastic blocking works, consider the following replica economy borrowed from

Xiong and Zheng [4].

Example 1 There are two goods, two individual-types, and one firm-type. In each prototype

of the economy, the endowment for the individual of type-1 is e1 = (1, 0), and that for type-2

is e2 = (0, 1). For each type, the utility from consumption bundle (xi1, xi2) is

u(xi1, xi2) := xi1 + 10
√

xi2.

Each firm is equally shared by a type-1 and a type-2 individuals, and its production set is

Y :=
{
(yj1, yj2) ∈ R2 : yj2 ≤

√
−yj1; yj1 ≤ 0

}
.
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As shown in Xiong and Zheng [4], In any replica of the economy, there is a unique

Walras equilibrium allocation (represented type-wise):

x∗1 = (0, 3/4) ; x∗2 = (0, 5/4) ; y∗ = (−1, 1); p∗ = (1, 2),

but the the type-wise represented allocation

xo
1 = (0, 1/2) ; xo

2 = (0, 3/2) ; yo = (−1, 1) (3)

cannot be blocked given any deterministic rule corporate control allocation in [4].

Now suppose that the type-1 shareholder can dissolve his partnership in the firm. Sup-

pose further that the mechanism of partnership dissolution is that the technology embodied

by the firm, being an indivisible object, has to be awarded to one of the two shareholders,

and the probability with which the type-1 shareholder wins is some parameter θ̂1 ∈ [0..1] (not

necessarily equal to his profit share θ1). Suppose the winner of the technology has complete

discretion of what to do with it and complete ownership of its output. Then a 3-member

coalition consisting of a prototype economy and a single type-1 individual from another unit

would rather deviate from the status quo to the following plan:

i. The single type-1 person dissolves his partnership from the firm of his unit.

ii. If the firm is awarded to him, the coalition controls two firms and produces (−1, 1)

in each firm; the type-2 coalition member consumes (0, 3/2) as in the status quo, and

each of the type-1 member consumes (0, 3/4).

iii. If the firm is not awarded to the single type-1 person, the coalition controls one firm

and produces (−2,
√

2); the type-2 member consumes (0, 3/2) as in the status quo, and

each type-1 member consumes (0, (
√

2− 1/2)/2).

This plan is feasible for the coalition at each possible state, since the total endowment of the

coalition is (2, 1). With this plan, each type-1 coalition member is better-off if the probability

θ̂1 of winning the firm is greater than 0.17:

θ̂1 > 0.17 ⇒ θ̂10
√

3/4 + (1− θ̂)10

√
(
√

2− 1/2)/2 > 10
√

1/2.

Then they can make the type-2 member also better-off by giving him a small positive bundle.
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2.5 Cushion Blocking

The next notion of blocking does not take into account the interlock between a coalition

and its outsiders. Although our theorem is not based on this blocking notion, our proof uses

an important fact about it, Lemma 3. This blocking notion has two features. First, the

coalition needs to have at least N individuals. Second, the blocking plan is cushioned: for

every coalition member, the consumption in the blocking plan is preferred to the status quo

consumption even after we reduce the former by ε and increase the latter by δ.2

Let 1 denote the l-vector that is equal to one in every coordinate.

Definition 2 (cushion blocking) For any N = 1, 2, . . ., any ε > 0 and any δ > 0, a

feasible allocation ((xi)i, (yj)j∈J) is cushion-blocked with (N, ε, δ) if there is a coalition S

with size |S| ≥ N such that, for every i ∈ S and for every j ∈ J , there exist x′i ∈ Rl
+ + ε1

and y′ij ∈ Yj such that

ui(x
′
i − ε1) > ui(xi + δ1); (4)∑

i∈S x′i =
∑

i∈S ωi +
∑

j∈J

∑
i∈S θijy

′
ij. (5)

Let Ccush(E ; N, ε, δ) be the set of allocations in economy E that are not cushion-blocked

with (N, ε, δ). Note that Ccush(E ; N, ε, δ) ⊆ Ccush(E ; M, ε, δ) if M ≥ N .

2.6 Measuring the Deviation from Equilibrium Conditions

A virtual competitive equilibrium in economy E is defined by the same condition that defines

a competitive equilibrium except that the profit share in the standard definition is replaced

by the winning probability θij here. A virtual competitive equilibrium may be different from

a standard competitive equilibrium because the winning probabilities may be unequal to the

profit shares. Our core convergence theorem asserts that the deviation from the conditions

for virtual competitive equilibrium shrinks to zero as the size of the economy goes to infinity.

We shall define measures for such deviation here.

For every allocation (x, y) and every i ∈ I, let

Ui (xi, y) :=

{
x′i − ωi −

∑
j∈J

θijyj : x′i ∈ Rl
+; ui(x

′
i) > ui(xi)

}
, (6)

2Although the first margin ε is similar to the notion of ε-blocking in the literature, the second margin δ

appears to be a new construct.
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which is i’s strict upper contour set relative to xi translated by −ωi −
∑

j∈J θijyj.

Let ∆ := {p ∈ Rl
+ :

∑l
k=1 pk = 1} denote the set of normalized prices. For any

allocation (x, y) := ((xi)i∈I , (yj)j∈J) in E and for any p ∈ ∆, define:

Dbdg(E ; x, y; p) :=
1

n(E)

∑
i∈I

∣∣∣∣∣p ·
(

xi − ωi −
∑
j∈J

θijyj

)∣∣∣∣∣ ; (7)

Dpref(E ; x, y; p) :=
1

n(E)

∑
i∈I

|inf p · Ui (xi, y)| ; (8)

Dpft(E ; x, y; p) :=
1

n(E)

∑
j∈J

(sup p · Yj − p · yj) . (9)

The first and second measures are obvious analogs of Anderson’s [1] on the deviation from

budget constraints and deviation from consumer optimization. The third is an obvious

measure for the per capita deviation from profit maximization.

2.7 Additional Assumptions

The essence of core convergence theorems is the idea that the influence of an individual

shrinks as the economy enlarges. Clearly, this idea would fail if some individual has a

disproportionally large amount of resources. The next three assumptions are to rule out

these failing cases by imposing bounds on an individual’s endowed resources uniform across

economies. Assumption 2 says that an individual cannot have a disproportionally large

endowment of goods. This assumption has been used by Anderson [1] in a slightly different

form. Assumption 3 says that a firm cannot be disproportionally large, which is aligned with

the idea that firms are small in competitive markets (Mas-Colell, Whinston and Green [3,

p630]). This assumption implies that an individual cannot gain a disproportionally big

influence through his control of a disproportionally big firm. Assumption 4 says that an

individually cannot influence a disproportionally large set of firms. Assumptions 3–4 are not

needed by Anderson, as his model is pure exchange.

Assumption 2 (small consumers) There exists ω̄ ∈ R+ such that, for any economy E
and for any individual i in E, every coordinate of ωi is less than ω̄, i.e., ‖ωi‖∞ < ω̄.

Assumption 3 (small firms) There exists ȳ ∈ R+ such that, for any economy E, for any

firm j in E and for any yj ∈ Yj, ‖yj‖∞ < ȳ.
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Assumption 4 (big world) There exists positive integers cs and cf such that, in any econ-

omy E, |{i ∈ I : θij > 0}| ≤ cs for each firm j ∈ J , and |{j ∈ J : θij > 0}| ≤ cf for each

individual i ∈ I.

The next assumption, as well as the uniform disparity bound in §2.8, is needed because

a blocking coalition is collectively taking a gamble. To explain that, suppose that a blocking

coalition wishes to achieve a target of increasing each member’s consumption by ε of each

good. Due to the uncertain outcome of partnership dissolution, the actual consumption

they can come up with is different from the target, so each member needs to scale down his

expected gain by the probability with which his actual consumption is sufficiently near to

the target. Hence each potential coalition member has a threshold of such probability for

him to join the coalition. The problem is that different individuals have different thresholds

because the utilities and marginal utilities at the status quo allocation are different across

individuals. That is troubling because: to approach the target in probability, the coalition

needs to be sufficiently large; but in enlarging its membership, the coalition needs to reach the

probability thresholds of more and more people; but to reach these thresholds, the coalition

needs to be even bigger, ad infinitum. To stop this infinite loop, the next assumption imposes

a uniform bound on individuals’ marginal utilities, and our uniform-disparity restriction on

core allocations, §2.8, implies a uniform bound on their utilities at core allocations.

Assumption 5 There are constants u, ν̄ and ν such that, in any economy E, for every

individual i and any xi ∈ Rl
+, (i) 0 ≤ ui(0) ≤ u and (ii) the directional derivative u′i(xi;1)

along the vector 1 exists and 0 < ν ≤ u′i(xi;1) ≤ ν̄ < ∞.

For an example of Assumption 5, consider a world with two kinds of commodities and

suppose any utility function belongs to the family of functions u(a,b) parametrized by a pair

(a, b) ∈ [1..2]× [3..4], such that for every (xi1, xi2) ∈ R2
+,

u(a,b)(xi1, xi2) := axi1 + (xi2 + 1)1/b.

Then u′(a,b)(xi1, xi2;1) = a + 1
b
(xi2 + 1)1/b−1. Hence we can pick ν = 1, ν = 3, and u = 1.

2.8 The Disparity among Individuals

As explained immediately prior to Assumption 5, we shall restrict attention to the core

allocations where the disparity among individuals is uniformly bounded across all economies.
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Nevertheless, our convergence result is true given any uniform bound of disparity.

The disparity of an allocation (x, y) := ((xi)i∈I , (yj)j∈J) in economy E is defined to be

max
i∈I

∥∥∥∥∥xi −
1

n(E)

∑
i′∈I

xi′

∥∥∥∥∥
∞

. (10)

For any d > 0, let Cd(E) be the set of all the feasible allocations in E which are not

stochastically blocked and whose disparities are all less than or equal to d.

For any d > 0, the non-competitive deviation of an economy E subject to a disparity

bound d is defined to be

Dd(E) := sup

{
inf
p∈∆

max {Dbdg(E ; x, y; p), Dpref(E ; x, y; p), Dpft(E ; x, y; p)} : (x, y) ∈ Cd(E)

}
.

(11)

3 The Core Convergence Theorem

Theorem: If Assumptions 1 –5 hold, then for any d ∈ R++, limn(E)→∞ Dd(E) = 0.

The conclusion of the theorem says: For any arbitrarily large upper bound d of

consumption-disparity, for any arbitrarily small ε > 0, there exists a sufficiently large in-

teger N such that in any economy of size bigger than N , for any stochastic-core alloca-

tion (x, y) with disparity less than d, there exists a price vector p such that the deviation

between (x, y; p) and the virtual equilibrium condition is less than ε in all three measures.

From a social planner’s viewpoint, it says that, if the planner enforces an upper bound

on the disparity among individuals (as a feasibility condition for all allocations), the de-

centralized markets will behave more and more like virtual competitive equilibria as the

markets include more and more individuals. The planner can pick any arbitrarily large

disparity upper bound, as long as she maintains it constant across economies.

The theorem is proved in two steps. First, we show that a stochastic-core allocation

can be cushion-blocked only by sufficiently small coalitions. Second, for every stochastic-

core allocation (x, y), we exclude a maximal-size cushion-blocking coalition so that no other

coalition can cushion-block (x, y); then an extension of Anderson’s [1] proof implies that the

non-competitive deviation of (x, y) is arbitrarily small.
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3.1 Step 1: Only a Minority Can Cushion-Block Stochastic Core

This step is a significant extension of the approximation technique we developed in Xiong and

Zheng [4]: The bigger a blocking coalition, the more probably it can achieve its target. The

challenge is to make the minimum size of blocking coalitions uniform across all economies.

The next lemma is a weak law of large numbers (LLN) with bounded correlation. The

correlation is bounded due to the big-world assumption. Slightly different from the standard

version of LLN, the convergence here is uniform across all subsequences of random variables.

Lemma 1 Suppose Assumptions 1, 3, and 4. Then: for any ε > 0 and for any α ∈ [0..1),

there exists an N such that, for any integer n ≥ N , in any economy E with size bigger

than n and production sets (Yj)j∈Y , for any n distinct individuals i1, . . . , in in E and for any

((ykj)j∈J)n
k=1 ∈

(∏
j∈J Yj

)n

,

Prob

 1

n

∥∥∥∥∥
n∑

k=1

∑
j∈J

(
zik

j ykj − θikjykj

)∥∥∥∥∥
∞

< ε

 ≥ α. (12)

Proof Appendix A.

The next proof shows the roles of the uniform disparity bound and Assumption 5.

Lemma 2 Suppose Assumptions 2–5. For any d ∈ R++ and for any ε > 0, there exists

α ∈ (0..1) such that, in any economy E, for any (x, y) ∈ Cd(E) and for any individual i,

αui(xi + ε1) ≥ ui(xi). (13)

Proof First, we claim that for any d ∈ R++, there is a constant K ∈ R++ such that, for any

(x, y) ∈ Cd(E) and for any individual i, ‖xi‖∞ ≤ K. To see that, recall from the definition

of Cd(E) that
∥∥∥xi − 1

n(E)

∑
i′∈I xi′

∥∥∥
∞

is uniformly bounded by d. By aggregate feasibility of

core allocations,
∑

I xi′ =
∑

I ωi′ +
∑

J yj, hence∥∥∥∥∥xi −
1

n(E)

∑
I

ωi′ −
1

n(E)

∑
J

yj

∥∥∥∥∥
∞

≤ d.

Then the triangular inequality implies

‖xi‖∞ − 1

n(E)

∑
I

‖ωi′‖∞ − 1

n(E)

∑
J

‖yj‖∞ ≤ d.
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By Assumption 2 (small consumers),
∑

I ‖ωi′‖∞/n(E) 5 ω̄. By Assumption 4 (big world),

|J | ≤ cf |I| = cfn(E), so Assumption 3 (small firms) implies
∑

J ‖yj‖∞/n(E) 5 cf ȳ. Thus,

K := d + ω̄ + cf ȳ is the desired constant.

Pick any d ∈ R++ and let K be the associated upper bound. Let

ū := ν̄K + u.

For any ε > 0, let α := ū/ (ū + νε). Then, for any E , in any core allocation (x, y) ∈ Cd(E),

the consumption xi of any individual i is bounded from above by K; thus, as the directional

derivative u′i(·,1) exists and u′i(·,1) ≤ ν̄ on Rl
+ and ui(0) ≤ u (Assumption 5),

ui(xi) ≤ ui(K, . . . , K) ≤ ui(0) + K sup u′i(·;1) ≤ ui(0) + Kν̄ ≤ u + Kν̄ = ū;

as u′i(·,1) ≥ ν on Rl
+ (Assumption 5 again), we have

ui(xi + ε1)− ui(xi) ≥ εν ≥ ui(xi)

ū
νε = (1/α− 1)ui(xi).

Hence (13) holds.

The next lemma is crucial. It says that there is a uniform bound on the size of the

coalitions that can cushion-block a stochastic core allocation. The intuition is that the larger

a cushion-blocking coalition is, the more probable its actual resources are nearby its desired

target, and the greater expected utility each coalition member would gain from blocking.

Lemma 3 Suppose Assumptions 1–5. For any d ∈ R++ and for any ε > 0, there ex-

ists a sufficiently large integer N such that, in any economy E with n(E) ≥ N , Cd(E) ⊆
Ccush(E ; N, ε/2, ε/2).

Proof Pick any d ∈ R++. By Lemma 2,

∀ε > 0 ∃α ∈ (0..1) ∀E ∀(x, y) ∈ Cd(E) ∀i ∈ I, αui

(
xi +

ε

2
1
)
≥ ui(xi). (14)

Hold the ε and α in (14) fixed. By Lemma 1, there exists an integer N such that, for any

n ≥ N , for any n distinct individuals i1, . . . , in in any economy E and for any (y′kj)j∈J)n
k=1 ∈(∏

j∈J Yj

)n

,

Prob

 1

n

∥∥∥∥∥
n∑

k=1

∑
j∈J

(
zik

j y′kj − θikjy
′
kj

)∥∥∥∥∥
∞

<
ε

2

 ≥ α. (15)
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We shall show that this N is what we need. Let (x, y) ∈ Cd(E); we shall prove

(x, y) ∈ Ccush(E ; N, ε/2, ε/2). Suppose not. Then some coalition S, with |S| ≥ N and

a blocking plan (x′i, (y
′
ij)j∈J)i∈S, cushion-blocks (x, y) with margins (ε/2, ε/2). To reach

a contradiction, we shall prove that S stochastically blocks the allocation (x, y) with a

contingent blocking plan ((x′′i )i∈S, (y′′j )j∈J). Define

Λ :=

(zi
j)

i∈S
j∈J :

1

|S|

∥∥∥∥∥∑
i∈S

∑
j∈J

(
zi

jy
′
ij − θijy

′
ij

)∥∥∥∥∥
∞

<
ε

2

 .

By the choice of N , Prob(Λ) ≥ α. If event Λ occurs, define for every i ∈ S and every j ∈ J ,

x′′i := x′i +
1

|S|
∑
i∈S

∑
j∈J

(
zi

jy
′
ij − θijy

′
ij

)
;

y′′j :=

 y′ij if zi
j = 1 for some i ∈ S

0 else.

If the event Λ does not occur, define for every i ∈ S and every j ∈ J ,

x′′i := ωi; y′′j := 0.

It is easy to verify that this contingent blocking plan is feasible at every possible

realized state (by (5)). We are done if every i ∈ S prefers this plan to the allocation (x, y).

Conditional on the event Λ, we know for every i ∈ S, x′′i � x′i − ε
2
1 and so x′′i �i x′i − ε

2
1; as

(x′, y′) cushion-blocks (x, y) by margin (ε/2, ε/2), (4) implies

Λ occurs =⇒ x′′i �i x′i −
ε

2
1 �i xi +

ε

2
1.

Then it follows from (14) and the supposition (x, y) ∈ Cd(E) that

Λ occurs =⇒ αui(x
′′
i ) > αui

(
xi +

ε

2
1
)
≥ ui(xi).

As every individual i is von Neumann Morgenstern rational and since Prob(Λ) ≥ α, her

expected utility from the contingent blocking plan is greater than or equal to

αE [ui(x
′′
i ) | Λ] + (1− α)0 > αui

(
xi +

ε

2
1
)
≥ ui(xi),

which implies the desired contradiction that (x, y) is stochastically blocked.
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3.2 Step 2: The Diminishing Effect of Excluding Minorities

By step one, a stochastic-core allocation say (x, y) cannot be cushion-blocked by more

than N individuals. Hence if we exclude a maximal-size cushion-blocking coalition from

the economy—there are at most N such individuals—nobody else can cushion-block (x, y).

Then, for the other individuals, an argument similar to Anderson’s yields a supporting price p

for all but at most l individuals (l being a constant). Hence totally at most N + l individuals

are not supported, and the error from excluding them is at most in the order of (N + l)/n(E)

per capita. The other error comes from the cushion-blocking condition, which means that

the sets supported by p differ from the upper contour sets by a multiple of the margin ε.

The sum of these two errors is the non-competitive deviation of (x, y; p). As the margin ε

can be arbitrarily small, this sum of errors can be arbitrarily small as the economy enlarges.

Lemma 4 Suppose Assumptions 2–4. For any ε > 0, any N = 1, 2, . . ., and any economy E
with n(E) ≥ N , if (x, y) ∈ Ccush(E ; N, ε/2, ε/2) then there is p ∈ ∆ such that:

Dbdg(E ; x, y; p) ≤ 2(N + l)

n(E)
(ω̄ + cf ȳ) + 2ε; (16)

Dpft(E ; x, y; p) ≤ N + l

n(E)
(ω̄ + ȳcf ) + ε; (17)

Dpref(E ; x, y; p) ≤ 2(N + l)

n(E)
(ω̄ + cf ȳ) +

(
2 +

ν̄

ν

)
ε. (18)

Proof Let (x, y) ∈ Ccush(E ; N, ε/2, ε/2), so (x, y) cannot be cushion-blocked by any coalition

of size at least N with margin (ε/2, ε/2). Let T be a maximum-size coalition among all

coalitions that can cushion-block (x, y) with margin (ε/2, ε/2), so |T | < N . Define:

Φi := {0}, ∀i ∈ T ; (19)

Φi := {0} ∪

x′i − ωi −
∑
j∈J

θijy
′
ij :

0 5 x′i − (ε/2)1 �i xi + (ε/2)1;

∀j ∈ J, y′ij ∈ Yj

 , ∀i 6∈ T ; (20)

Ψ :=
1

n(E)

∑
i∈I

Φi. (21)

First, we claim that if G ∈ Ψ then it is impossible to have G � 0. Suppose not, hence

1
n(E)

∑
i∈I gi � 0 for some (gi)i∈I ∈ (Φi)i∈I . Then, as in Anderson’s [1] proof, the nonempty

coalition B := {i ∈ I : gi 6= 0} cushion-blocks (x, y) with margin (ε/2, ε/2). As B ∩ T = ∅

by (19), B∪T also cushion-blocks (x, y) with the same margin. Since |B∪T | = |B|+|T | > |T |,
this contradicts the fact that T is a maximum-size cushion-blocking coalition.
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Second, we prove existence of a separating price vector. Pick any vector z from the

convex hull con Ψ. The Shapley-Folkman theorem implies that

z =
1

n(E)

∑
i∈I∗

gi +
1

n(E)

∑
i∈I\I∗

gi

for some (gi)i∈I such that gi ∈ con Φi for all i ∈ I and gi ∈ Φi for all i but the set I∗ such

that |I∗| ≤ l. For any i ∈ I \ T and any g′i ∈ Φi, (20) implies that

g′i = −ωi −
∑
j∈J

θijy
′
ij = −ω̄1− ȳ1

∑
j∈J

θij = −(ω̄ + ȳcf )1,

where the second inequality follows from Assumptions 2 and 3, and the last inequality from

Assumption 4. Thus, as in Anderson, the first claim implies

con Ψ ∩
{

z ∈ Rl : z � − l

n(E)
(ω̄ + cf ȳ)1

}
= ∅,

and hence there exists p ∈ ∆ such that

inf p ·Ψ ≥ − l(ω̄ + ȳcf )

n(E)
; (22)

inf p · Φi ≤ 0, ∀i ∈ I. (23)

Third, with this price p, we shall prove (16)–(18). Denote

vi := p ·

(
xi − ωi −

∑
j∈J

θijyj

)
, ∀i ∈ I;

S∗ := {i ∈ I : vi < 0}.

The next inequality is the counterpart of the second displayed formula in Anderson [1, p1486]:

1

n(E)

∑
i∈S∗

vi ≥ −|T |+ l

n(E)
(ω̄ + ȳcf )− ε. (24)

To prove it, note the following facts:∑
i∈I\S∗

vi = −
∑

i∈S∗
vi; (25)

vi ≥ −(ω̄ + cf ȳ), ∀i ∈ I; (26)

vi ≥ inf p · Φi − ε, ∀i ∈ I \ T. (27)

Eq. (25) follows from the aggregate feasibility of (x, y); inequality (26) follows from the fact

that −ωi −
∑

j θijyj = −(ω̄ + cf ȳ)1; and (27) follows from the fact that, for every i ∈ I \ T ,

15



xi + (ε + η)1− ωi −
∑

j θijyj ∈ Φi for any arbitrarily small η > 0. Now we prove (24):

1

n(E)

∑
S∗\T

vi +
1

n(E)

∑
S∗∩T

vi ≥ 1

n(E)

∑
S∗\T

(inf p · Φi − ε)− 1

n(E)

∑
S∗∩T

(ω̄ + cf ȳ)

≥ 1

n(E)

∑
S∗\T

inf p · Φi +
∑

T

p · 0 +
∑

I\(S∗∪T )

inf p · Φi


−|S∗ \ T |

n(E)
ε− |S∗ ∩ T |

n(E)
(ω̄ + cf ȳ)

= inf p ·Ψ− |S∗ \ T |
n(E)

ε− |S∗ ∩ T |
n(E)

(ω̄ + cf ȳ),

where the first inequality uses (26) and (27), the second inequality uses (23), and the equality

uses the definition of Ψ and (19). Then (24) follows from (22).

Based on (24) and the fact |T | < N , we prove (16)–(18):

Proof of (16) By the definitions of Dbdg(E ; x, y; p) and vi,

Dbdg(E ; x, y; p) =
1

n(E)

∑
i∈S∗

|vi|+
1

n(E)

∑
i∈I\S∗

|vi|

= − 1

n(E)

∑
i∈S∗

vi −
1

n(E)

∑
i∈S∗

vi

≤ 2(N + l)

n(E)
(ω̄ + cf ȳ) + 2ε,

where the second equality follows from the definition of S∗ and (25), and the inequality

follows from (24). �

Proof of (17) For each firm j, let

π∗j := sup p · Yj := sup
y′

j∈Yj

p · y′j.

By the same reason for (27), we have

∀i ∈ I \ T, p · (xi − ωi)−
∑
j∈J

θijπ
∗
j ≥ inf p · Φi − ε.

Thus, summing across i ∈ I \ T , we have∑
I\T

p · xi ≥
∑
I\T

p · ωi +
∑
I\T

∑
j∈J

θijπ
∗
j +

∑
I\T

inf p · Φi − ε|I \ T |.
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This inequality, together with the aggregate feasibility condition of (x, y), implies that∑
I

p · ωi +
∑

J

p · yj ≥
∑

T

p · xi +
∑

I

p · ωi +
∑

J

π∗j −

(∑
T

p · ωi +
∑

T

∑
J

θijπ
∗
j

)

+

∑
I\T

inf p · Φi +
∑

T

p · 0

− ε|I \ T |

≥
∑

I

p · ωi +
∑

J

π∗j − |T |(ω̄ + cf ȳ) + n(E) inf p ·Ψ− n(E)ε,

where the last inequality follows from the fact that p ·xi ≥ 0, −p ·ωi−
∑

j θijπ
∗
j ≥ −(ω̄+cf ȳ)

(as for (26)), and from the definition of Φi. Hence inequalities (17) follows from (22). �

Proof of (18) First, we claim

inf p · Ui(xi, y) ≥ inf p · Φi −
ε

2

(
ν̄

ν
+ 1

)
, ∀i ∈ I \ T. (28)

This inequality follows from the fact that, for any x′i ∈ Rl
+, ui(x

′
i) > ui(xi) implies that

ui

(
x′i +

ε

2

ν̄

ν
1

)
≥ ui(x

′
i) +

ε

2

ν̄

ν
ν = ui(x

′
i) +

ε

2
ν̄ > ui(xi) +

ε

2
ν̄ ≥ ui

(
xi +

ε

2
1
)

,

where the first and last inequalities follow from the assumption that the directional derivative

u′i(·;1) is bounded within the interval [ν..ν̄] (Assumption 5).

Also note the following facts:

inf p · Ui(xi, y) ≤ vi, ∀i ∈ I; (29)

inf p · Ui(xi, y) ≥ 0 =⇒ i 6∈ S∗. (30)

Here (29) follows from the fact that xi + η1 �i xi for any arbitrarily small η > 0, and (30)

follows directly from (29) and the definition of S∗.

To prove (18), denote

Ui := Ui(xi, y).

For any sentence s, let [s] := 1 if s is true and [s] := 0 if s is false. Decompose the sum∑
I

|inf p · Ui| =
∑

I

[inf p · Ui ≥ 0] inf p · Ui −
∑

I

[inf p · Ui < 0] inf p · Ui

≤
∑
i6∈S∗

[inf p · Ui ≥ 0] inf p · Ui −
∑

T

[inf p · Ui < 0] inf p · Ui

−
∑
I\T

[inf p · Ui < 0] inf p · Ui,
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with the inequality due to (30). By (29),
∑

i6∈S∗
[inf p · Ui ≥ 0] inf p·Ui ≤

∑
i6∈S∗

vi; since Ui is

bounded from below by−ω̄−ȳcf , we get−
∑

T [inf p · Ui < 0] inf p·Ui ≤ |T |(ω̄+cf ȳ); by (28),

−
∑

I\T [inf p · Ui < 0] inf p · Ui ≤ −
∑

I\T [inf p · Ui < 0]
(
inf p · Φi − ε

2

(
ν̄
ν

+ 1
))

. Thus,

∑
I

|inf p · Ui| ≤
∑
i6∈S∗

vi + |T |(ω̄ + cf ȳ)−
∑
I\T

[inf p · Ui < 0]

(
inf p · Φi −

ε

2

(
ν̄

ν
+ 1

))
= −

∑
i∈S∗

vi + |T |(ω̄ + cf ȳ)−
∑
I\T

[inf p · Ui < 0] inf p · Φi

−
∑
I\T

[inf p · Ui ≥ 0] 0−
∑

T

p · 0 +
∑
I\T

[inf p · Ui < 0]
ε

2

(
ν̄

ν
+ 1

)

≤ −
∑
i∈S∗

vi + |T |(ω̄ + cf ȳ)− |I| inf p ·Ψ + |I| ε
2

(
ν̄

ν
+ 1

)
≤ (|T |+ l)(ω̄ + cf ȳ) + |I|ε + |T |(ω̄ + cf ȳ) + l(ω̄ + cf ȳ) + |I| ε

2

(
ν̄

ν
+ 1

)
< 2(|T |+ l)(ω̄ + cf ȳ) +

(
2 +

ν̄

ν

)
ε|I|.

The equality follows from (25). The second inequality follows from (23) and the definitions

of Φi and Ψ; the third inequality follows from (24) and (22). Dividing this chain of inequalities

by n(E), we obtain (18). �

Hence the lemma is proved.

3.3 Proof of the Theorem

For any disparity bound d > 0 and any η > 0, pick any sufficiently small ε > 0 such that(
2 +

ν̄

ν

)
ε <

η

2
.

By Lemma 3, there exists a sufficiently large integer N such that, in any economy E with

n(E) ≥ N , Cd(E) ⊆ Ccush(E ; N, ε/2, ε/2). Then pick an integer N∗ so large that

2(N + l)

N∗
(ω̄ + cf ȳ) <

η

2
.

By Lemma 4, we have, in any economy E with size n(E) > N∗,

Dd(E) ≤ 2(N + l)

n(E)
(ω̄ + cf ȳ) +

(
2 +

ν̄

ν

)
ε <

η

2
+

η

2
= η.

This proves the theorem. �
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A The Proof of Lemma 1

By Assumption 4 (big world), an individual can have positive winning probabilities in at

most cf firms. Thus, in any economy E , for any individual i and for any (yij)j∈J ∈ (Yj)j∈J , the

sum
∑

j∈J zi
jyij (defined in (1)) contains at most cf nondegenerate terms. By Assumption 1,

E
∑
j∈J

zi
jyij =

∑
j∈J

θijyij. (31)

By the same assumption, for any two individuals i and m in any economy and for any

(yij)j∈J , (ymj)j∈J ∈ (Yj)j∈J , the two sums
∑

j∈J zi
jyij and

∑
j∈J zm

j ymj are correlated only

if i and m are related in the sense that θijθmj > 0 for some firm j. By Assumption 4, an

individual can have positive winning probabilities in at most cf firms, and each firm can have

at most cs such individuals; thus, for any individual, the number of individuals to whom he

is related is at most

b := cfcs.

Pick any coordinate ` = 1, . . . , l, so that the `th coordinate of a vector say yij is denoted

by (yij)`. For any individual i and for any profile (yij)j∈J ∈ (Yj)j∈J of production plans, let

hi :=
∑
j∈J

zi
j(yij)` − E

∑
j∈J

zi
j(yij)`.

Since
∑

j∈J zi
j(yij)` has at most cf nondegenerate terms and each term is uniformly bounded

in the interval [−ȳ..ȳ] across all i and all economies (Assumptions 3 and 4), we have, for any

individuals i and m in any economy and for any (yij)j∈J , (ymj)j∈J ∈ (Yj)j∈J ,

E [hihm]

 = 0 if i and m are not related

≤ cf ȳ
2 if i and m are related.

(32)

For any sentence s, denote [s] = 1 if s is true and [s] = 0 otherwise. For any n = 1, 2, . . ., for

any n distinct individuals i1, . . . , in in any economy, and for any ((yikj)j∈J)n
k=1 ∈

(∏
j∈J Yj

)n

,

E

( n∑
k=1

hik

)2
 =

n∑
k=1

n∑
m=1

[ik and im are related]E [hikhim ] ≤ nbcf ȳ
2

by (32) and the fact that an individual ik is related to at most b = cfcs individuals. It follows

from Chebyshev’s inequality that

∀ε > 0, Prob

(∣∣∣∣∣
n∑

k=1

hik

∣∣∣∣∣ ≥ nε

)
≤ 1

(nε)2
E

( n∑
k=1

hik

)2
 ≤ nbcf ȳ

2

n2ε2
=

bcf ȳ
2

nε2
.
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Thus, for any ε > 0 and any α ∈ (0..1), pick N := bcf ȳ
2/(ε2(1− α)/l). Then for any n ≥ N

and for any n distinct individuals i1, . . . , in in any economy,

Prob

(∣∣∣∣∣
n∑

k=1

∑
j∈J

zik
j (yikj)` − E

∑
j∈J

zik
j (yikj)`

∣∣∣∣∣ ≥ nε

)
= Prob

(∣∣∣∣∣
n∑

k=1

hik

∣∣∣∣∣ ≥ nε

)
≤ bcf ȳ

2

nε2
≤ 1− α

l
.

As this is true for every coordinate ` = 1, . . . , l, it follows from (31) that

Prob

 1

n

∥∥∥∥∥
n∑

k=1

∑
j∈J

(
zik

j ykj − θikjykj

)∥∥∥∥∥
∞

< ε


= 1− Prob

(
l⋃

`=1

{((
zik

j

)n
k=1

)
j∈J

:
1

n

∣∣∣∣∣
n∑

k=1

∑
j∈J

zik
j (yikj)` − E

∑
j∈J

zik
j (yikj)`

∣∣∣∣∣ ≥ ε

})

≥ 1−
l∑

`=1

1− α

l

= α.

Hence (12) is true. �
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