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Resumen  
 
La efectividad de los sistemas de garantías de depósito para eliminar corridas bancarias 
varía con el tamaño del seguro, y con el nivel de responsabilidad en la supervisión de la 
banca de la agencia a cargo de administrar esta garantía. Cuando la agencia no tiene 
responsabilidades supervisoras, una garantía parcial preserva el rol de monitoreo de los 
depositantes y reduce la ocurrencia de corridas bancarias, pero no las elimina por 
completo. Cuando la agencia se involucra en labores de supervisión, las corridas van 
desapareciendo a medida que la información del regulador se vuelve más precisa. Sin 
embargo, mientras menor es la protección ofrecida a los depositantes, menos bancos 
insolventes son intervenidos. Las garantías de depósito inducen riesgo moral, al hacer 
aumentar el retorno de los depósitos a la vista, aunque este efecto parece ser menor 
mientras más amplio es el mandato de la agencia de seguros. Por lo tanto, las economías 
deberían preferir esquemas en que la agencia de seguro de depósitos tiene un mayor 
grado de responsabilidad en la supervisión de la banca. 
 
 
Abstract  
 
The effectiveness of deposit insurance in eliminating panic runs varies with the size of 
coverage and the degree of supervisory involvement of the agency in charge of 
insurance. When the agency is not involved in the supervision of banks, partial 
insurance preserves the monitoring role of depositors and reduces the region for which 
runs occur, but it is unable of completely eliminating them. When the agency has a high 
degree of supervisory involvement, even with partial insurance panic runs disappear as 
the regulator's signal becomes more precise. However, the smaller the protection offered 
to depositors, the higher is forbearance. Deposit insurance induces moral hazard by 
increasing the equilibrium value of the demand deposit contract in the interim period, 
though this effect seems to be smaller under a broad mandate. Therefore, a scheme 
where the insurance agency has more supervisory involvement should be preferred. 
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1. INTRODUCTION

Bank runs cause real economic problems. General activity typically declines
substantially during panic runs, as the payment system is suspended and productive
investment is terminated due to the unwillingness to make new loans.
Panics runs were frequent in the United States during the National Banking Era

(1864-1913), with an average seasonal pattern of 5 years (Miron, 1986). The introduc-
tion of deposit insurance and regulation during the 1930�s has been regarded by many
authors and policymakers as one of the main causes of the decrease in the rate of bank
failures in that country (Friedman and Schwartz, 1963; Diamond and Dybvig, 1983;
Williamson, 1995). Although this formula was not imitated outside the USA until the
1960�s (initially in India and later in Europe); since the 1980�s, with the incidence of
escalating banking crises, �nancial stability and consumer protection concerns has led
to the widespread establishment of explicit limited deposit guarantees.1

Nevertheless, experience has demonstrated that limited insurance is not su¢ cient
to protect banks from runs in a weakened �nancial system. In the last two decades, at
least twelve countries2 have temporarily extended explicit full coverage during times
of serious �nancial distress. Some of them did not even have an explicit system of
deposit insurance before their crises.
The success of blanket guarantees in stopping bank runs has been mixed. Fun-

ding constraints and macroeconomic stability appear to be key limitations to their
e¤ectiveness. In Norway, after the failure of the three largest banks nearly depleted
the capital of the private insurance fund, runs were out of control and the government
was forced to establish a public insurance fund, which ended by controlling about
85 percent of commercial bank assets by the end of 1991 (Ongena et al, 2000). A
blanket guarantee was also introduced in Ecuador in December 1999, after runs in the
largest bank of the country started to spread to other institutions. After a long and
painful process of deposit freezing , the blanket guarantee worked for a time, until
the authorities decided to default on the external debt and unilaterally reschedule the
domestic debt. This prompted a three-pronged debt/currency/banking crisis, which
no deposit guarantee could have stopped.
Although deposit insurance is a popular tool among policymakers, even partial pro-

tection is a controversial issue among economists. Many authors agree that deposit
insurance is a source of moral hazard, that by reducing the incentives of depositors to
monitor their banks it damages �nancial stability by encouraging risk-taking. Deposit
insurance can indeed be very costly, that cost being typically born by taxpayers. For
example, the USA Savings and Loan Crises (1986-1995) involved a loss of US$153
billion, of which US$124 billion were born by US taxpayers. In the 1980�s the in-
surance limit was raised from US$40,000 to US$100,000; encouraging depositors to
continue funding an already risky industry (which was re�ected on raising interest
rates). According to Jameson (2003), however, deposit insurance was not the only
responsible for this collapse, as loose regulation on Savings and Loans activity meant
that institutions were able to use these new funds to gamble their way into pro�t.
A successful guarantee must then be accompanied by e¢ cient regulation, in order

to prevent the negative e¤ect of moral hazard on �nancial stability. In an empirical
work Demirguç-Kunt and Detragiache (1999) �nd that explicit deposit insurance in-

1 In a survey conducted by the IMF and the World Bank among 85 di¤erent systems of deposit
insurance, 67 countries were o¤ering an explicit and limited deposit guarantee in normal times, with
varying types of funding (ex-ante, ex-post), membership (compulsory in all but seven countries) and
mandate across economies (see Demirguç-Kunt and Sobaci, 2000).

2Ecuador, Finland, Honduras, Indonesia, Japan, Korea, Malaysia, Mexico, Nicaragua, Norway,
Thailand and Turkey.
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creases the vulnerability of the banking system, particularly when the coverage is more
extensive, as its presence tends to make economies more vulnerable to raises in real
interest rates, exchange rate depreciation, and to runs triggered by currency crises.
However, good institutions (used as an estimate of a good regulatory environment)
perform an important role in curbing this negative e¤ect.
Diamond and Dybvig (1983) were the �rst to propose deposit insurance as a me-

chanism to stop ine¢ cient runs on solvent banks, in a model with perfect information
and deterministic returns. Runs in this multiple equilibrium model are a consequence
of coordination failure among depositors, and turn out to be a self-ful�lling prophecy.
With the introduction of insurance the �bad� sunspot equilibrium (runs) is always
eliminated, and the policy becomes costless as it is never used in equilibrium. Since
then, and despite the limited predictive capability of this model, authors have taken
for granted the power of deposit insurance as an instrument for eliminating ine¢ cient
runs, and have concentrated instead on studying the problem of pricing of insurance
and its e¤ect on banks�moral hazard.
This paper will come back to the study of the e¤ects that deposit insurance has

on the equilibrium behaviour of depositors and banks, while abstracting from the
problem of insurance pricing. In particular, I want to consider whether the empirical
�ndings described above can be supported by this model. I will consider Goldstein
and Pauzner�s (2000) model of information based bank runs, where private information
allows for a unique equilibrium. I will show that while consumers achieve better risk
sharing in a competitive banking system than in autarky, more solvent projects are
liquidated as uninsured depositors fail to coordinate in a subset of fundamentals, and
run on banks they know to be solvent. When introducing deposit insurance, I show
that its e¤ectiveness in eliminating panic runs varies with the size of coverage and
the degree of supervisory involvement of the agency in charge of insurance. Under
a narrow mandate (when the agency is not involved in the supervision of banks),
a deposit insurance contract preserving the monitoring role of depositors involves
o¤ering less than full protection. The trade o¤ is that panic runs cannot be completely
eliminated with a partial guarantee, although it does reduce the region of fundamentals
for which that occurs. Under a broad mandate (with a high degree of supervisory
involvement), I show that panic runs tend to disappear for any level of insurance as the
regulator�s signal becomes more precise, given that liquidity assistance is committed
to solvent but illiquid banks. Moreover, it is cost e¢ cient never to provide liquidity
to insolvent banks. However, only extremely insolvent banks are closed, and those
with enough funds to cover the payment of the �nal period guarantee are allowed
to continue in operation. Therefore, the smaller the protection o¤ered to depositors,
the higher is forbearance. All these results hold irrespective of the speci�c values of
the guarantee, which in particular might imply the social cost of deposit insurance
to be lower under a broad mandate. Finally, I show that deposit insurance induces
moral hazard by increasing the equilibrium value of the demand deposit contract in
the interim period, but this e¤ect seems also to be smaller under a broad mandate.
Limited insurance can contain moral hazard up to some extent, justifying the observed
conduct of governments across the world in normal times.
Given the combination of these results, and the empirical evidence provided by

other authors, a scheme where the DIC has more supervisory involvement (broad
mandate) or a high degree of coordination with the supervisory authority should be
preferred.
The paper is organised as follows. Section 2 introduces the benchmark model

of information based deposit runs, as developed by Goldstein and Pauzner (2000).
Deposit insurance is justi�ed because of the ine¢ cient liquidation of solvent banks
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in equilibrium. Section 3 introduces deposit insurance under two possible mandates
for the insurer. The equilibrium under a narrow mandate is discussed in section
4, and that under a broad mandate, in section 5. Section 6 solves for the optimal
demand deposit contract o¤ered by banks, and compares moral hazard under the
two mandates. Policy implication and possible extensions are discussed in section 7.
Finally, conclusions are given in section 8.

2. A MODEL OF INFORMATION-BASED BANK RUNS

One of the simpler and better known models explaining the inherent fragility asso-
ciated to the banking system belongs to Diamond and Dybvig (1983). The maturity
mismatch between long-term loans �nanced with short-term deposits exposes banks
to the risk of runs. Crucially, public information on the quality of a bank�s investment
portfolio leads to multiple equilibria, one of which involves coordination failure among
depositors, who run on a solvent bank solely because they fear other depositors will do
the same. As a result, the probability of runs is undetermined in this model, seriously
limiting its usefulness as an instrument to evaluate policies designed to reduce banking
fragility.
Goldstein and Pauzner (2000) modify this model, using global games�techniques.3

By replacing common knowledge on the bank�s fundamentals by noisy private signals
received by depositors, a unique equilibrium emerges in which fundamentals act as a
mechanism to coordinate agent�s beliefs towards a more e¢ cient outcome.
Consider an economy with three periods t 2 f0; 1; 2g and a perfectly competitive

banking industry, where all banks have access to the same two investment technologies
at the planning period (t = 0). Banks are risk neutral and decide whether to invest
in a liquid technology, returning 1 unit of consumption at t + 1 per unit invested at
t; or in a stochastic, long-term, partially illiquid technology, returning 1 if liquidated
in the interim period (t = 1), and R if liquidated at t = 2: The long-term return
function, R = R(�); is a continuous and increasing function of a random variable �,
uniformly distributed in the interval [0; 1], that represents underlying fundamentals of
the projects �nanced by a bank. After receiving deposits, banks decide which project
to invest in. Assuming that E[R(�)] > 1, investment in the risky project is superior to
storage and, therefore, all resources are pulled on it. Because the zero pro�t condition
implies all banks will o¤er exactly the same contract, it is possible to restrict the
analysis to one representative bank.4

A continuum of mass one consumers receive 1 unit of endowment �let say money�
at t = 0, that they invest in the representative bank, which o¤ers a demand deposit
contract (c1; c2):5 Depositors are risk averse, with preferences represented by a con-
cave and increasing utility function, u(c1; c2), with coe¢ cient of relative risk aversion
higher than 1. Depositors are uncertain about their time of consumption. With pro-
bability 1 � � a depositor is patient, meaning she enjoys consumption only at t = 2.
With complementary probability, �, she is impatient and consumes only in the interim

3Global games, �rst studied by Carlsson and van Damme (1993), are games of incomplete infor-
mation where players observe noisy signals of an uncertain underlying economic state or fundamental,
which determines the payo¤s of the game. For a review of the theory see Morris and Shin (2002).

4Assume depositors cannot invest in more than one bank, so the contract that one bank o¤ers
does not a¤ect the payo¤s of depositors on a di¤erent bank.

5Every bank in this economy is ex-ante identical, therefore it is possible to normalise the size
of the representative bank to 1 (there is no equity at t = 0). Limiting the analysis to demand
deposit contracts is a standard assumption in the literature, not restrictive, because these contracts
are e¤ectively observed in banks (Alonso, 1996; Gale, 2000). This assumption, however, implies that
this model does not solve for the optimal contractual form.
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period.6 At t = 1, types are privately realised and all impatient depositors withdraw
to consume. Patient depositors evaluate the expected payo¤ at the �nal period, con-
ditional on their beliefs on the response of their counterparts, and decide whether to
withdraw or to remain.
Let n be the total number of withdrawals at t = 1, so n � � is the number of

patient depositors withdrawing in the interim period (n 2 [�; 1]). If n > 1=c1, the
bank does not have enough resources to pay the promised value of deposits, c1, and
it is liquidated. Thus, each consumer demanding early withdrawal receives 1=n and
those waiting until the second period receive 0. On the other hand, if n � 1=c1,
the bank survives to the �nal period and all depositors demanding early withdrawal
receive c1. For simplicity, assume that the bank is always liquidated at t = 2; and
because there was no equity in the initial period, remaining customers equally share

the value of �nal assets, i.e. c2(�; n) =
(1� nc1)R(�)
(1� n) :7

Naturally, 1 � c1 � 1=�; otherwise depositors would prefer not to invest in the bank
(�rst inequality), or runs would be triggered by the demand of impatient depositors
alone (second inequality).
Patient depositors�payo¤s are summarised on the following table:

n � 1=c1 n > 1=c1

t = 1 c1 1=n
t = 2 c2(�; n) 0

table 1: Patient depositors�payo¤s in the game without insurance.

At the beginning of period 1; each depositor receives a private, non-veri�able signal
on the true value of the fundamental, �i = �+ "i; where "i are i.i.d. random variables,
uniformly distributed in the interval [�"; "]. This distributional assumption implies
that signals are equally informative among depositors.8

If a consumer were sure that � < �L �where �L is de�ned as the solution to
c2(�L; �) = c1�9 withdrawal would be a strictly dominant strategy, no matter the
value of n (see table 1). In the present model, a consumer knows that � < �L if
her signal satis�es �i < �L � "; and every consumer receive signals below this level if
� < �L � 2": Hence, the interval [0; �L � 2"] is the lower dominance region, where all
patient depositors withdraw independent of the actions of other players. On the other
hand, if a consumer were sure that � = 1; she would know the bank�s return to be at
its highest possible level and, therefore, she should prefer to remain. By continuity
of the payo¤ function, there exists �U such that if �i > �U + " a patient depositor
remains, and every consumer receive signals above this level if � > �U+2": The interval
[�U + 2"; 1] is the upper dominance region, where patient depositors always remain.10

6With no discounting, the utility of impatient agents is u(c1; c2) = u(c1); while that of patient
depositors is simply u(c1; c2) = u(c2).

7This simpli�cation becomes natural under the assumption of perfect competition in an economy
with a �nite planning horizon. In practical terms, it means that in the end the bank actually behaves
as a mutual fund.

8The uniform distributional assumption is consistent with the Laplacian �principle of insu¢ cient
reason��that one should apply a uniform prior to unknown events�, because it implies that around the
switching point the number of agents remaining or withdrawing are uniformly distributed. When the
payo¤ of a dominant action is increasing in the true value of the fundamentals (action monotonicity),
Morris and Shin (2002) show that this action coincides with the equilibrium action. Action monotoni-
city is satis�ed by the payo¤s of the present model.

9Patient depositors wait if E [u (c2(�; �))] � u (c1) which, given that the utility function is concave
and increasing, implies E [c2(�; �)] � c1: As for very low realizations of �; c2(�; �) < c1; there must
exist � = �L such that c2(�L; �) = c1:
10The existence of the upper dominance region is not directly implied by the payo¤s of this game,
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FIG. 1 Number of total early withdrawals.

Goldstein and Pauzner (2000) concentrate on �equilibrium on switching strategies�,
this is, an equilibrium in monotone strategies with threshold ��; such that if �i < �

�

patient depositors withdraw, and remain if �i > �
�. Indeed, this type of solution turns

out to be the only equilibrium of the game.11

After receiving a signal �i, depositor i knows that the true value of � lies in the
interval [max f�i � "; 0g ;min f�i + "; 1g]. With incomplete information, depositors
must condition their beliefs upon their private signals, which are positively correlated
with the private signals of others. With every patient depositor following the same
equilibrium strategy, a consumer rationally anticipates that if 8i �i < ��; everybody
will withdraw. This will be the case for values of � < �� � ": In the same way, a
consumer knows that all patient depositors will wait if 8i �i > ��; which is always the
case if � > �� + ": Finally, and because of the uniform distributional assumption on
"i; in the intermediate region a rational player will assign a uniform distribution to
her beliefs on the number of patient depositors withdrawing early. Hence, when the
equilibrium threshold is ��; the number of early withdrawals, n, will be given by the
following non-increasing function of � (�gure 1):

n(�; ��) =

8><>:
1 if � < �� � "

1 + �

2
� (1� �)(� � �

�)

2"
if �� � " � � � �� + "

� if � > �� + "

(1)

as it was for the case of the lower dominance region. If the signal is very high, patient depositors
remain provided that other depositors wait as well, and enough of them for the long-term technology
not to be completely liquidated in the interim period. Alternative explanations could justify this
behaviour. For example, Dasgupta (2002) proposes that when very high returns are guaranteed,
a bank becomes an attractive target for potential purchase by a larger, more liquid bank, which
would make it optimal for patient depositors to wait. Alternatively, for very high signal banks the
supervisory authority could be willing to act as a LoLR (an explanation that will become natural
later on, when studying the case with insurance under a broad mandate), rescuing them when facing
a liquidity shock. Anticipating that, patient depositors should remain.
11Making strong use of the uniform distributional assumption on the noise, Goldstein and Pauzner

(2000) show that for any feasible belief n(�); the regions where �(�i; n(�)) � 0 and �(�i; n(�)) > 0
are complementary connected intervals, and therefore any equilibrium of the game must be monotone.
Dasgupta (2002) extends this result to general distributional assumptions on n(�), and show that,
for this game, there are no non-monotone equilibria in the set of all feasible beliefs over the actions
of other agents.
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In deciding whether to withdraw or to remain, a depositor must evaluate the
(conditional) expected utility of these two actions. Denoting by �(�; ��) the di¤erence
of utilities between waiting until t = 2 and withdrawing at t = 1 :

�(�; ��)
:
= �(�; n(�; ��)) =

(
u (c2(�; n))� u(c1) if n(�; ��) � 1=c1
u(0)� u(1=n) if n(�; ��) > 1=c1

;

each consumer evaluates:

�(�i; �
�)
:
= E�i [�(�; �

�)] =

�i+"Z
�i�"

1
2"�(�; �

�)d�:

This means that upon receiving a signal �i, if a patient depositor�s conditional
expected utility of remaining is higher than the utility of withdrawing, this is if
�(�i; �

�) > 0; she will wait to withdraw in the �nal period. Otherwise, if
�(�i; �

�) < 0, she will quit the bank at t = 1. Finally, if �(�i; �
�) = 0 a deposi-

tor will be indi¤erent between the two actions.

Theorem 1 (Goldstein and Pauzner, 2000). There exists a unique equilibrium thre
shold �� in the interval ]�L � "; �U + "[ satisfying �(��; ��) = 0; �(�i; ��) < 0 for all
�i < �

�; and �(�i; �
�) > 0 for all �i > �

�. Moreover, ��(c1) is increasing in c1:

The equilibrium threshold can be computed as the solution to12

1=c1R
�

u

�
1� nc1
1� n R

�
��+

"

1� � (1 + � � 2n)
��

dn

=
1=c1R
�

u(c1)dn+
1R

1=c1

fu(1=n)� u(0)g dn (2)

The existence of the equilibrium comes from the continuity of �(�i; �
�) in both

arguments, the dominance regions, and the monotonicity of �(�i; �i) as a function
of one variable. That ��(c1) is increasing in c1 can be intuitively justi�ed. If the
payment in the interim period increases, more of the risky project has to be liquidated
to pay early withdrawals. Therefore, the incentive for patient depositors to wait should
decrease, both because the expected payo¤ at t = 2 is lower, and because each agent
assigns a higher probability to the event of a run.13

Proposition 1. The probability of a bank run is equal to ��+
"

1� �

�
1 + �� 2

c1

�
,

and it is increasing in the level of risk sharing o¤ered by the demand deposit contract
(c1).

12Using �(n) = �� +
"

1� �
(1 + � � 2n), the inverse function of n(�; ��) in the region

[�� � "; �� + "] to change variables, and rearranging terms:

�(��; ��) =

e�Z
���"

fu (0)� u(1=n)g d� +
��+"Z
e�
fu (c2(�; n))� u(c1)g d� = 0:

,
1Z

1=c1

fu (1=n)� u(0)g dn =
1=c1Z
�

fu (c2(�(n)))� u(c1)g dn:

13A formal proof can be found in Goldstein and Pauzner (2000), and a simpler version in Dasgupta
(2002).
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See proof in the appendix.

A higher c1 represents a gain in risk sharing, as more resources from the �nal period
are passed to early consumers. However, it also implies an increase in the probability
of runs. Goldstein and Pauzner (2000) prove that c1 > 1 provided that the probability
of R(�) < 1 is small enough.

2.1. Ine¢ cient Liquidation

Private information allows for the coordination of depositors�actions, in such a
way that bank runs are avoided for su¢ ciently high values of the fundamentals (when
� > ��+"). A natural question is then whether the equilibrium behaviour of depositors
is desirable in terms of �nancial stability. Is it possible that panic runs persist for a
region of the fundamental, such that solvent banks can be liquidated? I will show in
this section that depositors will still fail to coordinate in a subset of the fundamental,
and run on banks they know to be solvent.
Assume for a moment that both the safe and risky technologies are available to

depositors for direct investment at t = 0. Also assume that E[u(R(�))] > u(1); so
that depositors invest all their resources in the long-term risky project. At t = 1 all
impatient depositors withdraw. Suppose that patient depositors still receive private
signals. Risk aversion implies that if E�i [u(R(�))] � u(1) they should liquidate the
project at t = 1, while if E�i [u(R(�))] > u(1) they should hold it to the �nal period.
Thus, in autarky, if a consumer evaluates the project to be solvent she should wait
and liquidate it in the �nal period.
In an intermediated system, both the de�nition of solvency and the behaviour of

depositors will clearly depend on the promised value of deposits at t = 1:

Definition 1. When a bank o¤ers a demand deposit contract paying c1 � 1 in
the interim period, the bank is said to be fundamentally solvent if c2(�; �) � c1;
this is, if � � �L:

A bank is fundamentally solvent if when only impatient consumers withdraw, the
payo¤ at t = 2 is at least as good as the maximum certain payo¤ at t = 1. According
to this de�nition, solvency is a property that cannot be veri�ed in the interim period.
No player in this game (not even the bank itself) is able to observe the true value of
� until t = 2: However, depositors observing signals �i > �L + " can be sure that the
bank is solvent. Hence, if � > �L + 2"; everybody receive signals above �L + " and
all patient depositors know the bank is solvent. Is it then possible for solvent banks
to go bankrupt in this model? Or put di¤erently, is it possible that in equilibrium
�� � " > �L + 2", so that for certain values of � all depositors run on a solvent bank?
Notice that if c1 = 1; the solvency criteria would be the same as in autarky, and

if " ! 0 there would be no pure panic runs in equilibrium. Taking limit when " ! 0
in equation 2, we obtain u(R(��)) = u(1); which implies that ��(1) = �L(1): That
is, when the noise is negligible and the contract o¤ers the value of liquidation of the
project at t = 1, pure panic runs are eliminated (indeed, even if the noise were not
negligible, partial runs do not occur because 8" > 0; e�(1) = ��(1) � "). However, as
no risk sharing is o¤ered, this contract does not improve on the autarkic solution.
For the case c1 > 1; take limit as " goes to zero in equation 2:

1=c1Z
�

u

�
1� nc1
1� n R (��)

�
dn =

1=c1Z
�

u(c1)dn+

1Z
1=c1

fu(1=n)� u(0)g| {z }
>0

dn
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FIG. 2 Equilibrium and solvency thresholds without insurance.

If �� were equal to �L then c2(�
�; �) = c1; but as c2(�; n) is decreasing in n � �;

�� > �L would be needed only to compensate the �rst term in the RHS. As the second
term is strictly positive, �� needs to further increase, which implies that for c1 > 1
and " = 0; �� > �L and pure panic runs occur in this region.
For the case of a strictly positive amount of noise, consider the following nu-

merical example: u(c) = ln(12 + c) + 1, which is increasing, concave, and has an
index of relative risk aversion higher than 1; and R(�) = (� + �)

2
; which is con-

tinuous and increasing in �; and satis�es Eu (R(�)) � u(1): Also consider the fo-
llowing values for the parameters: � = 1=3; � = 0:75: Figure 2 shows the sol-
vency and equilibrium threshold levels (�L and ��, respectively) for di¤erent va-
lues of c1 and ". The dotted lines represent the levels �L + 2" and �

� � ", be-
tween which pure panic based runs occur. For example, if c1 = 1:1 and " = 0:01;
�L = 0:3261 and �

� = 0:5948� �L; and for all values of the fundamental in the interval
[�L+2"; �

��"[= [0:3461; 0:5848[6= ?; all patient depositor run on the bank even though
they know it is solvent. Observe that as c1 increases, the region of pure panic runs
becomes larger. Moreover, the smaller the noise the smaller the value of c1 for which
panic runs occur.
In conclusion, while a competitive banking system o¤ers better risk sharing for

consumers; more solvent projects are liquidated than in autarky. This is costly to
society, as output is reduced and jobs are destroyed.

3. DEPOSIT INSURANCE IN A MODEL OF INFORMATION BASED BANK
RUNS

For the case with deterministic returns (R(�) = R > 1 constant), Diamond and
Dybvig (1983) show that the introduction of a guarantee on deposits paying the outside
option or autarkic solution, (1; R), acts as a mechanism that ex-ante eliminates the
ine¢ cient equilibrium (runs on solvent banks). Such a guarantee could be credibly
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�nanced by a tax on early withdrawals, in an amount depending on n;14 it is always
e¤ective in deterring runs (even when o¤ering only partial coverage), and so it is not
used in equilibrium. In a model with stochastic returns, however, the e¤ectiveness of
the insurance policy in eliminating panic runs will vary with the size of the guarantee
and the degree of supervisory involvement of the agency in charge of insurance.
Consider a Deposit Insurance Corporation (DIC), o¤ering an insurance contract

(g1; g2) ; in case the bank fails. The DIC can operate under a narrow mandate �
common in Europe�, acting basically as a pay box to compensate insured depositors of
failed banks when instructed by the appropriate authority; or under a broad mandate �
common in Asia and the Americas�where it also monitors the condition of the banking
industry and take responsibility for the resolution of failed insured institutions.
In order to stress the di¤erences between the two systems, I will abstract from

the presence of a regulatory authority in the case of a narrow mandate DIC. In this
case, the agency will simply pay the guarantee every time the bank does not have
enough resources to repay depositors claims, regardless of the bank being insolvent or
just illiquid. Under a broad mandate, however, the DIC will also have the ability to
monitor the bank�s activities �which is modelled by a private signal on ��, providing
lender of last resort (LoLR) assistance to solvent but illiquid banks with positive
probability, and resolving ine¢ cient banks according to a least-cost criteria.
Under a narrow mandate, the timing of the game with deposit insurance is as

follows:

� At t = 0 the DIC announces the level of insurance it is going to o¤er (g1; g2).
Depositors receive 1 unit of endowment (money) that they invest in the re-
presentative bank, which o¤ers a demand deposit contract (c1; c2(�; n)). After
receiving deposits, the bank invests in the risky asset.

� At t = 1 all impatient depositors withdraw. Patient depositors observe private
signals on � (�i = � + "i) and decide whether to withdraw or to remain. The
DIC observes the realisation of n: If n > 1=c1, the bank�s assets are liquidated
and transferred to the DIC for the payment of the guarantee. If n � 1=c1, the
bank continues in operation until the �nal period.

� At t = 2, if the bank is open, remaining patient depositors are paid
max fc2(�; n); g2g. If c2(�; n) < g2 remaining assets are transferred to the DIC
for the payment of the guarantee. If the bank went bankrupt at t = 1, remaining
depositors receive g2.

On the other hand, when the DIC operates under a broad mandate, the timing of
the game is as follows:

� At t = 0 the DIC announces the level of insurance it is going to o¤er (g1; g2).
Depositors receive 1 unit of endowment (money) that they invest in the re
presentative bank, which o¤ers a demand deposit contract (c1; c2(�; n)). After
receiving deposits, the bank invests in the risky asset.

14Considering a sequential servicing constraint, each consumer withdrawing early pays � = c1 � 1
in taxes, that are immediately deposited back in the bank by the government, to make these resources
available to pay other depositors. If n = � the money is returned to depositors for consumption in
the interim period. However, if n > � each depositor withdrawing early consumes only 1; and patient
depositors waiting to the second period receive R: Chari (1989) criticises this solution, arguing that
depositors could consume their money before paying the tax, therefore making the scheme impossible
to implement. However, if the government arranged for the tax to be directly paid by banks (as it
usually happens in economies with well developed tax collection systems), this problem would be
solved.

9



� At t = 1 all impatient depositors withdraw. Patient depositors observe private
signals on � (�i = �+"i) and decide whether to withdraw or to remain. The DIC
observes the realisation of n and its own private signal (s = �+ �s; � � "), upon
which decides whether to leave the bank open �sometimes providing liquidity
assistance�or to close it and pay the guarantee, in which case all of the bank�s
assets are passed onto the DIC and all depositors claiming early withdrawal are
paid out g1:

� At t = 2, if the bank is open, remaining patient depositors are paid
max fc2(�; n); g2g; if c2(�; n) < g2 remaining assets are transferred to the DIC for
the payment of the guarantee in the second period. If the bank went bankrupt
at t = 1, remaining depositors are paid g2.

Deposit guarantees are usually expressed as a percentage of the principal or nomi-
nal value of deposits at the time of a bank failure, or as a limit up to which deposits can
be recovered. Thus, a natural constraint for the value of insurance is g1 = g2 = g � c1.
Indeed, following the de�nition of solvency, if g were strictly higher than c1 the DIC
would have to pay the guarantee in the second period to depositors in a solvent bank,
even if this were not subject to runs in the interim period.
The funding of a deposit insurance system varies from country to country. I con-

sider here an ex-post funded system, getting resources through a government tax on
withdrawals, as in Diamond and Dybvig (1983). However, as in Goldstein and Pauzner
(2000), I will drop the �sequential servicing constraint�assumption and allow the bank
to observe the length of the queue (n) before paying out depositors, so that all cus-
tomers withdrawing at a given period receive exactly the same payo¤. I assume that
deposits are senior to other claims, so that when a bank fails at date t, its assets
�or their liquidation value� are transferred to the DIC for the payment of the de-
posit guarantee. Therefore, the government can directly tax all early withdrawals at a
constant rate equal to � = c1�g; transferring the revenue to the DIC for the payment
of the guarantee en in the �nal period.
The following analysis is divided in two phases. First, I study the equilibrium

behaviour of depositors and the DIC under the two mandates. Second, I study the
optimal decision problem for the bank. A complete formulation of the game should
include a payo¤ function for the DIC, in order to compute the optimal level of insurance
o¤ered in the planning period. This paper will not solve for that problem, but I o¤er
a discussion of the ideas that should be considered in the concluding section.
In order to be able to make comparisons later, I will denote by �� the equilibrium

threshold in the benchmark model without deposit insurance, and by ��g the one
obtained in the model with insurance.

4. EQUILIBRIUM UNDER A NARROW MANDATE

(Interim Period Sub-Game)
Under a narrow mandate and once the DIC and the bank have announced their

respective contracts (g and c1), all impatient depositors withdraw in the interim period
and patient depositors, observing private signals on �; decide whether to withdraw or
to remain. At this stage this is the only relevant decision, because the action of the DIC
is directly determined by the strategies played by patient depositors: the guarantee is
paid out if and only if n > 1=c1.15

15Notice that the �nal period payo¤ is a result of the actions taken in the interim period, and that
no relevant decision is made in the last stage of the game.
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FIG. 3 Extended form of the game in the interim period, when the DIC operates
under (a) a narrow mandate and (b) a broad mandate.

Figure 3.a gives a representation of the extended form of this sub-game. According
to this, patient depositors�payo¤s are given by table 2.

n � 1=c1 n > 1=c1

t = 1 c1 g
t = 2 max fc2(�; n); gg| {z }

�g

g

table 2: Patient depositors�payo¤s in the game with insurance under a narrow mandate.

Denote by n(�) a feasible belief (� � n(�) � 1) about the aggregate behaviour
of patient depositors consistent with the information received, and by �g(�; n(�)) the
di¤erence of payo¤s between waiting until t = 2 and withdrawing at t = 1, once the
deposit guarantee g is in place:

�g(�; n(�)) =

(
u (max fc2(�; n); gg)� u(c1) if n(�) � 1=c1
0 if n(�) > 1=c1

:

After receiving a private signal, �i, each consumer evaluates :

�g(�i; n(�)) = E�i [�g(�; n(�))] =

�i+"Z
�i�"

1
2"�g(�; n(�))d�;

the conditional expected premium to wait when deposits are insured.

Given that c1 � g; the lower and upper dominance regions can be de�ned as in
the model without insurance. For � < �L, the bottom left of table 2 is always less
than or equal to c1; hence to withdraw is weakly dominant. For very high levels of
the fundamentals (� > �U ), depositors should remain, independently of the actions of
other players.16

16When � > �L it is weakly dominant to remain. Nevertheless, as in this region the payo¤ of a
single depositor will depend on the strategy chosen by other patient consumers, assume it is given
again by the interval [�U + 2"; 1]:
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FIG. 4 Premium to wait to withdraw in the �nal period (a) without deposit insu-
rance and (b) with deposit insurance.

If a switching point �� exists, a belief consistent with the existence of the dominance
regions and the uniform distribution of the noise is again given by n(�; ��); in equation
1. Denote by �g(�; �

�)
:
= �g(�; n(�; �

�)) and �g(�i; �
�)
:
= �g(�i; n(�; �

�)):

Remark 1. Notice that if g < c1 the function �g(�; �
�) has a discontinuity at � = e�:

Nevertheless, the function �g(�i; �
�) is still continuous in both arguments (see �gures

4 and 5).

Proposition 2. For any given value of the guarantee and as a function of one
variable, �g(�

�; ��) is strictly increasing.

See proof in the appendix.
If c1 = g; �g(�; �

�) � 0 for all �; which implies that �g(�i; ��) � 0 for all �i: Hence,
patient depositors do not monitor their banks (n(�) = �; 8�). Such a solution means
that insolvent banks are never liquidated, making the guarantee very expensive for
low states of the fundamentals. Therefore, I will concentrate in the case c1 > g:

Proposition 3. If c1 > g, there exists a unique equilibrium in switching strate-
gies, ��g, such that a patient consumer withdraws if �i < �

�
g and remains if �i > �

�
g.

Proof. Call�g(�
�) = �g(�

�; ��).

8� � e� � "; �g(�) = 0 (see �gure 5).
8� 2]e� � "; �L � "]; �g(�)= �+"<�LZ

��"

1
2" fu (max fc2(�; n); gg)�u(c1)g d� < 0;

as for any n � � and � < �L, c2(�; n) < c1:

�g(�U+")=

�U+2"Z
�U

1
2" fu (max fc2(�; n); gg)�u(c1)g d� > 0;

as for � > �U , n = � and c2(�; n) > c1:

By continuity, there exists �U + " > ��g > �L � " such that �g(��g) = 0, and
proposition 2 implies this solution is unique.
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FIG. 5 Expected premium to wait until in the �nal period with deposit insurance.

Proposition 4. The monotone equilibrium threshold, ��g; de�nes the unique stra-
tegy surviving iterated deletion of strictly dominated strategies over the set of all feasible
beliefs on the actions of players.

Proof. Whatever the value of g, strategies in this game are complementary. In
the region where n � 1=c1; the payo¤ to remain is non-decreasing in the number of
players waiting to withdraw in the second period. In the region n > 1=c1 the payo¤
is constant, therefore non-decreasing in the number of players withdrawing. Hence,
the result follows as a direct application of the results in Morris and Shin (2002) for
binary actions games, with a continuum players, strategic complementarity, and a
unique monotone equilibrium threshold.

Summing up, a unique equilibrium preserving the monitoring role of depositors
exists in the model with deposit insurance if c1 > g; and it is such that if a pa-
tient depositor receives a signal �i � ��g; �g(�i; �

�
g) � 0; so she withdraws; while if

�i > �
�
g; �g(�i; �

�
g) > 0; and the depositor remains.

Using that n(�; ��g) is linear in the interval [�
�
g � "; ��g + "] to change variables and

rearrange terms, it is possible to see that ��g solves:

1=c1Z
�

u

�
max

�
1� nc1
1� n R

�
��g+

"

1� � (1 + � � 2n)
�
; g

��
dn =

1=c1Z
�

u(c1)dn (2)

Proposition 5. The monotone equilibrium threshold for the game of information
based bank runs with insured deposits (c1 > g), satis�es the following properties:

1. ��g increases in c1 i¤

u(g) > u(c1)� c21

1=c1Z
�

�
u0(c1)� u0(c2(n))

@c2
@c1

11fn�bng
�
dn:

2. ��g is decreasing in g: This is, a higher value of insurance increases the incentives
to remain.
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FIG. 6 Equilibrium and solvency thresholds with and without insurance.

See proof in the appendix.

Theorem 2. Under a narrow mandate, a deposit insurance contract preserving
the monitoring role of depositors involves g < c1: Nonetheless, ine¢ cient liquidation
of solvent banks (panic runs) will persist for this type of insurance, the less so the
higher the guarantee.

Proof. Reconsider equation 3 when the signal�s noise vanishes. Taking limit when
"! 0 :
1=c1Z
�

u
�
max

�
c2(�

�
g; n); g

	�
dn =

bnZ
�

u
�
c2(�

�
g; n)

�
dn+

1=c1Z
bn
u (g) dn =

1=c1Z
�

u(c1)dn;

with bn de�ned by c2(��g; bn) = g:
Because g < c1, c2(�L; �) = c1; and c2(�

�
g; n) decreasing in n; �

�
g needs to be higher

than �L for this equality to hold, which means that in equilibrium depositors will still
run on some solvent banks. Finally, it is clear from this equation that the higher g
the smaller the region of panic runs.

For a strictly positive amount of noise (e.g. " = 0:01) consider the numerical
example in �gure 6. For every value of c1 > 1 the equilibrium threshold is above
�L; although the gap is smaller for higher levels of insurance (fewer banks are li
quidated). Consider the case g = 1 and c1 = 1:1: For these parameters, �L = 0:3261
and the equilibrium threshold equals ��g = 0:3928: Hence, for every � in the region
[�L + 2"; �

�
g � "[= [0:346 1; 0:3828[6= ?; all patient depositor continue running on a

bank they know to be solvent. This region, however, is substantially smaller than the
one without insurance, in page 8.
Blanket guarantees in times of crisis are usually designed to protect the principal

value of deposits, in order to enhance market con�dence and secure the purchasing
power of consumers. In this model, a blanket guarantee would translate into g = 1:
However, despite the high level of protection depositors still run on some solvent banks.
Notice that this result does not obey to a lack of con�dence in the deposit insurance
system, or to a macroeconomic shock a¤ecting the economy. It emerges naturally as

14



an equilibrium in a model with asymmetric information, where depositors rationally
anticipate the reaction functions of their counterparts.

5. EQUILIBRIUM UNDER A BROAD MANDATE

Under a broad mandate, and once the DIC and the bank have announced their
respective contracts (g and c1), all impatient depositors withdraw in the interim period
and patient depositors, observing private signals on �; decide whether to withdraw or
to remain. The DIC moves after depositors have played, observing the realisation of n
and its own private signal s, which comes from the monitoring of the bank�s activities.
Based on the information revealed by these two variables, the DIC must decide whether
to leave the bank open �in which case liquidity assistance may sometimes be required�
or to close it and pay the guarantee.
Figure 3.b gives a representation of the extended form of the sub-game faced by

depositors and the DIC in the interim period.

5.1. DIC�s Sub-game

In this version of the game, bankruptcy is not determined solely by the actions
of depositors, but it can also be the e¢ cient outcome of supervision and prudential
regulation. On a theoretical level, Repullo (2000) justi�es the allocation of supervi-
sory activities to the DIC every time withdrawals are large enough to pose a systemic
threat: �deposit insurance...institutions have become responsible for dealing with sol-
vency problems, leaving Central Banks with the exclusive role of handling liquidity
problems�. As the present model does not study the problem of separation of activi-
ties between the central bank and the banking supervisor, for simplicity, the DIC will
be allowed to deal with both solvency and liquidity issues.
Hence, as opposed to the case with a narrow mandate, this time the DIC has access

to private information which can be used to decide a closure rule and a LoLR policy
for banks. At t = 1 the DIC receives a private, non veri�able signal s = �+ �s, where
�s is uniformly distributed on [��; �]. Given the supervisory role assigned to this
agency, preferential access to information will naturally imply that � � "; meaning
that, on average, the DIC�s signal is more informative than the signals of depositors.
Knowing the value of s; the DIC corrects the conditional probability distribution of
� and estimates that the true value of � follows a uniform distribution in the interval
[s� �; s+ �]:
Once patient depositors have played, the realisation of n becomes observable to all

players, in particular to the DIC. As a function of � (which is indeed a 1-1 relationship
in the region of partial runs), n also carries information about the true state of the
bank. For a given value of n, the DIC has the option to close the bank based on
its estimated solvency, or leave it open, in which case liquidity assistance could be
provided under exceptional circumstances.
The IMF�s code of best practice requires the resolution of a failing bank to be

decided according to a �least cost�criteria (Hoelscher and Quintyn, 2003). Using this
idea, I de�ne the objective function of the DIC at this stage of the game as to minimise
the cost of resolution of a bank.17

I will �rst study the case of perfect information (� = 0), so that s perfectly reveals
the true value of � in the interim period. Later, I will extend these results to the case
of a noisy signal (� > 0).

17Although this assumption still allows for very interesting results, a complete welfare analysis
would require a more general de�nition of the DIC�s objectives (see section 7.1).
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5.1.1. Closure rule

When the DIC decides to close a bank, the guarantee on deposits must be paid. I
am assuming deposits are senior to other claims, therefore, when a bank fails all of its
assets are passed onto the DIC, and the agency has to decide how to manage available
resources. Suppose the DIC has the option to issue debt against the future value of
the bank�s assets, with an expected return of Es[R(�)]:18 Of course, the DIC can also
liquidate the assets in the interim period, obtaining a certain return of 1. Hence, the
net expected cost of the decision of closing a bank in the interim period equals

g �maxfEs[R(�)]; 1g:

As I am assuming the DIC to have perfect information, the term Es[R(�)] simpli�es
to R(�):

RESULT 1. When the DIC has perfect information ( � = 0), it is cost e¢ cient for it
to close the bank if remaining assets are insu¢ cient to cover the value of the guarantee
in the �nal period ( c2 (�; n) < g), and leave it open otherwise.
See proof in the appendix.

5.1.2. LoLR policy

According to Bagehot�s doctrine, a LoLR should lend only to solvent banks expe-
riencing liquidity problems (Bagehot, 1873) . In the present framework,

Definition 2. A bank faces a liquidity shock if n > � at t = 1:

i. For a given realisation of n; a bank is liquid in both periods if c2(�; n) � c1: Notice
that any liquid bank must also be solvent.

ii. A bank is fundamentally solvent but illiquid if � � �L; n > � and
c2(�; n) < c1:

Solvency is a property of the bank which cannot be veri�ed until the �nal period.
However, and as for the moment I am assuming � = 0; the DIC can perfectly observe
the true value of � in the interim period.
Clearly, if for a given value of n a bank were liquid, no assistance would be required.

If it were fundamentally solvent but illiquid, however, there would be room for a LoLR.

Proposition 6. When the DIC has perfect information (� = 0), a cost e¢ cient
LoLR policy is to rescue fundamentally solvent but illiquid banks.

See proof in the appendix.

Therefore, the DIC should commit liquidity assistance to solvent but illiquid banks,
and such commitment should be public information in order to deter panic runs.
Should the DIC, under some circumstances, also commit liquidity to insolvent banks?
The answer is no, and it will be proved in what follows.
De�ne by � the value the fundamental satisfying c2(�; �) = g: Clearly, as g < c1;

� < �L: Consider the case where the bank is fundamentally insolvent and it is also
facing a liquidity shock:

18Debt issuance will require the DIC to provide funds to pay the guarantee in the �rst period.
Nonetheless, as the bank�s assets have been transferred to it, the counterpart risk of this loan should
be minimal.
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n > �; c2(�; n) < g and maxf�; 0g � � < �L:

As c2(�; n) < g; the closure rule determines that it should be closed. However, as
� � �; c2(�; �) � g and by lending the excess withdrawal at t = 1; the DIC could
secure a higher return for remaining patient depositors in the �nal period.

Proposition 7. The DIC should never commit liquidity assistance to fundamen-
tally insolvent banks.

See proof in the appendix.
When combining the two policies (closure rule and LoLR) it is possible to conclude

that, with perfect information, solvent banks are never allowed to fail, and it is only
when an insolvent bank experiences large withdrawals in the �rst period �and large
enough for remaining assets to be insu¢ cient to cover the payment of the guarantee in
the �nal period�that the bank is closed by the DIC. This result indicates that, despite
the supervisory role assigned to this agency, depositors retain some monitoring power,
but also that the DIC lacks the commitment to close all insolvent banks in the interim
period (if g < c1). Indeed, the smaller the guarantee, the higher the share of insolvent
banks that might be allowed to survive.
Summarising the previous results:

Theorem 3. When the DIC has perfect information and operates under a broad
mandate, a cost e¢ cient policy is to leave a bank open if it is fundamentally solvent or
if its remaining assets are enough to pay the guarantee on deposits in the �nal period.
Otherwise, the bank should be closed. The LoLR should lend only to fundamentally
solvent banks facing liquidity shocks (table 3).

Proof. The only part of this proposition that has not been proved yet is that a
bank should be closed independent of the actions of consumers if � < � (provided this
value is non negative). This result is immediate, because c2(�; �) < g clearly implies
that c2(�; n) < g for all n � �: Following result 1 and proposition 7, the bank should
be closed.

� Second period Closure LoLR Observations
return rule policy

� < � c2(�; �) < g Close No Bank
� � � < �L c2(�; n) < g Close No fundamentally

c2(�; n) � g Open No insolvent
� � �L c2(�; �) � c1 � g Open Yes Bank fundamentally solvent,

lend (n� �)c1 i¤ n > � and
c2(�; n) < c1

table 3: Closure and LoLR policies with a broad mandate and perfect information.

The assumption that the DIC lends at a discounted rate normalised to zero does
not contradict other assumptions in the model �the safe technology return was also
normalised to zero�, neither it is uncommon in the literature. Allen and Gale (1998),
for example, study the problem of a central bank providing emergency liquidity assis-
tance in a model where early liquidation of assets is costly, and they also normalise
the lending interest rate to zero. Other authors have argued that a LoLR should lend
at a high penalty rate, in order to stop public funds from being used to �nance regular
investment (see Bagehot (1873) and Repullo (2000)). However, as the present model
considers only one representative bank, it cannot take into account interbank lending
as an alternative source of liquidity for solvent banks, as they do.
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5.1.3. Case of imperfect information (� > 0)

Having established these results, moving to the case of imperfect information is
simple. Considering a positive but small amount of noise, all the previous equations
in � can be rewritten in terms of their conditional expected value, which will allow for
computing cost e¢ cient closure and LoLR policies.
De�ne by sL the value of the signal satisfying EsL [c2(�; �)] = c1; s

� = s�(n) such
that E(s�;n) [c2(�; n)] = g; and s such that Es [c2(�; �)] = g (if the solution is non-
negative, and zero otherwise). Notice that for any given value of n; these parameters
are uniquely determined because c2(�; n) is increasing in �:

Proposition 8. For small non-negative values of the DIC�s signal noise, a cost
e¢ cient policy is to leave the bank open if s � sL or if s � s�(n); and close it otherwise.

Proof. Same as above, replacing all expressions by their conditional expected va-
lues.

The DIC can anticipate that a bank is solvent if s > �L + �; and insolvent if
s < �L� �: Because c2(�; �) < c1 if � < �L; and c2(�; �) > c1 if � > �L; it follows from
the de�nition of sL that �L � � � sL � �L + �: Indeed, when s > sL the expected
value of c2(�; �) is computed for larger values of �; and because c2(�; �) is increasing
in � this implies that Es [c2(�; �)] > c1: The opposite is true when s < sL: Therefore,
conditional on its private information, the DIC estimates a bank to be solvent if s � sL;
and insolvent if s < sL:

Proposition 9. For small non-negative values of �, the DIC should commit li-
quidity assistance to a bank facing runs if and only if s � sL and Es [c2(�; n)] < c1.

Corollary 1. lim
�!0

sL(c1) = �L(c1): This is, when the information gathered by

the DIC becomes extremely precise, only insolvent banks are allowed to fail.

These results justify the principle of �creative ambiguity�: depositors cannot an-
ticipate if the LoLR will provide liquidity assistance for a subset of the fundamentals
(� 2]�L� �; �L+ �[). Nevertheless, this is not a consequence of the LoLR randomising
over its set of actions (playing an equilibrium in mixed strategies, as in Freixas et
al. (1999)). The DIC�s strategy is perfectly determined and rational, but it is not
observed by consumers due to asymmetric information.
Indeed, two kind of errors are possible when � > 0: With positive probability the

DIC can mistakenly allow a solvent bank to fail (by refusing liquidity assistance), or
else bail out an insolvent bank. However, the information contained in n(�) has not
yet been taken into account. If a monotone equilibrium threshold for depositors ��g
exists, n can be expressed as an invertible function of � in the region of partial runs
(this is, where � < n < 1).

Proposition 10. If ��g � �L+ "; n(�; ��g) > � reveals the true value of � at t = 1:
In this case, no matter what the value of � is, the DIC determines its closure and
LoLR policies as in the case of perfect information (theorem 3). If ��g > �L � ", the
DIC also gets perfect information in the region of no runs (n(�; ��g) = �).

Proof. Assume a monotone equilibrium threshold ��g existed, such that
�L � " � ��g � �L + ": A value of n(�) consistent with this equilibrium is given
by equation 1. Hence,
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n =

8<:
� if �i > �

�
g for all i; if � > ��g + " � �L; the bank is solvent

2]�; 1[ if ��g � " < � < ��g + "; n fully reveals �
1 if �i < �

�
g for all i; if � < ��g � " � �L; the bank is insolvent

The next step is to determine that a monotone equilibrium does indeed exists for
depositors.

5.2. Patient Depositors�Sub-game

Once a patient depositor has received a private signal on �; she will construct
beliefs about the behaviour of other players, the value of the last period return, and
the action chosen by the DIC, upon which she will derive her optimal strategy.

Dominance regions: Whatever the relationship between the �rst and second period
guarantee, an upper dominance region does exist for this game. Formally, a depositor
can be sure that the bank is solvent if �i > �L + " � �L + �: Because sL � �L + �;
she also knows that the bank will be bailed out if facing runs. All patient depositors
receive signals above this value if � > �L+2"; and anticipating that cL2 = c2(�; �) � c1
whatever the value of n; they wait until the �nal period.19 Hence, the upper dominance
region for this game is given by [�L + 2"; 1]:20

If � exists (c2(�; �) = g), R(:) increasing implies that � � � � s � � + �. If the
DIC�s signal is below s the bank will be closed. Therefore, if 8i �i < �� "; a depositor
knows the bank will be closed no matter what strategies are played by other players.
All depositors will receive signals below this level if � < � � 2": Hence, if � > 2"
the optimal reaction of depositors in this region will be to run, in which case a lower
dominance region exists.21

In the intermediate region ([��2"; �L+2"]), only su¢ ciently illiquid insolvent bank
will be closed, this is, those for which s < s�(n): In this region, depositors�payo¤ will
depend upon their actions in the following way:22

n � 1=c1 n < 1=c1
s < s�(n) s � s�(n)

t = 1 g g c1
t = 2 g g max fc2(n; �); gg

table 4: Patient depositors�payo¤s in the game with insurance and a broad mandate.

Consistent with the dominance regions, n = � if � > �L+2" and n = 1 if � < ��2".
In the intermediate region, the action taken by the DIC will be directly determined
by the behaviour of patient depositors, which payo¤s are described in table 4. The
entry in the bottom right corner satis�es Es [c2(n; �)] � g:
Once again, n(�; ��) in equation 1 de�nes a belief consistent with these dominance

regions and the uniform distribution of the noise.
As in the case with a narrow mandate, it is possible to prove that:

19The upper index �L� in cL2 stands for the �liquidity� assistance by the LoLR.
20 In the game without insurance, additional assumptions were required for depositors to uncondi-

tionally remain for higher realisations of �: With the DIC operating under a broad mandate, these
assumptions are endogenised by means of the commitment of liquidity to solvent but illiquid banks.
21For low values of the guarantee, � might well not exist. However, if coordination induces

�L � " � ��g ; this should not be a problem (because �L > 2") and indeed, as previously esta-
blished, it will provide the DIC with high quality information to assess the solvency of banks, through
the information contained in n(�; ��g):
22n � 1=c1 =) s < s�(n). If s � s�(n) the bank will remain open and the depositors��nal payo¤

will be higher than g: Anticipating that, depositors should wait, so n < 1=c1; which is a contradiction.
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Proposition 11. When the DIC operates under a broad mandate and o¤ers in-
surance g < c1 in both periods, there exists a unique equilibrium threshold ��g; such
that depositors remain if �i > ��g and withdraw otherwise. This threshold satis�es
� � " � ��g � �L + ":

Proof. Similar to proposition 3.

Corollary 2. lim
"!0

��g(c1) � �L(c1); which says that as the noise of depositor�s

signals vanishes, they run only on insolvent banks.

As � � "; when " tends to zero � must go to zero as well, and the outcome of the game
with a broad mandate insurance agency achieves a social optimum, in the sense that
liquidity assistance is targeted exclusively to solvent banks ( lim

�!0
sL = �L), but is not

used in equilibrium as they do not experience runs ( lim
"!0

��g(c1) � �L(c1)). Extremely
insolvent banks are closed ( lim

�!0
s = �), and those with enough funds to cover the

payment of the �nal period guarantee are allowed to continue operating. All these
results hold irrespective of the speci�c values of insurance provided, which in particular
might imply the insurance policy to be less expensive under a broad mandate.

6. MORAL HAZARD: DEMAND DEPOSIT CONTRACT WITH INSURANCE

(Bank�s Planning Period Sub-Game)
The previous sections solved for the equilibrium strategy of depositors and the

DIC taking as given the value of c1; and without considering the e¤ect that de-
posit insurance may have on the value of the demand deposit contract. Too gene
rous a protection could generate moral hazard, if because of limited liability banks
choose excessively high values of c1, making a bank fundamentally insolvent for most
realisation of �: If insurance were su¢ ciently generous for depositors to be willing
to accept this contract, with a high probability the DIC would end up paying the
guarantee in the interim period.
Many authors agree that deposit insurance induces moral hazard. In fact, a gua-

rantee on deposits can be seen as a callable put option on the agency o¤ering insurance
(Merton, 1977; Acharya and Dreyfus, 1989), which value increases monotonically in
the volatility of the investment portfolio, and then is maximised at the highest possible
level of risk.
This section will derive a condition for the optimal value of c1 under both mandates.

Because the equations become intractable for positive values of the noise; I will solve for
the limit case when " tends to zero. An analytical solution is possible when abstracting
from the e¤ect that changes in c1 have on the equilibrium threshold. In that case, it
is possible to show that the e¤ect of deposit insurance is to reduce the level of risk
sharing, this e¤ect being stronger under a broad mandate. However, when considering
the impact of changes in c1 on the equilibrium threshold, comparative statics show
that the net e¤ect of insurance is to increase the value of c1; which I interpret as a
raise in moral hazard because the probability of runs is increasing in c1 (at least for
high levels of the guarantee). Limited insurance can contain moral hazard up to some
level, justifying the observed conduct of governments across the world of o¤ering only
partial insurance on deposits in normal times, in order to encourage depositors to keep
monitoring their banks.
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6.1. Narrow Mandate DIC

At the planning period, the bank calculates the value of c1 that maximises the
ex-ante expected utility of consumers:

max
c1
Eu(c1) =

1Z
��g+"

�
�u(c1) + (1� �)u

�
max

�
1� �c1
1� � R(�); g

���
d�

+

��g+"Z
e�g
�
n(�; ��g)u(c1) + (1� n(�; ��g))u

�
max

�
1� n(�; ��g)c1
1� n(�; ��g)

R(�); g

���
d�

+

e�gZ
0

u (g) d�

For � > ��g+" all depositors remain and receive maxfc2(�; �); gg. When � < ��g�",
all withdraw, the bank goes bankrupt and depositors are paid the guarantee. In
the intermediate region, depositors�withdrawals are decreasing in the value of the
fundamental according to the formula of n(�; ��g), and the guarantee is paid each time

the bank�s resources are insu¢ cient to cover demanded deposits (i.e. when � < e�g).
When " ! 0 the region [��g � "; ��g + "] converges to

�
��g
	
, and as payo¤s in this

region are discontinuous at e�g �! ��g; the problem reduces to:

max
c1
Eu(c1) =

1Z
��g(c1)

f�u(c1) + (1� �)u (max fc2 (�; �) ; gg)g d�

+ lim
"!0+

�
n(�; ��g)u(c1) + (1� n(�; ��g))u(max

�
c2
�
��g; n(�; �

�
g)
�
; g
	
)
	

� lim
"!0�

�
n(�; ��g)u(g) + (1� n(�; ��g))u(g)

	
+

��g(c1)Z
0

u(g)d�

It was established before that when "! 0; ��g(c1) > �L(c1); hence the term under
the �rst integral maxfc2(�; �); gg = c2(�; �) � c1 � g: Also, lim

"!0+
n(�; ��g) = � and

lim
"!0�

n(�; ��g) = 1; and the previous expression becomes:

max
c1
Eu(c1) =

1Z
��g(c1)

f�u(c1) + (1� �)u (c2 (�; �))g d�

+�u(c1) + (1� �)u(c2
�
��g; �

�
)� u(g) +

��g(c1)Z
0

u(g)d�

A su¢ cient condition for the value of c1 maximising this function is given by
equation

�

1Z
��g(c1)

�
u0(c1)�R(�)u

0
(c2(�; �))

	
d� + �

n
u0(c1)�R(�

�
g(c1))u

0
�
c2(�

�
g(c1); �)

�o
=

@��g(c1)

@c1

h
�u(c1) + (1� �)u

�
c2(�

�
g(c1); �)

�
�(1� �c1)R

0
(�
�
g(c1))u

0 �
c2(�

�
g(c1); �)

�
�u(g)

i
(4)
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FIG. 7 Equilibrium threshold with insurance, as a function of c1 and g:

Hence, the marginal gain from risk sharing due to the transfer of consumption from
patient to impatient depositors (LHS) equals the positive marginal cost associated to
the increase in the probability of runs (RHS).

Proposition 12. When abstracting from the e¤ect that changes in the demand

deposit contract have on the equilibrium threshold of depositors
�
@��g(c1)

@c1
= 0 and

@��(c1)

@c1
= 0

�
, the introduction of deposit insurance reduces the level of risk sharing

o¤ered by banks.

See proof in the appendix.
Given that the bank�s portfolio has not changed, the reduction in the interest paid

on deposits could be explained as the bank �free riding�on the reduction of risk on
deposits, resulting from the DIC�s guarantee.
The e¤ect of c1 on the equilibrium threshold, however, is not nil. For the case

without insurance, theorem 1 established that
@��(c1)

@c1
> 0: For the case with insurance

under a narrow mandate, proposition 5 showed that ��g(c1) is increasing in c1 if and
only if

u(g) > u(c1)� c21

1=c1Z
�

�
u0(c1)� u0(c2(n))

@c2
@c1

11fn�bng
�

| {z }
>0

dn:

This inequality is clearly satis�ed when g = c1; then by continuity the result
extends to a small neighbourhood of values of g < c1: For the parameters of my

numerical example, simulations for di¤erent values of g show that indeed
@��g(c1)

@c1
> 0

(see �gure 7).
De�ne by 	(c1; g) = 0 the equation implicitly de�ned by the optimal condition

of this problem, equation 4. Notice that Eu(c1) is quasi-concave on c1, as it is the
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FIG. 8 Optimal value of c1 without insurance and with g = 1:

composition of monotonic and concave functions. Therefore, given that cg1 �the equi-
librium value of the demand deposit contract in the interim period in the model with

insurance�maximises Eu(c1),
@	

@c1
(cg1) = SOC(c

g
1) � 0.

Partial di¤erentiation of equation 4 with respect to g gives
@	

@g
=
@��g(c1)

@c1
u0(g) > 0:

Hence, by the implicit function theorem
@cg1
@g

= �

@	

@c1
(cg1)

@	

@g

� 0; which justi�es the

intuitive idea that as g � c1; the higher the protection to depositors the less liable are
banks for losses, and the higher the interest rate they o¤er (higher c1).
Under a narrow mandate, as in the benchmark model, the probability of failure in

the interim period is given by

p
:
= probfn > 1=c1g = ��g +

"

1� �

�
1 + � � 2

c1

�
:

Hence, if g is su¢ ciently high for
@��g
@c1

> 0; the probability of failure in the interim

period is increasing in c1 :

@p

@c1
=
@��g
@c1

+
2"

(1� �) c21
> 0

On the other hand, for small values of g (limited protection) proposition 5 could

be violated, so that
@��g
@c1

< 0 in which case
@cg1
@g

< 0 and the probability of runs could

decrease with the level of insurance:

@p

@g
=
@��g
@g

+
2"

(1� �) c21
@cg1
@g

< 0

These results can be summarised in the following theorem.

23



FIG. 9 Limiting moral hazard �optimal value of c1 with partial insurance.

Theorem 4. High levels of deposit insurance increases the equilibrium level of
risk sharing o¤ered by banks (cg1 > c

ng
1 ), and therefore the probability of runs. Partial

insurance can limit moral hazard.

Figure 8 plot the FOC for the determination of the optimal demand deposit con-
tract, as described by equations 4 and 5 (in the appendix). Without insurance, the
level of risk sharing o¤ered is very small and actually very close to 1: When o¤ering
full principal insurance (g = 1), the FOC is positive and decreasing for the values
of c1 considered in this simulation, implying the optimal level of risk sharing will be
higher. Limited liability and a high level of insurance increase the incentives for the
bank to take on more risk.
Partial insurance can limit moral hazard, as seen in �gure 9, while improving on

intertemporal risk sharing (compared to the non-insurance case).

6.2. Broad Mandate DIC

Consider again " ! 0; which implies that � also vanishes. From section 5,
lim
�!0

sL(c1) = �L(c1); lim
�!0

s(c1) =�(c1) and �� lim"!0
��g(c1) � �L(c1): Thus, in the region

�(c1) � � � �L(c1); as lim
"!0+

n(�; �
�
g) = � and lim

"!0�
n(�; �

�
g) = 1; the closure of insolvent

banks is strictly determined by the actions of depositors.

The problem faced by the bank in the planning period is the same as before:

max
c1
Eu(c1) =

1Z
��g(c1)

f�u(c1) + (1� �)u (c2 (�; �))g d�

+ �u(c1) + (1� �)u(c2
�
��g; �

�
)� u(g) +

��g(c1)Z
0

u(g)d�;

and a su¢ cient condition for the optimal value of c1 is given by equation 4.
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As mentioned in section 2.1, when " equals zero ine¢ cient liquidation (panic
runs) occurs in the model without insurance for any value of c1 > 1. Therefore,
��(c1) > �L(c1) � ��g(c1):
Knowing this relationship, when abstracting from the e¤ect that changes in the de-

mand deposit contract have on the equilibrium threshold of depositors�
@��g(c1)

@c1
=
@��(c1)

@c1
= 0

�
, the introduction of a deposit guarantee reduces the level

of risk sharing o¤ered by banks: cng1 > cg1. However, the shifting is stronger in this
case.23

Hence, the e¤ect of deposit insurance on the optimal demand deposit contract

can be decomposed in two factors. When
@��g
@c1

= 0 its e¤ect is to reduce the level of

risk sharing o¤ered by banks with respect to the case without an explicit guarantee.
When the impact of changes in c1 on the probability of runs is included, the opposite
e¤ect is observed, and cg1 increases in an amount related to the level of the promised
protection. In the case of a broad mandate the net e¤ect of insurance is expected to
be a raise in cg1; although smaller than in the case of a narrow mandate, as the �rst
factor (a shift to the left of cng1 ) is stronger.

24

7. ROBUSTNESS

In what follows, I discuss some policy implication arising from the model, and how
the results might change under alternative speci�cations and assumptions.

7.1. Deposit Insurance Contract (DIC�s Planning Period Sub-game)

The choice of the optimal amount of coverage is a relevant issue not discussed in
this model, as the value of g was considered an exogenous parameter in�uencing the
outcome of the game. The IMF typically suggests the world average of per capita
GDP as a rough rule of thumb for adequate coverage. In practice, however, coverage
limits vary widely from country to country. For example, the percentage of the value
of deposits covered is almost negligible in Sri Lanka and Estonia, and only about 10
percent in Brazil and Tanzania; but above 65 percent in the USA, and more than 70
percent in Norway, India and Japan (see statistical appendix in Garcia (2000)).
A complete de�nition of the game (and therefore a full welfare analysis of deposit

insurance) would need to specify a payo¤ function for the DIC, in order to determine
the optimal level of insurance o¤ered at the planning period. Such a function should
include the e¤ect that a deposit guarantee has on both the depositors� equilibrium
threshold and the demand deposit contract o¤ered by banks.
The objectives of deposit insurance usually include the protection of depositors and

�nancial stability concerns. Garcia (2000) argues that because many deposit insurance
schemes include all deposit taking institutions, consumer protection is a number one
concern. Financial stability, in his opinion, would be the main concern if membership
were con�ned only to systemically important banks. Taking this author�s point of
view, the DIC should determine g in order to maximise the ex-ante expected utility of

23Denote by �Ng (c1) the equilibrium threshold under a narrow mandate and by �Bg (c1); the one
under a broad mandate. Because �Ng (c1) � �L(c1) � �Bg (c1); from the proof of proposition 12 in
the appendix it can be seen that the integration region in LHS(4)(c1) is larger in the latter case and
includes smaller values of �; where the function $(�; c1) is negative. Hence, an even smaller value of
c1 is needed in order to make LHS(4)(c

g
1) = 0:

24 cng1 stands for the equilibrium value of the demand deposit contract in the interim period in the
model without insurance.
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consumers, while considering a funding constraint (money raised through an ex-post
tax, in the case of this model), and the e¤ect that deposit insurance has on the risk of
runs and on moral hazard. On the other hand, Rochet (1999) notices that prudential
authorities themselves tend to insist more on the prevention of systemic risks as the
main issue. Under this view, g should be chosen in order to minimise the probability
of joint failure of systemic institutions.
Coverage limits are in practice determined by very complex political processes.

In the USA, for example, it has been discussed whether deposit insurance should be
indexed to living costs.25 Indeed, the choice of the limit coverage could become time-
inconsistent when facing a systemic crises (the ex-ante chosen value of the guarantee
could become ex-post ine¢ cient), particularly so if the insurer has a narrow mandate
or if its signal is too noisy under a broad mandate. In either case, some solvent banks
would go bankrupt, weakening even more the �nancial system. The authorities could
then decide to temporarily increase the guarantee in order to contain runs, however
hard reducing it later to contain moral hazard (Garcia, 2000).

7.2. Credibility and Blanket Guarantees

Blanket guarantees are usually designed in times of crisis to protect the principal
value of deposits, in order to enhance market con�dence and secure the purchasing
power of consumers. When g = c1 runs are completely eliminated, but so is market
discipline. This is why deposit guarantees usually cover the principal value of deposits
and not the interest accrued on them. The results in this paper show, however, that if
g < c1 and the agency in charge of insurance does not get involved in the supervision
of banks, depositors will still run on some solvent banks, the more so the lower the
guarantee. This result does not obey to a lack of con�dence in the insurance scheme,
nor to a macroeconomic shock a¤ecting the economy, but it emerges naturally as
an equilibrium in a model with asymmetric information, where depositors rationally
anticipate the reactions of their counterparts.
For a deposit guarantee scheme to be credible and operational, initial funding is

required. The IMF code of best practice establishes that the funding of a deposit
insurance scheme should be adequate and perceived as su¢ cient to maintain public
con�dence, and that upon failure legal priority over assets should be given to the DIC
on behalf of depositors, as this model assumes.
Some countries run schemes with an ex-ante funding, charging participants insti-

tutions an insurance premium. Others, as in this model, run ex-post funded systems.
Whatever the scheme applied, and given the scope of the losses involved when a bank
fails, for insurance to be credible government backing may be needed. Indeed, in
the majority of countries with explicit systems, while deposit insurance is privately
funded by their member institutions some implicit or explicit government backing
always exists.

7.3. Macroeconomic Shocks

If in the interim period depositors were uncertain about the available funds for the
payment of the guarantee in the subsequent period, they could precipitate a run. Con-
sider g < c1; the value of the guarantee in the interim period, and g2 < g its expected
value in the �nal period. It is not di¢ cult to prove that a monotonic equilibrium exists
for this game, and that the equilibrium threshold is decreasing in g2: Therefore, the

25See Alan Greenspan: Deposit Insurance. Testimony before the Committee on Banking, Hou-
sing, and Urban A¤airs, U.S. Senate, Washington, D.C., 26 February 2003. BIS Review 10/2003.
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smaller the expected insurance in the �nal period, the more banks would be su¤ering
from runs. Such a situation could arise because of fears of asset depletion (corruption),
macroeconomic shocks, or an attack on the currency.
If the economy experienced a macroeconomic shock in the interim period, reducing

future returns from R(�) to, let say, R(�)� k, the e¤ect would be twofold. First, the
solvency threshold would move upwards, increasing the probability of runs. With more
banks suddenly becoming insolvent, the DIC might not have enough resources to cover
the payment of the guarantee and, if this were anticipated, more patient depositors
would withdraw. Second, the promise of liquidity assistance by a lender of last resort
would probably not be enough to overcome this e¤ect, as fewer bank would be bailed
out in a model with a broad mandate, because expected returns are lower.

7.4. Twin crisis

The present model considers only one representative bank, therefore, a run on the
bank could be identi�ed with a run in the currency. If not enough funds can be readily
available for the payment of deposit insurance, its expected value in the last period (g2,
as in section 7.3) might be reduced, raising the equilibrium threshold and therefore
runs. Increasing pressure to cover guaranteed deposits could force the government
into devaluation, in which case the value of the guarantee in the �nal period would be
further reduced, generating a spiral reaction.
Devaluation could be introduced in this model as in Repullo (2000), where the

government provides liquidity assistance (broad mandate) in the form of bonds that
can be traded for consumption goods in the interim period, which determines their
equilibrium price level. Doubts that the guarantee could be paid in the �nal period
would precipitate a collapse in the price of these bonds, which could be interpreted as
a currency crisis. Devaluation could also be modelled as in Chang and Velasco (1999),
by linking the equilibrium exchange rate of the economy to the same fundamental of
the bank.

7.5. Moral Hazard

The net e¤ect of deposit insurance on the equilibrium demand deposit contract
was to raise its value and, for su¢ ciently high levels of the guarantee, also the risk of
runs. This result is consistent with empirical evidence showing that an increase in the
volume of insured funds is usually accompanied by a sharp rise in interest rates (e.g.
in the Savings and Loan crisis).
Comparative statics showed that moral hazard can be limited by o¤ering partial

insurance. Indeed, the IMF code of best practice establishes that limits on coverage
should be �low enough to encourage depositors and sophisticated creditors to monitor
and discipline their banks�.
A di¤erent source of moral hazard, not covered in this model, is proposed by Bond

and Crocker (1993), linking deposit insurance to the level of capitalisation of banks.
Their model, though, concentrates on the e¤ect that insurance pricing has on the level
of optimal reserves. In the present model banks do not hold reserves, because of the
assumptions about the risky technology (that its return in the interim period equals
that of the safe asset). Indeed, banks cannot shift to riskier investment projects as a
result of the introduction of insurance, simply because these projects are not available.
One possibility for studying this phenomenon would be to consider higher costs of early
liquidation, in the sense that only a fraction � < 1 of the original investment could be
recovered at t = 1. As in that case banks would need to keep reserves to pay impatient
depositors withdrawals in the interim period, it would be possible to study how the
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introduction of a guarantee on deposits would shift the composition of the investment
portfolio.

7.6. Closure Rule

Strictly speaking, closure is only one of the possible options for dealing with failed
banks. Others involve the intervention or takeover of the institution (transferring
the control of the bank to the DIC), the merger or sale of the bank to a stronger
institution, purchase an assumption, or a bridge bank for the administration of good
assets. In the present model with a single representative bank, many of these options
are not viable.
Acharya and Yorulmazer (2007a,b) show that the acquisition of failed banks by

stronger institutions can be welfare improving, and even make systemic crisis less
likely by reducing the correlation between banks�portfolios. The present model could
be extended to study this type of policy in the following way. Consider two ex-ante
identical banks that ex-post di¤er only on the realization of �: If one bank became
insolvent (Bad) while the other is solvent (Good), the DIC (broad mandate) could
consider merging both if their combined return were enough to pay patient depositors
in both banks at least c1 in the �nal period:

Es1;s2 [(1� �c1)R(�G) +R(�B)] � �c1 + 2(1� �)c1;

where sj is the DIC�s private signal on bank j:
This would require the DIC to provide liquidity assistance to the stronger institu-

tion, in order to satisfy patient depositors�redemptions in the failed bank. This would
be a di¤erent form of LoLR assistance, as the one proposed in Acharya and Yorul-
mazer (2007a,b). Given the banks have no equity; the �purchase�would e¤ectively
be a transfer of assets from the failed bank to the solvent one (if viable).
The equilibrium for the depositors�sub-game will depend on the structure of the

signals they receive. If they obtained two equally informative signals (for example,
if they held deposits in both banks), anticipating the merger patient depositors in
the insolvent institution would prefer to wait. On the other hand, if depositors could
monitor only one bank the equilibrium would depend on the order of the game, this is,
which bank nature chooses to play �rst, as in Dasgupta (2002). Otherwise, the DIC
would need to act pre-emptively, based solely on its signals and therefore missing the
information contained in the number of runs on each bank.
The e¤ect of these policies on moral hazard is not clear.

7.7. Other Extensions

Deposit guarantees are designed to protect small and usually uninformed depo-
sitors. This gives a trade-o¤, because more sophisticated depositors tend not to be
covered, and could exercise monitoring power independent of the DIC. Including this
type of players in the game could provide an additional explanation for the failure of
blanket guarantees sometimes.
Finally, it would be interesting to compare ex-ante versus ex-post funded systems.

I have chosen to discuss an ex-post tax funded system, as in Diamond and Dybvig
(1983). In practice, some countries do run ex-post funded systems, charging a fee to
surviving institutions participating in the scheme (e.g. in the U.K.). If an ex-ante
premium were charged to the bank, the equations of the model would be modi�ed. I
expect, however, that the main results would not change.
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8. CONCLUDING REMARKS

In this paper I have introduced deposit insurance in a model of information based
bank runs. The model has a unique equilibrium, which allows for a proper evaluation
of the e¤ects of insurance on the behaviour of depositors, banks, and the insurer. I
have shown that while consumers achieve better risk sharing in a competitive banking
system than in autarky, more solvent projects are liquidated as uninsured depositors
fail to coordinate in a subset of fundamentals, and run on banks they know to be
solvent. While deposit insurance may prevent panic runs up to some extent, its e¤ec-
tiveness varies with the size of coverage and the degree of supervisory involvement of
the agency in charge of insurance. I have considered two possible mandates. Under
a narrow mandate, and abstracting from the presence of any other regulatory autho-
rity, its main responsibility is to pay the guarantee every time a bank has insu¢ cient
resources to cope with withdrawals. Under a broad mandate, the insurer also has
responsibility for the resolution of insolvent and/or illiquid banks, and the ability to
provide emergency liquidity assistance as a lender of last resort.
Under a narrow mandate, a deposit insurance contract preserving the monito-

ring role of depositors involves o¤ering less than full protection. The trade o¤ is
that panic runs cannot be completely eliminated with a partial guarantee, although
it does reduce the region of fundamentals for which that occurs. Under a broad
mandate, I showed that panic runs tend to disappear for any level of insurance
as the regulator�s signal becomes more precise. Given that liquidity assistance is
committed to solvent but illiquid institutions, depositors do not run on solvent banks.
Moreover, it is cost e¢ cient for the authority never to provide liquidity to insolvent
banks. However, only extremely insolvent banks are closed, and those with enough
funds to cover the payment of the �nal period guarantee are allowed to continue in
operation. Therefore, the smaller the protection o¤ered to depositors, the higher is
forbearance. All these results hold irrespective of the speci�c values of the guarantee,
which in particular might imply the social cost of deposit insurance to be lower under
a broad mandate.
Finally, I showed that deposit insurance induces moral hazard by increasing the

equilibrium value of c1, but this e¤ect seems also to be smaller under a broad mandate.
Limited insurance could contain moral hazard up to some level, justifying the observed
conduct of governments across the world in normal times.
Under a narrow mandate, pure panic runs persist even when depositors� signals

become very precise, the more so the lower the guarantee. Under a broad mandate, on
the other hand, panic runs are eliminated even with partial insurance, which reduces
moral hazard but increases forbearance. Which one should be preferred?
Both mandates are equally popular among economies. In their survey, Demirguç-

Kunt and Detragiache (1999) report that 34 out of 67 deposit insurance systems have
a narrow constitution, but they also show that the negative externalities imposed by
deposit insurance on �nancial stability can be curbed by e¤ective regulation, a result
in line with the main conclusions of this paper. Indeed, during recent years some
countries (e.g. France) have stated to move from narrow to broad mandate schemes
(Garcia, 2000).
Therefore, a scheme where the DIC has more supervisory involvement (broad man-

date), or else a high degree of coordination with the authority in charge of supervision,
should be preferred.
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9. APPENDIX

Proof of proposition 1

Proof. For any feasible value of c1; there exists a unique equilibrium threshold
��(c1) and, therefore, the function determining the number of early withdrawals,
n(�; ��(c1)); is also uniquely de�ned. A bank goes bankrupt if and only if deposi-
tors run on the bank in the interim period, that is, if and only if n > 1=c1: De�ne bye�(c1) the value of � such that n(e�(c1); ��(c1)) = 1=c1:
As n is strictly decreasing in � in the region [��(c1)� "; ��(c1)+ "] (or equivalently, for
values of n in between � and 1), n(�; ��(c1)) > 1=c1 if and only if � < e�(c1) (see �gure
1). Therefore, prob fn > 1=c1g = prob

n
� < e�(c1)o = e�(c1), given that � is uniformly

distributed in [0; 1]. Using the inverse function of n(�; ��(c1));e�(c1) = �� + "

1� �

�
1 + � � 2

c1

�
.

Notice that

����1 + � � 2

c1

���� � 1� � (see �gure 1), therefore 0 < �� � " � e� � �� + " < 1;
and the probability is well de�ned and non-degenerated. Finally, it increases in c1

because
@e�
@c1

=
@��

@c1
+

2"

(1� �) (c1)2
> 0:

Proof of proposition 2

Proof. Consider �1; �2 2 [0; 1] such that �1 < �2: I want to prove that
�g(�

1; �1) < �g(�
2; �2):

�g(�
j ; �j) =

b�jZ
e�j
fu (g)�u(c1)g d� +

�j+"Z
b�j
(
u

 
1� n(�; �j)c1
1� n(�; �j)

R(�)

!
�u(c1)

)
d�;

j = 1; 2;

where e�j is de�ned by n(e�j ; �j) = 1=c1 and satis�es e�j = �j +
"

1� �

�
1 + � � 2

c1

�
;

and b�j is such that c2(b�j ; n(b�j ; �j)) = g; e�j � b�j � �j + ":b�j is uniquely de�ned, as in the interval [�j � "; �j + "]; c2(�; n(�; �j)) is strictly
increasing in �. For the same reason it is true that b�1 � e�1 > b�2 � e�2, as when �j is
higher a relatively smaller value of b�j is required for c2(b�j ; n(b�j ; �j)) = g.
Finally, notice that from the de�nition of n(�; �j), if � 2 [�1 � "; �1 + "];

�0 2 [�2 � "; �2 + "]; and � � �1 = �0 � �2 then n(�; �1) = n(�0; �2): This basically

establishes that over the intervals [e�j ; �j + "] j = 1; 2; the functions n(�; �j) take
exactly the same values.
This information is su¢ cient to conclude that the function �g(�

�; ��) is increa-
sing. Although the �rst integral is higher for j = 1 (because the function is
constant and the integration region is larger), the argument under the second in-
tegral is increasing in � �remember that n takes the same values in both regions�and
the integration region is larger and ranges for higher values of the fundamentals for
j = 2. Hence, the loss in the former is compensated by the gains in the latter when
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j = 2, (c2(�; n(�; �
2)) > c2(�; n(�; �

1)) > g), implying that
�g(�

2; �2) > �g(�
1; �1).

Proof of proposition 5

Proof. De�ne

�(��g; c1; g)
:
=

bnZ
�

fu (c2(n))� u(c1)g dn+
1=c1Z
bn
fu (g)� u(c1)g dn = 0;

where c2(n) =
1� nc1
1� n R (�(n)) and c2 (bn) = g:

1.
@�

@��g
=

bnZ
�

u0(c2(n))

�
1� nc1
1� n

�
R0(�(n))dn

+
@bn
@��g

fu (g)� u(c1)g �
@bn
@��g

fu (g)� u(c1)g> 0;

because by assumption u(:) and R(:) are increasing.

@�

@c1
=

bnZ
�

�
u0(c2(n))

@c2
@c1

� u0(c1)
�
dn+

@bn
@c1

fu (g)� u(c1)g

�
1=c1Z
bn
u0(c1)dn+

@ (1=c1)

@c1
fu (g)� u(c1)g �

@bn
@c1

fu (g)� u(c1)g ;

where
@c2
@c1

=
�n
1� nR (�(n)) < 0:

Simplifying,

@�

@c1
=

bnZ
�

u0(c2(n))
@c2
@c1

dn�
1=c1Z
�

u0(c1)dn+

�
1

c1

�2
fu(c1)� u(g)g :

By the Implicit Function theorem,

@��g
@c1

= �
@�
@c1
@�
@��g

> 0, @�

@c1
< 0

, u(g) > u(c1)� c21

1=c1Z
�

�
u0(c1)� u0(c2(n))

@c2
@c1

11fn�bng
�

| {z }
>0

dn;

where 11fn�bng =
�
1 if n � bn
0 � :

2.
@�

@g
=
@bn
@g
fu (g)�u(c1)g+

1=c1Z
bn
u0 (g) dn�@bn

@g
fu (g)�u(c1)g

) @�

@g
=

1=c1Z
bn
u0 (g) dn > 0)

@��g
@g

= �
@�
@g

@�
@��g

< 0
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Proof of result 1

Proof. Assume n � 1=c1 and compare the costs of the two actions in the interim
period:26

Close Open
g �maxfR(�); 1g 0 , if c2(�; n) � g

(1� n)g � (1� nc1)R(�) , if not

Closing the bank means the guarantee has to be paid at a cost equal to
g � maxfR(�); 1g. If the bank is left open, and remaining assets are enough to pay
depositors at least the value of the guarantee in the �nal period, this action has no
cost to the DIC. However, if funds in the bank are insu¢ cient, the guarantee must be
honoured at a cost equal to (1� n)g � (1� nc1)R(�):
A least cost criteria implies that if c2(�; n) � g it is better to leave the bank open.

Indeed, this rule is Pareto optimal, even if g � maxfR(�); 1g � 0 (in which case the
DIC should be indi¤erent between the two actions, as its objective is to minimise the
cost of bank resolution, not to make a pro�t from this operation). In order to see that,
look at the welfare of depositors:

Close Open
u(g) nu(c1) + (1� n)u(c2(�; n))

Because c1 � g and c2(�; n) � g; depositors are better o¤ if the bank is allowed to
survive to the �nal period.
On the other hand, if c2(�; n) < g closure is the least cost solution. Comparing

the costs of the two actions:
g �maxfR(�); 1g � (1� n)g � (1� nc1)R(�)
, ng � maxfR(�); 1g � (1� nc1)R(�):

By contradiction, assume ng > maxfR(�); 1g � (1� nc1)R(�):

i. If R(�) � 1 : ng > R(�)� (1� nc1)R(�) = nc1R(�), 1 � g
c1
> R(�) which is a

contradiction.

ii. If R(�) < 1 : ng > 1 � (1 � nc1)R(�) , R(�) > 1�ng
1�nc1 � 1; which is again a

contradiction.

Proof of proposition 6

Proof. Suppose the bank is fundamentally solvent but illiquid.

c2(�; �) =
1� �c1
1� � R(�) � c1, (1� �c1)R(�)� (n� �) c1� (1� n) c1:

If the DIC provides liquidity assistance for a maximum of (n� �) c1 in the interim
period, the inequality above establishes that the residual return when liquidating only
�c1 units in the interim period minus the repayment of the loan �at zero interest rate�,
is enough to secure remaining patient depositors to receive a least c1 at t = 1: In other
words, lending money to a fundamentally solvent bank has zero cost for the DIC.
Committing liquidity assistance to fundamentally solvent but illiquid banks is in-

deed Pareto optimal, in terms of consumers�welfare:

26 If n > 1=c1 all assets would be liquidated in the interim period, in which case to allow the bank
to operate until the second period would not be an option, unless it receives a loan from the central
bank. However, a bail out would not be e¢ cient in this case, because the bank is insolvent (see
propositions 7, 10 and 11).
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i. If c2(�; n) < g it was argued before that the bank should be closed. However,
comparing the welfare of depositors it is possible to see that the bank should be bailed
out (as this policy has zero cost):

Close LoLR + Open
u(g) < nu(c1) + (1� n)u(cL2 )

where cL2 = c2(�; �) � c1 � g

ii. If g � c2(�; n) < c1 it was established before that the bank should be allowed to
survive until the �nal period. Comparing the welfare of depositors when just leaving
the bank open against the situation where the DIC also provides liquidity assistance:

Open LoLR + Open
nu(c1) + (1� n)u(c2(�; n)) < nu(c1) + (1� n)u(cL2 )

where cL2 � c1 > c2(�; n)

Proof of proposition 7

Proof. Compare the costs of the two policies for the DIC:

Close LoLR + Open
g �maxfR(�); 1g (n� �) c1 � f(1� �c1)R(�)� (1� n)gg

The net cost of bailing out the bank equals the cost of the loan minus whatever
asset can be recovered from the bank in the �nal period.
Closure is the least cost solution if and only if

g �maxfR(�); 1g � (n� �) c1 � f(1� �c1)R(�)� (1� n)gg
, ng � (n� �) c1 +maxfR(�); 1g � (1� �c1)R(�):

By contradiction, assume ng > (n� �) c1 +maxfR(�); 1g � (1� �c1)R(�):

i. If R(�) � 1 : ng > (n� �) c1 +R(�)� (1� �c1)R(�)
, 0 > n(c1 � g)| {z }

�0

+ �c1(R(�)� 1)| {z }
�0

which is a contradiction.

ii. If R(�) < 1 : ng > (n� �) c1 + 1� (1� �c1)R(�)
, (1� �c1)| {z }

>0

(R(�)� 1)| {z }
<0

> n(c1 � g)| {z }
�0

; which is again a contradiction.

Proof of proposition 12

Proof. I want to compare the equilibrium condition for c1 under a narrow man-
date against the one obtained by Goldstein and Pauzner (2000) in the model without
insurance:

�
1R

��(c1)

�
u0(c1)�R(�)u

0
�
1� �c1
1� � R(�)

��
d�

=
@��(c1)

@c1

�
�u(c1) + (1� �)u

�
1� �c1
1� � R(�

�
(c1))

�
�u(1)

�
(5)

Take
@��g(c1)

@c1
=
@��(c1)

@c1
= 0. I will prove that cg1 < c

ng
1 (where the cng1 stands for

the equilibrium without insurance, and cg1 for the one with insurance).
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De�ne $(�; c1)
:
= u0(c1)�R(�)u0

�
1� �c1
1� � R(�)

�
: The following result is required.

RESULT 2. $(�; c1) is increasing in � and decreasing in c1:
Proof. In order to see that $(�; :) is increasing in �; notice that $(�; :) is di¤eren-

tiable and
@$

@�
= �R0(�)u0 (c2(�; �))�R(�)u00 (c2(�; �))

�
1� �c1
1� �

�
R0(�)

= �R0(�)fu0 (c2(�; �)) + u00 (c2(�; �)) c2(�; �)g

= �R
0(�)

u0(c2)| {z }

8>>>>>>>><>>>>>>>>:
1 +

c2u
00 (c2)

u0(c2)| {z }
<�1| {z }

<0

9>>>>>>>>=>>>>>>>>;
> 0;

because by assumption u(:) index of relative risk aversion is higher than 1.
In the same way, $(:; c1) is di¤erentiable and
@$

@c1
= u00(c1) +

�

1� � [R(�)]
2
u00 (c2(�; �)) < 0;

because u(:) is concave.�

cng1 is the solution to

�

1Z
��(cng1 )

�
u0(cng1 )�R(�)u0

�
1� �cng1
1� � R(�)

��
d� = 0;

the LHS of equation 5 (FOC without insurance).
Evaluating the LHS of equation 4 (FOC with insurance) in cng1 :

LHS(4)(c
ng
1 ) = �

1Z
��(cng1 )

�
u0(cng1 )�R(�)u0

�
1� �cng1
1� � R(�)

��
d�

| {z }
=0

+

��(cng1 )Z
��g(c

ng
1 )

�
u0(cng1 )�R(�)u0

�
1� �cng1
1� � R(�)

��
d�

+�

�
u0(cng1 )�R(�

�
g(c

ng
1 ))u

0
�
1� �cng1
1� � R(��g(c

ng
1 ))

��
RESULT 3. For c1 given, �

�
g(c1) < �

�(c1):
Proof. Proposition 5 can be generalised to di¤erent values of the insurance o¤ered

in each period. It is easy to prove (by implicit di¤erentiation) that ��g is decreasing in
the gap g1 � g2: As the case without insurance can be described as a particular case
where g1 = 1=n and g2 = 0; �

�
g(c1) < �

�(c1) 8g1 = g2: �

RESULT 4. $(�; c1) increasing in � implies $(�
�
g(c

ng
1 ); c

ng
1 ) < $(�

�(cng1 ); c
ng
1 ) < 0:

Proof. �

1Z
��(cng1 )

$(�; cng1 )d� = 0 and
@$

@�
> 0; implies that the function $(:; cng1 )

is not constant and must change of sign in the interval [��(cng1 ); 1]. Being increasing,
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this means it has to be positive for high values of �; and negative for small values of
�. In particular, $(��(cng1 ); c

ng
1 ) < 0: �

From result 4, it follows that LHS(4)(c
ng
1 ) < 0: Hence, as $(�; c1) is decreasing in

c1; and $(�; c
ng
1 ) is negative over the region [�

�
g(c

ng
1 ); �

�(cng1 )], LHS(4)(c
g
1) = 0 if and

only if cg1 < c
ng
1 :

Remember I have assumed
@��g(c1)

@c1
=
@��(c1)

@c1
= 0; and then a change in c1 does

not change the limits of integration in the equations.
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