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1 Introduction

The paradigm of a factor model is very appealing and has been used extensively in economic

analyses. Underlying the factor model is the idea that a large number of economic vari-

ables can be adequately modeled by a small number of indicator variables or shocks. Factor

analysis has been used fruitfully to model, among other cases, asset returns, macroeconomic

aggregates and Engel curves (see, e.g., Stock and Watson (1989), Lewbel (1991) and others).

Most analyses have traditionally been focused on small datasets meaning that the num-

ber of variables, N , to be modeled via a factor model is finite. Recently, Stock and Watson

(2002) have put forward the case for analysing large datasets via factor analysis, where N is

allowed to tend to infinity. Stock and Watson (2002) suggest the use of principal components

for estimating factors in this context. Similar work in a more general setting has been carried

out by, e.g., Forni, Hallin, Lippi, and Reichlin (2000) and Forni, Hallin, Lippi, and Reichlin

(2004) in which use of dynamic principal components has been made.

Most of this work has focused on exploiting the parsimony of factor models to provide

a more adequate reduced form modelling tool in various contexts such as, e.g, forecasting.

However, a facet where factor analysis has been less widely considered is the estimation

of structural relationships. Estimation of regression models in the presence of endogene-

ity of the regressors is a well established area of research where the use of instruments is

made to provide valid estimation and inference methods. In the past, the relevant literature

has analysed cases where the number of instruments tends to infinity as the sample size

grows. Eminent examples of this work are Morimune (1983) and Bekker (1994). Clearly

once allowance is made for an increasing number of instruments, the relevance of tools that

parsimoniously represent an increasing number of variables, such as factor models, becomes

of relevance.

From an empirical point of view, Favero, Marcellino, and Neglia (2005) show that us-

ing factors extracted from a large set of macroeconomic variables as additional instruments

in GMM estimation of forward looking Taylor rules for the US and Europe, substantially

improves the efficiency of the parameter estimators. Beyer, Farmer, Henry, and Marcellino

(2005) extend the analysis to a system context, where a Taylor rule is jointly estimated

with a forward looking output equation and a hybrid Phillips curve, along the lines of Gaĺı

and Gertler (1999), finding again substantial gains in the GMM estimator’s efficiency when

adding factors to the instrument set. The present paper provides a theoretical explanation
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for such empirical findings, and more generally a theory for Factor-GMM estimation in the

presence of a large set of instruments.

Another paper that analyzes the interface of factor models and instrumental variable

estimation is Bai and Ng (2006b). In a similar vein to our paper they consider the case

where the regressors are linear functions of a set of unobserved factors which are also un-

derlying an expanding set of observed instruments. Clearly, under these circumstances it is

intuitive to expect that knowledge of the factors would provide a superior estimator to the

one using the observed set of instruments. Factor analysis can provide an estimate of the

factors and thereby enable feasible factor-IV estimation. Bai and Ng (2006b) and our paper

independently analyse this possibility.

However, assuming that the endogenous regressors are only functions of the factors is

clearly a restrictive assumption. We therefore, generalise our and the analysis of Bai and Ng

(2006b) to the case where regressors are either only functions of the observed instruments or

both the observed instruments and the unobserved factors. In these two more general cases

the superiority of a Factor-GMM estimator is not obvious. In fact we show that, when re-

gressors are only functions of the observed instruments, standard IV estimation is preferable

to using the factors as instruments, even when the factors are known. In the more general

case where the endogenous variables depend both on a small set of key instruments and on

the factors, proving the superiority of either Factor-GMM or standard GMM estimation is

not possible, since the ranking depends on the parameter values.

Our analysis of Factor-GMM also evaluates another important aspect of IV estimation

that has been recently explored in the literature. This is the possibility that instruments

are weak, in the sense that their relation to the endogenous regressors is local-to-zero. A

key reference in the context of a finite set of instruments is Staiger and Stock (1997). In

that paper the strength of the correlation of the regressors and the instruments is measured

in terms of what is refereed to as a concentration parameter. In standard IV estimation

this parameters diverges at a rate equal to the number of observations. Staiger and Stock

(1997) consider the case of a constant concentration parameter, which implies that the IV

estimator is no longer consistent. The work of Staiger and Stock (1997) has been extended in

a variety of ways. However, in our view, the most interesting generalization relates to com-

bining the framework of many instruments with the framework of weak instruments. This

was first done in the literature by Chao and Swanson (2005), and subsequently generalised
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extensively by Han and Phillips (2006). We consider a number of elements of their analysis

in the context of Factor-GMM estimation, which provides a richer framework for analysing

weak instruments than those previously adopted.

The paper is structured as follows: Section 2 develops the theoretical properties of factor-

based instrumental variable estimators. Section 3 provides an extensive Monte Carlo study of

the Factor-IV estimator for a wide variety of settings, including ones where the instruments

are weak or many, and cases where the regressors depend on either the unobserved factors

or the observed instruments or both. Section 4 provides empirical illustrations of the new

method. Finally, Section 5 concludes.

2 Theory

In this Section we study the properties of factor-based Instrumental Variable (IV) estima-

tors. In the first subsection we derive results for the standard IV case where the errors are

uncorrelated and homoskedastic, which is useful to provide insights on the working of factors

as instruments. In the second subsection we extend the analysis to general error structures.

2.1 Factor-IV estimation

Let the equation of interest be

yt = x′tβ + εt, t = 1, . . . , T, (1)

where the k regressors in x′t are possibly correlated with the error term εt.
1 A standard

source of correlation in the IV literature is measurement error, which could be widespread in

macroeconomic applications, where the variables are typically expressed as deviations from

an unobservable equilibrium value. Another source of endogeneity is, of course, simultaneity,

which is again widespread in applied macroeconomic applications based on single equation

estimation. A more specific source of endogeneity in forward looking models, such as the

new generation of DSGE models, is the use of expectations of future variables as regressors,

which are then typically replaced by their true values for estimation, see for example the

literature on Taylor rules or hybrid Phillips curves (e.g., Clarida, Gaĺı, and Gertler (1998)

or Gaĺı and Gertler (1999)).

1In practice, only a subset of the k regressors could be correlated with the error term, but for the sake of
simplicity we will assume that all of them are endogenous.
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Let us assume that there exist N instrumental variables, zt, generated by a factor model

with r factors:

zt = Λ0′
Nft + et, (2)

where r is much smaller than N . Therefore, each instrumental variable can be decomposed

into a common component (an element of Λ0′
Nft) that is driven by a few common forces,

the factors, and an idiosyncratic component (an element of et). When the latter is small

compared to the former, the information in the large set of N instrumental variables zt can

be efficiently summarized by the r factors ft.

We consider three different data generation mechanisms for xt that allow for non-zero

correlation between xt and εt, and a different degree of efficiency of the instruments zt and

of the factors ft. They are given by

xt = A0′
NZzt + ut, (3)

xt = A0′
Nft + ut, (4)

and

xt = A0′
NZzt + A0′

Nft + ut, (5)

with E(utεt) 6= 0 to introduce simultaneity in (1). In (3) the endogenous variables depend

directly on the instruments. Therefore, the optimal instuments in this case are zt rather

than ft and, conditional on zt, the factors are irrelevant. However, when N is very large,

possibly larger than T , the standard IV estimator becomes inefficient or unfeasible. In this

context, the factors could become useful again, since they provide a coincise summary of the

information in zt.

In (4), the endogenous variables depend directly on the factors. This is the case also con-

sidered by Bai and Ng (2006b), and it represents the most favourable situation for Factor-IV

estimation, since the original instruments zt become irrelevant, conditional on the factors.2

In (5), the endogenous variables depend both on (possibly a subset of) the instrumental

variables and on (possibly a subset of) the factors. This appears to be the most interesting

case from an economic point of view. For example, future inflation can be expected to depend

on a set of key macroeconomic indicators, such as monetary policy, oil prices and unit labor

2More specifically, Bai and Ng (2006b) assume that only a subset of the regressors in (1) are endogenous,
say x2t. The x2t variables depend on a few factors, say ft, which are a subset of the set of factors that drives
the N exogenous variables zt, say Ft. They also discuss procedures for selecting ft from Ft.
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costs, on the past values of inflation itself due to persistence, but also on the behaviour of a

large set of other variables, such as developments at the sectoral or regional level, that can

be well summarized by a few factors (see Beck, Hubrich and Marcellino (2006)). A similar

reasoning holds for unobservable variables, such as the output gap. Unfortunately, under (5)

it is not possible to provide a unique ranking of the standard IV and of the Factor-(only)-IV

estimators, since the ranking depends on the loading matrices in (5). However, it is clear

that in this context the optimal estimator requires a combination of standard instruments

and factors.

Stacking observations across time for all models presented above gives:

y = Xβ + ε (6)

Z = FΛ0
N + v (7)

X = ZA0
NZ + u (8)

X = FA0
N + u (9)

X = ZA0
NZ + FA0

N + u (10)

where y = (y1, ..., yT )′, X = (x1, ..., xT )′, Z = (z1, ..., zT )′, F = (f1, ..., fT )′, u = (u1, ..., uT )′,

v = (v1, ..., vT )′ and ε = (ε1, ..., εT )′. Let F̂ denote the Stock and Watson (2002) principal

component estimator of F . We consider two alternative two stages least squares estimators

for the parameters of interest, β:

β̂ =
(
X ′F̂ (F̂ ′F̂ )−1F̂ ′X

)−1

X ′F̂ (F̂ ′F̂ )−1F̂ ′y (11)

and

β̃ =
(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z(Z ′Z)−1Z ′y (12)

We also define the infeasible estimator given by

β̄ =
(
X ′F (F ′F )−1F ′X

)−1
X ′F (F ′F )−1F ′y (13)

We make the following assumptions:

Assumption 1 1. E||ft||4 ≤ M < ∞, T−1
∑T

t=1 ftf
′
t

p→ Σ for some k×k positive definite

matrix Σ.

2. E(ei,t) = 0, E|ei,t|8 ≤ M

3. For τi,j,t,s ≡ E(ei,tej,s) the following hold
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• (NT )−1
∑T

s=1

∑T
t=1 |

∑N
i=1 τi,i,t,s| ≤ M

• |1/N ∑N
i=1 τi,i,s,s| ≤ M for all s

• N−1
∑N

i=1

∑N
j=1 |τi,j,s,s| ≤ M

• (NT )−1
∑T

s=1

∑T
t=1

∑N
i=1

∑N
j=1 |τi,j,t,s| ≤ M

• For every (t, s), E|(N)−1/2
∑N

i=1(ei,sei,t − τi,i,s,t)|4 ≤ M

Assumption 2 εt is a martingale difference sequence with finite fourth moment and E(εt|Ft) =

σ2 < ∞ where Ft is the σ-field generated by (fs, zs), s ≤ t.

Assumption 3 (x′t, z
′
t) are jointly stationary. zt is predetermined, so that E(zitεt = 0),

i = 1, ..., N . The probability limit of
ztz′t
T

is finite and nonsingular. E(ztx
′
t) has full column

rank k. xt and zt have finite fourth moments.

Assumption 1 is standard in the factor literature. In particular, it is used in Stock and

Watson (2002), Bai and Ng (2002) and Bai (2003) to prove consistency and asymptotic nor-

mality (at certain rates) of the principal component based estimator of the factors, and by

Bai and Ng (2006a) to show consistency of the parameter estimators in factor augmented

regressions. Assumption 3 guarantees that standard IV estimation using zt as instruments is

feasible, and Assumption 2 that it is efficient. Assumption 2 will be relaxed in the following

subsection, while Assumptions 1 and 3 are assumed to hold throughout the paper.

We now present a number of results related to the above setup. Note that we have al-

lowed for Λ0
N , A0′

NZ and A0′
N to depend on N .

The first result we present analyses conditions under which a local-to-zero factor loading

matrix in (2) leads to a model that loses its defining factor characteristic which are commonly

taken to imply that the largest r eigenvalues of the variance covariance of zt tend to infinity.

This setup implies that if (3) holds then the true (or, by extension, estimated) factors

are weak instruments. Further, if (4) holds then the observed instruments, zt, are weak

instruments. Formally we note that instruments are referred to as weak when A0′
NZZ ′ZA0

NZ

or A0′
NF ′FA0

N is less than Op(T ). This is the definition usually adopted in the relevant

literature (see, e.g., Chao and Swanson (2005)).

Theorem 1 Let Λ0
N = Λ0/Nα, A0

NZ = A0
Z and A0

N = A0. The eigenvalues of the population

variance covariance matrix of Z are bounded for α ≥ 1/2 for all N .
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Proof. The covariance matrix of Z, ΣZ , is given by Λ0′
NΣfΛ

0
N + Σv where Σf and Σv

are the covariance matrices of F and v respectively. By Weyl’s theorem (see 5.3.2(9) of

Lutkepohl (1996)) the eigenvalues of ΣZ are bounded if the eigenvalues of Λ0′
NΣfΛ

0
N and

Σv are bounded. By assumption the eigenvalues of Σv are bounded. Hence we examine

Λ0′
NΣfΛ

0
N . By Schwarz, Rutishauser, and Stiefel (1973), the eigenvalues of Λ0′

NΣfΛ
0
N , will be

bounded if the column sum norm of Λ0′
NΣfΛ

0
N is bounded. But every element of Λ0′

NΣfΛ
0
N

is O(N−2α). Hence the column sum norm of Λ0′
NΣfΛ

0
N is O(1) for all α ≥ 1/2. Hence the

result follows.

In the case considered in the above Theorem, the factor model is no longer identifiable and

common and idiosyncratic components cannot be distinguished. This possibility is studied

in some detail in Onatski (2006). The next result concerns estimation of the factors for a

local-to-zero factor loading matrix.

Theorem 2 Let Λ0
N = Λ0/Nα where 0 < α < 1/4. Then, F̂ − FH ′ = op(1) for some

nonsingular matrix H, as long as N2α = o(T 1/2). Further,

1

T

T∑
t=1

∥∥∥f̂t −Hft

∥∥∥
2

= Op

(
min

(
N4αT−1, N−1+4α

))
= Op

(
N4α−1

)

since N = o(T ).

Proof. We follow the proof of Theorem 1 of Bai and Ng (2002). A crucial difference is

that because of the local nature of Λ0
N we use a different normalisation for Λ. Therefore,

rather than the normalisation Λ′Λ/N = I, we use Λ′Λ/N1−2α = I. This leads to the

mathematical identities F̂ = N−1+2αXΛ̃ and Λ̃ = T−1X ′F̃ where F̃ is the solution to

the optimisation problem of maximising tr(F ′(X ′X)F ) subject to F ′F/T = I. Let H =

(F̃ ′F/T )(Λ0′
NΛ0

N/N1−2α). Then,

f̂t −Hft = N2αT−1

T∑
s=1

f̃sγN(s, t) + N2αT−1

T∑
s=1

f̃sζst + N2αT−1

T∑
s=1

f̃sηst + N2αT−1

T∑
s=1

f̃sξst

(14)

where γN(s, t) = E(e′set/N)

ζst = e′set/N − γN(s, t) (15)

ηst = f ′0s Λ0
Net/N (16)

ξst = f ′0t Λ0
Nes/N = ηts (17)

It is easy to see that

||f̂t −Hft||2 ≤ 4(at + bt + ct + dt) (18)
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where

at = N4αT−2

∥∥∥∥∥
T∑

s=1

f̃sγN(s, t)

∥∥∥∥∥

2

(19)

bt = N4αT−2

∥∥∥∥∥
T∑

s=1

f̃sζst

∥∥∥∥∥

2

(20)

ct = N4αT−2

∥∥∥∥∥
T∑

s=1

f̃sηst

∥∥∥∥∥

2

(21)

dt = N4αT−2

∥∥∥∥∥
T∑

s=1

f̃sξst

∥∥∥∥∥

2

It follows that

1/T
T∑

t=1

||f̂t −Hft||2 ≤ c/T

T∑
t=1

(at + bt + ct + dt) (22)

for some constant c. Now
∥∥∥∥∥

T∑
s=1

f̃tγN(s, t)

∥∥∥∥∥

2

≤
(

T∑
s=1

∥∥∥f̃s

∥∥∥
2
)(

T∑
s=1

γ2
N(s, t)

)
(23)

which implies that

1/T
T∑

t=1

at = Op(N
4αT−1) (24)

Following the analysis for N−4αbt given in the proof of Bai and Ng (2002) we see that

1/N4αT

T∑
t=1

bt = Op(N
−1) (25)

and hence

1/T
T∑

t=1

bt = Op(N
−1+4α) = op(1) (26)

as long as a < 1/4. Finally we look at ct. dt can be treated similarly.

ct = N4αT−2

∥∥∥∥∥
T∑

s=1

f̃sηst

∥∥∥∥∥

2

= N4αT−2

∥∥∥∥∥
T∑

s=1

f̃sf
′0
s Λ0

Net/N

∥∥∥∥∥

2

= (27)

N2αT−2

∥∥∥∥∥
T∑

s=1

f̃sf
′0
s Λ0et/N

∥∥∥∥∥

2

≤

N−2+4α
∥∥Λ0et

∥∥2

(
T−1

T∑
s=1

∥∥∥f̃s

∥∥∥
2
)(

T−1

T∑
s=1

‖fs‖2

)
= N−2+4α

∥∥Λ0et

∥∥2
Op(1)

So

1/T
T∑

t=1

ct = Op(1)N−1+4αT−1

T∑
t=1

∥∥∥∥
Λ0et

N1/2

∥∥∥∥
2

= Op(N
−1+4α) (28)
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Therefore, a sufficient condition for estimation in the local to zero case is the presence of

a relatively strong local-to-zero factor model (α < 1/4) and a slow rate of increase for N .

Note also the tradeoff between α and the allowable rate of increase for N .

The next theorem provides the asymptotic distribution of the alternative IV estimators

for the case where N is finite, and shows that, as expected, their relative efficiency depends

on the generating mechanism of the data.

Theorem 3 Assuming that ft is observed, then for finite N the asymptotic variance co-

variance matrix of
√

T (β̄ − β) under (3)-(5) are given, up to the same scalar constant of

proportionality, by

var
(√

T (β̄ − β)
)

=
(
A0′

NZΛ0′
NΣfΛ

0
NA0

NZ

)−1

(29)

var
(√

T (β̄ − β)
)

=
(
A0′

NΣfA
0
N

)−1

(30)

and

var
(√

T (β̄ − β)
)

=
((

A0′
NZΛ0′

N + A0′
N

)
Σf

(
Λ0

NA0
NZ + A0

N

))−1

(31)

respectively. The asymptotic variance covariance matrix of
√

T (β̃ − β) under (3)-(5) are

given, up to the same scalar constant of proportionality, by

var
(√

T (β̃ − β)
)

=
(
A0′

NZ

(
Λ0′

NΣfΛ
0
N + Σv

)
A0

NZ

)−1

(32)

var
(√

T (β̃ − β)
)

=

(
A0′

NΣfΛ
0′
N

(
Λ0

NΣfΛ
0′
N + Σv

)−1

Λ0
NΣfA

0
N

)−1

(33)

and

var
(√

T (β̃ − β)
)

=

((
A0′

N

(
ΣfΛ

0
N + Σv

)
+ A0′

NΣfΛ
0′
N

)(
Λ0′

NΣfΛ
0
N + Σv

)−1

(34)

(
A0′

N

(
ΣfΛ

0
N + Σv

)
+ A0′

NΣfΛ
0′
N

)′)−1

respectively. The difference between the RHS of (29) and (32) is a positive semidefinite

matrix. The difference between the RHS of (33) and (30) is a positive semidefinite matrix.

Proof. Asymptotic normality for the estimators follows straightforwardly from the mar-

tingale difference central limit theorem given Assumption 2. We then examine the asymp-

totic variances. The general expressions for the covariance matrices of
√

T (β̄ − β) and√
T (β̃ − β) are given by the probability limits as T → ∞ of

(
X′F

T

(
F ′F
T

)−1 F ′X
T

)−1

and
(

X′Z
T

(
Z′Z
T

)−1 Z′X
T

)−1

. We begin by deriving results under (4) as it is more straightforward.
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The following probability limits, using standard laws of large numbers and the uncorrelat-

edness of ut and vt, give the required ingredients for the results

X ′F
T

=

(
A0′

NF ′ + u′
)
F

T

p→ A0′
NΣf (35)

F ′F
T

p→ Σf (36)

X ′Z
T

=

(
A0′

NF ′ + u′
)
(FΛ0

N + v)

T

p→ A0′
NΣfΛ

0
N (37)

Z ′Z
T

=
(FΛ0

N + v)
′
(FΛ0

N + v)

T

p→ Λ0′
NΣfΛ

0
N + Σv (38)

Then, (30) and (33) easily follow. Similarly, under (3), (35) and (38) become

X ′F
T

=

(
A0′

NZ

(
Λ0′

NF ′ + v′
)

+ u′
)
F

T

p→ A0′
NZΛ0′

NΣf (39)

X ′Z
T

=

(
A0′

NZ

(
Λ0′

NF ′ + v′
)

+ u′
)
(FΛ0

N + v)

T

p→ A0′
NZΛ0′

NΣfΛ
0
N+A0′

NZΣv = A0′
NZ

(
Λ0′

NΣfΛ
0
N + Σv

)

(40)

Hence, (29) and (32) easily follow. Finally, under (5), (35) and (38) become

X ′F
T

=

(
A0′

NZ

(
Λ0′

NF ′ + v′
)

+ A0′
NF ′ + u′

)
F

T

p→
(
A0′

NZΛ0′
N + A0′

N

)
Σf (41)

X ′Z
T

=

(
A0′

NZ

(
F ′Λ0′

N + v′
)

+ A0′
NF ′ + u′

)
(FΛ0

N + v)

T

p→ A0′
NZΛ0′

NΣfΛ
0
N + A0′

N

(
Σv + ΣfΛ

0
N

)

(42)

We next examine

(
A0′

NZΛ0′
NΣfΛ

0
NA0

NZ

)−1

−
(
A0′

NZ

(
Λ0′

NΣfΛ
0
N + Σv

)
A0

NZ

)−1

which is positive semidefinite (psd) if

A0′
NZ

(
Λ0′

NΣfΛ
0
N + Σv

)
A0

NZ − A0′
NZΛ0′

NΣfΛ
0
NA0

NZ (43)

is psd. But (43) is psd since

Λ0′
NΣfΛ

0
N + Σv − Λ0′

NΣfΛ
0
N = Σv

Hence the result follows. Finally we examine

(
A0′

NΣfΛ
0′
N

(
Λ0

NΣfΛ
0′
N + Σv

)−1

Λ0
NΣfA

0
N

)−1

−
(
A0′

NΣfA
0
N

)−1

which is psd if

A0′
NΣfA

0
N − A0′

NΣfΛ
0′
N

(
Λ0

NΣfΛ
0′
N + Σv

)−1

Λ0
NΣfA

0
N (44)

11



is. But (44) is psd if

A0′
NΣfA

0
N − A0′

NΣfΛ
0′
N

(
Λ0

NΣfΛ
0′
N

)−1

Λ0
NΣfA

0
N (45)

is. Define Ã0
N = Σ

1/2
f A0

N and Λ̃0
N = Λ0

NΣ
1/2
f . Then, (45) becomes

Ã0′
N Ã0

N − Ã0′
N Λ̃0′

N

(
Λ̃0

N Λ̃0′
N

)−1

Λ̃0
N Ã0

N = Ã0′
N

(
I − Λ̃0′

N

(
Λ̃0

N Λ̃0′
N

)−1

Λ̃0
N

)
Ã0

N (46)

which is psd since I − Λ̃0′
N

(
Λ̃0

N Λ̃0′
N

)−1

Λ̃0
N is. Hence the result follows.

The next result provides asymptotic equivalence between the feasible and infeasible

Factor-IV estimators in the case of strong instruments and diverging N .

Theorem 4 Let Λ0
N = Λ0, A0

NZ = A0
Z and A0

N = A0. If
√

T/N = o(1) then

√
T (β̄ − β)−

√
T (β̂ − β) = op(1) (47)

Proof. We need to prove that

√
T

((
X ′F (F ′F )−1F ′X

)−1
X ′F (F ′F )−1F ′ε−

(
X ′F̂ (F̂ ′F̂ )−1F̂ ′X

)−1

X ′F̂ (F̂ ′F̂ )−1F̂ ′ε
)

= op(1)

(48)

or (
X ′F
T

(
F ′F
T

)−1
F ′X
T

)−1
X ′F
T

(
F ′F
T

)−1
F ′ε
T 1/2

− (49)


X ′F̂

T

(
F̂ ′F̂
T

)−1
F̂ ′X
T



−1

X ′F̂
T

(
F̂ ′F̂
T

)−1
F̂ ′ε
T 1/2

= op(1)

(49) follows if

X ′F
T

(
F ′F
T

)−1
F ′X
T

− X ′F̂
T

(
F̂ ′F̂
T

)−1
F̂ ′X
T

= op(1) (50)

and

X ′F
T

(
F ′F
T

)−1
F ′ε
T 1/2

− X ′F̂
T

(
F̂ ′F̂
T

)−1
F̂ ′ε
T 1/2

= op(1) (51)

(50) and (51) follow if

X ′F
T

− X ′F̂
T

= op(1) (52)

F ′F
T

− F̂ ′F
T

= op(1) (53)

and
√

T

(
F ′ε
T
− F̂ ′ε

T

)
= op(1) (54)

12



hold. We examine (52)-(54). They can all be written as

AT
1

T

T∑
t=1

(f̂t −Hft)q
′
t = op(1) (55)

where AT is 1, 1 and
√

T and qt is xt, ft and εt respectively for (52)-(54). By Lemma A.1 of

Bai and Ng (2006a) we have that

1

T

T∑
t=1

(f̂t −Hft)q
′
t = Op

(
min(N, T )−1

)
(56)

as long as qt has finite fourth moments, nonsingular covariance matrix and satisfies a central

limit theorem. These conditions are satisfied for xt, ft and εt via assumptions 2 and 3. Hence,

(52)-(53) follow, while (54) follows if
√

T/N = o(1).

The following theorem provides results for the case of many weak instruments. Note that

in this case the instruments are weak by virtue of the specification of the relationships (3)-(5)

rather than the presence of a local-to-zero factor loading matrix in (2). The latter possibility

is not allowed since the rate at which the estimated factors converge to the space spanned by

the true factors is affected by the presence of a local-to-zero factor loading matrix as detailed

in Theorem 2. However, a distributional result for β̂ in the presence of a local-to-zero factor

loading matrix is given in Theorem 6.

Theorem 5 Let one of (3), (4) or (5) hold. Let N = O(T γ), γ > 1/2. Let Λ0
N = Λ0.

Further, let every element of Λ0A0
NZ be O(N−β) = O(T−α), where α = γβ, 0 ≤ α < 1/2.

Also let every element of A0
N be O(N−δ) = O(T−ϑ), where ϑ = γδ, 0 ≤ ϑ < 1/2. Then,

under (3),

T 1/2−α
(
β̂ − β

)
d→ N

(
0, σ2

ε (Υ′ΣfΥ)
−1

)
(57)

Under (4)

T 1/2−α
(
β̂ − β

)
d→ N

(
0, σ2

ε (Ψ′ΣfΨ)
−1

)
(58)

and under (5), if ϑ > α

T 1/2−α
(
β̂ − β

)
d→ N

(
0, σ2

ε (Ψ′ΣfΨ)
−1

)
(59)

if ϑ < α,

T 1/2−ϑ
(
β̂ − β

)
d→ N

(
0, σ2

ε (Υ′ΣfΥ)
−1

)
(60)

and if ϑ = α,

T 1/2−α
(
β̂ − β

)
d→ N

(
0, σ2

ε

(
(Υ + Ψ)′ Σf (Υ + Ψ)

)−1
)

(61)

13



where

lim
T→∞

Λ0A0
N(T )Z

T−α
= Υ (62)

lim
T→∞

A0
N(T )

T−ϑ
= Ψ (63)

and Υ and Ψ are nonsingular matrices.

Proof. We establish (57). (58)-(61) follow similarly. We examine the asymptotic distri-

bution of

T 1/2−α
(
X ′F̂ (F̂ ′F̂ )−1F̂ ′X

)−1

X ′F̂ (F̂ ′F̂ )−1F̂ ′ε (64)

By theorem 4 and (55) for AT = op(T
1/2) it is sufficient to examine the asymptotic distrib-

ution of (
X ′F
T 1−α

(
F ′F
T

)−1
F ′X
T 1−α

)−1
X ′F
T 1−α

(
F ′F
T

)−1
F ′ε
T 1/2

(65)

A standard central limit theorem suffices to show that under assumptions 1-3

T−1/2F ′ε
d→ N

(
0, σ2

ε Σf

)
(66)

We examine the limits of F ′F
T

and X′F
T 1−α . The first is given in (36). We examine the second.

We have

X ′F
T 1−α

=

(
A0′

NZ

(
Λ0′

NF ′ + v′
)

+ u′
)
F

T 1−α
=

A0′
NZΛ0′

N

T−α

F ′F
T

+
A0′

NZv′F
T 1−α

+
u′F
T 1−α

(67)

The second and third terms of the RHS of (67) tend to zero since 1− α > 1/2. The first

term tends to Υ′Σf . Hence, the result follows.

Remark 1 The assumption that the elements of Λ0
N , A0

NZ and A0
N are deterministic can

be relaxed to allow for the possibility of random elements that are independent of F , ε, u

and v. Then, the conditions (62) and (63) would be modified to ones involving stochastic

convergence.

For the next result we need the following lemma.

Lemma 1 Let Λ0
N = Λ0/Nα. Let a < 1/4 and N2α = o(T 1/2) . Then,

1

T

T∑
t=1

(f̂t −Hft)q
′
t = Op

(
N2α−1

)
(68)

as long as qt has finite fourth moments, nonsingular covariance matrix and satisfies a central

limit theorem.
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Proof. We follow the proof of Lemma A.1 of Bai and Ng (2006a). Using (15)-(17) we

get

1

T

T∑
t=1

(f̂t −Hft)q
′
t = N2αT−2

T∑
t=1

(
T∑

s=1

f̃sγN(s, t)

)
q′t + N2αT−2

T∑
t=1

(
T∑

s=1

f̃sζst

)
+ (69)

N2αT−2

T∑
t=1

(
T∑

s=1

f̃sηst

)
q′t + N2αT−2

T∑
t=1

(
T∑

s=1

f̃sξst

)
q′t

The first two terms of (69) apart from the normalisation N2α are the same as those analysed

in Lemma A.1 of Bai and Ng (2006a). Thus, under the assumption of the Lemma for qt, we

immediately get that they are Op

(
N2αT−1/2 min(N, T )−1/2

)
and Op

(
N2α−1/2 min(N, T )−1/2

)

respectively. The third and the fourth term of (69) are analysed similarly. We focus on the

third term. We have

N2αT−2 1

T

T∑
t=1

(
T∑

s=1

f̃sηst

)
q′t = N2αT−2

T∑
t=1

(
T∑

s=1

Hfsηst

)
q′t+N2αT−2

T∑
t=1

(
T∑

s=1

(
f̃s −Hfs

)
ηst

)
q′t

(70)

The first term on the RHS of (70) can be written as

N2αT−2

T∑
t=1

(
T∑

s=1

Hfsηst

)
q′t = N2α

(
H

1

T

T∑
t=1

fsf
′
s

)
1

NT

T∑
t=1

Λ0
Netq

′
t =

N2α

(
H

1

T

T∑
t=1

fsf
′
s

)
N−2α

NT

T∑
t=1

Λ0etq
′
t =

(
H

1

T

T∑
t=1

fsf
′
s

)
1

NT

T∑
t=1

Λ0etq
′
t = Op

(
(NT )−1/2

)

For the second term of (70) we have

∥∥∥∥∥N2αT−2

T∑
t=1

(
T∑

s=1

(
f̃s −Hfs

)
ηst

)
q′t

∥∥∥∥∥ ≤
(

1

T

T∑
s=1

∥∥∥f̃s −Hfs

∥∥∥
2
)1/2


N4α 1

T

T∑
s=1

∥∥∥∥∥
1

T

T∑
t=1

ηstq
′
t

∥∥∥∥∥

2



1/2

But (
1

T

T∑
s=1

∥∥∥f̃s −Hfs

∥∥∥
2
)1/2

= Op

(
N2α−1/2

)

by Theorem 2. Then,

N4α 1

T

T∑
s=1

∥∥∥∥∥
1

T

T∑
t=1

ηstq
′
t

∥∥∥∥∥

2

= N4α 1

T

T∑
s=1

∥∥∥∥∥
1

T

T∑
t=1

f ′0s Λ0
Net

N
q′t

∥∥∥∥∥

2

=
1

T

T∑
s=1

∥∥∥∥∥
1

T

T∑
t=1

f ′0s Λ0et

N
q′t

∥∥∥∥∥

2

(71)

But,

1

T

T∑
t=1

f ′0s Λ0et

N
q′t = Op(N

−1/2)
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and so the RHS of (71) is also Op(N
−1/2). As a result, the third term of (69) is Op (N2α−1).

Thus, overall

1

T

T∑
t=1

(f̂t −Hft)q
′
t = Op

(
N2α min(N, T )−1

)
= Op

(
N2α−1

)

since N = o(T ).

Then, we have the following theorem

Theorem 6 Let Λ0
N = Λ0/Nα. Let a < 1/4, N2α = o(T 1/2) and N2α−1T 1/2 = o(1). Then,

Theorem 4 and (57) of Theorem 5 under (3) follow where

lim
T→∞

Λ0
N(T )A

0
N(T )Z

T−α
= Υ (72)

and A0
N(T )Z = A0

Z.

Proof. The results follow from Lemma 1, (55) and the proofs of Theorems 4 and 5.

In summary, for some data generating processes, using zt rather than ft is preferable in

the case of finite N , as detailed in Theorem 3. However, this result is reversed when N

tends to infinity. First, as N →∞, it becomes feasible to estimate the unobserved factors ft

consistently even for local-to-zero factor models, as discussed in Theorem 1, and estimation

of the factors does not to matter for the asymptotic properties of the Factor-IV estimators,

as discussed in Theorems 4 and 6. Moreover, whereas estimation using the estimated factors

remains consistent and asymptotically normal even in the case where zt are weak instruments,

as discussed in Theorems 5 and 6, standard IV estimation can be inconsistent if the number

of instrument increases fast enough, as discussed by Bekker (1994) and Chao and Swanson

(2005).

2.2 Factor-GMM estimation

We now relax assumption 2 and allow for correlation and heteroskedasticity in the errors ε

of equation (1). We formalise this with the following assumption, which substitutes assump-

tion 2:

Assumption 4 εt is a zero mean process with finite variance. The process ztεt and, by

implication, ftεt, satisfies the conditions for the application of some central limit theorem

for weakly dependent processes, with a zero mean asymptotic normal limit. The probability

limits of F ′εε′F
T

and Z′εε′Z
T

, denoted by Sfε and Szε exist and are nonsingular.

We further add the following regularity condition.
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Assumption 5 E[(ztixtj)
2] exists and is finite for i=1,...,N and j=1,...,k,

Remark 2 Assumption 4 is a high level assumption. It is given in this form for general-

ity. More primitive conditions on εt such as, e.g., mixing with polynomially declining mixing

coefficients or near epoque dependence (see, e.g, Davidson (1994)) are sufficient for Assump-

tion 4 to hold.

As long as the instruments remain uncorrelated with the errors at all leads and lags, the

estimators β̂ and β̃ in (11) and (12) remain consistent and asymptotically normal. Further-

more, we have:

Theorem 7 For finite N , the asymptotic variance covariance matrix of
√

T (β̄ − β) under

(3)-(4) are given by

var
(√

T (β̄ − β)
)

=
(
A0′

NZΛ0′
NΣfΛ

0
NA0

NZ

)−1

A0′
NZΛ0′

NΣ−1
f SfεΣ

−1
f Λ0

NA0
NZ

(
A0′

NZΛ0′
NΣfΛ

0
NA0

NZ

)−1

(73)

var
(√

T (β̄ − β)
)

=
(
A0′

NΣfA
0
N

)−1

A0′
NΣ−1

f SfεΣ
−1
f A0

N

(
A0′

NΣfA
0
N

)−1

(74)

where Sfε = E(F ′εε′F ). The asymptotic variance covariance matrix of
√

T (β̃ − β) under

(3)-(4) are given by

var
(√

T (β̃ − β)
)

=
(
A0′

NZ

(
Λ0′

NΣfΛ
0
N + Σv

)
A0

NZ

)−1

(75)

A0′
NZSzεA

0
NZ

(
A0′

NZ

(
Λ0′

NΣfΛ
0
N + Σv

)
A0

NZ

)−1

var
(√

T (β̃ − β)
)

=

(
A0′

NΣfΛ
0′
N

(
Λ0

NΣfΛ
0′
N + Σv

)−1

Λ0
NΣfA

0
N

)−1

(76)

(
A0′

NΣfΛ
0′−1
N S−1

zε Λ0
NΣfA

0
N

) (
A0′

NΣfΛ
0′
N

(
Λ0

NΣfΛ
0′
N + Σv

)−1

Λ0
NΣfA

0
N

)−1

Proof. The general expressions for the covariance matrices of
√

T (β̄−β) and
√

T (β̃−β)

are given by the probability limits as T →∞ of

(
X ′F
T

(
F ′F
T

)−1
F ′X
T

)−1
X ′F
T

(
F ′F
T

)−1
F ′εε′F

T

(
F ′F
T

)−1
F ′X
T

(
X ′F
T

(
F ′F
T

)−1
F ′X
T

)−1

and
(

X ′Z
T

(
Z ′Z
T

)−1
Z ′X
T

)−1
X ′Z
T

(
Z ′Z
T

)−1
Z ′εε′Z

T

(
Z ′Z
T

)−1
Z ′X
T

(
X ′Z
T

(
Z ′Z
T

)−1
Z ′X
T

)−1

.

The probability limits of X′F
T

, F ′F
T

, X′Z
T

and Z′Z
T

are as in Theorem 3, while

F ′εε′F
T

p→ Sfε, (77)
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Z ′εε′Z
T

p→ Szε. (78)

Notice that when the errors ε are uncorrelated and homoskedastic, it is (up to a scalar

constant) Sfε = E(F ′F ) = Σf and Szε = E(Z ′Z) = Λ0′
NΣfΛ

0
N + Σv. Therefore, the variance

covariance matrices of β̂ and β̃ reduce to those derived in Theorem 3. In practice, Sfε and Szε

can be estimated by a HAC procedure, such as that developed in Newey and West (1987).

For example, using a Bartlett kernel, we have

Ŝzε,h = Φ̂0 +
h∑

j=1

(1− j

h + 1
)(Φ̂j + Φ̂

′
j)

Φ̂j = T−1

T∑
T=j+1

ε̂2
t ztz

′
t,

where h is the length of the window, ε̂t = yt − x
′
tb, and b is a consistent estimator for β. We

focus on the Newey and West (1987) HAC procedure using the Bartlett kernel in the rest of

the section.

A remaining problem with the two stage least square estimators β̂ and β̃ is that they

are not efficient in the presence of a general error structure. In fact, the efficient estimators

in this context are obtained by GMM estimation with either S−1
fε or S−1

zε as the weighting

matrix. Using standard methods, the resulting estimators are

b̂ =
(
X ′F̂ Ŝ−1bfε

F̂ ′X
)−1

X ′F̂ Ŝ−1bfε
F̂ ′y (79)

b̃ =
(
X ′ZŜ−1

zε Z ′X
)−1

X ′ZŜ−1
zε Z ′y (80)

and

b =
(
X ′FS−1

fε F ′X
)−1

X ′FS−1
fε F ′y, (81)

When the errors are uncorrelated and homoskedastic, these expressions simplify to those in

(11)-(13).

Theorem 8 Assuming that ft is observed, then for finite N the asymptotic variance covari-

ance matrix of
√

T (b− β) under (3)-(5) are given by

var
(√

T (b− β)
)

=
(
A0′

NZΛ0′
NΣfS

−1
fε ΣfΛ

0
NA0

NZ

)−1

(82)

var
(√

T (b− β)
)

=
(
A0′

NΣfS
−1
fε ΣfA

0
N

)−1

(83)
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and

var
(√

T (b− β)
)

=
((

A0′
NZΛ0′

N + A0′
N

)
ΣfS

−1
fε Σf

(
Λ0

NA0
NZ + A0

N

))−1

(84)

respectively. The asymptotic variance covariance matrix of
√

T (̃b − β) under (3)-(5) are

given by

var
(√

T (̃b− β)
)

=
(
A0′

NZ

(
Λ0′

NΣfΛ
0
N + Σv

)
S−1

zε

(
Λ0′

NΣfΛ
0
N + Σv

)
A0

NZ

)−1

(85)

var
(√

T (̃b− β)
)

=
(
A0′

NΣfΛ
0′
NS−1

zε Λ0
NΣfA

0
N

)−1

(86)

and

var
(√

T (̃b− β)
)

=
((

A0′
NZΛ0′

NΣfΛ
0
N + A0′

N

(
ΣfΛ

0
N + Σv

))
S−1

zε (87)

(
A0′

NZΛ0′
NΣfΛ

0
N + A0′

N

(
ΣfΛ

0
N + Σv

))′)−1

respectively.

Proof. The general expressions for the covariance matrices of
√

T (b−β) and
√

T (̃b−β)

are given by the probability limits as T →∞ of
(

X′F
T

S−1
fε

F ′X
T

)−1
and

(
X′Z
T

Ŝ−1
zε

Z′X
T

)−1

. The

results follow from those in the Proof of Theorem 3 and consistency of the HAC estimator

of S.

Notice that the higher precision of b with respect to b̃ when the model is (4) (and of b̃

for 3) follows from the choice of the weighting matrix.

Theorem 9 Let Λ0
N = Λ0, A0

NZ = A0
Z and A0

N = A0. If
√

T/N = o(1) then

√
T (b− β)−

√
T (̂b− β) = op(1) (88)

Proof. We need to prove that

√
T

((
X ′FS−1

fε F ′X
)−1

X ′FS−1
fε F ′ε−

(
X ′F̂ Ŝ−1bfε

F̂ ′X
)−1

X ′F̂ Ŝ−1bfε
F̂ ′ε

)
= op(1) (89)

or (
X ′F
T

S−1
fε

F ′X
T

)−1
X ′F
T

S−1
fε

F ′ε
T 1/2

− (90)

(
X ′F̂
T

Ŝ−1bfε

F̂ ′X
T

)−1
X ′F̂
T

Ŝ−1bfε

F̂ ′ε
T 1/2

= op(1)

From the proof of Theorem 4 we already know that

X ′F
T

− X ′F̂
T

= op(1) (91)
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and
√

T

(
F ′ε
T
− F̂ ′ε

T

)
= op(1). (92)

Then we have,

Ŝ bfε,h = Φ̂0 +
h∑

j=1

(1− j

h + 1
)(Φ̂j + Φ̂

′
j)

Φ̂j = T−1

T∑
T=j+1

ε̂2
t f̂tf̂

′
t ,

so that

Φj − Φ̂j = T−1

T∑
T=j+1

ε̂2
t

(
ftf

′
t − f̂tf̂

′
t

)
.

The theorem is complete if we show formally that Φj − Φ̂j = op(h
−1). We have

∥∥∥∥∥T−1

T∑
T=j+1

ε̂2
t

(
ftf

′
t − f̂tf̂

′
t

)∥∥∥∥∥ ≤ C1

∥∥∥∥∥T−1

T∑
T=j+1

ε̂2
t f

′
t

(
Hft − f̂

′
t

)∥∥∥∥∥ ≤

C2

∥∥∥∥∥T−1

T∑
T=j+1

ε2
t f

′
t

(
Hft − f̂

′
t

)∥∥∥∥∥ + C3

∥∥∥∥∥T−1

T∑
T=j+1

(ε̂t − εt)f
′
t

(
Hft − f̂

′
t

)∥∥∥∥∥

for some constants C1,C2 and C3. But, by (55) and
√

T/N = o(1),

∥∥∥∥∥T−1
T∑

T=j+1

ε2
t f

′
t

(
Hft − f̂

′
t

)∥∥∥∥∥ =

op

(
T−1/2

)
as long as εt has finite eighth moments. Then,

∥∥∥∥∥T−1

T∑
T=j+1

(ε̂t − εt)f
′
t

(
Hft − f̂

′
t

)∥∥∥∥∥ ≤ C4

∥∥∥∥∥T−1(b− β)
T∑

T=j+1

xtf
′
t

(
Hft − f̂

′
t

)∥∥∥∥∥

≤ C5 ‖b− β‖
∥∥∥∥∥T−1

T∑
T=j+1

xtf
′
t

(
Hft − f̂

′
t

)∥∥∥∥∥

for some constants C4 and C5. Again by (55) and
√

T/N = o(1),

∥∥∥∥∥T−1
T∑

T=j+1

xtf
′
t

(
Hft − f̂

′
t

)∥∥∥∥∥ =

op

(
T−1/2

)
. By consistency of b, ‖b− β‖ = op(1). Hence Φj − Φ̂j = op(h

−1) as long as

h = o(T 1/2).

Next, we have

Theorem 10 Under the same assumptions of Theorem 5, under (3),

T 1/2−α
(
b̂− β

)
d→ N

(
0,

(
Υ
′
ΣfS

−1
fε ΣfΥ

′
)−1

)
(93)

20



Under (4)

T 1/2−α
(
b̂− β

)
d→ N

(
0,

(
Ψ
′
ΣfS

−1
fε ΣfΨ

)−1
)

(94)

and under (5), if ϑ > α

T 1/2−α
(
b̂− β

)
d→ N

(
0,

(
Ψ
′
ΣfS

−1
fε ΣfΨ

)−1
)

(95)

if ϑ < α,

T 1/2−α
(
b̂− β

)
d→ N

(
0,

(
Υ
′
ΣfS

−1
fε ΣfΥ

′
)−1

)
(96)

and if ϑ = α,

T 1/2−α
(
β̂ − β

)
d→ N

(
0,

(
(Ψ + Υ)

′
ΣfS

−1
fε Σf (Ψ + Υ)

)−1
)

(97)

where

lim
T→∞

Λ0
N(T )A

0
N(T )Z

Tα
= Υ (98)

lim
T→∞

A0
N(T )

T ϑ
= Ψ (99)

and Υ and Ψ are nonsingular matrices.

Proof. It follows from the proof of theorem 5, given Theorem 8 and consistency of Ŝ bfε.

Finally, note that that the results of Theorem 6 follow straightforwardly for the GMM

case.

3 Monte Carlo Study

This section presents a detailed Monte Carlo study of the relative performance of the standard

and factor IV estimator. We consider all setups and estimators we have proposed in Section

2. The setup is as follows:

yt =
k∑

i=1

xit + εt (100)

zit =
r∑

j=1

N−pfjt + c2eit, i = 1, ..., N (101)

xit =
N∑

j=1

N−1/2zjt + uit, i = 1, ..., nx (102)

xit =
r∑

j=1

c−1
1 r−1/2fjt + uit, i = 1, ..., nx (103)
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and

xit =
N∑

j=1

N−1/2zjt +
r∑

j=1

c−1
1 r−1/2fjt + uit, i = 1, ..., nx (104)

where k = 1, r = 1, eit ∼ i.i.d.N(0, 1), fit ∼ i.i.d.N(0, 1) and cov(eit, esj) = 0 for i 6= s. Let

κt = (εt, u1t, ..., ukt)
′. Then, κt = Pηt, where ηt = (η1,t, ..., ηk+1,t)

′, ηi,t ∼ i.i.d.N(0, 1) and

P = [pij], pij ∼ i.i.d.N(0, 1). We do not consider heteroskedastic and/or correlated errors

because we want to compare the standard and Factor-IV estimators without the possible

complications arising from estimation of the HAC variance covariance matrix of the errors.

Note that
∑N

j=1 N−1/2zjt and
∑r

j=1 c−1
1 r−1/2fjt are both Op(1) as N, T →∞. Hence, there is

no difference in the weakness of the instruments between (102) and (103). This is separate

from the issue of a local-to-zero factor model which in our Monte Carlo is explored via the

choice of p in (101)

For the setup corresponding to (3) we use (100), (101) and (102) where c2 = 0.5, 1, 4. This

is the framework where the standard IV estimator should perform well, at least for limited

values of N . However, the Factor-IV estimator should also produce reasonable results, since

the factors are a proxy for the z variables, and be better than the standard IV estimator for

large values of N . A larger value of c2 corresponds to a larger idiosyncratic component for

the z variables, so that the factors provide a worse approximation for the z variables.

For the setup corresponding to (4) we use (100), (101) and (103) where c2 = 1 and

c1 = 0.5, 1, 4. In this case the Factor-IV estimator should be systematically better than the

standard IV-estimator, at least as long as p and c1 are not too large. The parameter c1

measures the ”strength” of the factors as instruments, which decreases for higher values of

c1. Instead, the parameter p controls the ”strength” of the factors in the factor model for

zt, which decreases for higher values of p.

Finally, for the setup corresponding to (5) we use (100), (101) and (104) where c2 =

0.5, 1, 4 and c1 = 0.5, 1, 4. This is perhaps the most interesting case for empirical applica-

tions, since the endogenous regressors depend both on the zt variables and on the factors.

In all cases p = 0, 0.1, 0.25, 0.33, 0.45, 0.5, and we consider the following combinations

of N and T : N = (30, 50, 100, 200), T = (30, 50, 100, 200).3 Results on the variance of

the standard and Factor-IV estimators are presented in Tables 1-6. As expected, the biases

3Notice that when N > T we use generalized inverses in the computation of the first step of the standard
(two-stages) IV-estimator.
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of the alternative estimators are small for all cases, detailed tables are available upon request.

Results make interesting reading. Looking first at the results for the experiment using

(4), where the endogenous variables depend on the factors, we note that the performance of

the standard IV estimator improves with T , but the extent of that improvement diminishes

with N , as expected since the estimator is adversely affected by large N (see Table 1). When

c1 increases, the dependence between the endogenous variables and the factors decreases, as

well as that between the variables and the zt that are a proxi for the factors. Therefore,

the variance of the IV estimator increases. Similarly, when p increases the link between the

factors and zt is weaker, so that zt is a worse proxy for the factors and the variance of the

standard IV estimator increases.

From Table 2, when p = 0, the Factor-IV estimator improves with the sample size T , and

the degree of the improvement is not affected by N . Instead, as expected. the Factor-IV

estimator is adversely affected by a increase in p and c1. In particular, notice that when p is

larger than 0.25, increasing N increases the variance of the estimator, which remains large

even for T = 200. Actually, from Theorem 2 we know that in this case the Factor-estimator

may no longer be consistent. Paradoxically, in this case using zt, which contains informa-

tion on the true factors ft, is better than estimating ft with the principal component based

estimator. When p = 0, in line with Theorem 5, the Factor-IV estimator is better in terms

of variance for all values of c1 and combinations of N and T (except, T = 30 and c1 = 4,

namely, in a very small sample). However, when p increases, the sample size T must be

larger and larger for the Factor-IV to have a lower variance than standard IV estimator for

large values of c1. The worst results in terms of variance are for c1 = 4 and p = 0.5, namely,

a weak link between the endogenous variables and the factors, combined with a weak link

between the zt variables and the factors. In this case the standard IV estimator has a smaller

variance also for T = 200 when N is large.

Overall, the Factor-IV estimator is better than the standard IV estimator as long as the

factor model remains identified. When the parameter p increases, the performance of the

estimator of the factor (f̂t) deteriorates, causing a larger variance for the factor-IV estimator

of the parameters of the structural equation. A weaker link between the endogenous vari-

ables and the factors (large c1) also increases the variance of the factor-IV estimator, but

more so for the standard IV estimator.
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Moving on to the experiment using (3), we note from Table 3 that the overall performance

of the standard IV estimator improves, as expected since now the endogenous variables de-

pend on zt. Three additional features that emerge are the following. First, in general, when

p increases the variance of the standard IV estimator increases. This could seem surprising,

since p is a parameter of the factor model. However, when p increases, the variance of each

of the z variables decreases, and therefore the explanatory power of equation (102) for xt

decreases. Second, when c2 increases and p is large, the variance of the standard IV estimator

decreases. This is because a larger c2 increases the variance of z, but the effect is visible only

when the common part N−pfjt is small.

The performance of the Factor-IV estimator is evaluated in Table 4. The main finding

is that, as long as the parameter p is zero or small (namely there is a proper factor struc-

ture), the Factor-GMM estimator is even better than the standard IV-estimator, with the

difference shrinking with the sample size T , as expected from the theory. For intermediate

values of p, the parameter c2 becomes relevant, and the Factor-IV is preferable only for small

values of c2 (small idiosyncratic component in factor model, so that the factors are a good

proxy for all the z variables). Finally, when p is large, the standard-IV estimator becomes

the best.

The results obtained for the experiment using (5), reported in Tables 5 and 6, are in

line with those observed in the simpler cases given by (3) and (4). In particular, as long

as p is small, the Factor-IV estimator has a lower variance that the standard IV estimator

for virtually any value of c1, c2, N and T . When p is larger than 0.25, the c1 parameter

becomes relevant and the Factor-IV estimator is better only for low values of c1 (relatively

large role of factors compared to the z variables in explaining the endogenous variable).

When p is large, 0.45 − 0.50, the N dimension becomes also relevant, in particular for lim-

ited sample size T, and the Factor-IV estimator is worse for large values of N (this is the

case where the additional variables in the z set have only limited information on the factors).

The next issue we evaluate is variable preselection (i.e. selecting the variables that

enter the factor analysis), since it may be conducive to better results in various modelling

situations such as forecasting macroeconomic variables (see Boivin and Ng (2006)). To

assess whether such a procedure may have some relevance to our work, we consider the

setup of equation (4) but, prior to using the instruments zt either for standard or factor

IV estimation, we preselect the 50% of the instruments with the highest correlation with xt
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(since we consider experiments with one xt variable only). Then, we carry out standard and

factor IV estimation as usual. Results for a subset of the experiments (c1 = 0.5 only) are

reported in Tables 7-8.

Standard IV estimation is significantly improved when instrument preselection occurs.

This is, of course, intuitive as the best instrument are retained. Factor IV estimation im-

proves as well, and to a larger extent than standard IV estimation in many cases. The

improvement is most apparent for high values of p. When p is high, variable preselection

plays a double role: it selects instruments correlated with the target, but because of this

the selected instruments are also more correlated among themselves and therefore will likely

present a stronger factor structure. Overall, factor IV estimation remains superior to stan-

dard IV, as long as the factor model remains identified.

Finally, we consider a different setup where 50% of the instruments are generated by

(101) with p varying in the range 0− 0.5, whereas the remaing instruments are generated by

(101) with p = 0. Results for both the case where zt are preselected and where preselection

is not undertaken, are reported in Tables 9-12 for c1 = 0.5.

For the standard IV estimation, preselection once more helps improving the efficiency of

the estimator. For the factor IV with preselection, it is interesting to note that the variances

reported in Table 10 are much smaller than those in Table 8 when p > 0.25. However, the

gains are smaller, though still systematic, when compared with the case without preselec-

tion in Table 12. This pattern arises because the factors can still be well estimated by the

50% of instruments with a well defined factor structure, so that variable preselection plays

only a minor role in terms of strengthening the factor stucture. If a smaller fraction of

the instruments presents a well defined factor structure, variable preselection plays a larger

role in reducing the variance of the factor-IV estimator, as we will also see in the empirical

applications.

In summary, the simulation results indicate that, as long as there is a well-defined factor

structure, the Factor-IV estimator is preferable to the standard IV-estimator, even when the

endogenous variable depends on the instrumental variables rather than on the factors. When

the factor structure is loose, other parameters, such as the size of the idiosyncratic component

in the factor model or the parameters in the equation for the endogenous variable, become

important. Finally, when the factor structure is very weak, the standard IV estimator has a

lower variance than the Factor-IV estimator. A comparable ranking can be expected for the

GMM case, since HAC estimation of the variance covariance matrix of the residuals should

have a similar impact on the efficiency of the standard and Factor-GMM estimators.
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4 Empirical Applications

In this Section we discuss two empirical applications of the factor GMM estimation. The

former concerns estimation of a forward looking Taylor rule, along the lines of Clarida, Gaĺı,

and Gertler (1998) (CGG), Clarida, Gaĺı, and Gertler (2000) (CGG2)) and Favero, Mar-

cellino, and Neglia (2005). The latter focuses on estimation of a New-Keynesian Phillips

curve, along the lines of Gaĺı and Gertler (1999) (GG 1999) and Beyer, Farmer, Henry, and

Marcellino (2005).

For the Taylor rule, we adopt the following specification :

rt = α + (1− ρ)β(πt+12 − π∗t ) + (1− ρ)γ(yt − y∗t ) + ρrt−1 + εt, (105)

where εt = (1 − ρ)β(πe
t+12 − πt+12) + vt, and vt is an i.i.d. error. We use the federal funds

rate for rt, annual cpi inflation for πt, 2% as a measure of the inflation target π∗t , and the

potential output y∗t is the Hodrick Prescott filtered version of the IP series.

Estimation of equation (105) presents several problems. First πt+12 is correlated with

the error term εt. Second, the error term is correlated over time. In particular, under cor-

rect specification of the model, εt should be an MA(11) since it contains the forecast error

πe
t+12 − πt+12. Finally, the output gap is likely measured with error, so that yt − y∗t can be

also correlated with the error term. These problems can be handled by GMM estimation,

with a correction for the MA component in the error εt and a proper choice of instruments.

In particular, we use a HAC estimator for the weighting matrix, based on a Bartlett ker-

nel with Newey and West (1994) automatic bandwith selection. For the set of instruments,

in the base case the choice is similar to that in CGG and CGG2. We use one lag of the

output gap, inflation, commodity price index, unemployment and interest rate. Then we

also include factors extracted from a large dataset of macroeconomic and financial variables

for the US, the same used in Stock and Watson (2005) that contains 132 time series for the

period 1959-2003. If the factors contain useful information, more precise estimates of the

parameters should be obtained, as we have seen from a theoretical point of view and in the

Monte Carlo simulations.

We focus on the period 1986-2003, since Beyer, Farmer, Henry, and Marcellino (2005)

have detected instability in Phillips curves and Taylor rules estimated on a longer sample

with an earlier start date. We consider factors estimated in three ways. First, from the

26



whole dataset (All data). Second. from subsets of nominal, real and financial variables

(Split data). Third, from variables pre-selected with the Boivin and Ng (2006) criterion

(Select data). Pre-selecting the variables has a double effect in this context. First, by only

retaining series related to the endogenous variable it attenuates the weak instrument prob-

lem. Second, the similarity among the retained series can be expected to be higher than that

among all the series, so that the common component can be expected to be dominant with

respect to the idiosyncratic component, which decreases problems of a weak factor structure.

The number of factors is determined by the Bai and Ng (2002) criteria, that suggest 8

factors from all data, 2 for nominal and financial variables, and 8 for real variables. Hence,

the largest variability in the data seems to be in the real series. For the Select data we use

just one factor. Actually, in this case only 13 variables remain in the dataset, those with a

correlation with yearly inflation higher than 0.4 in absolute value, so that the Bai and Ng

(2002) criteria that have a large N justification cannot be used. However, one factor already

explains more than 60% of the variability of these 13 variables. We use one lag of each factor

for All data and Split data, 12 lags for the single factor from Select data. Adding additional

lags of the variables or factors is not helpful in this application.

The results are reported in Table 13. For the base case, the estimated values for β and

γ are, respectively, about 2.3 and 1, and the fact that the output gap matters less than

inflation is not surprising. The persistence parameter, ρ, is about 0.88, in line with other

studies. An LM test for the null hypothesis of no correlation in the residuals of an MA(11)

model for ε̂t does not reject the null hypothesis, which provides evidence in favor of the

correct dynamic specification of the Taylor rule in (105). The p-value of the J-statistic for

instrument validity is 0.11, so that the null hypothesis is not rejected at the conventional

level of 10%.

Adding the factors to the instrument set does not improve the precision of the estimators

of ρ, γ and β when using All data or Split Data. However, when the Select data factor is

used, there is a reduction in the variance of the estimator of ρ of about 20%, and of about

4% and 30% for γ and β. With this set of factors there are also no significant changes in the

parameter estimates, while there is an improvement in the p-value of the J-statistic. It is

also worth mentioning that when only factors are used as instruments, the precision of the

GMM estimators decreases substantially, which suggests that a combined use of key macro

variables and factors is the optimal solution. Finally, a regression of future (12 months
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ahead) inflation on the instruments indicates that each set of factors is significant at the

10% level when added to the macro variables.

For the second example, the New-Keynesian Phillips curve is specified as,

πt = c + γπt+1 + αxt + ρπt−1 + εt, (106)

where εt = γ(πe
t+1−πt+1)+ vt, and vt is an i.i.d. error. Moreover, πt is annual CPI inflation,

πe
t+1 is the forecast of πt+1 made in period t, and xt is a real forcing variable (unemployment,

with reference to Okun’s law, as in e.g. Beyer and Farmer (2003). 4

As for the Taylor rule, πt+1 is correlated with the error term εt, which in turn is correlated

over time. Hence, we estimate the parameters of (106) by GMM, with a correction for the

MA component in the error εt, and the same four sets of instruments as for the Taylor rule

(but using the second lag of inflation).

The results are reported in Table 14. For the base case, the coefficient of the forcing

variable is not statistically significant (though it has the correct sign), while the coefficients

of the backward and forward looking components of inflation, ρ and γ, are similar and close

to 0.5. Adding the factors to the instrument set improves the precision of the estimators of

all parameters, with the best results again from the Select data factors. For the latter, the

gains are about 10% for α and 120% for γ and ρ. Moreover, a regression of future (1 month

ahead) inflation on the instruments indicates that only the Select data factors are strongly

significant when added to the set of macroeconomic regressors.

Since the number of variables in the ”Select data” set is relatively small, they could be

directly used as additional instrumental variables instead of the factor that drives all of them.

However, it turns out that the resulting parameter estimators are substantially less efficient

than the factor-GMM estimators for both the Taylor rule and the hybrid Phillips curve.

In summary, these two examples confirm the relevance of factors as additional instruments

for GMM estimation. Moreover, and in line with the results for forecasting, variable pre-

selection appears to be relevant for the extraction of the factors to be used as (additional)

instruments in GMM estimation.

4The results are qualitatively similar using the output gap.
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5 Conclusions

The use of factor models has become very popular in the last few years, following the seminal

work of Stock and Watson (2002) and Forni, Hallin, Lippi, and Reichlin (2000). Paralleling

the developments in the VAR literature in the ’80s and ’90s, so far factor models have been

mainly used for reduced form modelling and forecasting. However, recently there has a been

an interest in more structural applications of factor analysis. Stock and Watson (2005),

Giannone, Reichlin, and Sala (2002) and Kapetanios and Marcellino (2006) have shown that

it is possible to obtain more realistic impulse response functions in a structural factor model.

Favero, Marcellino, and Neglia (2005) and Beyer, Farmer, Henry, and Marcellino (2005)

have estimated structural forward looking equations, such as those typically encountered in

DSGE models, by means of factor augmented GMM estimation.

In this paper, and in a related independent article by Bai and Ng (2006b), we develop the

theoretical underpinnings of Factor-GMM estimation. We show that when the endogenous

variables in a structural equation are explained by a set of unobservable factors, which are

also the driving forces of a larger set of instrumental variables, using the estimated factors

as instuments rather than the large set of instrumental variables yields sizeable efficiency

gains. Bai and Ng (2006b) show that a similar finding remains valid in a system framework,

and the same would be true for our methodology.

We then extend the basic results in two directions. First, we evaluate what happens

when the endogenous variables depend on a large set of instrumental variables rather than

on the factors, or on a combination of them. We show theoretically that in this case the

ranking of the standard and Factor-IV estimators is no longer clear-cut, since it depends on

the specific parameter values. However, in an extensive set of simulation experiments, we

have found that Factor-IV estimation seems to be more efficient also in this context.

Second, we evaluate what happens when either the factor structure is weak, or the instru-

ments are weak, or both. When the factor structure is weak, the by now standard principal

component based estimators of the factors are no longer consistent, basically because the

factor model is no longer identified. However, we show that these factor estimators remain

consistent even if the factor loadings in the factor model converge to zero, but at a sufficiently

slow rate as a function of N . In this case, it is still possible to use Factor-IV estimators with

well defined asymptotic properties.
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When the instruments are weak, it is also possible to derive standard and Factor-IV es-

timators with well defined asymptotic properties, when the parameters in the equation that

relates the instruments (or the factors) to the endogenous variables converge to zero at a

sufficiently slow rate.

Both types of ”weaknesses”, in the factor structure and/or in the instruments, imply a

slower convergence rate of the instrumental variable estimators. The simulation experiments

indicate that, at least in our designs, a weak factor structure is more relevant than a weak

instrument situation. Moreover, in the presence of a well defined factor structure but with

weak instruments, Factor-IV estimation is in general more efficient than standard IV esti-

mation, intuitively because the information in a large set of weak instruments in condensed

in just a few variables.

Finally, we have applied Factor-GMM for the estimation of a Taylor rule and of a hybrid

Phillips curve for the US, using factors extracted from a large set of macroeconomic variables.

The findings confirm the empirical relevance of the theoretical results in this paper, in

particular when the instrumental variables are pre-selected in a first stage, based on their

correlation with the endogenous variable(s). Variable pre-selection can in fact alleviate both

the weak instrument problem, since only instruments correlated with the target variable(s)

are retained, and the weak factor structure problem, since more homogeneous variables are

retained. In such a context, the gains from Factor-IV estimation with respect to standard-IV

estimation can be fully exploited.
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6 Table Appendix

6.1 Setup of equation (4)

Table 1. Variance of standard IV estimator
c1 0.5 1 4

r p T/N 30 50 100 200 30 50 100 200 30 50 100 200
0 30 0.251 0.252 0.255 0.256 0.372 0.371 0.376 0.371 0.576 0.579 0.601 0.586
0 50 0.179 0.246 0.251 0.248 0.284 0.370 0.371 0.368 0.522 0.577 0.574 0.580
0 100 0.112 0.154 0.239 0.243 0.182 0.248 0.365 0.370 0.405 0.484 0.584 0.570
0 200 0.066 0.089 0.147 0.243 0.108 0.152 0.241 0.356 0.285 0.356 0.476 0.575

0.1 30 0.251 0.250 0.249 0.250 0.366 0.381 0.371 0.374 0.580 0.575 0.579 0.579
0.1 50 0.181 0.242 0.241 0.252 0.277 0.366 0.371 0.367 0.528 0.573 0.576 0.573
0.1 100 0.109 0.150 0.234 0.239 0.181 0.240 0.358 0.356 0.412 0.491 0.568 0.574
0.1 200 0.069 0.091 0.149 0.236 0.111 0.161 0.240 0.348 0.291 0.370 0.472 0.581
0.25 30 0.256 0.250 0.262 0.253 0.371 0.372 0.368 0.381 0.579 0.584 0.591 0.574
0.25 50 0.187 0.251 0.245 0.248 0.289 0.362 0.366 0.366 0.533 0.575 0.575 0.566
0.25 100 0.120 0.161 0.242 0.237 0.193 0.259 0.364 0.357 0.415 0.485 0.567 0.563

1 0.25 200 0.073 0.097 0.154 0.247 0.122 0.159 0.245 0.356 0.303 0.379 0.487 0.567
0.33 30 0.257 0.253 0.261 0.255 0.378 0.374 0.373 0.364 0.572 0.585 0.589 0.575
0.33 50 0.192 0.251 0.246 0.247 0.295 0.365 0.362 0.361 0.538 0.561 0.568 0.574
0.33 100 0.123 0.165 0.240 0.238 0.201 0.266 0.359 0.363 0.423 0.490 0.564 0.567
0.33 200 0.077 0.103 0.158 0.241 0.127 0.174 0.248 0.359 0.314 0.389 0.497 0.572
0.45 30 0.259 0.258 0.253 0.254 0.369 0.374 0.371 0.374 0.582 0.576 0.589 0.596
0.45 50 0.201 0.248 0.254 0.251 0.318 0.362 0.366 0.363 0.540 0.580 0.588 0.572
0.45 100 0.140 0.182 0.240 0.243 0.227 0.279 0.356 0.355 0.463 0.508 0.568 0.567
0.45 200 0.089 0.125 0.169 0.237 0.148 0.195 0.273 0.359 0.364 0.425 0.508 0.564
0.5 30 0.251 0.252 0.257 0.251 0.368 0.371 0.385 0.373 0.585 0.579 0.568 0.580
0.5 50 0.205 0.240 0.252 0.249 0.326 0.364 0.350 0.358 0.550 0.582 0.568 0.579
0.5 100 0.155 0.189 0.240 0.244 0.238 0.292 0.359 0.361 0.476 0.526 0.567 0.567
0.5 200 0.097 0.129 0.183 0.234 0.162 0.209 0.290 0.357 0.366 0.446 0.511 0.564



Table 2. Variance of factor IV estimator
c1 0.5 1 4

r p T/N 30 50 100 200 30 50 100 200 30 50 100 200
0 30 0.146 0.147 0.148 0.147 0.217 0.241 0.215 0.210 0.764 0.868 0.720 0.857
0 50 0.105 0.107 0.101 0.106 0.156 0.143 0.162 0.161 0.438 0.528 0.474 0.433
0 100 0.070 0.073 0.075 0.070 0.106 0.107 0.104 0.108 0.247 0.242 0.227 0.242
0 200 0.052 0.050 0.052 0.050 0.072 0.074 0.074 0.073 0.154 0.160 0.153 0.149

0.1 30 0.153 0.148 0.145 0.150 0.233 0.250 0.225 0.223 0.829 0.795 0.772 0.941
0.1 50 0.109 0.110 0.113 0.108 0.163 0.162 0.163 0.154 0.463 0.468 0.452 0.411
0.1 100 0.074 0.074 0.071 0.073 0.104 0.102 0.103 0.106 0.262 0.248 0.232 0.238
0.1 200 0.051 0.053 0.054 0.050 0.075 0.074 0.072 0.075 0.162 0.151 0.151 0.147
0.25 30 0.205 0.158 0.175 0.157 0.262 0.293 0.258 0.272 1.129 0.810 0.917 0.858
0.25 50 0.116 0.116 0.122 0.119 0.168 0.162 0.173 0.174 0.548 0.468 0.436 0.497
0.25 100 0.079 0.083 0.078 0.076 0.117 0.117 0.114 0.110 0.253 0.253 0.251 0.248

1 0.25 200 0.054 0.053 0.054 0.054 0.079 0.077 0.073 0.073 0.175 0.166 0.158 0.160
0.33 30 0.303 0.238 0.296 0.365 0.409 0.391 0.487 0.480 1.105 0.975 1.132 1.228
0.33 50 0.126 0.129 0.134 0.134 0.202 0.209 0.186 0.216 0.547 0.607 0.695 0.656
0.33 100 0.089 0.085 0.082 0.085 0.125 0.119 0.117 0.122 0.345 0.283 0.311 0.281
0.33 200 0.056 0.055 0.057 0.057 0.083 0.083 0.080 0.080 0.177 0.172 0.171 0.171
0.45 30 0.800 1.021 1.169 1.348 1.053 1.184 1.436 1.565 1.753 1.711 1.872 1.775
0.45 50 0.433 0.678 0.878 1.125 0.787 0.872 1.195 1.355 1.347 1.459 1.787 1.866
0.45 100 0.108 0.211 0.388 0.698 0.160 0.249 0.579 0.944 0.489 0.672 0.936 1.375
0.45 200 0.071 0.069 0.073 0.157 0.100 0.105 0.110 0.148 0.242 0.329 0.245 0.376
0.5 30 1.134 1.237 1.353 1.451 1.217 1.468 1.570 1.796 1.758 1.975 1.994 1.919
0.5 50 0.749 1.004 1.475 1.562 0.833 1.103 1.429 1.780 1.816 1.592 1.764 1.938
0.5 100 0.361 0.611 0.846 1.183 0.484 0.703 1.103 1.355 0.964 1.210 1.430 1.872
0.5 200 0.080 0.106 0.346 0.738 0.123 0.182 0.508 0.840 0.274 0.418 0.869 1.203



6.2 Setup of equation (3)

Table 3. Variance of standard IV estimator
c2 0.5 1 4

r p T/N 30 50 100 200 30 50 100 200 30 50 100 200
0 30 0.041 0.030 0.020 0.013 0.039 0.029 0.020 0.014 0.037 0.030 0.021 0.013
0 50 0.029 0.023 0.016 0.011 0.029 0.024 0.016 0.011 0.027 0.023 0.016 0.011
0 100 0.019 0.016 0.012 0.008 0.020 0.015 0.012 0.008 0.018 0.015 0.012 0.009
0 200 0.013 0.010 0.008 0.006 0.013 0.011 0.008 0.006 0.013 0.010 0.008 0.006

0.1 30 0.061 0.047 0.034 0.024 0.060 0.045 0.034 0.024 0.053 0.044 0.033 0.024
0.1 50 0.042 0.041 0.027 0.020 0.040 0.040 0.027 0.020 0.038 0.036 0.027 0.019
0.1 100 0.029 0.025 0.022 0.016 0.026 0.025 0.022 0.016 0.025 0.022 0.022 0.015
0.1 200 0.019 0.016 0.014 0.013 0.019 0.016 0.014 0.013 0.017 0.015 0.013 0.012
0.25 30 0.120 0.105 0.082 0.065 0.113 0.098 0.079 0.061 0.087 0.078 0.068 0.056
0.25 50 0.083 0.094 0.074 0.057 0.078 0.090 0.073 0.055 0.060 0.070 0.058 0.049
0.25 100 0.050 0.055 0.068 0.052 0.050 0.052 0.066 0.051 0.040 0.043 0.052 0.043

1 0.25 200 0.034 0.034 0.038 0.049 0.030 0.032 0.036 0.047 0.025 0.026 0.031 0.040
0.33 30 0.173 0.154 0.136 0.108 0.157 0.142 0.123 0.104 0.105 0.099 0.092 0.082
0.33 50 0.117 0.145 0.124 0.107 0.106 0.138 0.114 0.097 0.073 0.089 0.085 0.076
0.33 100 0.069 0.085 0.120 0.103 0.066 0.079 0.111 0.092 0.045 0.054 0.078 0.071
0.33 200 0.045 0.050 0.067 0.097 0.040 0.047 0.062 0.090 0.029 0.032 0.044 0.067
0.45 30 0.266 0.253 0.251 0.234 0.223 0.225 0.213 0.212 0.133 0.126 0.130 0.126
0.45 50 0.186 0.248 0.241 0.233 0.159 0.215 0.208 0.202 0.091 0.120 0.119 0.117
0.45 100 0.109 0.151 0.236 0.228 0.091 0.128 0.201 0.195 0.053 0.069 0.113 0.110
0.45 200 0.068 0.089 0.140 0.223 0.060 0.074 0.122 0.196 0.035 0.042 0.063 0.108
0.5 30 0.303 0.298 0.301 0.296 0.257 0.258 0.253 0.257 0.137 0.132 0.137 0.134
0.5 50 0.212 0.293 0.297 0.293 0.179 0.246 0.252 0.245 0.092 0.130 0.127 0.132
0.5 100 0.128 0.182 0.285 0.294 0.109 0.149 0.237 0.240 0.059 0.074 0.123 0.125
0.5 200 0.081 0.113 0.182 0.286 0.065 0.090 0.148 0.239 0.036 0.044 0.071 0.117



Table 4. Variance of factor IV estimator
c2 0.5 1 4

r p T/N 30 50 100 200 30 50 100 200 30 50 100 200
0 30 0.035 0.027 0.019 0.013 0.034 0.027 0.019 0.014 0.033 0.028 0.020 0.013
0 50 0.027 0.020 0.014 0.010 0.026 0.021 0.015 0.010 0.025 0.020 0.014 0.010
0 100 0.019 0.014 0.010 0.007 0.019 0.014 0.010 0.007 0.018 0.014 0.010 0.007
0 200 0.013 0.010 0.007 0.005 0.013 0.010 0.007 0.005 0.012 0.010 0.007 0.005

0.1 30 0.050 0.039 0.031 0.023 0.046 0.040 0.031 0.023 0.052 0.041 0.030 0.023
0.1 50 0.037 0.030 0.022 0.017 0.035 0.030 0.023 0.017 0.035 0.028 0.022 0.017
0.1 100 0.027 0.021 0.016 0.012 0.024 0.021 0.016 0.012 0.024 0.019 0.016 0.012
0.1 200 0.018 0.015 0.011 0.009 0.017 0.015 0.011 0.009 0.016 0.014 0.011 0.008
0.25 30 0.079 0.074 0.061 0.051 0.080 0.070 0.060 0.050 0.359 0.630 0.401 0.525
0.25 50 0.062 0.053 0.045 0.039 0.059 0.052 0.046 0.038 0.173 0.220 0.131 0.095
0.25 100 0.043 0.038 0.031 0.027 0.042 0.036 0.031 0.027 0.051 0.047 0.031 0.035

1 0.25 200 0.030 0.025 0.022 0.018 0.027 0.025 0.022 0.019 0.025 0.023 0.021 0.017
0.33 30 0.106 0.100 0.088 0.081 0.302 0.144 0.139 0.150 0.843 0.786 0.743 0.833
0.33 50 0.083 0.074 0.065 0.059 0.078 0.074 0.085 0.125 0.592 0.567 0.705 0.744
0.33 100 0.054 0.049 0.045 0.040 0.051 0.045 0.042 0.040 0.249 0.314 0.401 0.589
0.33 200 0.038 0.035 0.031 0.028 0.035 0.033 0.030 0.028 0.092 0.054 0.073 0.106
0.45 30 0.300 0.457 0.505 0.731 0.757 0.715 1.172 1.175 1.043 1.318 1.174 1.242
0.45 50 0.118 0.266 0.198 0.330 0.378 0.470 0.684 0.874 0.764 1.100 1.044 1.168
0.45 100 0.076 0.078 0.074 0.297 0.091 0.165 0.238 0.613 0.807 0.709 0.929 1.169
0.45 200 0.052 0.051 0.049 0.050 0.048 0.048 0.054 0.101 0.503 0.631 0.750 0.919
0.5 30 0.455 0.824 0.967 1.288 0.896 1.206 1.343 1.462 1.121 1.144 1.107 1.367
0.5 50 0.189 0.305 0.514 1.133 0.520 0.853 0.984 1.219 0.989 0.981 1.305 1.205
0.5 100 0.089 0.090 0.188 0.363 0.331 0.313 0.583 1.023 0.774 0.785 1.215 1.107
0.5 200 0.058 0.061 0.065 0.082 0.056 0.111 0.208 0.551 0.625 0.684 0.850 1.092



6.3 Setup of equation (5)

Table 5. Variance of standard IV estimator
c2 0.5 1 4

r p c1 T/N 30 50 100 200 30 50 100 200 30 50 100 200
0 0.5 30 0.031 0.025 0.017 0.013 0.029 0.024 0.017 0.012 0.030 0.024 0.017 0.012
0 0.5 50 0.022 0.020 0.014 0.010 0.022 0.020 0.014 0.010 0.022 0.020 0.014 0.010
0 0.5 100 0.015 0.013 0.010 0.007 0.015 0.013 0.010 0.007 0.015 0.013 0.010 0.007
0 0.5 200 0.010 0.009 0.007 0.006 0.011 0.009 0.006 0.005 0.010 0.009 0.007 0.005
0 1 30 0.032 0.025 0.018 0.013 0.032 0.024 0.018 0.013 0.032 0.025 0.018 0.013
0 1 50 0.023 0.021 0.014 0.010 0.024 0.021 0.014 0.010 0.024 0.020 0.014 0.010
0 1 100 0.016 0.013 0.011 0.007 0.016 0.014 0.011 0.007 0.016 0.013 0.011 0.008
0 1 200 0.011 0.009 0.007 0.006 0.011 0.009 0.007 0.006 0.011 0.009 0.007 0.006
0 4 30 0.035 0.026 0.018 0.013 0.034 0.026 0.019 0.013 0.034 0.026 0.018 0.013
0 4 50 0.024 0.021 0.015 0.011 0.025 0.022 0.015 0.011 0.024 0.021 0.015 0.011
0 4 100 0.017 0.014 0.011 0.008 0.016 0.014 0.011 0.008 0.016 0.014 0.012 0.008

1 0 4 200 0.011 0.009 0.007 0.006 0.012 0.009 0.008 0.006 0.011 0.009 0.007 0.006
0.1 0.5 30 0.043 0.033 0.026 0.020 0.041 0.034 0.026 0.021 0.042 0.033 0.026 0.020
0.1 0.5 50 0.031 0.028 0.022 0.016 0.031 0.028 0.022 0.016 0.030 0.028 0.021 0.016
0.1 0.5 100 0.019 0.018 0.018 0.013 0.020 0.018 0.017 0.013 0.020 0.018 0.017 0.013
0.1 0.5 200 0.013 0.013 0.011 0.010 0.014 0.012 0.011 0.010 0.014 0.012 0.011 0.010
0.1 1 30 0.044 0.037 0.027 0.022 0.046 0.037 0.028 0.021 0.045 0.037 0.028 0.021
0.1 1 50 0.032 0.031 0.023 0.018 0.032 0.031 0.023 0.017 0.032 0.030 0.023 0.017
0.1 1 100 0.021 0.019 0.018 0.013 0.021 0.020 0.018 0.014 0.021 0.020 0.019 0.014
0.1 1 200 0.014 0.013 0.011 0.011 0.015 0.013 0.012 0.011 0.014 0.013 0.012 0.011
0.1 4 30 0.047 0.038 0.029 0.022 0.047 0.040 0.030 0.021 0.048 0.039 0.030 0.022
0.1 4 50 0.035 0.033 0.024 0.018 0.036 0.033 0.024 0.018 0.033 0.032 0.024 0.018
0.1 4 100 0.023 0.020 0.020 0.014 0.022 0.020 0.020 0.015 0.022 0.021 0.019 0.014
0.1 4 200 0.015 0.014 0.013 0.011 0.015 0.014 0.012 0.012 0.015 0.014 0.012 0.012
0.25 0.5 30 0.065 0.059 0.049 0.044 0.063 0.057 0.050 0.040 0.066 0.060 0.048 0.044
0.25 0.5 50 0.044 0.053 0.044 0.038 0.045 0.049 0.043 0.034 0.045 0.051 0.042 0.036
0.25 0.5 100 0.029 0.030 0.038 0.031 0.029 0.032 0.039 0.031 0.030 0.031 0.037 0.031
0.25 0.5 200 0.020 0.020 0.022 0.028 0.019 0.020 0.022 0.027 0.020 0.020 0.021 0.028
0.25 1 30 0.073 0.063 0.056 0.048 0.072 0.065 0.053 0.045 0.075 0.066 0.056 0.048
0.25 1 50 0.051 0.059 0.048 0.040 0.051 0.057 0.048 0.041 0.050 0.060 0.048 0.040
0.25 1 100 0.033 0.034 0.042 0.034 0.032 0.034 0.044 0.034 0.032 0.034 0.042 0.036
0.25 1 200 0.021 0.022 0.025 0.031 0.021 0.022 0.026 0.033 0.021 0.022 0.024 0.032
0.25 4 30 0.073 0.067 0.055 0.048 0.072 0.069 0.056 0.050 0.073 0.066 0.055 0.048
0.25 4 50 0.050 0.058 0.050 0.041 0.052 0.062 0.051 0.041 0.051 0.061 0.051 0.041
0.25 4 100 0.032 0.037 0.044 0.037 0.035 0.035 0.044 0.037 0.033 0.036 0.044 0.038

1 0.25 4 200 0.023 0.022 0.027 0.034 0.021 0.022 0.026 0.034 0.021 0.022 0.025 0.034
0.33 0.5 30 0.081 0.073 0.067 0.063 0.077 0.074 0.069 0.061 0.081 0.074 0.067 0.061
0.33 0.5 50 0.056 0.070 0.059 0.056 0.055 0.069 0.063 0.055 0.055 0.066 0.061 0.055
0.33 0.5 100 0.036 0.041 0.056 0.049 0.036 0.040 0.056 0.051 0.036 0.040 0.056 0.049
0.33 0.5 200 0.023 0.025 0.031 0.046 0.023 0.025 0.031 0.047 0.023 0.025 0.032 0.046
0.33 1 30 0.092 0.085 0.078 0.071 0.093 0.086 0.076 0.070 0.093 0.087 0.078 0.069
0.33 1 50 0.062 0.080 0.073 0.063 0.063 0.079 0.069 0.064 0.065 0.079 0.070 0.062
0.33 1 100 0.040 0.047 0.063 0.056 0.040 0.045 0.064 0.057 0.039 0.046 0.066 0.055
0.33 1 200 0.027 0.028 0.036 0.055 0.026 0.028 0.036 0.053 0.027 0.029 0.036 0.054

Continued on next page



continued from previous page
c2 0.5 1 4

r p c1 T/N 30 50 100 200 30 50 100 200 30 50 100 200
0.33 4 30 0.088 0.085 0.079 0.071 0.089 0.084 0.077 0.070 0.092 0.085 0.075 0.071
0.33 4 50 0.062 0.078 0.070 0.065 0.063 0.077 0.070 0.063 0.060 0.078 0.070 0.063
0.33 4 100 0.037 0.046 0.064 0.058 0.038 0.044 0.065 0.058 0.038 0.046 0.065 0.057
0.33 4 200 0.025 0.028 0.036 0.055 0.027 0.028 0.035 0.055 0.025 0.028 0.037 0.054
0.45 0.5 30 0.105 0.103 0.100 0.102 0.107 0.104 0.101 0.098 0.103 0.105 0.100 0.098
0.45 0.5 50 0.074 0.096 0.092 0.088 0.075 0.098 0.090 0.090 0.073 0.095 0.092 0.091
0.45 0.5 100 0.046 0.060 0.087 0.086 0.047 0.058 0.089 0.086 0.046 0.055 0.091 0.087
0.45 0.5 200 0.030 0.035 0.050 0.083 0.031 0.034 0.050 0.084 0.029 0.035 0.050 0.083
0.45 1 30 0.122 0.121 0.123 0.120 0.124 0.119 0.118 0.117 0.124 0.124 0.121 0.119
0.45 1 50 0.084 0.115 0.113 0.108 0.087 0.114 0.112 0.107 0.085 0.115 0.116 0.110
0.45 1 100 0.054 0.068 0.106 0.102 0.053 0.069 0.106 0.102 0.052 0.069 0.104 0.103
0.45 1 200 0.036 0.041 0.061 0.098 0.034 0.040 0.060 0.101 0.034 0.042 0.060 0.101
0.45 4 30 0.112 0.108 0.108 0.104 0.109 0.108 0.105 0.104 0.111 0.109 0.108 0.105
0.45 4 50 0.077 0.101 0.101 0.098 0.076 0.100 0.101 0.095 0.074 0.102 0.098 0.099
0.45 4 100 0.047 0.060 0.092 0.093 0.046 0.058 0.095 0.089 0.047 0.060 0.093 0.091

1 0.45 4 200 0.030 0.036 0.052 0.088 0.031 0.035 0.053 0.088 0.029 0.036 0.053 0.089
0.5 0.5 30 0.116 0.118 0.117 0.119 0.117 0.119 0.117 0.113 0.113 0.120 0.117 0.115
0.5 0.5 50 0.080 0.107 0.110 0.107 0.082 0.107 0.110 0.108 0.079 0.112 0.107 0.108
0.5 0.5 100 0.050 0.067 0.105 0.101 0.051 0.066 0.104 0.103 0.052 0.067 0.103 0.102
0.5 0.5 200 0.034 0.041 0.060 0.097 0.034 0.039 0.060 0.101 0.034 0.039 0.061 0.099
0.5 1 30 0.138 0.137 0.137 0.137 0.137 0.139 0.139 0.133 0.136 0.138 0.141 0.137
0.5 1 50 0.096 0.130 0.129 0.129 0.096 0.128 0.126 0.131 0.095 0.127 0.125 0.128
0.5 1 100 0.059 0.077 0.123 0.125 0.060 0.079 0.123 0.126 0.059 0.076 0.122 0.124
0.5 1 200 0.040 0.047 0.073 0.119 0.039 0.048 0.074 0.122 0.038 0.047 0.072 0.120
0.5 4 30 0.118 0.117 0.118 0.118 0.117 0.120 0.117 0.116 0.117 0.118 0.118 0.117
0.5 4 50 0.081 0.108 0.110 0.110 0.077 0.109 0.108 0.106 0.082 0.110 0.109 0.109
0.5 4 100 0.049 0.067 0.103 0.102 0.049 0.063 0.102 0.103 0.050 0.064 0.104 0.103
0.5 4 200 0.033 0.039 0.059 0.099 0.033 0.040 0.059 0.098 0.032 0.038 0.058 0.100



Table 6. Variance of factor IV estimator
c2 0.5 1 4

r p c1 T/N 30 50 100 200 30 50 100 200 30 50 100 200
0 0.5 30 0.028 0.023 0.016 0.012 0.028 0.023 0.017 0.012 0.028 0.023 0.017 0.012
0 0.5 50 0.021 0.017 0.013 0.009 0.021 0.017 0.013 0.009 0.021 0.018 0.013 0.009
0 0.5 100 0.015 0.012 0.009 0.006 0.015 0.012 0.009 0.006 0.014 0.012 0.009 0.007
0 0.5 200 0.010 0.008 0.006 0.005 0.010 0.008 0.006 0.004 0.010 0.009 0.006 0.004
0 1 30 0.030 0.024 0.017 0.013 0.029 0.024 0.017 0.013 0.029 0.023 0.017 0.013
0 1 50 0.023 0.018 0.013 0.009 0.022 0.018 0.013 0.010 0.023 0.018 0.013 0.010
0 1 100 0.016 0.013 0.009 0.007 0.015 0.013 0.009 0.006 0.015 0.012 0.010 0.007
0 1 200 0.011 0.009 0.006 0.005 0.011 0.009 0.006 0.005 0.011 0.009 0.006 0.005
0 4 30 0.031 0.024 0.017 0.013 0.031 0.025 0.018 0.013 0.030 0.025 0.017 0.013
0 4 50 0.023 0.018 0.014 0.010 0.023 0.019 0.014 0.010 0.023 0.019 0.014 0.010
0 4 100 0.017 0.013 0.010 0.007 0.016 0.013 0.009 0.007 0.016 0.013 0.010 0.007

1 0 4 200 0.011 0.009 0.007 0.005 0.012 0.009 0.007 0.005 0.011 0.009 0.007 0.005
0.1 0.5 30 0.037 0.030 0.025 0.020 0.038 0.030 0.025 0.020 0.036 0.030 0.025 0.019
0.1 0.5 50 0.028 0.023 0.019 0.015 0.027 0.024 0.019 0.015 0.028 0.024 0.018 0.015
0.1 0.5 100 0.018 0.016 0.014 0.011 0.019 0.016 0.013 0.010 0.019 0.017 0.013 0.010
0.1 0.5 200 0.013 0.012 0.009 0.007 0.013 0.011 0.009 0.007 0.013 0.011 0.009 0.007
0.1 1 30 0.037 0.032 0.025 0.021 0.039 0.033 0.025 0.020 0.039 0.034 0.027 0.021
0.1 1 50 0.028 0.024 0.020 0.016 0.030 0.024 0.020 0.016 0.030 0.025 0.020 0.016
0.1 1 100 0.020 0.017 0.014 0.011 0.020 0.017 0.014 0.011 0.020 0.018 0.014 0.011
0.1 1 200 0.014 0.013 0.010 0.008 0.014 0.012 0.010 0.008 0.014 0.012 0.010 0.008
0.1 4 30 0.047 0.036 0.028 0.021 0.044 0.035 0.029 0.021 0.047 0.043 0.028 0.021
0.1 4 50 0.032 0.027 0.021 0.016 0.032 0.026 0.021 0.017 0.030 0.027 0.021 0.016
0.1 4 100 0.022 0.018 0.014 0.011 0.021 0.018 0.014 0.012 0.021 0.018 0.015 0.011
0.1 4 200 0.015 0.012 0.010 0.008 0.015 0.013 0.010 0.008 0.014 0.013 0.010 0.008
0.25 0.5 30 0.051 0.047 0.042 0.040 0.053 0.048 0.042 0.035 0.052 0.048 0.042 0.037
0.25 0.5 50 0.039 0.037 0.032 0.028 0.039 0.036 0.032 0.028 0.040 0.037 0.032 0.028
0.25 0.5 100 0.027 0.025 0.022 0.019 0.026 0.025 0.022 0.019 0.027 0.024 0.022 0.020
0.25 0.5 200 0.019 0.017 0.016 0.014 0.018 0.017 0.016 0.014 0.019 0.017 0.015 0.014
0.25 1 30 0.057 0.053 0.047 0.236 0.058 0.053 0.326 0.041 0.060 0.055 0.047 0.041
0.25 1 50 0.044 0.038 0.034 0.031 0.044 0.039 0.035 0.031 0.043 0.040 0.034 0.030
0.25 1 100 0.029 0.027 0.025 0.021 0.029 0.026 0.024 0.021 0.028 0.027 0.025 0.022
0.25 1 200 0.020 0.019 0.017 0.014 0.021 0.019 0.017 0.015 0.020 0.018 0.016 0.014
0.25 4 30 0.670 0.465 0.474 0.356 0.634 0.458 0.553 0.337 0.382 0.643 0.373 0.465
0.25 4 50 0.268 0.224 0.229 0.150 0.187 0.238 0.217 0.127 0.162 0.239 0.325 0.087
0.25 4 100 0.082 0.041 0.027 0.024 0.052 0.033 0.027 0.028 0.039 0.030 0.028 0.039

1 0.25 4 200 0.022 0.019 0.018 0.016 0.021 0.019 0.017 0.016 0.021 0.020 0.018 0.016
0.33 0.5 30 0.061 0.059 0.055 0.054 0.061 0.059 0.056 0.054 0.061 0.058 0.053 0.051
0.33 0.5 50 0.046 0.043 0.041 0.037 0.045 0.042 0.041 0.036 0.046 0.044 0.040 0.039
0.33 0.5 100 0.032 0.031 0.028 0.026 0.032 0.029 0.028 0.027 0.032 0.031 0.027 0.026
0.33 0.5 200 0.022 0.021 0.020 0.018 0.022 0.020 0.019 0.019 0.021 0.021 0.020 0.018
0.33 1 30 0.275 0.163 0.109 0.091 0.135 0.135 0.352 0.166 0.116 0.154 0.142 0.100
0.33 1 50 0.051 0.050 0.047 0.063 0.052 0.050 0.049 0.048 0.052 0.052 0.045 0.045
0.33 1 100 0.035 0.033 0.032 0.028 0.035 0.033 0.032 0.029 0.036 0.033 0.031 0.028
0.33 1 200 0.025 0.022 0.022 0.021 0.024 0.022 0.021 0.020 0.024 0.024 0.022 0.021
0.33 4 30 0.687 0.763 0.681 0.961 0.714 0.686 0.924 1.009 0.680 0.821 0.719 0.681
0.33 4 50 0.453 0.556 0.427 0.508 0.324 0.452 0.546 0.642 0.513 0.548 0.747 0.622
0.33 4 100 0.258 0.406 0.362 0.360 0.194 0.301 0.538 0.437 0.361 0.465 0.452 0.478
0.33 4 200 0.198 0.060 0.143 0.109 0.055 0.032 0.052 0.080 0.053 0.034 0.061 0.075

Continued on next page



continued from previous page
c2 0.5 1 4

r p c1 T/N 30 50 100 200 30 50 100 200 30 50 100 200
0.45 0.5 30 0.137 0.191 0.453 0.476 0.154 0.160 0.389 0.529 0.095 0.190 0.341 0.524
0.45 0.5 50 0.063 0.075 0.198 0.352 0.062 0.063 0.227 0.294 0.062 0.062 0.242 0.216
0.45 0.5 100 0.040 0.040 0.041 0.042 0.040 0.042 0.039 0.042 0.040 0.039 0.042 0.043
0.45 0.5 200 0.028 0.028 0.027 0.028 0.028 0.027 0.028 0.028 0.027 0.027 0.027 0.027
0.45 1 30 0.490 0.700 0.970 1.010 0.504 0.581 0.704 0.932 0.485 0.652 0.884 0.960
0.45 1 50 0.417 0.457 0.621 0.767 0.365 0.382 0.587 0.718 0.261 0.328 0.561 0.800
0.45 1 100 0.153 0.114 0.257 0.427 0.049 0.070 0.200 0.524 0.054 0.071 0.224 0.370
0.45 1 200 0.035 0.031 0.039 0.048 0.032 0.032 0.057 0.046 0.032 0.033 0.035 0.062
0.45 4 30 1.015 1.127 0.994 1.262 0.895 1.082 1.265 1.170 0.902 1.003 1.061 1.369
0.45 4 50 0.811 0.870 1.242 0.987 0.778 0.948 0.905 1.199 0.943 1.100 0.888 1.170
0.45 4 100 0.666 0.839 0.865 0.885 0.682 0.572 0.952 1.029 0.559 0.764 0.691 1.061

1 0.45 4 200 0.343 0.434 0.688 0.758 0.456 0.608 0.639 0.876 0.267 0.592 0.730 0.926
0.5 0.5 30 0.169 0.416 0.766 1.093 0.447 0.393 0.873 0.966 0.295 0.537 0.682 1.001
0.5 0.5 50 0.086 0.208 0.439 0.673 0.108 0.208 0.423 0.561 0.110 0.429 0.241 0.701
0.5 0.5 100 0.044 0.047 0.076 0.255 0.045 0.046 0.070 0.302 0.046 0.054 0.069 0.218
0.5 0.5 200 0.031 0.032 0.033 0.041 0.031 0.031 0.033 0.039 0.032 0.031 0.032 0.037
0.5 1 30 0.625 0.743 1.031 1.195 0.839 0.934 1.024 1.186 0.703 0.851 1.102 1.157
0.5 1 50 0.497 0.769 0.980 1.162 0.646 0.621 0.942 1.045 0.522 0.652 0.830 1.074
0.5 1 100 0.228 0.222 0.618 0.950 0.200 0.468 0.671 0.734 0.278 0.323 0.575 0.946
0.5 1 200 0.039 0.065 0.324 0.609 0.036 0.047 0.096 0.477 0.037 0.110 0.124 0.443
0.5 4 30 1.076 0.938 1.197 1.143 1.083 1.268 1.123 1.083 1.142 1.081 1.301 1.428
0.5 4 50 0.828 0.983 1.062 1.247 0.868 1.013 1.256 1.247 0.997 1.200 1.263 1.217
0.5 4 100 0.783 0.928 1.028 1.120 0.957 0.934 1.027 1.112 0.700 0.875 1.106 1.160
0.5 4 200 0.474 0.604 0.861 0.960 0.655 0.541 0.761 1.062 0.430 0.857 0.951 1.017



6.4 Setup of equation (4) with homogeneous factor loadings and
with variable preselection

Table 7. Variance of standard IV estimator with preselection
r p T/N 30 50 100 200

0 30 0.170 0.230 0.263 0.260
0 50 0.125 0.148 0.251 0.246
0 100 0.085 0.104 0.141 0.241
0 200 0.060 0.066 0.083 0.131

0.1 30 0.182 0.230 0.256 0.254
0.1 50 0.132 0.161 0.242 0.246
0.1 100 0.092 0.105 0.148 0.236
0.1 200 0.061 0.068 0.089 0.141
0.25 30 0.192 0.239 0.253 0.248
0.25 50 0.150 0.171 0.250 0.247
0.25 100 0.099 0.120 0.160 0.241

1 0.25 200 0.071 0.080 0.108 0.155
0.33 30 0.194 0.236 0.251 0.253
0.33 50 0.152 0.188 0.244 0.249
0.33 100 0.110 0.130 0.169 0.243
0.33 200 0.080 0.090 0.116 0.164
0.45 30 0.205 0.242 0.253 0.257
0.45 50 0.171 0.199 0.242 0.250
0.45 100 0.128 0.150 0.185 0.239
0.45 200 0.095 0.111 0.136 0.178
0.5 30 0.219 0.250 0.259 0.254
0.5 50 0.177 0.203 0.252 0.245
0.5 100 0.139 0.160 0.191 0.239
0.5 200 0.098 0.118 0.147 0.190



Table 8. Variance of Factor IV estimator with preselection
r p T/N 30 50 100 200

0 30 0.130 0.133 0.135 0.139
0 50 0.105 0.103 0.109 0.099
0 100 0.074 0.077 0.072 0.073
0 200 0.055 0.054 0.053 0.053

0.1 30 0.140 0.135 0.128 0.136
0.1 50 0.107 0.107 0.102 0.104
0.1 100 0.078 0.076 0.076 0.074
0.1 200 0.054 0.054 0.052 0.055
0.25 30 0.146 0.147 0.143 0.132
0.25 50 0.116 0.112 0.117 0.114
0.25 100 0.080 0.086 0.086 0.084

1 0.25 200 0.061 0.061 0.065 0.066
0.33 30 0.158 0.156 0.153 0.149
0.33 50 0.126 0.127 0.121 0.125
0.33 100 0.092 0.094 0.096 0.097
0.33 200 0.070 0.067 0.070 0.075
0.45 30 0.246 0.490 0.281 0.397
0.45 50 0.218 0.195 0.400 0.274
0.45 100 0.112 0.112 0.116 0.121
0.45 200 0.082 0.086 0.087 0.094
0.5 30 0.417 0.644 0.549 0.817
0.5 50 0.309 0.344 0.510 0.726
0.5 100 0.161 0.266 0.374 0.244
0.5 200 0.088 0.097 0.105 0.157



6.5 Setup of equation (4) with heterogeneous factor loadings and
with or without variable preselection

Table 9. Variance of standard IV estimator with preselection
r p T/N 30 50 100 200

0 30 0.172 0.226 0.257 0.257
0 50 0.129 0.150 0.243 0.249
0 100 0.086 0.097 0.138 0.243
0 200 0.059 0.064 0.083 0.131

0.1 30 0.174 0.229 0.252 0.253
0.1 50 0.132 0.163 0.249 0.245
0.1 100 0.085 0.103 0.150 0.239
0.1 200 0.058 0.062 0.091 0.150
0.25 30 0.179 0.231 0.255 0.255
0.25 50 0.127 0.162 0.248 0.249
0.25 100 0.082 0.098 0.148 0.243

1 0.25 200 0.056 0.064 0.090 0.151
0.33 30 0.176 0.226 0.256 0.259
0.33 50 0.126 0.166 0.251 0.248
0.33 100 0.082 0.100 0.148 0.243
0.33 200 0.053 0.061 0.090 0.147
0.45 30 0.183 0.227 0.258 0.256
0.45 50 0.131 0.163 0.242 0.246
0.45 100 0.084 0.100 0.151 0.244
0.45 200 0.055 0.063 0.093 0.146
0.5 30 0.178 0.229 0.250 0.260
0.5 50 0.131 0.162 0.249 0.241
0.5 100 0.083 0.098 0.151 0.245
0.5 200 0.055 0.061 0.089 0.146



Table 10. Variance of Factor IV estimator with preselection
r p T/N 30 50 100 200

0 30 0.133 0.132 0.137 0.137
0 50 0.106 0.100 0.098 0.102
0 100 0.075 0.072 0.072 0.073
0 200 0.053 0.053 0.052 0.050

0.1 30 0.135 0.135 0.131 0.130
0.1 50 0.108 0.106 0.100 0.101
0.1 100 0.073 0.072 0.072 0.068
0.1 200 0.051 0.049 0.050 0.049
0.25 30 0.145 0.141 0.135 0.140
0.25 50 0.102 0.103 0.105 0.102
0.25 100 0.075 0.073 0.074 0.073

1 0.25 200 0.054 0.053 0.051 0.052
0.33 30 0.144 0.135 0.136 0.137
0.33 50 0.107 0.107 0.104 0.102
0.33 100 0.074 0.072 0.072 0.072
0.33 200 0.051 0.051 0.054 0.050
0.45 30 0.142 0.138 0.136 0.143
0.45 50 0.107 0.105 0.110 0.106
0.45 100 0.075 0.076 0.074 0.075
0.45 200 0.052 0.052 0.051 0.053
0.5 30 0.143 0.140 0.137 0.132
0.5 50 0.110 0.109 0.106 0.105
0.5 100 0.078 0.076 0.076 0.070
0.5 200 0.052 0.052 0.051 0.052



Table 11. Variance of standard IV estimator without preselection
r p T/N 30 50 100 200

0 30 0.256 0.252 0.254 0.251
0 50 0.184 0.246 0.246 0.248
0 100 0.113 0.151 0.237 0.247
0 200 0.069 0.090 0.145 0.236

0.1 30 0.259 0.259 0.249 0.255
0.1 50 0.177 0.251 0.245 0.252
0.1 100 0.114 0.150 0.241 0.244
0.1 200 0.067 0.090 0.143 0.235
0.25 30 0.255 0.259 0.255 0.259
0.25 50 0.176 0.245 0.248 0.245
0.25 100 0.114 0.152 0.240 0.239

1 0.25 200 0.069 0.091 0.148 0.242
0.33 30 0.251 0.258 0.257 0.252
0.33 50 0.184 0.251 0.249 0.245
0.33 100 0.109 0.149 0.245 0.246
0.33 200 0.068 0.092 0.148 0.232
0.45 30 0.256 0.258 0.251 0.253
0.45 50 0.180 0.244 0.245 0.245
0.45 100 0.115 0.153 0.243 0.246
0.45 200 0.068 0.090 0.150 0.239
0.5 30 0.256 0.258 0.256 0.260
0.5 50 0.186 0.249 0.248 0.248
0.5 100 0.108 0.153 0.238 0.242
0.5 200 0.069 0.092 0.147 0.241



Table 12. Variance of Factor IV estimator without preselection
r p T/N 30 50 100 200

0 30 0.147 0.153 0.151 0.147
0 50 0.108 0.106 0.104 0.100
0 100 0.073 0.073 0.071 0.074
0 200 0.054 0.053 0.050 0.049

0.1 30 0.149 0.142 0.154 0.146
0.1 50 0.104 0.112 0.107 0.109
0.1 100 0.075 0.075 0.073 0.074
0.1 200 0.053 0.052 0.052 0.049
0.25 30 0.145 0.149 0.148 0.147
0.25 50 0.111 0.109 0.111 0.110
0.25 100 0.074 0.074 0.073 0.075

1 0.25 200 0.052 0.053 0.051 0.052
0.33 30 0.156 0.150 0.146 0.150
0.33 50 0.111 0.106 0.106 0.111
0.33 100 0.076 0.075 0.071 0.074
0.33 200 0.054 0.052 0.051 0.052
0.45 30 0.160 0.148 0.149 0.149
0.45 50 0.109 0.108 0.108 0.108
0.45 100 0.079 0.073 0.073 0.071
0.45 200 0.052 0.049 0.052 0.049
0.5 30 0.155 0.144 0.146 0.153
0.5 50 0.110 0.106 0.107 0.103
0.5 100 0.070 0.076 0.074 0.075
0.5 200 0.055 0.052 0.052 0.052



6.6 Empirical Results

Table 13. Results for Hybrid Phillips curve
First stage regression (infl+1)

α γ ρ R2-adj S.E. regr Pval J-stat R2-adj S.E. regr Pval F-stat

Base -0.002 0.538 0.462 0.98 0.16 0.62 0.12 0.002
st. err 0.007 0.048 0.047

Factors 0.000 0.513 0.492 0.98 0.16 0.30 0.11 0.002 0.48
All data st. err 0.006 0.038 0.038

Factors 0.003 0.527 0.478 0.98 0.16 0.28 0.14 0.002 0.25
Split data st. err 0.006 0.038 0.037

Factors -0.002 0.500 0.509 0.98 0.15 0.12 0.23 0.002 0.00
Select data st. err 0.006 0.021 0.020

Notes: The estimated equation is rt = α+(1−ρ)β(πt+12−π∗t )+(1−ρ)γ(yt−y∗t )+ρrt−1+εt (see

text for details). The parameters are estimated by GMM over 1986.01-2003.12. In the base case

(no factors) the set of instruments used includes lags of the output gap, unemployment, inflation,

interest rate and commodity price index. In the Factors cases, the SW factors are added to the

instruments. In particular, in ”All data” the (8) factors are extracted from the whole dataset; in

”Split data” the factors are extracted from separate datasets for nominal (2), real (8) and financial

variables (2); in ”Select data” the (1) factor extracted from.a subset of the variables selected with

the Boivin and Ng (2006) criterion. The number of factors is based on the Bai and Ng (2002)

criteria for each dataset, except ”Select data” where it is set to one. We use one lag of each factor,

but 12 lags for the Select data factor. The last three columns contain statistics related to the

first-stage regression of the one-year ahead expected inflation on the set of instruments used. In

particular, we report the adjusted R2, the standard error of the regression and the F-test for the

joint significance of the coefficients on factors, when factors are added to the baseline model.



Table 14. Results for Taylor rule

First stage regression (infl+12)
ρ γ β R2-adj S.E. regr Pval J-stat R2-adj S.E. regr Pval F-stat

Base 0.883 0.993 2.310 0.98 0.27 0.11 0.12 0.002
st. err 0.037 0.241 0.278

Factors 0.908 1.261 2.905 0.98 0.27 0.13 0.15 0.002 0.05
All data st. err 0.024 0.291 0.394

Factors 0.929 1.291 3.346 0.98 0.26 0.14 0.18 0.002 0.01
Split data st. err 0.021 0.335 0.567

Factors 0.884 1.122 2.251 0.98 0.27 0.52 0.15 0.002 0.08
Select data st. err 0.028 0.233 0.204

Notes: The estimated equation is πt = c + α(urt) + γ(πt+1) + ρπt−1 + εt (see text for details).

The parameters are estimated by GMM over 1986.01-2003.12. In the base case (no factors) the

set of instruments used includes lags of the output gap, unemployment, inflation, interest rate and

commodity price index. In the Factors cases, the (first lag of the) SW factors are added to the

instruments. In particular, in ”All data” the (8) factors are extracted from the whole dataset; in

”Split data” the factors are extracted from separate datasets for nominal (2), real (8) and financial

variables (2); in ”Select data” the (1) factor is extracted from.a subset of the variables selected

with the Boivin and Ng (2006) criterion. The number of factors is based on the Bai and Ng (2002)

criteria for each dataset, except ”Select data” where it is set to one. We use one lag of each factor,

but 12 lags for the Select data factor. The last three columns contain statistics related to the

first-stage regression of the one-month ahead expected inflation on the set of instruments used. In

particular, we report the adjusted R2, the standard error of the regression and the F-test for the

joint significance of the coefficients on factors, when factors are added to the baseline model.
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