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1 Introduction

Interest in the interface of nonstationarity and nonlinearity has been in-
creasing in the econometric literature. The motivation for this development
maybe be traced to the perceived possibility that processes following nonlin-
ear models maybe mistakenly taken to be unit root nonstationary. Further,
the inability of standard unit root tests to reject the null hypothesis of unit
root nonstationarity for a large number of macreconomic variables which are
supposed according to economic theory to be stationary is another reason
behind the increased interest. Previous work in this area includes Enders
and Granger (2001), Caner and Hansen (1998), Kapetanios, Shin, and Snell
(2003) and Kapetanios and Shin (2003).

Another strand of the literature dealing with this and related conundrums
has focused on the possibility of long memory with long memory parameter
less than 1 in a number of processes being mistaken for unit root nonstation-
arity. The distinction between unit root nonstationary process and such long
memory processes is significant. The persistence properties of shocks in the
two cases are radically different.

As a result there exist two strands of the literature attempting to explain
the apparent prevalance of unit root behaviour in two distinct ways. Of
course, long memory processes nest unit root processes and therefore one can
think of two distinct classes of processes with different implications. One is
regime dependent nonlinear processes such as exponential smooth transition
autoregressive (ESTAR) and self exchiting threshold autoregressive (SETAR)
models which may exhibit a high degree of persistence and the other is linear
but persistent to a varying degree and nonstationary long memory processes.
Being able to distinguish between the two is a problem which has not been
discussed in the literature. Nevertheless the distinction is of relevance. For
example long memory processes with a long memory parameter d exceeding
0.5 but less than 1 are nonstationary although displaying independence of
initial conditions. On the other hand nonlinear process although highly per-
sistent are geometrically ergodic and therefore asymptotically stationary.

This paper provides a formal method of testing for long memory against
the alternative of particular forms of nonlinerarity. The nonlinear models we
consider are ESTAR and SETAR models. We provide analysis on the asymp-
totic properties of the tests and carry out a detailed Monte Carlo study. We
find that the tests are in most cases able to dinstinguish between the compet-
ing models but in a few cases they are unable to do so raising the prospect
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that long memory and nonlinear processes may have similar characteristics
in small samples. This hypothesis has been put forward in the context of
Markov switching models by Diebold and Inoue (2001).

The paper is organised as follows Section 2 presents some preliminary
material on long memory processes. Section 3 discusses the nonlinear models
we consider. Section 4 presents the tests and their asymptotic properties.
Section 5 discusses various extensions of the tests. Section 6 presents the
Monte Carlo results. Section 7 presents an empirical application. Section 8
concludes. Finally, proofs of the theorems may be found in the Appendix.

2 Long Memory Processes

Let the null hypothesis be given by an ARFI model of the form

(1− L)dyt = φ(L)−1εt = ut, 1/2 ≥ d < 3/2, t = 1, . . . , T (1)

where εt is i.i.d. with variance σ2 and finite fourth moments. This model
does not represent a significant restriction on standard ARFIMA models if
we allow for the order of the lag polynomial φ(L) to tend to infinity. Let us
give some preliminary standard results for this model that will prove useful
in what follows (see also Beran (1994)). The model for yt can be written as
an infinite moving average in terms of ut

yt =
∞∑
i=0

aiut−i (2)

where ai = Γ(d+1)
Γ(i+1)Γ(d−i+1)

(−1)i It can equivalently be written as an infinite
autoregression given by

yt =
∞∑
i=1

biyt−i + ut (3)

where bi = − Γ(i−d)
Γ(i+1)Γ(−d)

Defining σ2
T = E(y2

T ) it can be proved that for a wide
variety of processes ut and for 0 ≤ ξ ≤ 1

σ−1
T y(ξ) ≡ y[ξ∗T ]

d→ Yd (4)

where Yd is a fractional Brownian motion given by

1

Γ(d+ 1)V
1/2
d

(∫ ξ

0

(ξ − s)ddB(s) +
∫ 0

−∞

[
(ξ − s)d − (−s)d] dB(s)) (5)
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where

Vd =
1

Γ(d+ 1)2

(
1

2d+ 1
+

∫ ∞

0

[
(1 + τ)d − τ d

]2
dτ

)
(6)

σ2
T ∼ σ2

uVdT
2d−1 and B is a standard Brownian motion for d ≥ 1/2. We

wish to test the null hypothesis that the process yt follows the above long
memory process with given long-memory parameter 1/2 ≥ d < 1 against the
alternative hypothesis that it follows a stationary nonlinear model.

3 Nonlinear models

We will consider two widely used nonlinear model classes as our alternative
hypotheses. These are the ESTAR and SETAR classes of models

3.1 ESTAR Model

The standard ESTAR model is given by

yt =

p∑
i=1

αpyt−p +

q∑
i=1

γqyt−q

{
1− exp

(−θy2
t−d

)}
+ ut (7)

p, q and d are lag parameters to be chosen. This general model allows for
lags greater than one. We will concentrate on the simple model

yt = αyt−1 + γyt−q

{
1− exp

(−θy2
t−d

)}
+ ut (8)

on which to base our test. Longer lags are of course possible but we will
construct a test based on a single lag and allow for serial correlation in the
error term ut to cover the case of longer lags.

Standard tests of linearity for ESTAR models revolve around a Taylor
expansion of the ESTAR model and consist of testing the significance of the
coefficient of the first term of such an expansion in a regression of the form

yt = a1yt−1 + δy
3
t−1 + ut (9)

i.e. a test of δ = 0 is carried out. For more details see Granger and Teräsvirta
(1993). Our treatment follows closely the existing literature as exemplified
by Kapetanios, Shin, and Snell (2003). We will use this setup to construct
the test for long memory in the next section.
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3.2 SETAR Model

The SETAR model is given by

yt =

p∑
i=1

αiyt−p +
m∑

j=1

q∑
i=1

βijyt−i1{rj−1≤yt−d≤rj} + ut, (10)

where r0 = −∞ ri, i = 1, . . . ,m−1 are constants and rm = ∞. Again p, q and
d are lag parameters to be set. Following previous work in testing against
threshold nonlinearity in the context of unit root models (see Kapetanios
and Shin (2003) and Bec, Guay, and Guerre (2003)) we concentrate on the
following three regime threshold model

yt = αyt−1 + β1yt−11{yt−1≤r1} + β2yt−11{yt−1>r2} + ut, (11)

where yt−11{yt−1≤r1} and yt−11{yt−1>r2} are orthogonal to each other by con-
struction. Again longer lags will be allowed for by correcting for serial cor-
relation in ut. For more information on SETAR models see Tong (1990).

4 Testing for Long Memory

By the infinite AR representation of the long memory model we can write

ut = yt −
∞∑
i=0

biyt−i (12)

Denote zt =
∑t

i=1 biyt−i. We wish to obtain testing regressions similar to
those used in standard and nonlinear unit root tests which under the null
hypothesis give a long memory model and under the alternative give a nonlin-
ear stationary model. However, the problem is that unlike standard unit root
tests the long memory and the nonlinear models are nonnested. However,
we can nest the two models if we assume a particular value of d. So the tests
we will construct will have a fixed d under the null hypothesis. This may
appear restrictive at first but provides tests with tractable asymptotic prop-
erties whereas using methods for nonnested models would require simulated
critical values and would complicate enormously the analysis. Then under
the null hypothesis of a long memory model with long memory parameter d
we consider the following setups for testing the alternative hypothesis of the
two nonlinear classes of models for the simple case where ut = εt.
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4.1 ESTAR Model

In analogy to testing for linearity against ESTAR nonlinearity for stationary
models we propose the following regressions in which to test for long memory

ut = α1(y
3
t−1 + zt) + εt (13)

and
ut = α1y

3
t−1 + α2zt + εt (14)

The motivation for these equations are as follows: We consider the general
model

ut = α1(1− e−cy2
t−1)yt−1 + α2zt + εt (15)

Under the null hypothesis c = α2 = 0, the model becomes

ut = εt (16)

which is a long memory model. Under the hypothesis c 	= 0 and α2 = 1 the
model becomes a STAR model of the form

yt = α1(1− e−cy2
t−1)yt−1 + εt (17)

To test the hypothesis c = α2 = 0 which involves the unidentified parameter
α1 we use the standard approach for testing linearity in ESTAR models
and take a Taylor expansion of the exponential function to give a testing
equation of the form (14). The testing equation (13) is considered because
it tests only for the significance of one parameter and may lead to a more
powerful test. We will denote the tests based on regressions (13) and (14)
by STARd

1 and STARd
2 respectively. The distribution of the Wald tests is

given by the following theorem

Theorem 1 The asymptotic distributions of the Wald tests for the null hy-
pothesis of α1 in (13) and α1 = α2 = 0 in (14) is given by(∫ 1

0
Q1,d(r)dB(r)

)2

(∫ 1

0
Q1,d(r)2dr

) (18)

and(∫ 1

0

Q2,d(r)dB(r)

)′ (∫ 1

0

Q2,d(r)Q2,d(r)
′dr

)−1 (∫ 1

0

Q2,d(r)dB(r)

)
(19)

respectively where Q1,d(r) and Q2,d(r) are defined in the appendix.
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4.2 SETAR Model

The testing regressions for the case of the SETAR models are given by

ut = α1(yt−1I(|yt−1| > r) + zt) + εt (20)

ut = α1yt−1I(|yt−1| > r) + α2zt + εt (21)

ut = α1yt−1I(yt−1 < r1) + α2yt−1I(yt−1 ≥ r2) + α3zt + εt (22)

Clearly, under the null hypothesis of a long memory model with long mem-
ory parameter d the coefficients α1 in (20), α1 and α2 in (21) and α1 and α2

in (22) will be zero. Under the alternative hypothesis of a nonlinear model
of the SETAR form appropriate choices for the parameter lead to SETAR
specification for the above equations. For equation (21) setting α2 to -1 lead
to a SETAR specification for yt. The same holds for α3 in equation (22).
Note that equations (20) and (21) relate to a symmetric SETAR model
whereas (22) relates to an asymmetric, and therefore more general, SETAR
model.

To derive the asymptotic null distribution of the Wald statistics, we first
begin to consider the simple case that threshold parameters are given. In
this case, it will be shown that the asymptotic null distribution of the Wald
statistic does not depend on the values of r1 and r2. We have the following
theorem

Theorem 2 The asymptotic distribution of the Wald test for the null hy-
pothesis of α1 = 0 in (20), α1 = α2 = 0 in (21) and α1 = α2 = α3 = 0
in (22) are given respectively by

(∫ 1

0
Q3,d(r)dB(r)

)2

∫ 1

0
Q2

3,d(r)dr
(23)

(∫ 1

0

Q4,d(r)dB(r)

)′ (∫ 1

0

Q4,d(r)Q4,d(r)
′dr

)−1 (∫ 1

0

Q4,d(r)dB(r)

)
(24)

and(∫ 1

0

Q5,d(r)dB(r)

)′ (∫ 1

0

Q5,d(r)Q5,d(r)
′dr

)−1 (∫ 1

0

Q5,d(r)dB(r)

)
(25)

where Q3,d(r), Q4,d(r) and Q5,d(r) are defined in the appendix. These are the
distributions of the Wald statistics for r = r1 = r2 = 0.
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We will denote the three tests analysed in Theorem 2 by SETARd
1,

SETARd
2 and SETARd

3 respectively. In the following discussion on the
threshold we will concentrate on the more general model 22 which contains
two threshold partameters. The discussion can be easily modified to acco-
modate the single threshold models. Asymptotic results are so far derived
under the simplifying assumption that threshold parameters are known, and
thus we now consider a general case with unknown threshold parameters. In
such a case it is well-established that this kind of test suffers from the Davies
(1987) problem since unknown threshold parameters are not identified under
the null. Most solutions to this problem involve some sort of integrating out
unidentified parameters from the test statistics. This is usually achieved by
calculating test statistics for a grid of possible values of threshold parameters,
r1 and r2, and then constructing the summary statistics. For stationary TAR
models this problem has been studied in Tong (1990). Following Andrews
and Ploberger (1994), we consider the two most commonly used statistics
which are the average and the exponential average of the Wald statistic de-
fined respectively by

Wavg
(r1,r2) =

1

#Γ

#Γ∑
i=1

W(i)
(r1,r2)

, Wexp
(r1,r2)

=
1

#Γ

#Γ∑
i=1

exp

(W(i)
(r1,r2)

2

)
, (26)

where W(i)
(r1,r2)

is the Wald statistic obtained from the i-th point of the
nuisance parameter grid, Γ and #Γ is the number of elements of Γ. The
tests will have the superscript exp or avg to denote what summary statistic
is used in their construction.

Unlike the stationary TAR models, the selection of the grid of threshold
parameters needs more attention. The threshold parameters r1 and r2 usually
take on the values in the interval (r1, r2) ∈ Γ = [rmin, rmax] where rmin and
rmax are picked so that Pr (yt−1 < r1) = π1 > 0 and Pr (yt−1 > r2) = π2 < 1.
The particular choice for π1 and π2 is somewhat arbitrary, and in practice
must be guided by the consideration that each regime needs to have suffi-
cient observations to identify the underlying regression parameters. Consid-
ering that our approach assumes that the coefficient on the lagged dependent
variable is set to zero in the corridor regime (r1 ≤ yt−1 < r2), however, we
could assign arbitrarily small samples (relative to total sample) to the corri-
dor regime since we do not have to estimate any parameters in the corridor
regime. Notice also that the threshold parameters exist only under the alter-
native hypothesis in which the process is stationary and therefore bounded
in probability. In this case only a finite grid search is meaningful for further
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estimation. For a discussion on the construction of the grid in stationary
threshold models, that supports our approach, see Chan (1993) and Tong
(1990).

This observation leads us to make an assumption that the grid for un-
known threshold parameters should be selected such that the chosen corridor
regime be of finite width. Under this practically meaningful restriction, we
can further establish that the theoretical results obtained in Theorem 2 do
hold in the more general case with unknown threshold parameters as shown
below. By virtue of the fact that a long memory process is Op(T

d−1/2) it
will stay within a corridor regime of finite width for Op(T

d−1/2) periods only.
Therefore, setting π1 = π̄ − c/T d−1/2 and π2 = π̄ + c/T d−1/2 where π̄ is
the sample quantile corresponding to zero guarantees that the grid will be
finite under the null hypothesis1. In practice, c can be chosen so as to give a
reasonable coverage of each regime in samples of sizes usually encountered.

However, the pointwise convergence results obtained in Theorem 2 is not
sufficient for establishing the uniform stochastic convergence of the asymp-
totic distribution of the average and the exponential average of the Wald
statistic. In addition, we need to prove the stochastic equicontinuity of
W(i)

(r1,r2) over the set Γ of finite width. Stochastic equicontinuity as defined by

Davidson (1994, p. 336, equation (21.43)) is the condition that for ∀ε there
exists δ > 0 such that

limsupT→∞ Pr

[
sup
r∈Γ

sup
r′∈S(r,δ)

∣∣∣W(i)
r −W(i)

r′

∣∣∣ ≥ ε
]
< ε, (27)

where W(i)
r is the Wald statistic obtained from the i-th point of the threshold

parameter grid, Γ, and r′ = (r′1, r
′
2) ∈ S (r, δ) is a sphere of radius δ centered

on r = (r1, r2). Under the assumption that the set Γ is of finite width, we
are able to provide a proof of (27).

Theorem 3 The test statistic W(i)
(r1,r2)

is stochastically equicontinuous over
Γ.

The stochastic equicontinuity condition (27) together with pointwise con-

vergence of W(i)
(r1,r2)

to W(i)
(0,0) established in Theorem 3 now establishes the

uniform convergence ofWsup
(r1,r2) andWavg

(r1,r2) toW(0) and ofWexp
(r1,r2)

to exp
(W(0)/2

)
.

1Further restrictions on the limits of the grid in the form of a minimum difference
between the upper and lower bound may be placed to guarantee that the grid width
does not tend to zero asymptotically, under the alternative hypothesis. For example the
minimum width of the corridor regime around zero could be set to 4 times the standard
deviation of a highly persistent AR(1) process, say with AR coefficient of 0.99, where the
error variance could be estimated from a linear autoregression.
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5 Extensions

5.1 Constants and Trends

Our approach can deal easily with constants and trends in the model. The
simplest solution is to demean and detrend the data prior to applying the
tests. It is easy to show that the distributions remain unchanged apart from
the fact that the demeaned/detrended fractional Brownian motion, rather
than the standard one appears in the asymptotic distributions. The de-
meaned/detrended fractional Brownian motions are denoted respectively by
Ŷd(r) and Ỹd(r) and defined as the continuous residual from a projection
Yd(r) on 1 and (1, r). We present critical values for the tests in Table 1 for
the case of no detrending or demeaning, and Tables 2 and 3 for the demeaned
and detrended case respectively.

Table 1: Test Critical Values (No constant/Trend) a

Sig. Level Test d = 0.6 d = 0.7 d = 0.8 d = 0.9
SETARavg

1 2.662 2.812 2.723 2.733
SETARavg

2 4.697 4.836 4.760 4.787
90% SETARavg

3 6.931 7.247 7.120 7.370
STAR1 3.016 3.426 3.422 3.747
STAR2 5.635 6.159 6.370 6.324

SETARavg
1 3.780 4.028 3.846 3.902

SETARavg
2 6.004 6.225 6.343 6.063

95% SETARavg
3 8.475 8.723 8.742 9.209

STAR1 4.168 4.635 4.633 4.967
STAR2 7.123 7.670 7.935 8.022

SETARavg
1 5.438 5.683 5.505 5.560

SETARavg
2 7.776 7.877 8.085 8.186

99% SETARavg
3 10.594 10.792 10.919 11.170

STAR1 5.731 6.285 6.149 6.976
STAR2 9.324 9.777 9.651 10.161

aFor SETARexp
i the critical values are obtained by taking exp(cv/2) as the

critical value where cv is the critical value of the respective avg test.

5.2 Serial Correlation

We now extend our analysis to consider serial correlation. As explained in
Section 2, we assume an ARFI model with a possibly infinite AR component.
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Table 2: Test Critical Values (Demeaned) a

Sig. Level Test d = 0.6 d = 0.7 d = 0.8 d = 0.9
SETARavg

1 2.743 2.734 2.838 2.809
SETARavg

2 7.343 7.400 7.647 7.667
90% SETARavg

3 8.311 8.796 8.766 8.767
STAR1 5.171 5.931 6.562 6.721
STAR2 6.820 7.330 7.781 7.964

SETARavg
1 3.787 3.817 4.084 3.951

SETARavg
2 8.965 9.160 9.249 9.556

95% SETARavg
3 9.978 10.357 10.545 10.566

STAR1 6.646 7.389 8.048 8.306
STAR2 8.567 8.953 9.433 9.582

SETARavg
1 5.255 5.401 5.531 5.481

SETARavg
2 10.986 11.317 11.730 11.370

99% SETARavg
3 12.441 12.441 12.887 12.480

STAR1 8.675 9.356 9.624 10.064
STAR2 10.406 10.950 11.372 11.669

aFor SETARexp
i the critical values are obtained by taking exp(cv/2) as the

critical value where cv is the critical value of the respective avg test.

We extend the models presented before to get

ut = α1(y
3
t−1 + zt) +

p∑
i=1

φiut−i + εt (28)

ut = α1y
3
t−1 + α2zt +

p∑
i=1

φiut−i + εt (29)

ut = α1(yt−1I(|yt−1| > r) + zt) +
p∑

i=1

φiut−i + εt (30)

ut = α1yt−1I(|yt−1| > r) + α2zt +

p∑
i=1

φiut−i + εt (31)

ut = α1yt−1I(yt−1 < r1) + α2yt−1I(yt−1 ≥ r2) + α3zt +

p∑
i=1

φiut−i + εt (32)

Intuitively, the addition of the extra stationary regressors does not alter the
asymptotic distributions of the test statistics since the tests depend on the
coefficients of nonstationary variables. The following theorem formalises this
intuition.
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Table 3: Test Critical Values (Detrended) a

Sig. Level Test d = 0.6 d = 0.7 d = 0.8 d = 0.9
SETARavg

1 2.704 2.643 2.800 2.709
SETARavg

2 9.220 9.595 9.979 10.337
90% SETARavg

3 9.877 10.251 10.562 10.913
STAR1 5.939 7.105 8.244 8.850
STAR2 8.377 9.002 9.735 10.225

SETARavg
1 3.722 3.691 3.964 3.869

SETARavg
2 10.919 11.437 11.831 12.094

95% SETARavg
3 11.739 12.118 12.578 12.586

STAR1 7.261 8.781 10.004 10.487
STAR2 10.284 10.850 11.545 12.117

SETARavg
1 5.419 5.381 5.626 5.423

SETARavg
2 13.028 13.691 14.154 14.477

99% SETARavg
3 13.874 14.474 15.056 15.037

STAR1 9.488 10.837 11.879 12.628
STAR2 12.443 13.055 13.659 14.331

aFor SETARexp
i the critical values are obtained by taking exp(cv/2) as the

critical value where cv is the critical value of the respective avg test.

Theorem 4 The asymptotic distributions presented in Theorems 1 to 4 do
not change if the Wald statistics are obtained from equations (30)-(28) rather
than equations (20)-(13)

6 Monte Carlo Study

We carry out a detailed Monte Carlo study of the new tests. For all Tables
presented the first experiment is a size experiment where the null hypothesis
tested is for a long memory model with the relevant d. We consider four
distinct values of d = 0.6, 0.7, 0.8, 0.9. These are experiments A (for d=0.6),
B (for d=0.7), C (for d=0.8) and D (for d=0.8) respectively. For the sym-
metric SETAR models the tests presented are for regressions (20) and (21).
The following experiments are carried out for the SETAR models:

• Exp 2/8/14: β1 = 0.95, α = 1, β2 = 0.95

• Exp 3/9/15: β1 = 0.9, α = 1, β2 = 0.9

• Exp 4/10/16: β1 = 0.85, α = 1, β2 = 0.95

• Exp 5/11/17: β1 = 0.95, α = 1.2, β2 = 0.95
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• Exp 6/12/18: β1 = 0.9, α = 1.2, β2 = 0.9

• Exp 7/13/19: β1 = 0.95, α = 1.2, β2 = 0.85

We have three experiments for each coefficient specification. For the first
of the three experiments r1 = −0.15, r2 = 0.15, for the second r1 =
−1.65, r2 = 1.65 and for the third r1 = −3.15, r2 = 3.15 The follow-
ing experiments are carried out for the STAR models:

• Exp 2: α1 = 1, γ = −0.01, θ = 0.01

• Exp 3: α1 = 1, γ = −0.01, θ = 0.05

• Exp 4: α1 = 1, γ = −0.01, θ = 0.1

• Exp 5: α1 = 1, γ = −0.05, θ = 0.01

• Exp 6: α1 = 1, γ = −0.05, θ = 0.05

• Exp 7: α1 = 1, γ = −0.05, θ = 0.1

• Exp 8: α1 = 1, γ = −0.1, θ = 0.01

• Exp 9: α1 = 1, γ = −0.1, θ = 0.05

• Exp 10: α1 = 1, γ = −0.1, θ = 0.1

• Exp 11: α1 = 1.3, γ = −0.4, θ = 0.05

• Exp 12: α1 = 1.3, γ = −0.4, θ = 0.25

• Exp 13: α1 = 1.5, γ = −0.6, θ = 0.05

• Exp 14: α1 = 1.5, γ = −0.6, θ = 0.25

The variance of the error term is always set to 1. For generating the long
memory sample we use the inifinite AR representation of a long memory pro-
cess truncating at 200 lags. We use 1000 replications for each experiment.
The significance level is set to 5%.

The size experiments indicate that the tests are correctly sized with a few
cases of underrejection observed. The only exception is the SETAR exp test
which overrejects slightly in a number of cases. Going on to discuss the power
properties of the test we reach a number of conclusions. Firstly, SETAR
mean tests are considerably less powerful than SETAR exp tests as expected
both from theory and from previous empirical work in the area of testing
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against nonlinearity (see Kapetanios and Shin (2003)). Secondly, symmetric
tests are much more powerful than asymmetric tests when the true DGP is
a symmetric SETAR models. Asymmetric tests are slighlty more powerful
when the DGP is asymmetric. The power function of the tests does not seem
to be monotonic with respect to the assumed d parameter.So for d = 0.6 tests
are reasonably powerful. They become less powerful for d = 0.7 bur regain
power for higher d. This non-monotonicity is much more apparent for STAR
models where the tests are powerful for d = 0.6, lose most of their power for
d = 0.7, 0.8 and regain it for d = 0.9. This indicates the possible similarity
in small samples of long memory processes with d = 0.7, 0.8 and nonlinear
highly persistent but stationary processes.

7 Empirical Application: Long Memory of

Real Exchange Rates

In this section we apply the new tests to investigate the properties of the Yen
real exchange rate. Our choice of data set reflects previous work in this area
by Cheung and Lai (2001) who investigated the presence of long memory in
Yen real exchange rates aiming to explain the puzzle of the inability to reject
the null hypothesis of unit root nonstationarity using standard unit root tests.

We construct bilateral real exchange rates against the i-th currency at
time t (qi,t) as qi,t = si,t + pJ,t − p∗i,t, where si,t is the corresponding nominal
exchange rate (i-th currency per numeraire currency), pJ,t the price level in
the home country, and p∗i,t the price level of the i-th country. Thus, a rise in
qi,t implies a real appreciation against the i-th currency. The price levels are
consumer price indices. All variables are in logs. All data are from the In-
ternational Monetary Fund’s International Financial Statistics in CD-ROM.
The data are not seasonally adjusted. All data are quarterly, spanning from
1960Q1 to 2000Q4 and the bilateral nominal exchange rates against the cur-
rencies other than the US dollar are cross-rates computed using the US dollar
rates. We consider a very large sample of countries in an attempt to make
the empirical analysis more comprehensive. We also consider a grid of values
for d since d needs to be specified under the null hypothesis. Reviewing the
tests for different values of d clearly provides a more comprehensive picture of
the comparison between long memory and nonlinear models for these series.
We use d = 0.6, 0.7, 0.8, 0.9. Results are presented for the STAR based tests
in Tables 24-25 and for the exponential SETAR based tests in Tables 26-27.
Tables 24 and 26 present results for tests with no augmentations to take into
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account possible serial correlation, whereas Tables 25 and 27 present results
for tests with 4 lags to take into account serial correlation in the series. For
the case of the SETAR test we present results only for the more general
asymmetric test SETARd

3.

Results make very interesting reading. In general the higher the value of
d under the null hypothesis the fewer series reject the null hypothesis for the
STAR tests, indicating that there is plenty of evidence against long memory
for low values of d but that evidence is reduced for values of d which bring
the series close to a unit root. This result indicates the limitations of the
test as it cannot distinguish between long memory and nonlinearity for all
d. We do not use a previously estimated value of d to test against although
that would be the obvious thing to do because the test has been constructed
for a given fixed d. The asymptotic distributions have been derived under
this assumption and would not be valid in the case of an estimated d.

On the other hand the SETAR tests provide more robust evidence. The
test reject the null hypothesis of long memory for more series overall. Further
the number of series for which the null hypothesis is rejected does not fall as
the assumed value of d rises. This can be construed to provide more robust
evidence against long-memory in the direction of SETAR nonlinearity for the
Yen real exchange rates.

8 Conclusion

Recently there has been increased focus on the interaction of nonstation-
arity and nonlinearity as alternative data representations. The motivation
for this development maybe be traced to the perceived possibility that pro-
cesses following nonlinear models maybe mistakenly taken to be unit root
nonstationary. In this paper we have extended the investigation of this inter-
play to nonstationary long memory processes. We have suggested tests that
can distinguish effectively between nonstationary long memory processes and
stationary nonlinear processes. In the processe we have observed that a num-
ber of long memory processes are close to nonlinear stationary ones in small
samples in the sense that the proposed tests which can distinguish between
the two classes of processes in most cases cannot do so in these particular
instances. This finding mirrors the work of Diebold and Inoue (2001) who
find similarities between long memory and Markov switching processes and
conjecture that such similarities may exist for other nonlinear models such
as those investigated in this paper. Further research is needed to evaluate
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the extend of this similarity.

Appendix

Proof of Theorem 1

From the fractional functional central theorem and the standard functional
central limit theorem, we know that

σ−1
T y[Tr] ⇒ Yd(r) (A.1)

and

T−1/2σ−1

[Tr]∑
t=1

ut ⇒ B(r) (A.2)

We then examine the asymptotic behaviour of zt. zt is given by
∑t

i=0 biyt−i.
Define the function b(r) = b[Tr] for r ∈ (0, 1). Define its cumulative sum as

β(r) =
∫ r

0
b(s)ds. Define also βt =

∑t
i=0 bi. Then it can be easily seen that

σ−1
T z[Tr] =

t∑
i=0

σ−1
T yt−i(βt−i − βt−i−1) ⇒ Zd(r) ≡

∫ r

0

Yd(s)dβ(s− r) (A.3)

By the continuous mapping theorem we have that

σ−3
T y

3
[Tr] ⇒ Yd(r)

3, and σ−3
T (y3

[Tr] + z[Tr]) ⇒ Y 3
d (r) ≡ Q1,d(r) (A.4)

Note how the term y3
[Tr] dominates the term z[Tr]. The Wald test for the null

hypothesis α1 = 0 in (13) is given by

σ̂−2

(
T∑

t=1

ut(y
3
t−1 + zt)

)2

/

(
T∑

t=1

(y3
t−1 + zt)

2

)
(A.5)

By the continuous mapping theorem we have that

T−1σ−6
T

T∑
t=1

(y3
t−1 + zt)

2 ⇒
∫
Q2

1,d(r)dr (A.6)

For the numerator of (A.5) we will make use of Theorem 2.2 of Kurtz and
Protter (1992). As this Theorem will be used repeatedly we comment on it.
This theorem states that for processes {Xt}T ≡ XT and {Yt}T ≡ YT if
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(C1) XT , YT are Ft-adapted for some σ-field Ft,

(C2) (XT , YT ) ⇒ (X,Y ) and

(C3) YT is a semimartingale then∫
XTdYT ⇒

∫
XdY

We will be verifying these conditions repeatedly in the appendix. Con-
tinuity of the power function implies (C1), (C2) has been shown above and

since σ−11/
√
T

∑[Tr]
t=1 ut is clearly a semimartingale (C3) is satisfied and there-

fore use of this theorem is justified to derive the asymptotic distribution of
the stochastic integral involved in the numerator of (A.5) which is given
below

T−1/2σ−3
T

T∑
t=1

ut(y
3
t−1 + zt) ⇒ σ

∫
Q1,d(r)dB(r) (A.7)

The above also establish consistency of α̂ and thereby consistency of σ̂2.
Thus, we get the asymptotic distribution as stated in (18). The derivation of
the asymptotic distribution in (19) follows easily from the above if we note
that the Wald test for the null hypothesis of α1 = α2 = 0 in (14) is given by

σ̂−2 (u′z1) (z
′
1z1)

−1
(z′1u) (A.8)

where u = (u1, . . . , uT )
′, z1 = [(y3

0, z1)
′, . . . , (y3

t−1, zt)
′]′, and define

Q2,d(r) ≡ (Y 3
d (r), Zd(r)) (A.9)

Note that the terms Y 3
d (r) and Zd(r) have different rates of convergence.

Proof of Theorem 2

We first consider the test based on (20). We start by establishing that

σ−1
T yt−1I(|yt−1| > r) ⇒ Yd (A.10)

for any finite r. This follows from the fact that

σ−1
T yt−1I(|yt−1| > r) = σ−1

T yt−1I(σ
−1
T |yt−1| > σ−1

T r) (A.11)

and so

σ−1
T yt−1I(|yt−1| > r)− σ−1

T yt−1I(|yt−1| > 0) = op(1) (A.12)
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which follows from the fact that yt−1 = Op(T
d−1/2). But

σ−1
T yt−1I(|yt−1| > 0) = σ−1

T yt−1 (A.13)

Also
σ−1

T (yt−1I(|yt−1| > r) + zt) ⇒ Yd + Zd ≡ Q3,d (A.14)

Define

x1,r,t = yt−1I(|yt−1| > r) + zt, X1,r = (x1,r,1, . . . , x1,r,T )
′ (A.15)

and u = (u1, . . . , uT )
′. Then the Wald test for given r is given by

W(r) = σ̂
2u′X1,r(X

′
1,rX1,r)

−1X′
1,ru (A.16)

As discussed above the test statistic exhibits invariance in probability
with respect to r. We therefore give the probability distribution for r = 0.
In this case yt−1I(|yt−1| > 0) = yt−1. Using Theorem 2.2 of Kurtz and Prot-
ter (1992) on convergence of stochastic integrals, discussed in the previous
appendix, we see that conditions C1-C3 are easily established and so the
asymptotic distribution of the above is(∫ 1

0
Q3,d(r)dB(r)

)2

∫ 1

0
Q2

3,ddr
(A.17)

where the continuous mapping theorem has also been used for the conver-
gence of the term (X′

1,rX1,r)
−1. The above also establish consistency of α̂1

and therefore of σ̂2.

We move to consider the test based on model (21). Define

x2,r,t = (yt−1I(|yt−1| > r), zt), X2,r = (x2,r,1, . . . ,x2,r,T )
′ (A.18)

Then, the Wald test for given r is given by

W(r) = σ̂
−2u′X2,r

(
X′

2,rX2,r

)−1
X′

2,ru (A.19)

as usual. By the results obtained above

σ−1
T T

−1/2X′
2,ru⇒ σ

∫ 1

0

(Yd(r), Zd(r))
′dB(r) (A.20)

σ−2
T T

−1(X′
2,rX2,r)

d→
∫ 1

0

(Yd(r), Zd(r))(Yd(r), Zd(r))
′dr (A.21)
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This gives the required asymptotic distribution.

We now consider the test based on model (22). Define

x3,r,t = (yt−1I(yt−1 < r1), yt−1I(yt−1 ≥ r2), zt), r = (r1, r2)
′, X3,r = (x3,r,1, . . . ,x3,r,T )

′

(A.22)
Then, the Wald test for given r = (r1, r2) is given by

W(r1,r2) = σ̂
−2u′X3,r

(
X′

3,rX3,r

)−1
X′

3,ru (A.23)

Now, by (A.11),

σ−1
T yt−1I(yt−1 < r1)− σ−1

T yt−1I(yt−1 < 0) = op(1) (A.24)

σ−1
T yt−1I(yt−1 ≥ r2)− σ−1

T yt−1I(yt−1 ≥ 0) = op(1) (A.25)

So we concentrate on the σ−1
T yt−1I(yt−1 < 0) and σ−1

T yt−1I(yt−1 ≥ 0). We
note that xI(x < 0) and xI(x > 0) are continuous functions of x unlike
I(x < 0) and I(x ≥ 0). Then

σ−1
T yt−1I(yt−1 < 0) ⇒ YdI(Yd < 0) (A.26)

and
σ−1

T yt−1I(yt−1 ≥ 0) ⇒ YdI(Yd ≥ 0) (A.27)

by the continuous mapping theorem. Since also

σ−1
T z[Tr] ⇒ Zd

we get that

σ−1
T X3,r ⇒ (YdI(Yd < 0), YdI(Yd > 0), Zd)

′ ≡ Q5,r (A.28)

Using again Theorem 2.2 of Kurtz and Protter (1992) where by continuity
of the functions involved conditions C1-C3 are satisfied we have that the
asymptotic distribution is

(∫ 1

0

Q5,d(r)dB(r)

)′ (∫ 1

0

Q5,d(r)Q5,d(r)
′dr

)−1 (∫ 1

0

Q5,d(r)dB(r)

)
(A.29)
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Proof of Theorem 3

We only consider the stochastic equicontinuity of T−1
∑T

t=1 I(yt−1 > r)yt−1ut

because similar arguments can be applied to other terms. We assume that r ∈
[−M,M ] for some constant M . Following the definition of (weak) stochastic
equicontinuity in (27), we have to prove that

limsupT→∞ Pr

[
sup

r
sup

r′∈S(r,δ)

∣∣∣∣∣ 1T
T∑

t=1

I(yt−1 > r)yt−1ut − 1

T

T∑
t=1

I(yt−1 > r
′)yt−1ut

∣∣∣∣∣ ≥ ε
]
< ε,

(A.30)
where S (r, δ) is a sphere of radius δ centred at r. Assuming without loss of
generality that r′ < r, then the probability in (A.30) can be written as

limsupT→∞ Pr

[
sup

r
sup

r′∈S(r,δ)

∣∣∣∣∣ 1T
T∑

t=1

I(r′ ≤ yt−1 ≤ r)yt−1ut

∣∣∣∣∣ ≥ ε
]
(A.31)

≤ limsupT→∞ Pr

[
sup

r
sup

r′∈S(r,δ)

1

T

T∑
t=1

|I(r′ ≤ yt−1 ≤ r)ut| |yt−1| ≥ ε
]
.(A.32)

By the properties of long memory processes, I(r′ ≤ yt−1 ≤ r) will take unity
at most [cTα] periods, for some α < 1 and for some fixed constant c, where
[.] denotes integer part, and zero otherwise. Therefore, only [cT α] terms in
the summation in (A.31) are non-zero. In the cases where these terms are
non zero, |yt−1| can be at mostM . Taking the supremum over r and r′ inside
the summation in (A.32), it is easily seen that (A.32) holds if

limsupT→∞ Pr


M
T

[cT α]∑
i=1

|uti| ≥ ε

 < ε, (A.33)

where ti denotes the subsequence of periods when the process lies within the
finite corridor band. This is smaller than

limsupT→∞ Pr


M
T

[cT α]∑
i=1

{|uti| − E (|uti|)}+
M

T

[cT α]∑
i=1

E (|uti|) ≥ ε

 . (A.34)

By the finiteness of the second moment of ut,
M
T

∑[cT α]
i=1 E (|uti|) tends to zero.

Hence, we concentrate on

limsupT→∞ Pr


M
T

[cT α]∑
i=1

{|uti| − E (|uti|)} ≥ ε

 . (A.35)
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But by the law of large numbers, and using the assumption that ut’s are iid,
we have

limsupT→∞ Pr

[∑[cT α]
i=1 {|uti| − E (|uti|)}

cTα
≥ ε

]
= 0, (A.36)

As the normalisation M/T in (A.35) is smaller than the normalisation 1/Tα

needed for (A.36) to hold, (A.35) holds, which proves (A.30).
A similar analysis provides a proof for stochastic equicontinuity of

T−1

T∑
t=1

I(yt−1 > r)y
2
t−1

Given that T−1
∑T

t=1 I(yt−1 > r)y
2
t−1 is almost surely bounded away from

zero for all finite r, stochastic equicontinuity of(
T−1

∑T
t=1 I(yt−1 > r)yt−1ut

)2

T−1
∑T

t=1 I(yt−1 > r)y2
t−1

is obtained.

Proof of Theorem 4

We will prove this Theorem for the most general case of an infinite order
ARFI with the truncated lag order p = p(T ) = op(T

1/3). Before continuing
we briefly comment on the truncation order T 1/3. This upper bound follows
from the work of Berk (1974) where it is shown that for inifinite station-
ary AR processes any lag order larger than this leads to a second moment
matrix for the regressors (lags of the process) which does not converge to
its population moment in norm. Under such a scenario any coefficients of
stationary variables would not be estimated consistently. See also Ng and
Perron (1995). We therefore impose this upper bound. We also assume that
φi in (28)-(32) are Op(λ

i), |λ| < 1 and that p→ ∞.

Define the T×p data matrixUp = (u−1, ...,u−p) with u−i = (u−i+1, ...,uT−i),

the T × T idempotent matrix MT = IT − Up (Up
′Up)

−1
Up

′ and ε =
(ε1, . . . , εT )

′.
We first prove a preliminary result. Consider the quadratic form

a′
Up√
T

(
U′

pUp

T

)−1 U′
p√
T
b = a∗′

(
U′

pUp

T

)−1

b∗ (A.37)
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where a and b are T × 1 vectors of observations on processes at and bt
respectively. Suppose in addition that ‖a∗‖ and ‖b∗‖ are both Op(p(T )).

Write
U′

pUp

T
as V′ΛV where V′V = VV′ = I and Λ = diag(λi). Writing

U∗
p = V′U∗

p then we see that U∗
p is a matrix of observations on p(T ) orthog-

onal stationary variates with sample variances λ1, λ2, ..λp respectively. As a
result, the λi are each Op(1). Now write a∗∗ = Va∗ and b∗∗ = Vb∗ then it
follows that

‖a∗‖ = ‖a∗∗‖ = ‖b∗‖ = ‖b∗∗‖ = Op(p(T ))

It follows from these developments that

a′
Up√
T

(
U′

pUp

T

)−1 U′
p√
T
b = a∗′

(
U′

pUp

T

)−1

b∗= a∗∗′diag
(
λ−1

i

)
b∗∗ =

(A.38)
p(T )∑
i=1

λ−1
i a

∗∗
i b

∗∗
i = Op(p(T ))

Then, under the null it is straightforward to show that for all relevant terms
in the Wald test statistics for both SETAR and ESTAR models

σ−α
T T

−1/2X′MT ε− σ−α
T T

−1/2X′ε = op(1) (A.39)

and
σ−2α

T T−1X′MTX− σ−2α
T T−1X′X = op(1) (A.40)

where X is the relevant regressor matrix in each case, α = 3 if the regressor
is y3

t−1 and α = 1, otherwise. To see this we need to note that since ut is a
stationary process we have, using (A.38)

σ−α
T X′Up (Up

′Up)
−1
Up

′ε = Op(p(T )) = op(T
1/3) (A.41)

and
σ−2α

T X′Up (Up
′Up)

−1
Up

′X = Op(p(T )) = op(T
1/3) (A.42)

giving the required result. Finally consistency of σ̂2 follows from the fact
that for p = op(T

1/3), the second moment matrix Up
′Up converges in the

supremum matrix norm to its population value as proven by Berk (1974).
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Table 4: Symmetric SETAR mean tests. d=0.6
Exp SETARavg,0.6

1 SETARavg,0.6
2

100 200 400 100 200 400
A1 0.040 0.036 0.034 0.057 0.054 0.041
A2 0.666 0.811 0.968 0.675 0.875 0.992
A3 0.586 0.837 0.984 0.507 0.790 0.977
A4 0.326 0.452 0.719 0.325 0.549 0.878
A5 0.668 0.815 0.953 0.691 0.870 0.990
A6 0.606 0.828 0.987 0.529 0.770 0.982
A7 0.333 0.445 0.729 0.342 0.570 0.886
A8 0.637 0.809 0.961 0.666 0.876 0.990
A9 0.554 0.785 0.956 0.493 0.756 0.948
A10 0.328 0.424 0.655 0.352 0.532 0.868
A11 0.583 0.750 0.917 0.621 0.838 0.983
A12 0.490 0.662 0.865 0.425 0.641 0.902
A13 0.220 0.268 0.359 0.290 0.454 0.751
A14 0.642 0.807 0.939 0.673 0.873 0.994
A15 0.613 0.804 0.955 0.550 0.803 0.976
A16 0.438 0.555 0.751 0.463 0.687 0.935
A17 0.428 0.621 0.714 0.459 0.710 0.900
A18 0.487 0.707 0.840 0.448 0.692 0.843
A19 0.341 0.401 0.411 0.338 0.545 0.693
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Table 5: Symmetric SETAR exp tests. d=0.6
Exp SETARexp,0.6

1 SETARexp,0.6
2

100 200 400 100 200 400
A1 0.068 0.066 0.056 0.074 0.074 0.058
A2 0.783 0.915 0.992 0.771 0.929 0.998
A3 0.740 0.948 0.998 0.678 0.916 0.997
A4 0.514 0.679 0.911 0.494 0.707 0.943
A5 0.777 0.916 0.991 0.773 0.937 0.996
A6 0.755 0.924 0.998 0.694 0.906 0.997
A7 0.516 0.706 0.911 0.487 0.745 0.956
A8 0.757 0.900 0.992 0.756 0.924 0.998
A9 0.692 0.919 0.993 0.664 0.898 0.989
A10 0.522 0.654 0.871 0.505 0.700 0.941
A11 0.700 0.854 0.977 0.712 0.895 0.993
A12 0.647 0.827 0.942 0.601 0.797 0.953
A13 0.403 0.489 0.624 0.424 0.615 0.825
A14 0.749 0.892 0.982 0.755 0.913 0.998
A15 0.756 0.912 0.987 0.701 0.893 0.988
A16 0.595 0.751 0.906 0.603 0.796 0.972
A17 0.493 0.691 0.790 0.504 0.759 0.918
A18 0.591 0.786 0.905 0.558 0.772 0.896
A19 0.444 0.524 0.548 0.439 0.617 0.749

Table 6: Symmetric SETAR mean tests. d=0.7
Exp SETARavg,0.7

1 SETARavg,0.7
2

100 200 400 100 200 400
B1 0.026 0.020 0.021 0.049 0.037 0.035
B2 0.329 0.514 0.740 0.277 0.432 0.686
B3 0.196 0.364 0.720 0.157 0.328 0.655
B4 0.059 0.109 0.243 0.045 0.070 0.139
B5 0.350 0.529 0.726 0.302 0.456 0.692
B6 0.219 0.390 0.720 0.198 0.332 0.640
B7 0.077 0.105 0.253 0.063 0.060 0.161
B8 0.324 0.493 0.701 0.281 0.444 0.664
B9 0.168 0.270 0.602 0.144 0.219 0.519
B10 0.062 0.073 0.136 0.048 0.065 0.089
B11 0.273 0.393 0.543 0.227 0.344 0.521
B12 0.117 0.217 0.400 0.101 0.168 0.330
B13 0.038 0.021 0.023 0.036 0.029 0.022
B14 0.389 0.467 0.679 0.327 0.427 0.639
B15 0.208 0.350 0.652 0.142 0.249 0.514
B16 0.098 0.172 0.237 0.080 0.123 0.154
B17 0.265 0.347 0.491 0.210 0.249 0.420
B18 0.180 0.388 0.758 0.109 0.192 0.533
B19 0.086 0.140 0.271 0.053 0.067 0.139
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Table 7: Symmetric SETAR exp tests. d=0.7
Exp SETARexp,0.7

1 SETARexp,0.7
2

100 200 400 100 200 400
B1 0.047 0.035 0.044 0.068 0.058 0.060
B2 0.467 0.675 0.881 0.428 0.648 0.857
B3 0.337 0.561 0.888 0.334 0.573 0.869
B4 0.159 0.258 0.457 0.147 0.216 0.369
B5 0.508 0.689 0.893 0.468 0.656 0.852
B6 0.332 0.574 0.874 0.359 0.598 0.871
B7 0.185 0.260 0.498 0.153 0.191 0.394
B8 0.474 0.677 0.855 0.443 0.644 0.817
B9 0.312 0.508 0.827 0.333 0.517 0.825
B10 0.137 0.193 0.350 0.135 0.166 0.277
B11 0.417 0.566 0.720 0.382 0.540 0.702
B12 0.254 0.454 0.717 0.259 0.450 0.685
B13 0.107 0.116 0.119 0.115 0.115 0.106
B14 0.514 0.646 0.849 0.470 0.611 0.824
B15 0.365 0.618 0.857 0.330 0.550 0.803
B16 0.241 0.367 0.490 0.215 0.317 0.416
B17 0.388 0.515 0.680 0.341 0.461 0.612
B18 0.372 0.695 0.941 0.280 0.586 0.888
B19 0.208 0.344 0.546 0.145 0.267 0.464

Table 8: Symmetric SETAR mean tests. d=0.8
Exp SETARavg,0.8

1 SETARavg,0.8
2

100 200 400 100 200 400
C1 0.027 0.026 0.031 0.048 0.043 0.033
C2 0.078 0.139 0.270 0.069 0.092 0.219
C3 0.032 0.087 0.176 0.077 0.166 0.571
C4 0.029 0.050 0.142 0.047 0.070 0.139
C5 0.083 0.120 0.260 0.055 0.097 0.222
C6 0.035 0.068 0.168 0.075 0.172 0.551
C7 0.035 0.043 0.147 0.037 0.049 0.134
C8 0.063 0.112 0.210 0.052 0.082 0.170
C9 0.025 0.030 0.040 0.051 0.106 0.348
C10 0.018 0.015 0.055 0.031 0.040 0.074
C11 0.059 0.047 0.109 0.041 0.040 0.093
C12 0.011 0.017 0.039 0.020 0.067 0.300
C13 0.005 0.003 0.006 0.019 0.035 0.050
C14 0.078 0.119 0.216 0.057 0.084 0.160
C15 0.029 0.031 0.071 0.038 0.041 0.189
C16 0.008 0.013 0.012 0.012 0.023 0.054
C17 0.046 0.081 0.315 0.031 0.039 0.170
C18 0.057 0.297 0.840 0.084 0.327 0.884
C19 0.016 0.131 0.471 0.017 0.133 0.458
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Table 9: symmetric SETAR exp tests. d=0.8
Exp SETARexp,0.8

1 SETARexp,0.8
2

100 200 400 100 200 400
C1 0.047 0.063 0.060 0.070 0.069 0.066
C2 0.159 0.279 0.483 0.168 0.281 0.499
C3 0.075 0.178 0.343 0.148 0.352 0.746
C4 0.064 0.106 0.247 0.079 0.112 0.211
C5 0.145 0.259 0.466 0.151 0.273 0.461
C6 0.104 0.166 0.335 0.189 0.343 0.727
C7 0.073 0.095 0.239 0.084 0.093 0.192
C8 0.140 0.238 0.424 0.149 0.254 0.452
C9 0.068 0.116 0.180 0.155 0.296 0.585
C10 0.041 0.054 0.102 0.072 0.083 0.128
C11 0.130 0.166 0.353 0.128 0.193 0.390
C12 0.047 0.106 0.266 0.115 0.251 0.604
C13 0.034 0.037 0.061 0.064 0.082 0.112
C14 0.157 0.258 0.444 0.157 0.250 0.440
C15 0.068 0.138 0.252 0.123 0.235 0.508
C16 0.045 0.053 0.080 0.057 0.099 0.169
C17 0.168 0.347 0.747 0.136 0.274 0.658
C18 0.274 0.722 0.966 0.342 0.741 0.975
C19 0.148 0.422 0.746 0.147 0.420 0.757

Table 10: symmetric SETAR mean tests. d=0.9
Exp SETARavg,0.9

1 SETARavg,0.9
2

100 200 400 100 200 400
D1 0.022 0.031 0.027 0.053 0.057 0.045
D2 0.019 0.021 0.049 0.076 0.145 0.473
D3 0.037 0.048 0.137 0.231 0.630 0.996
D4 0.042 0.110 0.367 0.149 0.379 0.770
D5 0.016 0.017 0.053 0.056 0.158 0.436
D6 0.034 0.047 0.132 0.227 0.661 0.992
D7 0.042 0.105 0.360 0.164 0.353 0.787
D8 0.005 0.011 0.011 0.060 0.124 0.400
D9 0.008 0.008 0.021 0.165 0.541 0.992
D10 0.019 0.043 0.156 0.141 0.342 0.717
D11 0.013 0.011 0.022 0.044 0.132 0.444
D12 0.008 0.037 0.130 0.162 0.589 0.997
D13 0.017 0.028 0.084 0.107 0.325 0.661
D14 0.011 0.005 0.005 0.043 0.066 0.320
D15 0.003 0.006 0.006 0.075 0.360 0.957
D16 0.008 0.005 0.014 0.066 0.215 0.656
D17 0.020 0.143 0.531 0.063 0.319 0.817
D18 0.086 0.466 0.930 0.371 0.862 0.993
D19 0.048 0.249 0.649 0.183 0.527 0.887
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Table 11: symmetric SETAR exp tests. d=0.9
Exp SETARexp,0.9

1 SETARexp,0.9
2

100 200 400 100 200 400
D1 0.047 0.064 0.059 0.089 0.097 0.085
D2 0.050 0.067 0.125 0.129 0.213 0.569
D3 0.079 0.129 0.290 0.287 0.672 0.996
D4 0.085 0.206 0.511 0.194 0.416 0.795
D5 0.042 0.063 0.114 0.117 0.219 0.516
D6 0.069 0.127 0.311 0.289 0.716 0.993
D7 0.080 0.189 0.494 0.204 0.383 0.800
D8 0.024 0.043 0.063 0.106 0.203 0.501
D9 0.041 0.051 0.125 0.245 0.609 0.993
D10 0.057 0.093 0.311 0.185 0.382 0.739
D11 0.046 0.075 0.161 0.099 0.255 0.605
D12 0.074 0.216 0.455 0.296 0.711 0.999
D13 0.060 0.118 0.285 0.186 0.400 0.712
D14 0.034 0.030 0.035 0.092 0.141 0.446
D15 0.019 0.040 0.028 0.153 0.492 0.971
D16 0.029 0.020 0.063 0.129 0.297 0.714
D17 0.129 0.479 0.837 0.233 0.621 0.926
D18 0.358 0.788 0.986 0.665 0.934 0.993
D19 0.200 0.560 0.807 0.381 0.734 0.935

Table 12: Asymmetric SETAR mean tests. d=0.6
Exp SETARavg,0.6

3

100 200 400
A1 0.046 0.035 0.024
A2 0.479 0.784 0.986
A3 0.197 0.496 0.918
A4 0.234 0.540 0.917
A5 0.444 0.782 0.992
A6 0.207 0.489 0.927
A7 0.268 0.538 0.925
A8 0.478 0.774 0.987
A9 0.182 0.442 0.848
A10 0.266 0.537 0.916
A11 0.456 0.721 0.970
A12 0.132 0.302 0.724
A13 0.217 0.455 0.820
A14 0.503 0.789 0.993
A15 0.259 0.517 0.942
A16 0.355 0.621 0.958
A17 0.490 0.753 0.932
A18 0.310 0.511 0.798
A19 0.334 0.585 0.850
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Table 13: Asymmetric SETAR exp tests. d=0.6
Exp SETARavg,0.6

3

100 200 400
A1 0.071 0.068 0.050
A2 0.656 0.910 0.997
A3 0.493 0.843 0.998
A4 0.461 0.775 0.975
A5 0.638 0.905 0.998
A6 0.463 0.809 0.989
A7 0.465 0.764 0.983
A8 0.642 0.898 0.995
A9 0.451 0.787 0.983
A10 0.489 0.791 0.981
A11 0.635 0.864 0.994
A12 0.375 0.650 0.945
A13 0.420 0.685 0.954
A14 0.661 0.896 0.999
A15 0.517 0.813 0.990
A16 0.564 0.850 0.993
A17 0.585 0.828 0.961
A18 0.533 0.717 0.910
A19 0.493 0.756 0.928

Table 14: Asymmetric SETAR mean tests. d=0.7
Exp SETARavg,0.7

3

100 200 400
B1 0.029 0.036 0.026
B2 0.055 0.067 0.228
B3 0.017 0.028 0.142
B4 0.019 0.026 0.101
B5 0.044 0.059 0.238
B6 0.016 0.033 0.142
B7 0.013 0.032 0.122
B8 0.050 0.063 0.194
B9 0.010 0.009 0.044
B10 0.014 0.022 0.055
B11 0.037 0.041 0.082
B12 0.005 0.002 0.002
B13 0.018 0.014 0.010
B14 0.048 0.054 0.161
B15 0.005 0.004 0.026
B16 0.017 0.015 0.052
B17 0.068 0.043 0.047
B18 0.025 0.031 0.079
B19 0.036 0.045 0.090
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Table 15: Asymmetric SETAR exp tests. d=0.7
Exp SETARexp,0.7

3

100 200 400
B1 0.063 0.063 0.053
B2 0.187 0.353 0.757
B3 0.116 0.284 0.729
B4 0.095 0.171 0.410
B5 0.191 0.341 0.749
B6 0.100 0.288 0.721
B7 0.097 0.193 0.433
B8 0.183 0.328 0.689
B9 0.090 0.212 0.602
B10 0.086 0.165 0.399
B11 0.140 0.195 0.490
B12 0.050 0.128 0.354
B13 0.061 0.077 0.190
B14 0.213 0.307 0.674
B15 0.085 0.231 0.609
B16 0.112 0.202 0.470
B17 0.200 0.234 0.326
B18 0.136 0.244 0.655
B19 0.138 0.219 0.408

Table 16: Asymmetric SETAR mean tests. d=0.8
Exp SETARavg,0.8

3

100 200 400
C1 0.045 0.029 0.024
C2 0.007 0.003 0.008
C3 0.024 0.035 0.139
C4 0.019 0.032 0.083
C5 0.011 0.003 0.003
C6 0.016 0.029 0.159
C7 0.027 0.017 0.076
C8 0.009 0.003 0.004
C9 0.010 0.015 0.048
C10 0.016 0.012 0.045
C11 0.009 0.003 0.002
C12 0.003 0.014 0.043
C13 0.008 0.011 0.022
C14 0.010 0.005 0.000
C15 0.005 0.006 0.007
C16 0.006 0.006 0.003
C17 0.039 0.047 0.052
C18 0.077 0.185 0.628
C19 0.057 0.123 0.309

31



Table 17: Asymmetric SETAR exp tests. d=0.8
Exp SETARexp,0.8

3

100 200 400
C1 0.096 0.069 0.063
C2 0.030 0.036 0.120
C3 0.052 0.108 0.357
C4 0.040 0.069 0.156
C5 0.031 0.035 0.098
C6 0.041 0.085 0.356
C7 0.045 0.056 0.157
C8 0.031 0.027 0.062
C9 0.030 0.052 0.156
C10 0.035 0.034 0.102
C11 0.022 0.009 0.019
C12 0.025 0.057 0.140
C13 0.040 0.030 0.086
C14 0.025 0.023 0.072
C15 0.027 0.030 0.116
C16 0.025 0.045 0.091
C17 0.132 0.178 0.376
C18 0.291 0.622 0.968
C19 0.227 0.451 0.716

Table 18: Asymmetric SETAR mean tests. d=0.9
Exp SETARavg,0.9

3

100 200 400
D1 0.034 0.027 0.028
D2 0.019 0.048 0.155
D3 0.089 0.293 0.882
D4 0.059 0.246 0.713
D5 0.019 0.037 0.145
D6 0.090 0.312 0.879
D7 0.063 0.202 0.719
D8 0.022 0.033 0.111
D9 0.059 0.218 0.831
D10 0.049 0.164 0.667
D11 0.020 0.032 0.134
D12 0.050 0.268 0.867
D13 0.046 0.179 0.606
D14 0.012 0.016 0.058
D15 0.026 0.094 0.608
D16 0.042 0.069 0.460
D17 0.088 0.162 0.488
D18 0.236 0.672 0.993
D19 0.183 0.441 0.792
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Table 19: Asymmetric SETAR exp tests. d=0.9
Exp SETARexp,0.9

3

100 200 400
D1 0.075 0.074 0.067
D2 0.045 0.062 0.192
D3 0.131 0.351 0.900
D4 0.096 0.286 0.741
D5 0.033 0.055 0.193
D6 0.125 0.361 0.904
D7 0.103 0.248 0.747
D8 0.042 0.051 0.145
D9 0.101 0.284 0.860
D10 0.097 0.231 0.696
D11 0.055 0.083 0.243
D12 0.125 0.422 0.919
D13 0.116 0.285 0.696
D14 0.033 0.046 0.119
D15 0.086 0.226 0.741
D16 0.097 0.169 0.588
D17 0.246 0.512 0.872
D18 0.569 0.939 1.000
D19 0.468 0.728 0.928

Table 20: STAR tests. d=0.6
Exp T1 T2

100 200 400 100 200 400
A1 0.039 0.038 0.054 0.039 0.043 0.029
A2 0.507 0.784 0.948 0.546 0.793 0.947
A3 0.516 0.789 0.955 0.529 0.806 0.956
A4 0.512 0.771 0.957 0.556 0.807 0.951
A5 0.322 0.668 0.971 0.179 0.420 0.872
A6 0.326 0.649 0.967 0.180 0.410 0.875
A7 0.322 0.669 0.961 0.177 0.419 0.831
A8 0.076 0.223 0.626 0.026 0.060 0.310
A9 0.088 0.231 0.643 0.027 0.072 0.312
A10 0.093 0.241 0.623 0.028 0.073 0.317
A11 0.090 0.244 0.671 0.018 0.076 0.331
A12 0.082 0.251 0.647 0.020 0.053 0.354
A13 0.088 0.263 0.623 0.020 0.073 0.307
A14 0.092 0.263 0.646 0.026 0.062 0.302
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Table 21: STAR tests. d=0.7
Exp T1 T2

100 200 400 100 200 400
B1 0.041 0.035 0.029 0.034 0.029 0.027
B2 0.149 0.301 0.589 0.178 0.233 0.392
B3 0.126 0.278 0.610 0.169 0.208 0.412
B4 0.140 0.295 0.614 0.166 0.214 0.414
B5 0.018 0.026 0.057 0.008 0.006 0.005
B6 0.023 0.023 0.051 0.015 0.008 0.002
B7 0.014 0.017 0.052 0.010 0.005 0.007
B8 0.007 0.000 0.000 0.003 0.000 0.000
B9 0.008 0.000 0.000 0.002 0.001 0.000
B10 0.004 0.004 0.001 0.001 0.002 0.001
B11 0.003 0.001 0.001 0.000 0.000 0.000
B12 0.000 0.000 0.000 0.000 0.000 0.000
B13 0.008 0.002 0.000 0.000 0.000 0.000
B14 0.004 0.002 0.000 0.001 0.000 0.000

Table 22: STAR tests. d=0.8
Exp T1 T2

100 200 400 100 200 400
C1 0.058 0.054 0.045 0.036 0.028 0.033
C2 0.036 0.032 0.011 0.049 0.032 0.011
C3 0.033 0.028 0.015 0.052 0.025 0.011
C4 0.036 0.025 0.017 0.055 0.031 0.012
C5 0.015 0.011 0.004 0.007 0.006 0.000
C6 0.013 0.010 0.008 0.002 0.002 0.001
C7 0.013 0.005 0.007 0.004 0.002 0.001
C8 0.035 0.068 0.132 0.013 0.021 0.065
C9 0.023 0.063 0.127 0.009 0.018 0.064
C10 0.029 0.049 0.137 0.013 0.017 0.065
C11 0.036 0.065 0.132 0.009 0.015 0.040
C12 0.041 0.066 0.153 0.012 0.012 0.045
C13 0.031 0.071 0.172 0.005 0.007 0.043
C14 0.036 0.071 0.172 0.006 0.010 0.040
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Table 23: STAR tests. d=0.9
Exp T1 T2

100 200 400 100 200 400
D1 0.059 0.047 0.043 0.036 0.047 0.032
D2 0.033 0.024 0.010 0.030 0.014 0.005
D3 0.028 0.028 0.017 0.022 0.016 0.007
D4 0.035 0.026 0.018 0.029 0.012 0.005
D5 0.066 0.109 0.308 0.021 0.039 0.169
D6 0.062 0.123 0.330 0.025 0.048 0.173
D7 0.067 0.136 0.305 0.033 0.049 0.161
D8 0.192 0.437 0.801 0.074 0.298 0.893
D9 0.204 0.436 0.782 0.085 0.285 0.888
D10 0.185 0.442 0.825 0.085 0.304 0.895
D11 0.204 0.484 0.850 0.094 0.280 0.856
D12 0.212 0.470 0.851 0.070 0.254 0.847
D13 0.244 0.506 0.885 0.079 0.255 0.854
D14 0.220 0.514 0.860 0.072 0.265 0.823
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Table 24: STARa Tests.

Country STAR0.6
1 STAR0.7

1 STAR0.8
1 STAR0.9

1 STAR0.6
2 STAR0.7

2 STAR0.8
2 STAR0.9

2

US 19.797∗ 8.253∗ 3.188 1.187 27.056∗ 10.117∗ 3.305 1.406
Germany 27.454∗ 12.482∗ 5.565∗ 2.549 28.601∗ 12.492∗ 6.528 5.375
France 26.348∗ 11.965∗ 5.351∗ 2.517 29.991∗ 12.331∗ 5.487 3.812
Italy 16.253∗ 5.861∗ 1.696 0.301 17.038∗ 5.935 1.850 1.452
UK 16.507∗ 8.708∗ 4.697∗ 2.686 20.047∗ 9.010∗ 4.987 4.708

Canada 35.824∗ 15.793∗ 6.555∗ 2.633 48.977∗ 19.838∗ 7.306 2.633
Austral 35.743∗ 17.720∗ 8.501∗ 4.067 48.140∗ 21.076∗ 8.947∗ 4.099
Austria 116.036∗ 58.585∗ 27.161∗ 11.433∗ 288.710∗ 128.393∗ 53.054∗ 20.895∗

Belgium 16.312∗ 11.104∗ 7.724∗ 5.822∗ 37.201∗ 16.702∗ 8.413∗ 5.882
Czech 0.316 0.004 0.318 0.882 1.734 0.544 0.398 0.918

Denmark 13.296∗ 6.243∗ 2.905 1.399 24.175∗ 9.792∗ 3.416 1.494
Finland 14.808∗ 6.786∗ 3.104 1.518 25.269∗ 9.897∗ 3.480 1.624
Greece 7.818∗ 5.532∗ 3.676 2.572 31.158∗ 12.948∗ 4.999 2.573

Hungary 0.376 1.009 1.607 2.066 1.845 1.147 1.690 2.687
Iceland 9.385∗ 5.420∗ 3.098 1.776 9.784∗ 5.431 3.666 3.523
Korea 16.812∗ 6.879∗ 2.245 0.440 17.093∗ 8.335∗ 5.685 6.568
Mexico 13.993∗ 6.700∗ 3.378 1.994 18.103∗ 7.014 3.768 4.566
Nether 24.886∗ 11.903∗ 5.597∗ 2.690 27.078∗ 11.926∗ 6.242 5.003
Zealand 25.967∗ 12.572∗ 6.102∗ 3.090 34.341∗ 14.999∗ 6.372 3.196
Norway 30.722∗ 16.274∗ 8.623∗ 4.697 41.044∗ 18.864∗ 8.854∗ 4.826
Poland 8.941∗ 4.483 2.021 0.784 9.679∗ 6.019 4.604 4.594

Portugal 6.595∗ 2.043 0.356 0.000 12.224∗ 3.302 0.369 0.543
Spain 1.215 0.146 0.143 1.195 4.312 1.032 0.204 1.332

Sweden 40.994∗ 21.724∗ 11.445∗ 6.175∗ 51.604∗ 24.060∗ 11.556∗ 6.466
Switzer 13.869∗ 8.011∗ 4.703∗ 2.827 18.600∗ 8.813∗ 4.737 4.092
Turkey 19.058∗ 7.975∗ 2.800 0.750 20.639∗ 8.011∗ 3.391 3.488
Hong 6.716∗ 3.184 1.330 0.429 7.047 4.317 3.628 4.179
Singap 22.136∗ 10.371∗ 4.587 1.986 34.981∗ 14.534∗ 5.337 1.990
Malaysi 56.622∗ 29.926∗ 14.815∗ 7.098∗ 89.694∗ 40.448∗ 17.496∗ 7.417
Indones 42.989∗ 18.980∗ 7.423∗ 2.341 52.522∗ 26.261∗ 14.159∗ 9.381∗

Thailand 22.366∗ 15.506∗ 10.185∗ 6.627∗ 54.410∗ 26.793∗ 13.321∗ 7.123
Philipp 6.834∗ 4.306 3.236 2.902 17.411∗ 7.127 3.506 3.027

SriLanka 0.745 0.001 0.328 0.808 122.426∗ 49.043∗ 16.933∗ 5.411
Argent 3.917 1.654 0.578 0.153 5.089 2.914 2.163 2.295
Bolivia 2.308 1.261 0.644 0.329 7.511∗ 2.697 0.703 0.674
Brazil 0.303 0.571 0.777 0.873 3.910 1.951 1.050 0.877
Chile 17.964∗ 3.558 0.090 0.513 21.296∗ 3.993 0.139 1.503

Colombia 33.952∗ 14.999∗ 5.469∗ 1.404 35.583∗ 17.120∗ 8.399∗ 5.286
V enezu 22.988∗ 11.070∗ 4.195 0.896 23.332∗ 11.195∗ 4.238 0.907

No. of Rejections 32 27 16 5 33 25 10 2

aStarred entries indicate significance at the 5% significance level
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Table 25: Augmented STAR Tests

Country STAR0.6
1 STAR0.7

1 STAR0.8
1 STAR0.9

1 STAR0.6
2 STAR0.7

2 STAR0.8
2 STAR0.9

2

US 2.910 2.241 1.562 1.040 5.111 4.710 4.346 4.201
Germany 13.760∗ 9.682∗ 5.877∗ 3.199 19.944∗ 16.726∗ 13.638∗ 11.608∗

France 13.681∗ 10.397∗ 6.866∗ 4.134 17.454∗ 14.903∗ 12.241∗ 10.479∗

Italy 3.092 1.828 0.814 0.247 7.370∗ 5.698 4.713 4.523
UK 2.897 2.184 1.545 1.059 5.660 5.056 4.688 4.672

Canada 3.942 3.097 2.231 1.528 5.030 4.622 4.153 3.810
Austral 5.888∗ 4.871∗ 3.761 2.783 6.698 6.088 5.368 4.770
Austria 1.383 1.891 2.446 2.576 10.201∗ 10.574∗ 9.862∗ 7.940
Belgium 20.082∗ 17.357∗ 13.791∗ 10.503∗ 20.238∗ 18.394∗ 16.333∗ 14.780∗

Czech 0.033 0.169 0.463 0.881 14.402∗ 5.866 2.794 2.095
Denmark 4.750∗ 2.879 1.621 0.904 6.835 5.398 4.722 4.742
Finland 4.904∗ 3.582 2.463 1.663 5.616 4.697 4.072 3.856
Greece 7.163∗ 5.903∗ 4.596 3.591 8.981∗ 8.071∗ 7.305 7.029

Hungary 1.273 1.487 1.634 1.733 4.994 5.419 5.745 6.028
Iceland 0.963 0.685 0.481 0.332 7.180∗ 6.857 6.555 6.383
Korea 1.166 0.514 0.105 0.004 5.701 5.297 5.134 5.362
Mexico 2.624 1.665 0.931 0.492 6.713 6.139 5.989 6.294
Nether 14.826∗ 10.341∗ 6.411∗ 3.665 18.578∗ 15.701∗ 13.074∗ 11.342∗

Zealand 4.926∗ 3.893 2.844 2.010 6.155 5.312 4.464 3.876
Norway 7.341∗ 5.683∗ 4.055 2.762 7.349∗ 5.848 4.506 3.572
Poland 0.285 0.216 0.141 0.066 7.936∗ 7.443 7.001 6.704

Portugal 1.299 0.603 0.148 0.001 3.120 2.593 2.490 2.884
Spain 1.547 1.534 1.950 2.695 2.772 2.557 2.891 3.641

Sweden 7.520∗ 5.914∗ 4.332 3.041 8.319∗ 7.240 6.191 5.432
Switzer 4.934∗ 3.298 2.132 1.366 6.243 5.314 4.923 5.013
Turkey 0.448 0.179 0.022 0.011 11.238∗ 11.500∗ 11.550∗ 11.739∗

Hong 0.000 0.017 0.049 0.091 6.886 6.767 6.637 6.519
Singap 3.781 3.106 2.409 1.822 7.223∗ 7.239 7.114 7.026
Malaysi 5.904∗ 5.322∗ 4.316 3.199 5.970 5.323 4.418 3.531
Indones 1.687 1.753 1.317 0.699 15.091∗ 14.020∗ 12.462∗ 10.903∗

Thailand 8.122∗ 7.959∗ 7.335∗ 6.391∗ 8.435∗ 8.040∗ 7.336 6.513
Philipp 10.412∗ 7.458∗ 5.365∗ 4.153 10.829∗ 7.474 5.483 4.711

SriLanka 3.521 3.433 3.074 2.676 6.112 6.201 5.308 3.992
Argent 0.002 0.006 0.008 0.004 4.268 5.229 5.687 5.795
Bolivia 0.001 0.002 0.002 0.002 4.906 5.566 5.398 5.107
Brazil 0.667 0.855 1.023 1.148 0.795 1.059 1.329 1.604
Chile 0.030 0.001 0.146 0.487 5.650 3.769 3.686 4.220

Colombia 0.003 0.000 0.000 0.019 8.775∗ 8.375∗ 8.001∗ 7.814
V enezu 0.231 0.288 0.210 0.079 0.520 0.447 0.265 0.088

No. of Rejections 15 11 6 2 18 10 8 6
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Table 26: SETAR Tests .

Country SETAR0.6
3 SETAR0.7

3 SETAR0.8
3 SETAR0.9

3

US 280486.2∗ 157.864∗ 7.992 3.630
Germany 1242665.∗ 769.156∗ 48.000∗ 25.776∗

France 1089052.∗ 389.915∗ 18.874∗ 9.036
Italy 1508.738∗ 14.686∗ 2.662 1.883
UK 48550.59∗ 215.810∗ 25.235∗ 17.326∗

Canada 23234343∗ 84311.07∗ 117.869∗ 8.293
Austral 11363121∗ 33693.57∗ 111.795∗ 12.717∗

Austria 12812612∗ 18882019∗ 23023941∗ 11687.94∗

Belgium 21869468∗ 3510.607∗ 109.560∗ 41.704∗

Czech 7.951 3.423 2.652 3.050
Denmark 33841.61∗ 101.450∗ 7.052 2.797
Finland 52303.51∗ 103.182∗ 6.642 2.324
Greece 25302933∗ 5294.142∗ 45.359∗ 8.200

Hungary 4.448 1.981 2.536 5.204
Iceland 145.348∗ 17.007∗ 6.322 4.750
Korea 22950.61∗ 116.068∗ 11.707∗ 6.014
Mexico 26348.49∗ 55.163∗ 5.019 2.536
Nether 304730.1∗ 525.257∗ 45.689∗ 25.395∗

Zealand 75266466∗ 4434.898∗ 49.732∗ 8.356
Norway 67785522∗ 17857.15∗ 131.520∗ 16.184∗

Poland 510.539∗ 54.225∗ 20.194∗ 15.688∗

Portugal 1123.848∗ 6.584 1.350 1.261
Spain 16079116∗ 206414.3∗ 35.038∗ 2.124

Sweden 11437514∗ 242192.7∗ 479.984∗ 29.899∗

Switzer 9869.922∗ 116.442∗ 17.364∗ 11.285∗

Turkey 88995.03∗ 96.738∗ 6.022 3.283
Hong 78.293∗ 16.392∗ 8.805∗ 7.892
Singap 29972575∗ 3633.140∗ 26.146∗ 4.955
Malaysi 47444719∗ 99979747∗ 13165.07∗ 102.102∗

Indones 15195753∗ 965796.5∗ 841.589∗ 30.457∗

Thailand 97102455∗ 2935729.∗ 5469.395∗ 301.114∗

Philipp 17946.60∗ 134.854∗ 24.020∗ 18.373∗

SriLanka 17835812∗ 14706307∗ 10966.50∗ 31.557∗

Argent 13.853∗ 3.769 2.115 1.790
Bolivia 30.311∗ 5.021 1.938 1.466
Brazil 216.395∗ 32.756∗ 12.829∗ 8.911
Chile 53182.78∗ 13.737∗ 1.539 2.149

Colombia 31283355∗ 14959.81∗ 168.245∗ 32.676∗

V enezu 121014.8∗ 243.176∗ 7.651 1.567
No. of Rejections 37 34 25 16
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Table 27: Augmented SETAR Tests .

Country SETAR0.6
3 SETAR0.7

3 SETAR0.8
3 SETAR0.9

3

US 11.915∗ 9.591∗ 8.020 7.554
Germany 134718.3∗ 24917.40∗ 4649.278∗ 1476.403∗

France 8087.277∗ 2038.968∗ 480.539∗ 178.462∗

Italy 28.455∗ 11.415∗ 6.270 4.912
UK 59.364∗ 44.021∗ 35.666∗ 33.272∗

Canada 13.387∗ 9.063∗ 6.471 5.207
Austral 52.902∗ 41.666∗ 28.976∗ 20.732∗

Austria 71.085∗ 83.838∗ 59.982∗ 25.583∗

Belgium 21368.17∗ 7744.575∗ 2449.980∗ 1002.836∗

Czech 27628347∗ 62137342∗ 14022653∗ 31588.25∗

Denmark 19.059∗ 8.896∗ 5.979 5.637
Finland 14.049∗ 7.418 4.516 3.366
Greece 71.267∗ 45.284∗ 29.634∗ 24.080∗

Hungary 37.195∗ 59.856∗ 83.963∗ 107.793∗

Iceland 8.095 7.627 7.039 6.647
Korea 6.583 4.741 3.957 3.959
Mexico 32.068∗ 14.273∗ 8.057 6.121
Nether 27532.10∗ 5697.943∗ 1285.456∗ 455.428∗

Zealand 23.222∗ 14.415∗ 9.086∗ 6.550
Norway 70.833∗ 33.083∗ 16.426∗ 9.890∗

Poland 2392.948∗ 1815.955∗ 1291.343∗ 996.103∗

Portugal 4.056 2.953 2.673 3.141
Spain 49.175∗ 42.452∗ 45.638∗ 63.179∗

Sweden 63.016∗ 31.788∗ 16.592∗ 10.121∗

Switzer 29.036∗ 17.892∗ 14.694∗ 15.529∗

Turkey 14.562∗ 11.980∗ 11.428∗ 12.780∗

Hong 1.756 1.818 1.854 1.896
Singap 153.932∗ 177.498∗ 174.530∗ 168.992∗

Malaysi 75.473∗ 53.118∗ 32.977∗ 20.825∗

Indones 183.410∗ 100.884∗ 43.960∗ 18.905∗

Thailand 193.147∗ 160.494∗ 116.739∗ 81.967∗

Philipp 266.760∗ 50.551∗ 20.170∗ 15.289∗

SriLanka 26.574∗ 28.787∗ 19.137∗ 10.607∗

Argent 8.464 7.418 6.334 5.498
Bolivia 3.041 3.225 3.011 2.875
Brazil 83926143∗ 43345723∗ 40497292∗ 60974912∗

Chile 13.842∗ 11.515∗ 17.035∗ 32.743∗

Colombia 73.880∗ 61.173∗ 50.387∗ 45.075∗

V enezu 1.428 1.314 1.198 1.114
No. of Rejections 32 31 26 25
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