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Abstract

Interest in the interface of nonstationarity and nonlinearity has
been increasing in the econometric literature. The motivation for this
development maybe be traced to the perceived possibility that pro-
cesses following nonlinear models maybe mistakenly taken to be unit
root or long-memory nonstationary. This paper considers the possi-
bility that processes may exhibit both long memory and nonlinear-
ity. We test against the possibility that the process ut in the model
(1−L)dyt = ut is nonlinear. We do not assume a particular parametric
form for the nonlinear process but construct a pure significance test.
Clearly, such a test could be straightforwardly constructed if d were
known. Unfortunately, if a linear model is assumed while estimating
d the power of the test will be reduced. We propose new more pow-
erful tests for this problem. We present Monte Carlo evidence on the
performance of the new tests and apply them to Yen real exchange
rates.
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1 Introduction

Interest in the interface of nonstationarity and nonlinearity has been increas-

ing in the econometric literature. The motivation for this development maybe

be traced to the perceived possibility that processes following nonlinear mod-

els maybe mistakenly taken to be unit root nonstationary. Previous work in

this area includes Enders and Granger (1998), Caner and Hansen (2001),

Kapetanios, Snell, and Shin (2002) and Kapetanios and Shin (2002a).

A related stand of the literature on the investigation of highly persistent

processes looks at the presence of long memory in the data. Long memory and

nonlinearity have rarely been jointly analysed. Exceptions include David-

son and Sibbertsen (2002), Diebold and Inoue (2001), van Dijk, Frances,

and Paap (2002) and Kapetanios and Shin (2002b) Within this small set

of papers two strands are apparent. One strand considers long-memory and

nonlinearity as alternative representations which maybe confused and tries to

investigate their similarities and differences. Diebold and Inoue (2001) juxta-

pose the covariance structures of long memory and Markov switching models.

Davidson and Sibbertsen (2002) discusses one class of nonlinear models which

have a similar covariance structure to long memory models. Kapetanios and

Shin (2002b) suggest a formal test for distinguishing between nonstationary

long memory and nonlinear geometrically ergodic models in small samples.

On the other hand van Dijk, Frances, and Paap (2002) investigate the pos-

sibility that the nature of the process driving the long memory process is

nonlinear. They apply such a model to US unemployment data with inter-

esting results.

This paper is in the spirit of the second strand. We test against the possi-

bility that the process ut in the model (1−L)dyt = ut is nonlinear. We do not

assume a particular parametric form for the nonlinear process but construct

a pure significance test. Clearly, such a test could be straightforwardly con-

2



structed if d were known. Unfortunately, if a linear model is assumed while

estimating d the power of the test will be reduced. We therefore suggest a

model based on a neural network approximation to estimate d prior to ap-

plying standard linearity tests. We apply the new tests to Yen real exchange

rates. We find significant evidence of neglected nonlinearity in a number of

series.

The structure of the paper is as follows: Section 2 presents the framework

of the analysis. Sections 3 and 4 discusses the tests and their implementation.

Section 5 presents the Monte Carlo study. Section 6 presents the empirical

application. Finally, Section 7 concludes. The Appendix contains the proof

of the main theorem of the paper.

2 Nonlinear long memory models

We consider the following general fractionally integrated model

(1− L)dyt = ut, −1/2 ≥ d < 3/2, t = 1, . . . , T (1)

ut is an I(0) process. We define I(0) processes, following De Jong and David-

son (2000), to be processes whose partial sums converge weakly to Brownian

motion. The model for yt can be written as an infinite moving average in

terms of ut

yt =
∞∑
i=0

ad
iut−i (2)

where ad
i =

Γ(d+1)
Γ(i+1)Γ(d−i+1)

(−1)i. It can equivalently be written as an infinite

autoregression given by

yt =
∞∑
i=1

bdi yt−i + ut (3)

where bdi = − Γ(i−d)
Γ(i+1)Γ(−d)

. A standard specification for the weakly dependent

process ut is that ut follows an ARMA(p,q) process i.e.

A(L)ut = B(L)εt
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where εt is an i.i.d. process with finite variance. This gives rise to the

well known ARFIMA(p,d,q) model. However, a straightforward extension

which has recently been considered is that ut follows a geometrically ergodic

nonlinear process. van Dijk, Frances, and Paap (2002)) have specified ut to

follow an ESTAR process given by

ut = α0 +

pl∑
i=1

αiut−i +

pn∑
i=1

βi

[
1− e−γ1(ut−d−γ0)2

]
ut−i + εt

This model has been applied to the investigation of macroeconomic series

and evidence from US data indicated the presence of nonlinearity of ESTAR

form. However, there is no need to restrict to this form of nonlinearity and

ut can be modelled in terms of other nonlinear econometric models that have

been suggested in the literature such as, for example, threshold autoregressive

models or bilinear models. So the general form of the model we consider is

that

ut = F (ut−1 . . . ut−p) + εt (4)

Clearly the validity of any tests for linearity based on a particular non-

linear model is conditional on the choice of the model and therefore a pure

significance test for neglected nonlinearity may be more appropriate com-

pared to tests based on particular nonlinear models. A wide variety of pure

significance tests exist. Tests based on neural networks have been consis-

tently found to have good power properties and are therefore favorites in the

linearity testing literature.

However, an important complication arises compared to standard linear-

ity testing. This is that the long memory parameter d needs to be known

or consistently estimated prior to the application of the nonlinearity test

on ut obtained by fractional differencing of the original series yt. Standard

parametric methods of estimating d are based on ARFIMA models. Clearly

this estimation strategy is not appropriate since under the nonlinearity hy-

pothesis the ARFIMA model is misspecified. Fitting an ARFIMA model to
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determine d will lead to an inconsistent estimate of d under the alternative

hypothesis of neglected nonlinearity and by construction to a test for nonlin-

earity which is likely to be less powerful than one based on the true value of

d. It should be made clear that this issue is related primarily to the power of

the test. Under the null hypothesis d will be estimated consistently through

an ARFIMA model and therefore the test will be correctly sized. Of course,

an alternative which we do not pursue here is nonparametric estimation of

the long memory parameter using, e.g., frequency domain based techniques.

However the spirit of our analysis is parametric in the long memory dimen-

sion of the problem. The test we suggest is clearly a first step to a parametric

analysis of the neglected nonlinearity with a model belonging to the class of

nonlinear models used to investigate weakly dependent stationary processes

such as TAR or STAR models.

The solution we suggest is to fit a neural network type model to ut and

estimate this model. Then, the estimate of d, thus obtained is used to frac-

tionally difference yt and to obtain an estimate of ut. This estimate is then

tested for nonlinearity using standard neural network tests described in the

next section. Alternatively, the significance of the neural network model used

to estimate d could be tested to determine the presence of nonlinearity.

3 Neural network models and tests

We consider two different but related neural network tests for neglected non-

linearity.

3.1 The Lee, White, and Granger (1993) test

The null hypothesis of this test in our framework is that the conditional mean

of ut given lags of ut is a linear function of these lags or

P (E(ut|ut−1 . . . ut−p) = δ0 +

p∑
i=1

δiut−p) = 1 (5)

5



The Lee, White, and Granger (1993) (henceforth ANN) test specifies that

F (.) in (4) is given by
∑q

j=1 φ(
∑p

i=1 γijut−i) where φ(λ) is the logistic func-

tion, given by [1 + exp(−λ)]−1. The coefficients γij are randomly generated

from a uniform distribution over [γl, γh]. For given q, the constructed re-

gressors φ(
∑p

i=1 γijut−i), j = 1, . . . , q may suffer from multicollinearity. We

follow Lee, White, and Granger (1993) and suggest that q̃ largest principle

components of the constructed regressors excluding the largest one be used

as regressors in

ut = β0 +

q̃∑
j=1

βjφ(

p∑
i=1

γijut−i) + εt (6)

We then perform a Wald test of the joint significance of the constructed

regressors. This test tests the null hypothesis that β0 = β1 = . . . = βq̃ = 0.

This takes the form
1

σ̂2
β̂

′
(R′(W ′W )−1R)−1β̂ (7)

where W is the matrix of regressors of (6) and a constant, R is the selector

matrix, β = (β1, . . . , βq)
′ and σ̂2 is the estimated variance of the residuals in

(6).

3.2 The Taylor expansion test

An alternative test that is motivated by the logistic neural network is the

test proposed by Teräsvirta, Lin, and Granger (1993) and used by Blake

and Kapetanios (2003). That test approximates by a Taylor expansion the

logistic neural network and subsequently substitutes this expansion in the

models and tests for its significance. Teräsvirta, Lin, and Granger (1993)

suggest the use of the third order Taylor expansion. In our framework, the

model for ut then takes the form

ut = β0+
3∑

i=1

p∑
i=1

βi,ju
j
t−i+

p−1∑
i=1

p∑
j=i+1

γ1,i,jut−iut−j+
1∑

s=0

p−1∑
i=1

p∑
j=i+1

γ2
2,s,i,ju

2−s
t−i u

s+1
t−j+εt

(8)
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Clearly, this is just one Taylor expansion that can be used for approximating

the unknown function. We consider also expansions of order 2 and 4 giving

rise to the following models

ut = β0 +
2∑

i=1

p∑
i=1

βi,ju
j
t−i +

p−1∑
i=1

p∑
j=i+1

γ1,i,jut−iut−j + εt (9)

ut = β0 +
4∑

i=1

p∑
i=1

βi,ju
j
t−i +

p−1∑
i=1

p∑
j=i+1

γ1,i,jut−iut−j +

p−1∑
i=1

p∑
j=i+1

γ1,i,ju
2
t−iu

2
t−j+

(10)
1∑

s=0

p−1∑
i=1

p∑
j=i+1

γ2
2,s,i,ju

2−s
t−i u

s+1
t−j +

1∑
s=0

p−1∑
i=1

p∑
j=i+1

γ2
2,s,i,ju

3−2s
t−i u

2s+1
t−j + εt

The null hypothesis of the γ coefficients being zero is tested using a Wald

test. We will refer to the models underlying these tests as the TLGi models

i = 2, 3, 4.

3.3 The neural network model

As explained in the previous section we need to take account of the possibility

of nonlinearity in ut when estimating d. The neural network specifications on

which both tests, presented above, rely can be used as a model for estimating

d. We suggest the use of the Taylor expansion. The reason for this choice

is that estimation of the logistic neural network model used by the White

test involves nonlinear least squares and is computationally expensive. The

model based on the Taylor expansion of the logistic neural network on the

other hand can be estimated by OLS.

4 Implementation of the tests

The first step in the implementation of the test is the estimation of d. Fol-

lowing the discussion in the previous section we use the TLGi, i = 2, 3, 4 to

estimate d where we use the infinite AR representation of yt in terms of ut
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to write ut. We therefore numerically minimise the sum of squared residuals

of the following models:

yt = β0+

t−p∑
l=0

bdl yt−l+
2∑

i=1

p∑
i=1

βi,j[yt−
t−p∑
l=0

bdl yt−l]
j+

p−1∑
i=1

p∑
j=i+1

γ1,i,j[yt−
t−p∑
i=0

biyt−i][yt−
t−p∑
i=0

biyt−i]+εt

(11)

yt = β0+

t−p∑
l=0

bdl yt−l+
3∑

i=1

p∑
i=1

βi,j[yt−
t−p∑
l=0

bdl yt−l]
j+

p−1∑
i=1

p∑
j=i+1

γ1,i,j[yt−
t−p∑
l=0

bdl yt−l][yt−
t−p∑
l=0

bdl yt−l]+

(12)
1∑

s=0

p−1∑
i=1

p∑
j=i+1

γ2
2,s,i,j[yt −

t−p∑
l=0

bdl yt−l]
2−s[yt −

t−p∑
l=0

bdl yt−l]
s+1 + εt

yt = β0+

t−p∑
l=0

bdl yt−l+
4∑

i=1

p∑
i=1

βi,j[yt−
t−p∑
l=0

bdl yt−l]
j+

p−1∑
i=1

p∑
j=i+1

γ1,i,j[yt−
t−p∑
l=0

bdl yt−l][yt−
t−p∑
l=0

bdl yt−l]+

(13)
p−1∑
i=1

p∑
j=i+1

γ1,i,j[yt−
t−p∑
l=0

bdl yt−l]
2[yt−

t−p∑
l=0

bdl yt−l]
2+

1∑
s=0

p−1∑
i=1

p∑
j=i+1

γ2
2,s,i,j[yt−

t−p∑
l=0

bdl yt−l]
2−s[yt−

t−p∑
l=0

bdl yt−l]
s+

1∑
s=0

p−1∑
i=1

p∑
j=i+1

γ2
2,s,i,j [yt −

t−p∑
l=0

bdl yt−l]
3−2s[yt −

t−p∑
l=0

bdl yt−l]
2s+1 + εt

The lag order of the models p may be determined by an information cri-

terion or chosen a priori. Once d has been determined, the two nonlinearity

tests of the previous section maybe applied, using the inifinite AR represen-

tation of yt to obtain ut. Under the null hypothesis of no nonlinearity and

conditional on knowing or estimating consistently the lag order p for the tests

we have the following theorem

Theorem 1 Under the null hypothesis of linearity given by (5) and given

lag order p the asymptotic distribution of the ANN and TLG tests does not

change when the tests are based on ût = yt −
∑t−p

l=0 b
d̂
l yt−l rather than ût =

yt −
∑t−p

l=0 b
d
l yt−l
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For a proof see the Appendix. Since the asymptotic distribution of the test

statistic for known d is simply a χ2 we have that the test we propose which

uses an estimate of d is χ2 as well.

5 Monte Carlo study

We carry out a Monte Carlo study to investigate the size and power properties

of the new tests we propose. The Monte Carlo experiment considers neglected

nonlinearity of the ESTAR form. This is the form of nonlinearity investigated

by van Dijk, Frances, and Paap (2002) in their analysis of US unemployment

data. We look at two size experiments where the model generating the data

is an ARFIMA(0, 0.6, 0) and an ARFIMA(1, 0.6, 0) with AR coefficient 0.8

respectively. We also consider 8 power experiments where the alternative

nonlinear hypothesis is an fractionally integrated model with d = 0.6 and ut

follows an ESTAR model. The precise specification of the ESTAR models is

given below for experiments 3-10

• Exp. 3 α0 = 0, γ0 = 0, α1 = 0.8, β1 = −1.5 γ1 = 0.01

• Exp. 4 α0 = 0, γ0 = 0, α1 = 0.8, β1 = −1 γ1 = 0.01

• Exp. 5 α0 = 0, γ0 = 0, α1 = 0.8, β1 = −1.5 γ1 = 0.05

• Exp. 6 α0 = 0, γ0 = 0, α1 = 0.8, β1 = −1 γ1 = 0.05

• Exp. 7 α0 = 0, γ0 = 0, α1 = 1.3, β1 = −1.5 γ1 = 0.01

• Exp. 8 α0 = 0, γ0 = 0, α1 = 1.3, β1 = −1 γ1 = 0.01

• Exp. 9 α0 = 0, γ0 = 0, α1 = 1.3, β1 = −1.5 γ1 = 0.05

• Exp. 10 α0 = 0, γ0 = 0, α1 = 1.3, β1 = −1 γ1 = 0.05

All experiments represent geometrically ergodic processes for ut. The last

four experiments allow for the corridor regime of the nonlinear process (i.e.
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the regime closer to the mean of the process) to be locally explosive as the

polynomial of the AR part of the specification at the mean has a root which

is less than one. Such processes have been found to be of use for modelling

macroeconomic series such as US GDP by Kapetanios (2003). We apply the

White and the TLG tests to the process ût = ut(d̂) where d̂ has been ob-

tained from estimation of the model TLGi, i = 1, 2, 3, 4, TLG1 refers to a

linear model. We also estimate the linear model both in the time and the fre-

quency domain1. The White test is denoted by W s
i , s = t, f , i = 0, 1, 2, 3, 4,

where the subscript i refers to the TLG model used to estimate d and the

superscript s refers to estimation in the time or frequency domain. i = 0

indicates that the true value of d has been used. The TLG test is denoted

by TLGs
j,i, s = t, f , i = 0, 1, 2, 3, 4, j = 3, where the subscript i refers to

the TLG model used to estimate d, the superscript s refers to estimation in

the time or frequency domain and finally the subscript j refers to the order

of the Taylor expansion used to test the null hypothesis of linearity. We

use j = 3 following suggestions by Teräsvirta, Lin, and Granger (1993). Of

course different j could be envisaged following e.g. Blake and Kapetanios

(2003) but no significant difference in performance is observed and so for

simplicity we concentrate on j = 3. i = 0 indicates that the true value of

d has been used. The error term εt is generated from a N(0, 1) throughout.

We present results for samples of size T = 100, 150, 200. We present both

rejection probabilities and average estimates of d. The tests based on TLG3

and TLG4 overreject under the null hypothesis. To correct for this when

presenting power results we use empirical critical values. These are obtained

by using the 95% quantile of the empirical distribution of the test statistic

under the null hypothesis represented as experiment 1 in the Monte Carlo

study. For similar treatments in other statistical testing contexts see e.g.

Elliott, Rothenberg, and Stock (1996). For the White test we follow Lee,

White, and Granger (1993) and set q = 10, q̃ = 2, γh = 2 and γl = −2. Also
1For details on estimation in the frequency domain see Harvey (1989).
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p = 1 throughout the Monte Carlo study. Results are presented in Tables 1

to 9.

The results are revealing. Firstly, concerning the estimate of d we see that

although in a majority of the experiments the estimator of d is relatively well

behaved there are experiments where the estimators based on linear models

are biased especially when the estimation is in the frequency domain. The

estimates based on the models which approximate the nonlinear model are

always well behaved. However, the most interesting results concern the re-

jection frequencies of the tests. The tests based on estimates of d using linear

models are uniformly less powerful that the tests based on estimates of d from

models approximating the nonlinear models. In some cases the advantage

can reach 20%. More interestingly the proposed tests have comparable power

to tests based on the true value of d. Such tests clearly possess the property

of reaching the upper bound in terms of power given specific linearity tests.

Therefore, the suggested procedures provide a clear advantage compared to

standard methods.

6 Empirical Application

In this section we apply the new tests to investigate the presence of neglected

nonlinearity in Yen real exchange rates. Our choice of data set reflects previ-

ous work in this area by Cheung and Lai (2001) who investigated the presence

of long memory in Yen real exchange rates aiming to explain the puzzle of

the inability to reject the null hypothesis of unit root nonstationarity using

standard unit root tests.

We construct bilateral yen real exchange rate against the i-th currency at

time t (qi,t) as qi,t = si,t + pJ,t − p∗i,t, where si,t is the corresponding nominal

exchange rate (i-th currency per yen), pJ,t the price level in Japan, and p∗i,t
the price level of the i-th country. Thus, a rise in qi,t implies a real yen
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appreciation against the i-th currency. The price levels are consumer price

indices and all variable are in logs. All data are from the International Mon-

etary Fund’s International Financial Statistics in CD-ROM. The data are

not seasonally adjusted. All data are quarterly, spanning from 1960Q1 to

2000Q4 and the bilateral nominal exchange rates against the currencies other

than the US dollar are cross-rates computed using the US dollar rates. We

consider a very large sample of countries in an attempt to make the empirical

analysis more comprehensive.

The countries we consider are: USA, Germany, France, Italy, UK, Canada,

Austria, Belgium, Portugal, Spain, Sweden, Australia, Korea, Malaysia, In-

donesia, Thailand, Philippines and Sri Lanka.

We estimate the long memory parameter, d, using both a linear ARFI

model and a model using a neural network approximation where we use a

third order Taylor expansion. The model is estimated by minimising the con-

ditional sum of squares. The use of this algorithm enables straightforward

estimation for the neural network approximation model. In both cases the

lag order is chosen using the Bayesian information criterion. We then apply

both the White and TLG tests2 using the estimate of d obtained both from

the linear and nonlinear models. For the White test we follow Lee, White,

and Granger (1993) and set q = 10, q̃ = 2, γh = 2 and γl = −2. Results are
presented in Table 10. Note that the probability values given are from the

χ2 tables. We have not used the empirical critical values obtained from the

Monte Carlo study. Nevertheless, it is easy to check (and has been checked)

that all rejections obtained for countries using an estimate of d obtained from

the neural network model would not be reversed if the empirical critical val-

ues had been used as all the rejections are strong.

2A third order Taylor expansion is used for the TLG test.
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We see that evidence for nonlinearity is widespread in the dataset we con-

sider. There are seven countries (out of eighteen) for which both the White

and TLG tests reject the null hypothesis of no neglected nonlinearity at the

5% significance level when d̂ from the neural network approximation model

is used. When d̂, estimated from the ARFI model, is used both tests reject

for four countries. The White and TLG tests seem in general to reach similar

conclusions. There is a number of instances where the estimates of d from

the linear and nonlinear model differ substantially. Looking at the countries

for which rejection of the null hypothesis is obtained some interesting results

arise. There seems to be little evidence for nonlinearity in the series relating

to European countries. The null hypothesis is rejected only for Austria. On

the other hand there is evidence for nonlinearity in the US/Yen real exchange

rate and perhaps more interestingly there is evidence for nonlinearity in four

out of the six Asian countries considered and Australia.

7 Conclusion

Recent work in the literature has initiated the investigation of the interplay

between long-memory and nonlinearity. Work has mostly concentrated on

the possibility that long memory and nonlinearity may be observationally

related, e.g. in terms of covariance structures. Alternatively, a combina-

tion of nonlinearity and long memory may provide a more satisfactory model

for macroeconomic series such as unemployment as discussed in van Dijk,

Frances, and Paap (2002).

This paper follows the second strand of the literature and proposes tests

based on neural networks for neglected nonlinearity in long memory models.

We find that using a linear model to estimate the long memory parameter

d prior to applying linearity tests leads to a significant loss of power and we

therefore suggest estimation of d using an approximate neural network model

which is capable of picking up arbitrary forms of nonlinearity. We find that
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this strategy entails no loss of power compared to the case of known d and

we therefore recommend this approach.

An empirical application to Yen real exchange rates shows that evidence

for neglected nonlinearity may be widespread in series previously analysed

using linear long memory models. Almost half of the series investigated

produced evidence of neglected nonlinearity.

Appendix: Proof of Theorem 1

Define the following:

u(d) = (u1(d), . . . , uT (d))
′

vt(d) = (ut−1(d), ut−1(d), . . . , ut−p(d))
′

v(d) = (v1(d), . . . ,vT (d))
′

Let zt(d) be the set of cross product regressors used to test the null hypothesis

of neglected nonlinearity. Then,

z(d) = (z1(d), . . . ,zT (d))
′

M v(d) = I − v(d)(v(d)′v(d))−1v(d)′

Then, the Wald test of the null hypothesis is given by

W (d) = 1/σ̂2u(d)′M v(d)z(d)(z(d)
′M v(d)z(d))

−1z(d)′M v(d)u(d) =

1/σ̂2(d)T [1/T (u(d)′M v(d)z(d))] [1/T (z(d)
′M v(d)z(d))]

−1
[1/T (z(d)′M v(d)u(d))]

Denote the true value of d by d0. Then the theorem is proven if we show

that

W (d0)−W (d̂) = op(1) (14)

This follows if we show that

σ̂2 − σ2 = op(1) (15)
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1/T (u(d0)′M v(d
0)z(d0))− 1/T (u(d̂)′M v(d̂)z(d̂)) = op(1) (16)

and

1/T (z(d0)′M v(d
0)z(d0))− 1/T (z(d̂)′M v(d̂)z(d̂)) = op(1) (17)

and 1/T (z(d0)′M v(d
0)z(d0)) has a positive definite probability limit. The

last statement is assumed to hold by assumption. Estimation of any of the

models TLGi, i = 2, 3, 4 can be shown straightforwardly to lead to an
√
T -

consistent estimator of d or d0 − d̂ = Op(T
−1/2) under the null hypothesis.

This implies that (15) holds. We show that (16) holds. (17) can be shown

to hold similarly. We have

1/T (u(d0)′M v(d
0)z(d0))−1/T (u(d̂)′M v(d̂)z(d̂)) = 1/T

[
(u(d0)′ − u(d̂)′)M v(d

0)z(d0)
]

(18)

+1/T
[
u(d̂)′(M v(d

0)− M v(d̂))z(d
0)

]
+ 1/T

[
u(d̂)′M v(d̂)(z(d

0)− z(d̂))
]

Now examine the first term of (18)

1/T
[
(u(d0)′ − u(d̂)′)M v(d

0)z(d0)
]
≤ ||M v(d

0)||||1/T
[
(u(d0)′ − u(d̂)′)z(d0)

]
||

where ||A|| denotes matrix norm (≡ tr(A′A)). But

1/T
[
(u(d0)′ − u(d̂)′)z(d0)

]
= 1/T

T∑
i=1

z′t(d
0)(ut(d

0)− ut(d̂))

Now

ut(d) = yt −
t∑

i=1

bl(d)yt−l

By the
√
T -consistency of d̂ we have bl(d

0)−bl(d̂) = O(T−1/2) Also bl ∼ l−d−1

for large l. Therefore

ut(d
0)− ut(d̂) = Op(T

−1/2)

Thus

||1/T
T∑

i=1

z′t(d
0)(ut(d

0)− ut(d̂))|| ≤ maxt||z′t(d0)(ut(d
0)− ut(d̂))|| = op(1)

We work similarly through the rest of the terms of (18).
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Table 1: TLG tests, T=100

Exp TLGf
3,1 TLGt

3,0 TLGt
3,1 TLGt

3,2 TLGt
3,3 TLGt

3,4

Exp 1 0.054 0.050 0.056 0.092 0.120 0.110
Exp 2 0.036 0.042 0.034 0.060 0.104 0.092
Exp 3 0.052 0.096 0.066 0.044 0.062 0.074
Exp 4 0.060 0.092 0.086 0.048 0.074 0.082
Exp 5 0.308 0.420 0.324 0.264 0.352 0.366
Exp 6 0.180 0.250 0.206 0.136 0.194 0.214
Exp 7 0.106 0.616 0.418 0.458 0.504 0.522
Exp 8 0.066 0.274 0.190 0.182 0.200 0.220
Exp 9 0.308 0.968 0.786 0.776 0.938 0.938
Exp 10 0.180 0.916 0.682 0.700 0.860 0.860

Table 2: TLG tests, T=150

Exp TLGf
3,1 TLGt

3,0 TLGt
3,1 TLGt

3,2 TLGt
3,3 TLGt

3,4

Exp 1 0.036 0.040 0.042 0.048 0.070 0.074
Exp 2 0.040 0.030 0.036 0.068 0.086 0.092
Exp 3 0.110 0.154 0.138 0.168 0.176 0.172
Exp 4 0.078 0.110 0.104 0.116 0.134 0.130
Exp 5 0.462 0.598 0.490 0.536 0.618 0.630
Exp 6 0.280 0.392 0.300 0.352 0.416 0.402
Exp 7 0.114 0.812 0.546 0.696 0.734 0.736
Exp 8 0.042 0.512 0.356 0.448 0.418 0.424
Exp 9 0.342 1.000 0.848 0.898 0.996 0.996
Exp 10 0.180 0.994 0.804 0.920 0.984 0.988

Table 3: TLG tests, T=200

Exp TLGf
3,1 TLGt

3,0 TLGt
3,1 TLGt

3,2 TLGt
3,3 TLGt

3,4

Exp 1 0.040 0.034 0.042 0.052 0.076 0.078
Exp 2 0.040 0.038 0.032 0.060 0.088 0.082
Exp 3 0.116 0.198 0.150 0.174 0.216 0.214
Exp 4 0.086 0.100 0.090 0.112 0.120 0.116
Exp 5 0.568 0.714 0.594 0.620 0.714 0.704
Exp 6 0.352 0.490 0.378 0.414 0.474 0.466
Exp 7 0.166 0.922 0.642 0.804 0.860 0.852
Exp 8 0.052 0.608 0.392 0.472 0.468 0.470
Exp 9 0.394 1.000 0.868 0.920 1.000 0.998
Exp 10 0.230 1.000 0.842 0.922 0.994 0.992
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Table 4: White tests, T=100

Exp W f
1 W t

0 W t
1 W t

2 W t
3 W t

4

Exp 1 0.050 0.050 0.056 0.090 0.122 0.108
Exp 2 0.038 0.042 0.032 0.062 0.094 0.090
Exp 3 0.048 0.100 0.064 0.046 0.062 0.076
Exp 4 0.056 0.092 0.082 0.048 0.068 0.080
Exp 5 0.308 0.414 0.326 0.262 0.346 0.354
Exp 6 0.178 0.248 0.204 0.142 0.192 0.202
Exp 7 0.104 0.610 0.420 0.452 0.510 0.514
Exp 8 0.060 0.278 0.192 0.178 0.192 0.218
Exp 9 0.306 0.958 0.780 0.764 0.928 0.930
Exp 10 0.184 0.904 0.676 0.700 0.862 0.852

Table 5: White tests, T=150

Exp W f
1 W t

0 W t
1 W t

2 W t
3 W t

4

Exp 1 0.042 0.038 0.040 0.052 0.074 0.074
Exp 2 0.044 0.032 0.040 0.064 0.082 0.092
Exp 3 0.108 0.150 0.130 0.166 0.180 0.156
Exp 4 0.080 0.112 0.096 0.114 0.120 0.110
Exp 5 0.458 0.604 0.488 0.530 0.594 0.622
Exp 6 0.280 0.388 0.298 0.346 0.380 0.382
Exp 7 0.114 0.810 0.542 0.690 0.716 0.726
Exp 8 0.040 0.516 0.362 0.448 0.408 0.424
Exp 9 0.344 1.000 0.846 0.900 0.992 0.988
Exp 10 0.184 0.990 0.804 0.914 0.982 0.984

Table 6: White tests, T=200

Exp W f
1 W t

0 W t
1 W t

2 W t
3 W t

4

Exp 1 0.040 0.036 0.042 0.052 0.082 0.080
Exp 2 0.042 0.040 0.034 0.060 0.086 0.092
Exp 3 0.118 0.192 0.146 0.172 0.208 0.210
Exp 4 0.086 0.100 0.084 0.110 0.114 0.108
Exp 5 0.566 0.712 0.590 0.612 0.692 0.710
Exp 6 0.342 0.496 0.370 0.410 0.468 0.470
Exp 7 0.166 0.920 0.640 0.806 0.858 0.850
Exp 8 0.052 0.608 0.396 0.472 0.460 0.474
Exp 9 0.390 0.990 0.864 0.914 0.996 0.998
Exp 10 0.226 0.998 0.836 0.920 0.992 0.992
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Table 7: Mean estimate of d, T=100

Exp f1 t1 t2 t3 t4
Exp 1 0.643 0.435 0.428 0.427 0.437
Exp 2 0.993 0.647 0.664 0.658 0.672
Exp 3 0.892 0.608 0.623 0.612 0.632
Exp 4 0.906 0.598 0.614 0.604 0.619
Exp 5 0.740 0.534 0.550 0.567 0.573
Exp 6 0.793 0.556 0.573 0.585 0.591
Exp 7 0.540 0.528 0.563 0.567 0.576
Exp 8 0.243 0.529 0.531 0.543 0.548
Exp 9 1.217 0.546 0.614 0.600 0.606
Exp 10 1.254 0.533 0.588 0.592 0.604

Table 8: Mean estimate of d, T=150

Exp f1 t1 t2 t3 t4
Exp 1 0.648 0.476 0.477 0.482 0.477
Exp 2 0.930 0.638 0.662 0.651 0.667
Exp 3 0.825 0.589 0.608 0.599 0.607
Exp 4 0.830 0.603 0.618 0.619 0.628
Exp 5 0.698 0.527 0.555 0.555 0.561
EXp 6 0.742 0.559 0.581 0.574 0.583
Exp 7 0.544 0.489 0.530 0.558 0.560
Exp 8 0.171 0.530 0.530 0.536 0.542
Exp 9 1.197 0.477 0.538 0.595 0.599
Exp 10 1.242 0.513 0.550 0.592 0.599

Table 9: Mean estimate of d, T=200

Exp f1 t1 t2 t3 t4
Exp 1 0.650 0.529 0.530 0.516 0.512
Exp 2 0.902 0.621 0.634 0.632 0.647
Exp 3 0.783 0.591 0.602 0.595 0.604
Exp 4 0.779 0.602 0.615 0.608 0.616
Exp 5 0.687 0.529 0.541 0.565 0.566
Exp 6 0.720 0.540 0.559 0.564 0.566
Exp 7 0.631 0.490 0.514 0.570 0.567
Exp 8 0.214 0.509 0.513 0.525 0.528
Exp 9 1.199 0.458 0.534 0.590 0.596
Exp 10 1.242 0.469 0.519 0.590 0.595
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Table 10: Results of empirical application. Probability values of ne-
glected nonlinearity tests and estimated long memory parameters.

Country W t
3 TLGt

3,3 da W t
1 TLGt

3,1 db

US 0.004 0.004 0.392 0.062 0.058 0.202
Germany 0.844 0.845 0.175 0.832 0.835 0.166
France 0.742 0.739 0.166 0.738 0.741 0.193
Italy 0.145 0.143 0.022 0.075 0.045 0.156
UK 0.211 0.189 0.236 0.573 0.594 0.096

Canada 0.166 0.164 0.453 0.230 0.238 0.311
Austria 0.002 0.002 0.435 0.003 0.003 0.385
Belgium 0.599 0.604 0.099 0.651 0.649 0.135
Portugal 0.110 0.111 0.074 0.865 0.858 -0.128
Spain 0.814 0.794 0.018 0.804 0.796 -0.020
Sweden 0.114 0.094 0.105 0.235 0.248 0.260
Australia 0.004 0.006 0.123 0.008 0.009 0.280
Korea 0.013 0.015 0.069 0.012 0.012 0.129
Malaysia 0.000 0.001 0.251 0.673 0.666 0.500
Indonesia 0.134 0.135 0.223 0.134 0.134 0.233
Thailand 0.000 0.000 0.215 0.000 0.000 0.310
Philippines 0.025 0.027 0.095 0.796 0.773 0.321
Sri Lanka 0.100 0.101 0.156 0.112 0.112 0.171

aNeural Network
bLinear ARFI
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