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Abstract

The investigation of the presence of structural change in economic and fi-
nancial series is a major preoccupation in econometrics. A number of tests
have been developed and used to explore the stationarity properties of various
processes. Most of the focus has rested on the first two moments of a process
thereby implying that these tests are tests of covariance stationarity. We pro-
pose a new test for strict stationarity, that considers the whole distribution of
the process rather than just its first two moments, and examine its asymptotic
properties. We provide two alternative bootstrap approximations for the exact
distribution of the test statistic. A Monte Carlo study illustrates the properties
of the new test and an empirical application to the constituents of the S&P 500
illustrates its usefulness.
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1 Introduction

The question of whether characteristics of economic and financial series change struc-

ture over time has been and continues to be a major preoccupation in econometrics.

The search for an answer has taken many guises. This focus is not surprising. Assum-

ing wrongly that the structure of a process remains fixed over time, has very significant

and adverse implications. The first obvious implication relates to parametric, or even

nonparametric, modelling and concerns the inconsistency of the estimated structure.

A distinct, yet related, implication is the fact that structural change is likely to be

responsible for most major forecast failures of time series models.

As a result a huge literature on modelling and testing structural change has

emerged. Most of the work assumes that structural changes occur rarely and are
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abrupt. Many tests for the presence of structural change of that form exist in the

literature starting with the pathbreaking work of Chow (1960) who assumed knowl-

edge of the point in time at which the change occurred. Other tests that relax this

assumption have been developed by Brown, Durbin, and Evans (1974), Ploberger

and Kramer (1992) and many others. In this context it is worth noting that little

is being said about the cause of structural breaks in either statistical or economic

terms. Recent work by Kapetanios and Tzavalis (2004) provides a possible avenue

for modelling structural breaks and, thus, addresses partially this issue.

Another more recent strand of the literature takes a different approach. In this

approach the coefficients of parametric models are assumed to evolve over time. To

achieve this the parameters are assumed to be stochastic processes leading to sto-

chastic time-varying coefficient (STVC) models. Such models bear resemblance to

simple nonlinear econometric models such as bilinear models (see Tong (1990)). An

important question arising out of the use of such models goes to the heart of what

structural change is. A relatively uncontroversial definition would be a change in the

unconditional moments of the process under investigation. If one were to adopt this

definition, use of STVC models may be problematic. To see this we note that, as

mentioned above, these models can be viewed as nonlinear time series models. But

processes following nonlinear models of that form can be strictly stationary under

certain assumptions (see, e.g., Pourahmadi (1988) and Liu and Brockwell (1988)).

Another alternative is to assume that coefficients change but in a smooth determin-

istic way. Such modelling attempts have a long pedigree in statistics starting with

the work of Priestley (1965). More recent examples of such work include Dahlhaus

(1996), Robinson (1989), Robinson (1991), Orbe, Ferreira, and Rodriguez-Poo (2005),

Kapetanios (2006) and Kapetanios (2007).

A vast and related literature concerns whether economic processes behave like

random walks or are stationary around a deterministic trend component. Unit root

processes change over time but in a very specific way. As a result the questions

addressed in this literature form part of the debate on structural change. In this con-

text, a widely used procedure is the KPSS test, proposed by Kwiatkowski, Phillips,

Schmidt, , and Shin (1992), for testing stationarity against the unit root alternative.

Other related tests of the same hypothesis have been studied in Leybourne and Mc-

Cabe (1994), Xiao (2001), Giraitis, Kokoszka, and Teyssiere (2003), Hobijn, Franses,
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and Ooms (2004) and Xiao and Lima (2007). Although most of these tests have been

developed with the unit root alternative in mind, they have been used more generally

to explore structural change.

Within the aforementioned literatures on testing for structural change focus has

almost exclusively been placed on changes in the first two moments of a process.

As a result all tests are essentially tests of covariance stationarity. However, while

this specific hypothesis may be of great interest, there are cases where it does not

address fully the issue of structural change. One leading example is financial time se-

ries where changes in higher moments such the skewness and kyrtosis are of interest.

Such changes cannot be captured by the aforementioned tests. A further example

where these tests may be found lacking concerns series which do not possess higher

moments. A majority of existing tests assume the existence of fourth moments. If

these moments do not exist then the asymptotic theory on which these tests are based

changes drastically (see, e.g., Loretan and Phillips (1996)).

The present paper focuses on the related hypothesis of strict stationarity thereby

considering the whole distribution of the process. Appropriate tests for strict station-

arity can address the above issues, by focusing on the whole distribution rather than

the first two moments. We provide an approach for testing this hypothesis which we

operationalise using nonparametric kernel methods. Since the use of kernel methods

usually implies that asymptotic approximations are not very accurate we also discuss

a bootstrap approximation. Our analysis is based on independent processes. This

assumption is relevant for our bootstrap implementation. However, we also discuss

extensions to dependent processes and an alternative less accurate bootstrap approx-

imation that takes better account of dependence. A Monte Carlo study illustrates

the performance of our methods in small samples. An extensive empirical application

to S&P 500 constituents illustrates further the potential of our approach. It is worth

noting some further recently available work by Busetti and Harvey (2007), that is

related to ours in the sense that focus is placed on changes in the quantiles of the

process rather than its moments, thereby providing an alternative to considering the

density of the process. Busetti and Harvey (2007) discuss methods based on state

space representations for testing the hypothesis of no change in quantiles. However,

unlike our work, a particular alternative based on a random walk representation is

considered.
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This paper is organised as follows: Section 2 discusses the problem and provides

the main test approach. Section 3 operationalises the test and provides its asymp-

totic properties. Section 4 discusses the bootstrap approximations. Sections 5 and

6 provide the Monte Carlo and empirical results of the paper respectively. Finally,

Section 7 concludes. The proofs are relegated to an Appendix.

2 Preliminaries

Consider a stochastic process yi, i = 1, ..., n which can be decomposed into a deter-

ministic component and a stochastic component as in

yi = di + xi (1)

The deterministic trend di depends on unknown parameters and is specified as di =

γ′zi, where γ = (γ0, ...., γp)
′ is a vector of trend coefficients and zi is a deterministic

trend of known form, e.g., zi = (1, i, ..., ip)′. Leading cases for the deterministic

component are a constant term, zi = 1, or a linear time trend, zi = (1, i)′. xi is the

stochastic component of yi. We assume that there exists an estimator, γ̂, for γ such

that x̂t−xt is asymptotically negligible for our theoretical results, where x̂t = yt−γ̂′zi.

In what follows we use x̂t as our data and for notational simplicity refer to it as xt.

We are interested in the null hypothesis that xi is strictly stationary. More formally,

letting fi(.) denote the probability density function of xi, the null hypothesis we test

is

H0 : fi = f, ∀i

Our entertained alternative is the complement of H0 and as a result it is extremely

general. It encompasses a number of alternatives that have been analysed extensively

in the literature such as unit root processes and processes with deterministic breaks

in the unconditional mean. Our alternative includes other cases of interest. These in-

clude the less analysed case of changes in the unconditional variance and cases which

have not been analysed at all such as changes in higher unconditional moments. It

is worth noting the findings of Xiao and Lima (2007) who observe that many widely

used stationarity tests cannot capture changes in the unconditional variance.

Out test approach has common elements with a widely used approach for con-

structing covariance stationarity tests. In particular, a principle on which covariance
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stationarity tests, such as that of Xiao and Lima (2007), are based is that excessive

fluctuation in the first two moments of a process indicate departures from covariance

stationarity. Excessive fluctuation is gauged by looking at the recursively estimated

sample first and second moment of the process. Our focus is not on moments but the

density function of the process.

Then, it seems reasonable to consider estimates of the density of the process

recursively estimated. Denoting an estimate of the density, at x, based on the first

i observations of the sample by f̂i(x) we consider the fluctuations of the process

f̂i(x) − f̂n(x) as a function of i and x. Related work on covariance stationarity test

considers the maximum over i. We choose to follow the same strategy for both i and

x and therefore consider as a test statistic the following

Tn = max
x∈X

max
i=n0,...,n−1

[
v̂

1/2
i (x)

(
f̂i(x)− f̂n(x)

)]
(2)

where X is some a priori chosen grid for x and v̂i(x) denotes the variance of f̂i(x)−
f̂n(x). An obvious choice for X is an evenly spaced grid of sample quantiles from the

whole sample.

Of course, we can use a variety of different estimators for the density function. In

the next section, we focus on kernel based estimators to operationalise the test based

on the test statistic given in (2).

3 The Test

As discussed in the previous Section, a test based on the fluctuations of the recur-

sively estimated density of the process of the form (2), has the potential of capturing

deviations from the null hypothesis of strict stationarity. In this section we focus on

kernel based estimators of the density of the process. Let

f̂i(x) =
1

ih

i∑
j=1

K

(
xj − x

h

)

for some kernel function K (.) satisfying
∫

K (ψ) dψ = 1 and some bandwidth para-

meter h. We make the following assumptions.

Assumption 1 Under the null hypothesis, H0, {xi}∞i=1 is a strictly stationary i.i.d.

sequence
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Assumption 2 The kernel function K(.) is a Borel-measurable real valued function

that satisfies the following:

1.
∫

K(ψ)dψ = 1

2.
∫ |K(ψ)|dψ < ∞

3. |ψ||K(ψ)| → 0 as |ψ| → ∞

4. sup |K(ψ)| < ∞

5.
∫

K2+δ(ψ)dψ < ∞ for some δ > 0.

Assumption 3 Under the null hypothesis, H0, f(x) is continuous at any point x0

and
∫

f(x)dx < ∞.

Assumption 4 h ≡ hn is such that (i) h → 0, (ii) nh →∞ and (iii) nh5 → 0.

Assumption 5 There exists an estimator for γ, denoted γ̂, such that γ̂ − γ =

op(
√

nh)

Some comments on the assumptions are in order. Assumption 1 is strict but made

at this point partly for convenience in deriving the covariance kernel of the limiting

process of f̂i(x)− f̂n(x) as a function of i, in Theorem 1. It is relaxed below Theorem

1 where we discuss how our results are affected by dependence. It is of relevance

in our main bootstrap implementation but again it is relaxed in the context of an

alternative bootstrap implementation in Section 4. Assumptions 2-4 are standard in

the kernel based density estimation literature and need no further discussion. As-

sumption 5 ensures that the estimation error arising from the need to estimate γ is

negligible. The presence of a second moment for ut is enough to ensure a paramet-

ric rate of convergence for standard estimators for γ which satisfies the assumption.

However, since we do not assume the existence of any moments we need to assume

Assumption 5.

We then have the following theorem

Theorem 1 Under assumptions 1-4
√

nh
(
f̂[nr](x)− f̂n(x))

)
, r ∈ (0, 1) converges

weakly to a Gaussian process with covariance kernel given by (25) and (41)
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This theorem provides the means for constructing a test since using the above theo-

rem, it follows that the covariance kernel of the limit of the process
√

nhf̂
−1/2
n (x)

(
f̂[nr](x)− f̂n(x))

)

contains no nuisance parameters and therefore the distribution of its maximum over

r and X , under the null hypothesis, can be tabulated and used for testing the null

hypothesis. These critical values will only depend on X .

A major assumption that has been made in the derivation of the covariance kernel

of the limit of the process of
√

nh
(
f̂[nr](x)− f̂n(x))

)
is that the data are independent.

This assumption can be relaxed straightforwardly using results from Robinson (1983)

and Doukhan, Massart, and Rio (1995). The alternative dependence assumption

needed is given below.

Assumption 6 The process {yi}∞i=1 is strictly stationary and β-mixing with mixing

coefficients βm, m = 1, ... such that h−1
∑n

m=1 βm < ∞.

Then, the following Theorem holds

Theorem 2 Under assumptions 2-6
√

nh
(
f̂[nr](x)− f̂n(x))

)
, r ∈ (0, 1) converges

weakly to a Gaussian process with the same covariance kernel as in the i.i.d. case.

These results provide a comprehensive description of the behaviour of the new

test under the null hypothesis. However, preliminary investigations suggest that the

asymptotic approximation is badly behaved. As a result the next section discusses a

bootstrap approximation to the exact distribution of the test statistic.

We conclude this section with a discussion of the behaviour of the test when the

null hypothesis does not hold. As the deviations from the null hypothesis can take

many forms we cannot provide a general discussion but it is worth exploring the

effect of a break in the density function as some point in time denoted n1 such that

n1/n = c ∈ (0, 1). Let n2 = n − n1. Let the true density prior to and following

the break be denoted by f (1)(x) and f (2)(x) respectively. Finally, let f1(x) and f2(x)

be different on an interval of non-zero Borel measure. Therefore, the alternative

hypothesis is

H1,b : fi(x) =

{
f (1)(x) if i ≤ n1

f (2)(x) if i > n1

Then, for r < c, f̂[nr](x)
p→ f (1)(x) whereas

f̂n(x) =
1

nh(n)

n∑
j=1

K

(
xj − x

h

)
=

n1h(n1)

nh

[
1

n1h(n1)

n1∑
j=1

K

(
xj − x

h

)]
+
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n2h(n2)

nh

[
1

n2h(n2)

n∑
j=n1+1

K

(
xj − x

h

)]
p→ c1+αf (1) + (1− c1+α)f (2)

where we have assumed that h = nα for some α < 0. As a result the test statistic

will be Op(n
(1+α)/2) providing consistency for the test in the case of abrupt breaks.

The above is summarised in the following Theorem.

Theorem 3 Under Assumptions 2-4 but letting H1,b hold instead of H0 and assuming

that both f (1)(.) and f (2)(.) satisfy the relevant parts of Assumptions 2-4, the test based

on the test statistic given by (2), and using the relevant asymptotic critical values

discussed below Theorem 1, is consistent.

Of course it is straightforward to extend Theorem 3 to a local power framework,

whereby we can see that the proposed test has power exceeding some assumed signif-

icance level if the following local alternative holds

H1,b,l : fi(x) =

{
f (1)(x) if i ≤ n1

f (2,n)(x) if i > n1

where f (2,n)(x) = f (1)(x) + n−(1+α)/2g(x), g(x) is different from zero on an interval of

non-zero Borel measure and g(x) is such that for all n, f (2,n)(x) is a proper density

function and satisfies the relevant parts of Assumptions 2-4. Similar analyses are,

of course, possible for other alternative hypotheses where the structural change in

the density function is smooth rather than abrupt, at the additional cost of a more

complicated setup for describing such structural changes. Nevertheless, it is worth

noting that H1,b (and, therefore, H1,b,l) is quite general encompassing all possible

abrupt changes in the process, such as, e.g., changes in moments of all orders.

4 A Bootstrap Approximation

In this section we investigate bootstrap approximations to the exact distribution of

our test statistic. Our first suggestion is an intuitive bootstrap sample generator

based on the density estimate using the whole sample. In particular, using the den-

sity estimate obtained over the whole sample we generate bootstrap data as follows:

Let F̂n(x) =
∫ x

−∞ f̂n(y)dy. Then, each observation of the bootstrap sample x∗1, . . . , x
∗
n

is generated by x∗i = F̂−1
n (u∗i ) where u∗1, . . . , u

∗
n are i.i.d. random variables distrib-

uted uniformly over (0, 1). The integration of f̂n(.) and the inversion of F̂n(.) may

be done easily numerically. The above scheme is easy to carry out and imposes the

null hypothesis onto the bootstrap samples since given some estimate of the density
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function the bootstrap sample is strictly stationary even if the original sample is not.

We will provide a formal justification of this scheme, referred to as Resampling

Scheme IB (for independent boostrap) (RSIB) in what follows. However, a shortcom-

ing of the above scheme is the fact that it assumes independence as the bootstrap

sample will be i.i.d. even if the original sample is not. On this we note two things:

firstly, extensions are possible along the lines of using estimates of the joint density

of xt, . . . xt−p for some p > 0 to construct the bootstrap samples, but these extensions

are both dependent on a choice of p and numerically problematic. Secondly, given

the results of Theorems 1 and 2 even if data are dependent, but satisfy the mixing

assumption 6, use of RSIB is asymptotically justified.

The issue with the above scheme is the fact that the null hypothesis needs to

be imposed on the bootstrap samples, otherwise simply resampling the data using

some block resampling scheme would be adequate and would fully accommodate

dependence. An alternative approach that provides valid inference without the need

to impose the null hypothesis on the bootstrap samples is provided by subsampling.

Subsampling was introduced informally by Mahalanobis (1946). Its properties were

first discussed formally in Politis and Romano (1994). The method entails resampling

without replacement from the original data and constructing samples of smaller size

than the original sample. In the case of dependent process subsampling occurs by

sequentially resampling n−b+1 overlapping blocks of size b from the original sample.

Each such block is a resample. By virtue of the fact that, as Politis, Romano, and

Wolf (1999, p. 40) put it, ‘each subset of size b (taken without replacement from

the original data) is indeed a sample of size b from the true model’, a more robust

approximation to the properties of statistics based on the original sample is feasible.

Further, given that the original test statistic will be consistent, for abrupt changes in

the density, and Op(n
(1+α)/2) whereas the subsample test statistic, being based on a

sample of size b, will therefore be Op(b
(1+α)/2) = op(n

(1+α)/2). implies that a test based

on subsampling without imposing the null hypothesis on the subsample samples will

still be consistent albeit with lower power. We will refer to this subsampling scheme

as Resampling Scheme DS (for dependent subsampling) (RSDS).

For the theoretical justification of the two resampling schemes we propose, we

introduce the following assumptions and provide the following theorems.
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Assumption 7 The characteristic function of K is absolutely integrable.

Assumption 8 Under the null hypothesis, f is uniformly continuous.

Assumption 9 h ≡ hn is such that nh2 →∞.

Let the exact distribution of T in (2) be denoted by Gn(x, Tn). Let the estimates

of Gn(x, Tn) using the RSIB and RSDS be denoted ĜRSIB
n (x, Tn) and ĜRSDS

n,b (x, Tn)

respectively. Finally, let Pn denote the joint probability distribution of the sample

y1, . . . , yn. Then, the following Theorems hold

Theorem 4 Under the null hypothesis H0 and assumptions 1-4 and 7-9

lim
n→∞

Pn

[
sup

x

∣∣∣ĜRSIB
n (x, Tn)−Gn(x, Tn)

∣∣∣ > ε

]
= 0

for all ε > 0.

Theorem 5 Under the null hypothesis H0 and assumptions 2-9

lim
n→∞

Pn

[
sup

x

∣∣∣ĜRSDS
n,b (x, Tn)−Gn(x, Tn)

∣∣∣ > ε

]
= 0

5 Monte Carlo Study

In this Section we provide a Monte Carlo study of the new test. We look at the perfor-

mance of the test under both the null hypothesis and a particular class of alternative

hypotheses. Given that we have focused on a discussion of abrupt changes in the

discussion on test power in Section 3 we focus on this class of alternative hypotheses.

As we have discussed in the Introduction, the new test can be useful in two major

additional ways to existing tests. Firstly, as a test of changes that are not captured

by changes in the first two moments of the process and secondly as a test that is

appropriate when it is suspected that the process does not have higher moments,

since most existing tests assume the existence of fourth moments. We investigate

both cases in our Monte Carlo study.

We now describe in detail the structure of our study. We focus on the RSIB to

construct our test as we wish to focus on a variety of structural change scenarios and

do not wish to complicate matters by introducing dependence. We first discuss the

setup for the null hypothesis. In this case we generate data using four different dis-

tributions. The first is simply the standard normal which provides a benchmark for
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the test. The rest of the experiments consider t-distributed random variables with v

degrees of freedom where we set v to 3, 4 and 5. In the case of v = 3, 4 we violate the

usual assumption of finite fourth moments on which many stationarity tests are based.

For the alternative hypothesis we consider four different sets of experiments, de-

noted experiment sets 1, 2, 3 and 4. For experiment set j, j = 1, ..., 4, we impose a

break at the middle of the sample in the j-th moment of the process. For each ex-

periment set we vary the magnitude of the break to evaluate power performance. For

each experiment set we consider breaks of four different magnitudes which, of course,

depend in nature on the experiment set j. We refer to these break magnitudes as

Breaks A-D. The data generation process for the first half of each sample is simply

the standard normal distribution. The data generation process for the second half of

each sample for each experiment set is detailed below:

• Experiment Set 1: x[n/2]+1, ..., xn ∼ i.i.d. N(a, 1) where a = 0.25, 0.5, 1, 1.5

• Experiment Set 2: x[n/2]+1, ..., xn ∼ i.i.d. N(0, a) where a = 1.5, 1.75, 2, 2.5

• Experiment Set 3: xi = (x̃i − µ̂)/σ̂ where x̃[n/2]+1, ..., x̃n ∼ i.i.d. TPN(1, a2, 0)

where a = 2, 3, 4, 5 and µ̂ and σ̂2 are the sample mean and variance of x̃[n/2]+1, ..., x̃n.

• Experiment Set 4: xi = (x̃i − µ̂)/σ̂ where x̃[n/2]+1, ...,∼ i.i.d. ta where a =

5, 4, 3, 2 and µ̂ and σ̂2 are the sample mean and variance of x̃[n/2]+1, ..., x̃n.

Some comment is in order for Experiment Set 3. This introduces a break in the

third moment. To do this we use the two-part normal distribution (TPN) which

allows for skews. A good references for TPN is John (1982). The TPN is closely

related to the normal hence its intuitive appeal. It has been used in the Inflation

Report produced quarterly by the Bank of England to provide information on the

central bank’s view of skews in inflation and GDP growth forecasts. Its density is

simply made up of splicing together two normalised halves of normal densities. The

algebraic form of the TPN(σ2
1, σ

2
1, µ) density is given by

(π(σ1 + σ2)
2/2)−1/2 e−1/2(x−µ)2/σ2

1 x < µ
(π(σ1 + σ2)

2/2)−1/2 x = µ

(π(σ1 + σ2)
2/2)−1/2 e−1/2(x−µ)2/σ2

2 x > µ

where µ is the common mean (and mode) of the two normal densities (and the mode

of the resulting TPN) and σ2
i , i = 1, 2 are the respective variances. Figure 1 provides
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the graph of the four densities we consider for Experiment Set 3. For comparability,

we also provide graphs of the densities for Experiment Sets 1, 2 and 4, in that Fig-

ure. Note that the normalisation that takes x̃t to yt, for Experiment Sets 3 and 4,

is one that ensures that the first two moments of the distribution do not change. It

worth noting that for Experiment Set 3 the break is not confined to the third mo-

ment but affects the fourth moment of the distribution as well. We consider samples

sizes of 200 and 400. X is set to 20 evenly spaced quantiles starting with the lowest

decile and finishing with the highest. We set r (the proportion of observations from

which we recursively estimate the density) to 0.2 and α where h = nα to -1/5. We

carry out 99 bootstrap replications and 500 Monte Carlo replications. Both of these

numbers are relatively small but increasing the number of bootstrap replications can

only improve the results. Further, the computational cost of running the bootstrap

procedure coupled with the numerical cost of integrating f̂ and especially inverting

F̂ is considerable. We have not explored computationally efficient ways of inverting F̂ .

Results are reported in Table 1 for the size experiments and Table 2 for the power

experiments. They make interesting reading. The RSIB resampling scheme performs

very well under the null hypothesis for all distributions considered. This is especially

encouraging in the case of distributions t4 and t3 since in these cases the fourth mo-

ment, usually assumed finite in the stationarity testing literature, does not exist.

Moving on to the power experiments we again obtain encouraging results. The

power of the test increases with sample size reinforcing the findings of Theorem 4

concerning the consistency of the test. The power is also increasing with respect to

the break magnitude, again in accordance with intuition. It is interesting to see how

power behaves with respect to the moment that actually suffers the break. The test

is most powerful for breaks in the mean as expected. Breaks in the unconditional

variance are the second most detectable followed by breaks in the fourth moment.

Breaks in the third moment are the least easy to detect. With the exception of third

moment breaks, the above ranking is intuitive. Overall, results suggest that even for

relatively small sample sizes such as 200 observations, which is a small sample for

most financial time series, the test can provide reasonable power as long as the break

is relatively pronounced.
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Table 1: Monte Carlo Size Results

T
Distribution 200 400

Normal 0.036 0.056
t5 0.062 0.050
t4 0.052 0.064
t3 0.064 0.062

Table 2: Monte Carlo Power Results

Experiment Set
Break T 1 2 3 4

A 200 0.076 0.084 0.050 0.072
400 0.166 0.202 0.086 0.110

B 200 0.234 0.188 0.094 0.120
400 0.474 0.342 0.162 0.212

C 200 0.818 0.256 0.108 0.204
400 0.984 0.550 0.210 0.378

D 200 0.998 0.448 0.106 0.520
400 1.000 0.828 0.250 0.780
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Figure 1: Monte Carlo study Densities

6 Empirical Application to Stock Returns

In this section, we provide an empirical application that illustrates the potential of

the new test to detect the presence of structural change. As it is sometimes diffi-

cult to draw meaningful conclusions from the empirical analysis of a single series for

the performance of a new statistical test, we consider a large dataset such as the

S&P 500. Data, obtained from Datastream, are weekly returns and span the period

01/01/1993-20/01/2004 comprising 575 weekly observations. We choose to consider

only companies for which data are available throughout the period leading us to have

412 series on which to use our test. We normalise the returns series to have mean

equal to zero and variance equal to one prior to applying our test. We apply our test

setting X to 20 evenly spaced quantiles starting with the lowest decile and finishing
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with the highest, following our Monte Carlo study. We set r (the proportion of obser-

vations from which we recursively estimate the density) to 0.2 and α where h = nα

to -1/5. The bootstrap replications are set to 149, significantly increasing the value

from that used in the Monte Carlo study.

We report the probability values for the test of the strict stationarity null hypoth-

esis, carried out on the 412 company return series in Tables 3-6. Probability values

below 0.05, and the company names to which they correspond, are reported in bold

typescript for easy identification. As we can see for these Tables a large minority of

the series are in fact found to reject the null hypothesis of strict stationarity at the

95% significance level.

These results prompt the obvious question as to what causes the tests to reject. In

order to explore further this issue we carry out the following supplementary analysis.

We estimate recursively the mean, variance, skew and kyrtosis of the series that reject

the null hypothesis of strict stationarity and plot these in Figures 2-5. We set the

proportion of observations from which we recursively estimate the above statistics to

0.2 which is equal to the value for r used for the stationarity tests. The plots are in

the same order as the company names in the Tables. So, for example, the ninth stock

for which there is evidence to reject the hypothesis of strict stationarity is AT&T in

Table 3 (as noted next to the company name in the Tables). The relevant plots for

this stock are those found last on the first row of plots for each of the Figures 2 to 5,

since each row of plots contains nine plots. Likewise, the relevant plots for the 10th

stock that rejects (Company Name: Automatic Data Processing) are those found first

in the second row of plots, and so on.

Examination of these plots provides some interesting insights. Starting with the

recursively estimated mean we see that a number of stock returns exhibit an inverted

U shape with the peak around the year 2000 corresponding with the bull market of

the late 90’s. Despite this, the evidence for a structural change in the mean is not

that convincing. Given the pretty strong evidence that stock returns are not unit

root process it is clear that, as noted by Xiao and Lima (2007), standard covariance

stationarity tests will not have power to detect any other form of structural change.

Next we move to Figure 3 which provides plots of recursively estimated variances.
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Here the picture is pretty clear. Most stock returns exhibit an upward trend in uncon-

ditional variance. It is worth stressing the distinction between conditional variance

which is the focus of many volatility models such as GARCH and stochastic volatility

models, and may vary for stationary processes, and unconditional variance which has

to be fixed if a process is stationary. Unconditional variance has received less atten-

tion than its conditional counterpart. Figure 3 clearly shows that an upward trend

in unconditional variance is likely to be the cause of the rejections given by the strict

stationarity test. Note further that this upward trend, although the main feature of

the recursively estimated variances, is not the only feature. It is apparent mainly for

the period 1998-2002. Since 2002 there has been a stabilisation of the variance and

in many cases a reduction. Moreover, given that the recursively estimate variance is

by necessity backward looking this stabilisation is likely to have started shortly after

2000.

Moving on to the plots of the recursively estimated skews and kyrtoses we note

that there is little evidence of a systematic pattern of change across stock returns.

It is worth focusing some attention on three stock returns which do not exhibit such

strong trends in their recursively estimated unconditional variances. These are Elec-

tronic Arts, International Game Technology and Navistar International (the 27th,

44th and 63rd series that reject). Of those, International Game Technology exhibits

a clear trend for the recursively estimated mean providing some explanation for the

test rejection. For the other two stocks it appears that significant shifts in the skew

(Navistar International) and kyrtosis (Electronic Arts, Navistar International) can

provide a reason for the test rejections. It is worth noting that the recursive esti-

mates of higher moments are quite sensitive to outliers (which provide, of course,

potential evidence of fat tails and other deviations from normality) and as a result

one should interpret these plots cautiously.

Overall, we can conclude that there has been a gradual upward shift in uncon-

ditional variances for the stocks examined during the late 90’s and early 2000’s and

that this is the main cause of the widespread rejection of the strict stationarity null

hypothesis. This is a rather powerful result. It suggests that the consideration of con-

ditional mean and, especially, conditional variance models which assume stationarity

is problematic for the period under examination. All estimation results for such mod-

els, if they assume stationarity, are therefore suspect. A further important question
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relates to modelling conditional volatility. Are the shifts we observe changes in con-

ditional or unconditional volatility? Out analysis suggest the unconditional volatility

has shifted. If so, modeling via GARCH or stochastic volatility model comes into

question. There is another possibility: That swings in conditional volatility are long

term ones that involve periods of 3-5 years, or even longer periods. Given our sample

period, such swings would appear as unconditional volatility swings. But this pos-

sibility simply recasts the problem. These swings cannot be captured by standard

volatility models and may require models where structural change is regular but rare.

The work of Kapetanios and Tzavalis (2006) provides one modelling avenue in that

direction.

7 Conclusion

The presence of structural change in economic and financial series is a major preoc-

cupation in econometrics. A number of tests that have been developed for testing

whether a process is unit root or not, such those developed in Leybourne and McCabe

(1994), Xiao (2001), Giraitis, Kokoszka, and Teyssiere (2003), Hobijn, Franses, and

Ooms (2004) and Xiao and Lima (2007) have been applied more generally to explore

the stationarity properties of various processes. Most of the focus has rested on the

first two moments of a process thereby implying that these tests are tests of covariance

stationarity. Further, most of these tests make a somewhat restrictive assumption in

requiring the existence of fourth moments.

We propose a new test for strict stationarity, that considers the whole distribu-

tion of the process rather than just its first two moments, and examine its asymptotic

properties. We provide two alternative bootstrap approximations for the exact dis-

tribution of the test statistic. A Monte Carlo study illustrates the properties of the

new test and an empirical application to the constituents of the S&P 500 illustrates

its usefulness.

In terms of future research it is worth noting that the analysis of the current paper

focuses on univariate processes. However, it is possible to conceive of situations where

the contemporaneous codependence structure of two processes changes whereas their

marginal distributions remains fixed. As a result our analysis can be easily extended to

multivariate density estimators and this is the topic of currently undertaken research.
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8 Appendix

8.1 Proof of Theorem 1

The result of Theorem 1 follows if we show the following:

1. Convergence of the finite dimensional distributions of
√

nh
(
f̂[nr](x)− f̂n(x))

)

to a multivariate normal distribution (Result A)

2. Derivation of the covariance kernel of the limit of the process
√

nh
(
f̂[nr](x)− f̂n(x))

)

(Result B)

3. Stochastic equicontinuity of
√

nh
(
f̂[nr](x)− f̂n(x))

)
(Result C)

Note that Assumption 5 ensures that the estimation error arising from the need

to estimate γ is negligible. Hence, we disregard the presence of γ̂ in the rest of the

proofs. Result A follows immediately from assumptions 1-4 and Theorem 2.10 of

Pagan and Ullah (2000). Result B is derived in subsection 8.2. Result C can be

established using Theorem 1 of Doukhan, Massart, and Rio (1995). In particular,

two conditions need to be satisfied: Firstly that K
(xj−x

h

)
is β-mixing with summable

β-mixing coefficients. This is trivial given Assumption 1. Secondly, that the square

root of the logarithm of the L2v bracketing numbers is integrable. We focus on this

condition. Let x ∈ Γ ⊂ R. Then, one can always find a set ΓN and constant G < ∞
such that for all x ∈ Γ there is xk ∈ ΓN such that

|x− xk| ≤ GN−1

Set the bracketing numbers N(δ) = GBδ. By the boundedness of K(.) it follows that

|K
(

xj − x

h

)
−K

(
xj − xk

h

)
| ≤ B|x− xk| ≤ BGN−1 = δ

Thus, N(δ) satisfy the definition of the L2v bracketing numbers. Since

∫ 1

0

√
log(N(δ)) ≤

√
log(GB) +

∫ 1

0

√
log(δ) < ∞

the second condition is satisfied giving Result C and therefore proving Theorem 1.

8.2 Derivation of the covariance kernel of the limit of the
process

√
nh

(
f̂[nr](x)− f̂n(x))

)

Throughout this subsection we assume that the null hypothesis holds. Assuming,

without loss of generality that n2 > n1, define rj,n =
nj

n
, j = 1, 2, and rj = limn→∞ rj,n.
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Then,

f̂nj
(x) ≡ f̂(rj,n) =

1

njhj

n1∑
i=1

K

(
xi − x

hj

)
. (3)

Then,

f̂(r1,n)− f̂(r2,n) =
1

n1h1

n1∑
i=1

K

(
xi − x

h1

)
− 1

n2h2

n2∑
i=1

K

(
xi − x

h2

)
= (4)

1

n1

n1∑
i=1

[
1

h1

K

(
xi − x

h1

)
− n1

n2h2

K

(
xi − x

h2

)]
− 1

n2h2

n2∑
i=n1+1

K

(
xi − x

h2

)
. (5)

Define

wi =
1

h1

K

(
xi − x

h1

)
− n1

n2h2

K

(
xi − x

h2

)
. (6)

We need to derive E(wi) and V ar(wi) and their limits. Define ψj = xi−x
hj

, j = 1, 2,

and rn = n1

n2
. Then,

E(wi) =

∫

R
K (ψ1) f(h1ψ1 + x)dψ1 − rn

∫

R
K (ψ2) f(h2ψ2 + x)dψ2. (7)

Further,

lim
n→∞

E(wi) = f(x)

∫

R
K (ψ1) dψ1 − rf(x)

∫

R
K (ψ2) dψ2 = (1− r)f(x)

∫

R
K (ψ) dψ,

(8)

where r = limn→∞ rn. Next,

V ar(wi) = E(w2
i )− E(wi)

2.

So,

E(w2
i ) = h−2

1 E

(
K

(
xi − x

h1

)2
)

+ r2
nh

−2
2 E

(
K

(
xi − x

h2

)2
)
− (9)

2h−1
1 h−1

2 rnE

(
K

(
xi − x

h1

)
K

(
xi − x

h2

))
.

Taking limits of each term on the RHS of (9) after normalising by h1 gives

lim
n→∞

h−1
1 E

(
K

(
xi − x

h1

)2
)

= lim
n→∞

∫

R
K (ψ1)

2 f(h1ψ1 + x)dψ1 = (10)

f(x)

∫

R
K (ψ1)

2 dψ1.

Next

lim
n→∞

r2
nh

−2
2 h1E

(
K

(
xi − x

h2

)2
)

= r2+αf(x)

∫

R
K (ψ2)

2 dψ2. (11)
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noting that hj = nα
j , j = 1, 2 for some α < 0. Further, noting that xi−x

h2
= ψ1r

α
n , we

get

lim
n→∞

2h−1
2 rnE

(
K

(
xi − x

h1

)
K

(
xi − x

h2

))
= (12)

lim
n→∞

2h−1
2 rnh1

∫

R
K (ψ1) K (ψ1r

α
n) f(h1ψ1+x)dψ1 = 2r1+αf(x)

∫

R
K (ψ1) K (ψ1r

α) dψ1.

Overall,

lim
n→∞

h1E(w2
i ) = f(x)

[(
1 + r2+α

) ∫

R
K (ψ)2 dψ − 2r1+α

∫

R
K (ψ) K (ψrα) dψ

]
=

(13)

f(x)K(1)(r),

where K(1)(r) = (1 + r2+α)
∫
RK (ψ)2 dψ − 2r1+α

∫
RK (ψ) K (ψrα) dψ. We next ex-

amine the second term of the RHS of (5). We have

1

n2h2

n2∑
i=n1+1

K

(
xi − x

h2

)
= (1− rn)

1

n∗

n∗∑
i=1

w∗
i+n1

, (14)

where w∗
i = 1

h2
K

(
xi−x
h2

)
, n∗ = n2 − n1 and by similar analysis to that given above

lim
n→∞

E(w∗
i ) = f(x)

∫

R
K (ψ) dψ (15)

and

lim
n→∞

h1E
(
w∗2

i

)
= rαf(x)

∫

R
K (ψ)2 dψ. (16)

Then, under the null hypothesis of strict stationarity,

lim
n→∞

E
(
f̂(r1,n)− f̂(r2,n)

)
= 0. (17)

Next,

nhV ar
(
f̂(r1,n)− f̂(r2,n)

)
= nhV ar

[
1

n1

n1∑
i=1

wi − (1− rn)

n∗

n∗∑
i=1

w∗
i+n1

]
. (18)

But, the two sums in the variance term in the RHS of (18) are made up of different

observations in the sample and are therefore independent. So,

nhV ar

[
1

n1

n1∑
i=1

wi − (1− rn)

n∗

n∗∑
i=1

w∗
i+n1

]
= nhV ar

[
1

n1

n1∑
i=1

wi

]
+ (19)

nhV ar

[
(1− rn)

n∗

n∗∑
i=1

w∗
i+n1

]
.

20



Then,

nhV ar

[
1

n1

n1∑
i=1

wi

]
=

nh

n1

(
E

(
w2

i

)− E(wi)
2
)
. (20)

Taking limits with respect to n gives that

lim
n→∞

nhV ar

[
1

n1

n1∑
i=1

wi

]
= r−1−α

1 f(x)K(1), (21)

since limn→∞ nh
n1

E(wi) = 0. Next,

lim
n→∞

nhV ar

[
(1− rn)

n∗

n∗∑
i=1

w∗
i+n1

]
= lim

n→∞

[(
nh(1− rn)2

n∗h1

)
h1

(
E

(
w∗2

i

)− E(w∗
i )

2
)]

=

(22)

r−1
2 r−α

1 (1− r)rαf(x)

∫

R
K (ψ)2 dψ = r−1

2 r−α
1 (1− r)f(x)K(2),

where K(2) =
∫
RK (ψ)2 dψ. So, overall

lim
n→∞

nhV ar
(
f̂(r1,n)− f̂(r2,n)

)
= f(x)

[
r−1−α
1 K(1)(r) + r−1

2 r−α
1 (1− r)rαK(2)

]
. (23)

This specialises in the case where n2 = n to

lim
n→∞

nhV ar
(
f̂(r1,n)− f̂(1)

)
= f(x)

[
r−1−α
1 K(1)(r1) + (1− r1)K

(2)
]

= (24)

f(x)

[(
r−1−α
1 + r1 + 1− r1

) ∫

R
K (ψ)2 dψ − 2

∫

R
K (ψ) K (ψrα) dψ

]
(25)

As a final ingredient for the determination of the covariance kernel of the process

f̂(r)− f̂(1), r ∈ (0, 1) we have to derive

lim
n→∞

nhCov
[
f̂(r1,n)− f̂(1), f̂(r2,n)− f̂(1)

]
= (26)

lim
n→∞

nhE
[(

f̂(r1,n)− f̂(1)
) (

f̂(r2,n)− f̂(1)
)]

.

Define

wi(rj,n) =
1

hj

K

(
xi − x

hj

)
− rj,n

h
K

(
xi − x

h

)
, j = 1, 2, (27)

and

w∗
1,i =

1

h
K

(
xi − x

h

)
. (28)

Then,

f̂(rj,n)− f̂(1) =
1

nj

nj∑
i=1

wi(rj,n)− 1

n

n∑
i=nj+1

w∗
1,i, j = 1, 2. (29)
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So, by independence across i, we have

E
[(

f̂(r1,n)− f̂(1)
)(

f̂(r2,n)− f̂(1)
)]

=
1

n1n2

n1∑
i=1

E (wi(r1,n)wi(r2,n)) + (30)

1

n2

n∑
i=n2+1

E
(
w∗2

1,i

)− 1

n2n

n2∑
i=n1+1

E
(
w∗

1,iwi(r2,n)
)
.

For the second term of (30) we have from above

lim
n→∞

hE
(
w∗2

1,i

)
= f(x)K(2). (31)

Looking at the first and third terms in turn gives

wi(r1,n)wi(r2,n) =
1

h1h2

K

(
xi − x

h1

)
K

(
xi − x

h2

)
+

r1,nr2,n

h2
K

(
xi − x

h

)2

− (32)

r1,n

hh2

K

(
xi − x

h

)
K

(
xi − x

h2

)
− r2,n

hh1

K

(
xi − x

h

)
K

(
xi − x

h1

)
.

Taking overall expectations and normalising by h gives

lim
n→∞

hE (wi(r1,n)wi(r2,n)) = f(x)

[
r−α
2

∫

R
K (ψ) K

(
ψ

(
r1

r2

)α)
dψ− (33)

r1

∫

R
K (ψ2r

α
2 ) K (ψ2) dψ2 − r2

∫

R
K (ψ1) K (ψ1r

α
1 ) dψ1 + r1r2K

(2)

]
=

f(x)K(3)(r1, r2),

where

K(3)(r1, r2) = r−α
2

∫

R
K (ψ) K

(
ψ

(
r1

r2

)α)
dψ− (34)

r1

∫

R
K (ψ) K (ψrα

2 ) dψ − r2

∫

R
K (ψ) K (ψrα

1 ) dψ + r1r2K
(2).

For the third term of (30) we have

w∗
1,iwi(r2,n) =

1

hh2

K

(
xi − x

h

)
K

(
xi − x

h2

)
− r2,n

h2
K

(
xi − x

h

)2

. (35)

Again taking expectations and normalising by h gives

lim
n→∞

hE
(
w∗

1,iwi(r2,n)
)

= f(x)

[∫

R
K (ψ2) K (ψ2r

α
2 ) dψ2 − r2K

(2)

]
= (36)

f(x)K(4)(r2),

where

K(4)(r2) =

∫

R
K (ψ) K (ψrα

2 ) dψ − r2K
(2). (37)
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Overall,

lim
n→∞

nh

n1n2

n1∑
i=1

E (wi(r1,n)wi(r2,n)) = r−1
2 f(x)K(3)(r1, r2), (38)

lim
n→∞

nh

n2

n∑
i=n2+1

E
(
w∗2

1,i

)
= (1− r2)f(x)K(2).

and

lim
n→∞

nh

n2n

n2∑
i=n1+1

E
(
w∗

1,iwi(r2,n)
)

= lim
n→∞

n2h(r2,n − r1,n)

n2n
E

(
w∗

1,iwi(r2,n)
)

= (39)

(
1− r1

r2

)
f(x)K(4)(r2).

Thus,

lim
n→∞

nhCov
[(

f̂(r1,n)− f̂(1)
) (

f̂(r2,n)− f̂(1)
)]

= (40)

f(x)

[
r−1
2 K(3)(r1, r2) + (1− r2)K

(2) −
(

1− r1

r2

)
K(4)(r2)

]
. (41)

Overall, the covariance structure of
√

nh
(
f̂(r)− f̂(1)

)
, r ∈ (0, 1) is given by (25)

and (41).

8.3 Proof of Theorem 2

Theorem 2 follows if we note the following. Theorem 2.10 of Pagan and Ullah (2000)

holds when replacing Assumption 1 with Assumption 6 using the results of Robinson

(1983) (see also Pagan and Ullah (2000, Sec. 2.6.3)). The covariance structure of

the process
√

nh
(
f̂[nr](x)− f̂n(x))

)
remains the same as in Theorem 1 as long as

Assumption 6 holds. Further, assumption 6 satisfies the mixing condition needed for

Theorem 1 of Doukhan, Massart, and Rio (1995). Hence, Theorem 2 follows.

8.4 Proof of Theorem 4

In order to prove Theorem 4 we use Theorem 2.2 of Horowitz (2002) which is a

restatement of a result in Mammen (1992). Given the normality result of Theorem 1,

Mammen’s result implies that if RSIB is applied using fn(.) rather than f̂n(.) to

generate the boostrap sample then

lim
n→∞

Pn

[
sup

x

∣∣GRSIB
n (x, Tn)−Gn(x, Tn)

∣∣ > ε

]
= 0,
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where GRSIB
n (x, Tn) denotes the estimate of Gn(x, Tn) using the RSIB but with fn(.)

rather than f̂n(.). But

lim
n→∞

Pn

[
sup

x

∣∣∣ĜRSIB
n (x, Tn)−Gn(x, Tn)

∣∣∣ > ε

]
≤

lim
n→∞

Pn

[
sup

x

∣∣∣ĜRSIB
n (x, Tn)−GRSIB

n (x, Tn)
∣∣∣ > ε/2

]
+

lim
n→∞

Pn

[
sup

x

∣∣GRSIB
n (x, Tn)−Gn(x, Tn)

∣∣ > ε/2

]
.

Thus, the Theorem is proved if we show that

lim
n→∞

Pn

[
sup

x

∣∣∣ĜRSIB
n (x, Tn)−GRSIB

n (x, Tn)
∣∣∣ > ε/2

]
= 0.

We have that

ĜRSIB
n (x, Tn) =

1

B

B∑
s=1

I(T̂ ∗,s
n ≤ x),

and

GRSIB
n (x, Tn) =

1

B

B∑
s=1

I(T ∗,s
n ≤ x),

where T̂ ∗,s
n and T ∗,s

n denote the RSIB boostrap test statistics from the bootstrap sam-

ples (x̂∗,s1 , . . . , x̂∗,sn )′ and (x∗,s1 , . . . , x∗,sn )′ obtained using the same uniformly distributed

i.i.d. random variables (u∗,s1 , . . . , u∗,sn )′, and f̂n(.) and fn(.) respectively and B is the

number of bootstrap replications. Further, let f̂ ∗,si (x) and f ∗,si (x) denote the boostrap

estimates of fi(x) used to construct T̂ ∗,s
n and T ∗,s

n respectively. Then,

lim
n→∞

Pn

[
sup

x

∣∣∣ĜRSIB
n (x, Tn)−GRSIB

n (x, Tn)
∣∣∣ > ε/2

]
=

lim
n→∞

Pn

[
sup

x

∣∣∣∣∣
1

B

B∑
s=1

I(T̂ ∗,s
n ≤ x)− 1

B

B∑
s=1

I(T ∗,s
n ≤ x)

∣∣∣∣∣ > ε/2

]
≤

lim
n→∞

Pn

[
sup

x

∣∣∣I(T̂ ∗,1
n ≤ x)− I(T ∗,1

n ≤ x)
∣∣∣ > ε/2

]
=

lim
n→∞

Pn

[
sup

x

∣∣∣∣∣
I

(
supi∈{1,..,n} supy∈X

(
f̂ ∗,1i (y)− f̂ ∗,1n (y))

)
≤ x

)
−

I
(
supi∈{1,..,n} supy∈X

(
f ∗,1i (y)− f ∗,1n (y))

) ≤ x
)

∣∣∣∣∣ > ε/2

]
, (42)

where we have assumed for simplicity that the difference fi(x) − fn(x) is not stan-

dardised.But, for all ε > 0 there exists some ε1 > 0 such that (42) is bounded by

lim
n→∞

Pn

[
sup

j∈{1,..,n}
sup

x

∣∣∣∣∣K
(

x̂∗,1j − x

h

)
−K

(
x∗,1j − x

h

)∣∣∣∣∣ > ε1

]
, (43)
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In turn, for all ε1 > 0 there exists some ε2 > 0 such that (43) is bounded by

lim
n→∞

Pn

[
sup

j∈{1,..,n}

∣∣x̂∗,1j − x∗,1j

∣∣ > ε2

]
. (44)

But, (44) is zero as long as

lim
n→∞

Pn

[
sup

i∈{1,...,n}
sup

x

∣∣∣f̂i(x)− fi(x)
∣∣∣ > ε3

]
= 0, (45)

for all ε3 > 0. (45) is proved under the theorem’s assumptions in Theorem 2.8 of

Pagan and Ullah (2000). Hence, Theorem 4 is proven.

8.5 Proof of Theorem 5

Let G(x, T ) denote the limit of Gn(x, Tn). The subsampling approximation to G(x, T )

is given by

ĜRSDS
n,b (x, Tn) =

1

nb

nb∑
s=1

I
(
T ∗,s

n,b ≤ x
)
, (46)

where nb = n−b+1 and T ∗,s
n,b is the s-th resampled statistic based on a resampled block

of size b. For xα, where G(xα, T ) = α, we first need to prove that ĜRSDS
n,b (x, Tn)

p→
G(xα, T ). But, E(ĜRSDS

n,b (x, Tn)) = Gb(x, Tb) because the subsample is a sample from

the true model. Hence, it suffices to show that V ar(ĜRSDS
n,b (x, Tn)) → 0 as N → ∞.

Let

Ib,s = I
(
T ∗,s

n,b ≤ x
)
, (47)

vnb,h =
1

nb

nb∑
s=1

Cov (Ib,s, Ib,s+h) . (48)

Then,

V ar
(
ĜRSDS

n,b (x, Tn)
)

=
1

nb

(
vnb,0 + 2

nb−1∑

h=1

vnb,h

)
= (49)

1

nb

(
vnb,0 + 2

b−1∑

h=1

vnb,h

)
+

2

nb

nb−1∑

h=b

vnb,h = V1 + V2.

We first determine the order of magnitude of V1. By the boundedness of Ib,s, it follows

that vnb,h is uniformly bounded across h. Hence, |V1| ≤ b
nb

maxh |vnb,h|, from which

it follows that V1 = O(b/nb) = o(1). We next examine V2. For this we need to note

that

|V2| ≤ 2

nb

nb−1∑

h=b

|vnb,h|, (50)
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But, by, e.g., Lemma A.0.2 of Politis, Romano, and Wolf (1999),

|Cov (Ib,s, Ib,s+h)| ≤ 4αh−b+1

where αm denote the α-mixing coefficients of the process xi. Since αm < βm, and

by assumption 6,
∑nb−1

h=b |vnb,h| is finite and so |V2| converges to zero, implying that

V ar
(
ĜRSDS

n,b (x, Tn)
)
→ 0. To complete the proof of the Theorem, we need to show

that the pointwise result ĜRSDS
n,b (x, Tn)

p→ G(xα, T ) also holds uniformly. Given

any subsequence n(k) of n, we can extract a further subsequence n(k(j)) such that

ĜRSDS

n(k(j)),b
(x, Tn)

a.s.→ G(xα, T ) for all x in a countable dense set of the real line. There-

fore, on a set of probability one, ĜRSDS

n(k(j)),b
(x, Tn)

p.→ G(xα, T ) and this convergence is

uniform by Polya’s theorem and the continuity of the density of the maximum of a

countable set of normally distributed random variables.
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Table 3: Probability Values for S&P 500 Series (ABBOTT LABS.- COMPUTER
SCIS.)

Company Name P. Value Company Name P. Value
ABBOTT LABS. 0.544 ADC TELECOM. 0.235

ADOBE SYS. 0.644 ADVD.MICRO DEVC. (1) 0.007
AES (2) 0.000 AFLAC 0.342

AIR PRDS.& CHEMS. 0.685 ALBERTO CULVER ’B’ 0.530
ALBERTSONS 0.289 ALCOA 0.174

ALLEGHENY EN. 0.087 ALLEGHENY TECHS. 0.248
ALLERGAN 0.295 ALLIED WASTE INDS. 0.188
ALLTEL (3) 0.020 ALTERA 0.584
ALTRIA GP. 0.356 AMBAC FINANCIAL 0.389

AMERADA HESS 0.624 AMER.ELEC.PWR. 0.114
AMERICAN EXPRESS (4) 0.000 AMER.GREETINGS ’A’ 0.349
AMERICAN INTL.GP. (5) 0.020 AMER.POWER CONV. 0.544

AMGEN 0.362 AMSOUTH BANC. 0.268
ANADARKO PETROLEUM 0.752 ANALOG DEVICES (6) 0.020

ANDREW (7) 0.020 ANHEUSER - BUSCH COS. 0.074
AON 0.255 APACHE 0.235

APPLE COMPUTERS 0.879 APPLERA APPD.BIOS. (8) 0.027
APPLIED MATS. 0.087 ARCHER - DANLS. 0.550

ASHLAND 0.940 AT & T (9) 0.027
AUTODESK 0.624 AUTOMATIC DATA PROC. (10) 0.027

AUTONATION 0.201 AUTOZONE 0.403
AVERY DENNISON 0.148 AVON PRODUCTS 0.262
BAKER HUGHES 0.081 BALL 0.094

BANK OF AMERICA 0.289 BANK OF NEW YORK (11) 0.013
BANK ONE 0.597 BARD C R 0.242

BAUSCH & LOMB 0.128 BAXTER INTL. 0.819
BB & T 0.356 BEAR STEARNS 0.409

BECTON DICKINSON & .CO. 0.262 BED BATH & .BEYOND 0.195
BELLSOUTH (12) 0.047 BEMIS 0.503

BEST BUY CO. 0.430 BIG LOTS 0.450
BIOGEN IDEC 0.087 BIOMET 0.060

BJ SVS. 0.322 BLACK & .DECKER 0.745
H & R BLOCK 0.195 BMC SOFTWARE 0.792

BOEING 0.054 BOISE CASCADE 0.906
BOSTON SCIENTIFIC 0.879 BRISTOL MYERS SQUIBB (13) 0.000
BROWN - FORMAN ’B’ 0.221 BRUNSWICK 0.866

BURL.NTHN.SANTA FE C 0.295 BURLINGTON RES. 0.342
CAMPBELL SOUP 0.463 CARDINAL HEALTH 0.973

CARNIVAL 0.275 CATERPILLAR 0.101
CENDANT 0.322 CENTERPOINT EN. 0.060
CENTEX 0.114 CENTURYTEL 0.617

CHARLES SCHWAB (14) 0.040 CHARTER ONE FINL. 0.221
CHEVRONTEXACO 0.658 CHIRON CORP 0.067

CHUBB (15) 0.007 CIGNA 0.235
CINCINNATI FIN. 0.208 CINTAS 0.852

CIRCUIT CITY STORES 0.107 CISCO SYSTEMS 0.154
CITIGROUP 0.342 CITIZENS COMMS. 0.221

CLEAR CHL.COMMS. 0.161 CLOROX 0.148
CMS ENERGY (16) 0.040 COCA COLA (17) 0.047
COCA COLA ENTS. 0.168 COLGATE - PALM. 0.799

COMCAST ’A’ 0.188 COMERICA (18) 0.040
COMPUTER ASSOCS.INTL. 0.067 COMPUTER SCIS. 0.054



Table 4: Probability Values for S&P 500 Series (COMPUWARE - ITT INDUSTRIES)

Company Name P. Value Company Name P. Value
COMPUWARE 0.617 COMVERSE TECH. 0.161

CONAGRA 0.409 CONCORD EFS 0.356
CONOCOPHILLIPS 0.919 CONS.EDISON 0.671

CONSTELLATION EN. 0.248 COOPER INDS. 0.161
COOPER TIRE RUB. 0.879 ADOLPH COORS ’B’ 0.403

CORNING (19) 0.000 COUNTRYWIDE FINL. 0.819
CRANE 0.107 CSX 0.154

CUMMINS 0.168 CVS (20) 0.000
DANA (21) 0.047 DANAHER 0.738

DEERE & CO. (22) 0.007 DELL 0.054
DELTA AIR LINES (23) 0.013 DELUXE 0.154

DILLARDS ’A’ 0.148 DOLLAR GENERAL 0.510
DOMINION RES. 0.403 DONNELLEY R R 0.503
DOVER (24) 0.040 DOW CHEMICALS 0.336

DOW JONES & .CO 0.711 DTE ENERGY 0.289
DU PONT E I DE NEMOURS 0.181 DUKE ENERGY (25) 0.013

DYNEGY ’A’ 0.121 EASTMAN KODAK 0.081
EATON 0.664 ECOLAB 0.322

EDISON INTL. (26) 0.020 EL PASO 0.141
ELECTRONIC ARTS (27) 0.000 ELECTRONIC DATA SYSTEMS(28) 0.027

EMC 0.295 EMERSON ELECTRIC (29) 0.000
ENGELHARD 0.329 ENTERGY 0.537

EOG RES. 0.973 EQUIFAX 0.383
EXELON 0.557 EXPRESS SCRIPTS ’A’ 0.349

EXXON MOBIL (30) 0.000 FAMILY $.STRS. 0.148
FANNIE MAE 0.134 FREDDIE MAC 0.087

FEDERATED DEPT.STRS. 0.409 FEDEX 0.577
FIFTH THIRD BANCORP (31) 0.000 FIRST DATA (32) 0.047

FIRST TEN.NAT. 0.174 FIRSTENERGY 0.678
FISERV 0.604 FLEETBOSTON FINL. 0.094

FORD MOTOR 0.369 FOREST LABS. 0.228
FORTUNE BRANDS 0.718 FPL GROUP 0.416

FRANK.RES. 0.631 GANNETT (33) 0.040
GAP (34) 0.027 GEN.DYNAMICS 0.356

GENERAL ELECTRIC (35) 0.000 GEN.MILLS 0.550
GENERAL MOTORS 0.872 GENUINE PARTS 0.611

GENZYME 0.711 GEORGIA PACIFIC (36) 0.013
GILLETTE 0.248 GOLDEN WEST FINL. 0.154
GOODRICH 0.054 GOODYEAR TIRE (37) 0.007

GRAINGER W W (38) 0.040 GT.LAKES CHM. 0.087
HALLIBURTON 0.154 HARLEY - DAVIDSON 0.054

HARRAHS ENTM. 0.235 HASBRO 0.060
HCA 0.678 HEALTH MAN.AS.A 0.859

HEINZ HJ 0.389 HERCULES (39) 0.000
HERSHEY FOODS 0.302 HEWLETT - PACKARD (40) 0.000
HILTON HOTELS 0.550 HOME DEPOT 0.060

HONEYWELL INTL. (41) 0.007 HUMANA 0.188
HUNTINGTON BCSH. 0.128 ILLINOIS TOOL WKS. 0.289

INGERSOLL - RAND (42) 0.013 INTEL 0.101
INTL.BUS.MACH. 0.906 INTL.FLAV.& FRAG. (43) 0.013

INTL.GAME TECH. (44) 0.000 INTL.PAPER (45) 0.040
INTERPUBLIC GP. (46) 0.040 ITT INDUSTRIES 0.570



Table 5: Probability Values for S&P 500 Series (JP MORGAN CHASE - PULTE
HOMES)

Company Name P. Value Company Name P. Value
JP MORGAN CHASE & .CO. (47) 0.020 JEFFERSON PILOT 0.664

JOHNSON & JOHNSON 0.490 JOHNSON CONTROLS 0.792
JONES APPAREL GROUP 0.591 KB HOME 0.456

KELLOGG 0.356 KERR - MCGEE 0.074
KEYCORP 0.289 KEYSPAN 0.295

KIMBERLY - CLARK 0.698 KINDER MORGAN KANS 0.275
KLA TENCOR 0.074 KNIGHT - RIDDER 0.201

KOHLS 0.597 KROGER 0.725
LEGGETT& PLATT 0.530 LILLY ELI 0.423
LIMITED BRANDS 0.523 LINCOLN NAT. (48) 0.047

LINEAR TECH. (49) 0.000 LIZ CLAIBORNE 0.121
LOEWS (50) 0.000 LNA.PACIFIC 0.282

LOWE’S COMPANIES 0.362 LSI LOGIC (51) 0.013
MANOR CARE 0.054 MARATHON OIL (52) 0.034

MARSH & MCLENNAN (53) 0.000 MARSHALL & ILSLEY 0.282
MASCO 0.745 MATTEL (54) 0.034

MAXIM INTEGRATED PRDS. 0.779 MAY DEPT.STORES 0.430
MAYTAG 0.215 MBIA 0.295

MBNA 0.772 MCCORMICK & .CO NV. 0.174
MCDONALDS 0.094 MCGRAW - HILL CO. (55) 0.007

MEADWESTVACO 0.154 MEDIMMUNE (56) 0.027
MEDTRONIC 0.523 MELLON FINL. 0.188

MERCK & .CO. 0.705 MEREDITH 0.215
MERRILL LYNCH & .CO. 0.101 MGIC INVT 0.060
MICRON TECH. (57) 0.000 MICROSOFT 0.141

MILLIPORE 0.087 MOLEX (58) 0.040
MOTOROLA (59) 0.007 NABORS INDS. (60) 0.020
NAT.CITY (61) 0.034 NATIONAL SEMICON. (62) 0.013

NAVISTAR INTL. (63) 0.040 NEW YORK TIMES ’A’ 0.477
NEWELL RUBBERMAID 0.369 NEWMONT MINING 0.107

NEXTEL COMMS.A 0.564 NICOR 0.396
NIKE ’B’ 0.329 NISOURCE (64) 0.007
NOBLE 0.510 NORDSTROM 0.564

NORFOLK SOUTHERN (65) 0.040 NORTH FORK BANCORP. 0.443
NTHN.TRUST 0.067 NORTHROP GRUMMAN 0.309

NOVELL 0.409 NOVELLUS SYSTEMS 0.550
NUCOR 0.242 OCCIDENTAL PTL. 0.463

OFFICE DEPOT 0.094 OMNICOM GP. 0.081
ORACLE 0.195 PACCAR 0.215

PALL 0.987 PARAMETRIC TECH. 0.134
PARKER - HANNIFIN 0.342 PAYCHEX 0.644
PENNEY JC (66) 0.000 PEOPLES ENERGY 0.906

PEOPLESOFT 0.711 PEPSICO 0.443
PERKINELMER (67) 0.000 PFIZER 0.268

PG & .E 0.161 PHELPS DODGE 0.101
PINNACLE WEST CAP. 0.141 PITNEY - BOWES 0.060

PLUM CREEK TIMBER (68) 0.013 PMC - SIERRA (69) 0.000
PNC FINL.SVS.GP. 0.718 PPG INDUSTRIES 0.168

PPL (70) 0.034 PRAXAIR 0.711
PROCTER & GAMBLE 0.463 PROGRESS EN. 0.577
PROGRESSIVE OHIO 0.846 PROVIDIAN FINL. (71) 0.000
PUB.SER.ENTER.GP. 0.624 PULTE HOMES 0.342



Table 6: Probability Values for S&P 500 Series (QUALCOMM - 3M)

Company Name P. Value Company Name P. Value
QUALCOMM 0.584 RADIOSHACK (72) 0.034

RAYTHEON ’B’ (73) 0.000 REEBOK INTL. 0.107
REGIONS FINL. 0.617 ROBERT HALF INTL. 0.617

ROCKWELL AUTOMATION 0.101 ROHM & HAAS (74) 0.040
ROWAN COS. (75) 0.020 RYDER SYSTEM 0.349

SAFECO 0.201 SAFEWAY 0.705
SARA LEE 0.074 SBC COMMUNICATIONS (76) 0.007

SCHERING - PLOUGH (77) 0.013 SCHLUMBERGER (78) 0.007
SCIENTIFIC ATLANTA 0.698 SEALED AIR 0.617

SEARS ROEBUCK & .CO. 0.060 SEMPRA EN. (79) 0.040
SHERWIN - WILLIAMS 0.054 SIGMA ALDRICH 0.799

SLM 0.275 SNAP - ON 0.725
SOLECTRON 0.134 SOUTHERN 0.356

SOUTHTRUST 0.477 SOUTHWEST AIRLINES 0.738
SPRINT 0.067 ST.JUDE MED. 0.503
ST.PAUL 0.094 STANLEY WORKS 0.208
STAPLES 0.168 STARBUCKS 0.906

STARWOOD HTLS.& .RESORTS(80) 0.000 STATE STREET 0.242
STRYKER 0.081 SUN MICROSYSTEMS 0.121

SUNGARD DATA SYSTEMS 0.141 SUNOCO 0.221
SUNTRUST BANKS (81) 0.034 SUPERVALU 0.074

SYMANTEC 0.423 SYMBOL TECHS. 0.295
SYNOVUS FINL. 0.262 SYSCO 0.403

T ROWE PRICE GP. 0.772 TARGET (82) 0.007
TECO ENERGY 0.268 TEKTRONIX 0.483

TELLABS 0.242 TEMPLE INLAND 0.228
TENET HLTHCR. 0.805 TERADYNE (83) 0.040

TEXAS INSTS. (84) 0.040 TEXTRON (85) 0.013
THERMO ELECTRON (86) 0.027 THOMAS & .BETTS (87) 0.000

TIFFANY & CO 0.114 TIME WARNER 0.148
TJX COS. 0.148 TORCHMARK 0.121

TOYS R US HOLDINGS CO. (88) 0.007 TRIBUNE 0.188
TXU 0.463 TYCO INTL. 0.564

US BANCORP (89) 0.000 UNION PACIFIC 0.631
UNION PLANTERS 0.168 UNISYS (90) 0.047

UNITEDHEALTH GP. 0.644 US.STEEL 0.624
UNITED TECHNOLOGIES 0.067 UNOCAL 0.812

UNUMPROVIDENT 0.074 UST 0.651
V F 0.268 VERIZON COMMS. 0.315

VIACOM ’B’ 0.812 VULCAN MATERIALS 0.369
WACHOVIA (91) 0.047 WALGREEN 0.067

WAL MART STORES 0.356 WALT DISNEY (92) 0.047
WASHINGTON MUTUAL 0.369 WASTE MAN. 0.852

WELLS FARGO & .CO 0.403 WENDY’S INTL. 0.597
WEYERHAEUSER 0.443 WHIRLPOOL 0.530

WILLIAMS COS. (93) 0.034 WINN - DIXIE STRS. (94) 0.013
WORTHINGTON INDS. 0.987 WRIGLEY WILLIAM JR. 0.416

WYETH (95) 0.000 XCEL ENERGY 0.181
XEROX (96) 0.000 XILINX 0.262

ZIONS BANCORP. (97) 0.013 3M 0.154



Figure 2: Recursively Estimated Mean for S&P 500 series that reject the strict sta-
tionarity null hypothesis



Figure 3: Recursively Estimated Variance for S&P 500 series that reject the strict
stationarity null hypothesis



Figure 4: Recursively Estimated Skew for S&P 500 series that reject the strict sta-
tionarity null hypothesis



Figure 5: Recursively Estimated Kyrtosis for S&P 500 series that reject the strict
stationarity null hypothesis
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