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1 Introduction

The autoregressive sieve bootstrap was proposed by Kreiss (1992) and Bühlmann (1997) as a

means of obtaining consistent estimates of the variances and distributions of statistics asso-

ciated with dependent data. The idea is to approximate the (possibly infinite-dimensional)

data-generating mechanism by an autoregressive model the order of which increases to in-

finity simultaneously but sufficiently slowly with the sample size; this autoregressive ap-

proximation may then be used to resample residuals and generate bootstrap replicates of

the data. The properties of the sieve bootstrap scheme have been rigorously investigated

by Kreiss (1992), Paparoditis (1996), Bühlmann (1997), Bickel and Bühlmann (1999), and

Choi and Hall (2000), among others, who established its asymptotic validity for a variety

of statistics under the assumption that the data come from an infinite-order autoregressive

process.

A common assumption in all the papers cited above is that the coefficients in the moving-

average representation of the stochastic process of interest are absolutely summable, or satisfy

even stronger summability conditions. Such assumptions ensure that the process exhibits

weak or short-range dependence in the sense of having autocorrelations which decay fast

enough to be absolutely summable.

The aim of the present paper is to extend this literature by exploring the behaviour of the

sieve bootstrap for stochastic processes that exhibit strong or long-range dependence. The

characterising feature of such processes is that their autocorrelations tend to zero hyperbol-

ically in the lag parameter and hence are not absolutely summable (for a general survey of

the properties of strongly dependent processes see Beran (1994)). Stochastic processes that

exhibit strong dependence have been found to be useful for modelling real-world time series

occurring in many fields, including economics, hydrology, geophysics and telecommunica-

tions. We show that, under appropriate regularity conditions, the sieve bootstrap provides

an asymptotically valid approximation to the distribution of the sample mean and sample au-

tocovariances for a large class of strongly dependent linear processes with square-summable

coefficients declining at slow hyperbolic rates.

It is worth noting briefly here existing work on bootstrap procedures for strongly depen-

dent data. For processes obtained through instantaneous transformations of strongly de-

pendent stationary Gaussian sequences, Lahiri (1993) demonstrated that the moving-blocks

bootstrap provides an asymptotically valid approximation to the distribution of the sample

mean only when latter is asymptotically normal. For the same class of processes, Hall, Jing,

and Lahiri (1998) showed that consistent estimation of the distribution of the sample mean
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can be achieved by means of block-subsampling, while Nordman and Lahiri (2005) estab-

lished validity of the method for stationary linear processes. Andrews and Lieberman (2002)

presented results which show that the parametric bootstrap can provide improvements upon

the asymptotic approximation to distributions of covariance parameter estimates for strongly

dependent stationary Gaussian processes. Hidalgo (2003) proposed a semiparametric boot-

strap procedure for the coefficients of regression equations involving strongly dependent

stationary processes, which is based on resampling in the frequency domain.

Our paper contributes to this literature by providing a procedure for inference on (func-

tions of) the sample mean and sample autocovariances of strongly dependent processes based

on a semiparametric time-domain resampling scheme. Our results imply that the sieve boot-

strap can be applied for inference on stationary processes without imposing weak dependence

conditions. Although the method relies on the assumption that the data come from a linear

process which admits an autoregressive representation, existing results on the closure of the

sets of infinite-order moving-average and autoregressive processes, as discussed in the work of

Bickel and Bühlmann (1996) and Bickel and Bühlmann (1997), suggest that this requirement

may not be too onerous.

The remainder of the paper is organised as follows. Section 2 introduces notation and

the class of stochastic processes under consideration. The definition of the sieve bootstrap

scheme is given in Section 3, where some of the probabilistic properties of the sieve bootstrap

are also established. Sections 4 and 5 discuss the asymptotic validity of the sieve bootstrap in

approximating the distribution of the sample mean and sample autocovariances, respectively.

Section 6 presents the results of a simulation study of the small-sample properties of the sieve

bootstrap. Section 7 contains some final remarks.

2 Notation and Assumptions

Let {yt, t ∈ Z} be a real-valued stochastic process satisfying the equation1

yt − µ = (1− L)−dut, t ∈ Z, (1)

for some constants µ ∈ R and d ∈ (0, 1
2
). Here, L denotes the lag operator (Lyt = yt−1) and

{ut, t ∈ Z} is a purely non-deterministic process satisfying

ut = π(L)εt, t ∈ Z, (2)

1In the sequel, C and R denote, respectively, the set of complex numbers and the real line, N = {1, 2, . . .},
Z+ = {0} ∪ N, and Z = {0,±1,±2, . . .}.
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with

π(z) =
∞∑

j=1

πjz
j, z ∈ C,

and π0 = 1. The following assumptions about {εt, t ∈ Z} and {πj, j ∈ Z+} will be maintained

throughout the paper.

(A1) {εt, t ∈ Z} is a sequence of independent and identically distributed (i.i.d.) real-valued

random variables such that E(ε0) = 0 and E(|ε0|4) < ∞.

(A2) {πj, j ∈ Z+} is a sequence of real numbers such that
∑∞

j=0 |πj| < ∞ and
∑∞

j=0πjz
j 6= 0

for all z ∈ C with |z| ≤ 1.

As usual, for any d /∈ {0,−1,−2, . . .}, the operator (1− L)−d in (1) is defined by using the

series expansion of (1− z)−d (|z| < 1), i.e.,

(1− L)−d = 1 +
∞∑

j=1

Γ (j + d)

Γ (d)Γ (j + 1)
Lj,

where Γ (·) denotes the gamma function.

It is well known that, under the assumptions (A1)–(A2), {yt, t ∈ Z} is a strictly station-

ary, invertible and square integrable process. Defining

ψ(z) = (1− z)−dπ(z) =
∞∑

j=0

ψjz
j, |z| < 1,

it is easily seen that {yt, t ∈ Z} admits the causal moving-average representation

yt − µ = ψ(L)εt, t ∈ Z, (3)

with ψ0 = 1. Thus, using Stirling’s approximation formula, it may be shown that2

ψj ∼ {π(1)/Γ (d)}jd−1 as j →∞,

from which it follows that
∑∞

j=0ψ
2
j < ∞. Furthermore, letting c(k) = Cov(y0, yk) denote the

autocovariance of {yt, t ∈ Z} at lag k ∈ Z, we have

c(k) ∼ E(ε2
0){π(1)/Γ (d)}2B(d, 1− 2d)k2d−1 as k →∞,

2Here and elsewhere, the symbol “∼ ” indicates that the ratio of the left-hand and right-hand sides tends

to 1 in the limit.
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where B(·, ·) is the beta function. The series
∑∞

j=0 |ψj| and
∑∞

k=−∞ |c(k)| are, therefore,

properly divergent when d ∈ (0, 1
2
) and {yt, t ∈ Z} is a process exhibiting strong dependence

with memory (or fractional differencing) parameter d.

It is worth pointing out that the class of processes defined by (1)–(2) and (A1)–(A2) is

rich enough to include many Gaussian and non-Gaussian strongly dependent processes. A

prominent example are the popular fractional ARIMA processes introduced by Granger and

Joyeux (1980) and Hosking (1981). For an ARIMA(p, d, q) process,

π(z) = ϑ(z)/ϕ(z), |z| ≤ 1, (4)

with ϕ(z) = 1 +
∑p

j=1 ϕjz
j and ϑ(z) = 1 +

∑q
j=1 ϑjz

j being relatively prime finite-order

polynomials having all their zeroes outside the closed disk {z ∈ C : |z| ≤ 1}. In this

case, assumption (A2) is satisfied with |πj| = O(e−βj) as j → ∞ for some β ∈ (0, 1).

Note, however, that the summability condition in (A2) also permits the weighting sequence

{πj, j ∈ Z+} to decay at rates much slower than the exponential rate that is characteristic of

ARMA processes (as is the case, for instance, when πj ∼ K j−κ as j →∞ for some κ > 1).3

3 Sieve Bootstrap: Definition and Properties

3.1 The Resampling Scheme

The sieve bootstrap scheme is motivated by the observation that, under assumption (A2),

{yt, t ∈ Z} admits the autoregressive representation

φ(L)(yt − µ) = εt, t ∈ Z, (5)

where

φ(z) = (1− z)d/π(z) =
∞∑

j=0

φjz
j, |z| < 1,

with φ0 = 1. Following Kreiss (1992) and Bühlmann (1997), the idea is to approximate (5)

by a finite-order autoregressive model

φh(L)(yt − µ) = ε
(h)
t , t ∈ Z, (6)

where, for some h ∈ N,

φh(z) =
h∑

j=0

φ
(h)
j zj, z ∈ C,

3Here and in the sequel, K denotes a generic finite constant whose value may change upon each appear-

ance.
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with φ
(h)
0 = 1. This autoregression can then be used to generated bootstrap replicates by

means of a residual-based resampling plan. By allowing the order h of the autoregressive ap-

proximation to increase at some appropriate rate with the sample size, (6) may be interpreted

as a sieve for the process defined by (5).

To give a formal definition of the sieve bootstrap, suppose that yT = {y1, . . . , yT} is

a sample of size T ∈ N from {yt, t ∈ Z} and let h = hT be a positive integer such that

hT < T and hT → ∞ as T → ∞. Further, let φ̂
(h)

= (φ̂
(h)
1 , . . . , φ̂

(h)
h )′ be an estimator of

the coefficient vector φ(h) = (φ
(h)
1 , . . . , φ

(h)
h )′ based on yT . It is well known that φ̂

(h)
may be

thought of as an estimator of the coefficients φ(h) of the best linear predictor of yt based on

yt−1, . . . , yt−h, in which case the quantities φ(h) and σ2
h = Var(ε

(h)
t ) satisfy the Yule–Walker

equations

C(h)φ(h) = −c(h), (7)

σ2
h = c(0) + (φ(h))′c(h), (8)

where C(h) = {c(i− j); i, j = 1, . . . , h} and c(h) = (c(1), . . . , c(h))′ (cf. Brockwell and Davis

(1991, p. 168)).

Defining the residuals associated with φ̂
(h)

as

ε̂t =
h∑

j=0

φ̂
(h)
j (yt−j − ȳT ), h + 1 ≤ t ≤ T,

with φ̂
(h)
0 = 1, now put

P̃T = (T − h)−1

T∑

t=h+1

δε̃t ,

where ε̃t = ε̂t− (T −h)−1
∑T

t=h+1ε̂t (h+1 ≤ t ≤ T ) and δx is the point mass at x ∈ R. Then,

the sieve bootstrap replicates {y∗t , t ∈ Z} are defined via the recursive relation

h∑
j=0

φ̂
(h)
j (y∗t−j − ȳT ) = ε∗t , t ∈ Z, (9)

where {ε∗t , t ∈ Z} is a sequence of conditionally i.i.d. random variables, given yT , with

common distribution P̃T . The sieve bootstrap version of any statistic ST = ST (y1, . . . , yT ),

which is a measurable function of yT , is given by S∗T = ST (y∗1, . . . , y
∗
T ).

In practice, bootstrap replicates (y∗1, . . . , y
∗
T ) may be obtained according to recursion

(9) by setting y∗−h+1 = · · · = y∗0 = ȳT , generating T + q replicates with q ∈ N fairly

large, and then discarding the initial q replicates to eliminate start-up effects. The order

h of the autoregressive approximation may be selected adaptively by minimising (over a
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range of values of h) a model selection criterion such as the familiar AIC. For strongly

dependent processes satisfying (1)–(2), Poskitt (2005) gives regularity conditions under which

the autoregressive order selected through the AIC is asymptotically efficient in the sense of

Shibata (1980).

3.2 Asymptotic Properties

In this subsection, we present some results on the structural properties of the sieve ap-

proximation in the form of lemmas. Some of the lemmas will be used subsequently but

some are presented as they may be of independent interest in relation to the analysis of the

autoregressive and moving-average representations of strongly dependent processes.

Letting the sample autocovariances of yT be defined in the usual way as

cT (k) = T−1

T−|k|∑
t=1

(yt − ȳT )(yt+|k| − ȳT ), k = 0,±1, . . . ,±(T − 1),

where ȳT = T−1
∑T

t=1 yt is the sample mean, we make the following assumptions about the

sieve bootstrap procedure.

(A3) {h = hT , T ∈ N} is a sequence of positive integers such that hT → ∞ and hT =

O ({ln T}α) as T →∞ for some α ∈ (0,∞).

(A4) φ̂
(h)

= (φ̂
(h)
1 , . . . , φ̂

(h)
h )′ satisfies the empirical Yule–Walker equations

C
(h)
T φ̂

(h)
= −c

(h)
T ,

where C
(h)
T = {cT (i− j); i, j = 1, . . . , h} and c

(h)
T = (cT (1), . . . , cT (h))′.

Assumption (A3), which controls the rate of increase of the sieve order, is similar to

assumptions that are often made in the theory of autoregressive approximations (see, e.g.,

An, Chen, and Hannan (1982)). It is worth noting that all our results concerning the

asymptotic validity of the sieve bootstrap can in fact be obtained under the weaker condition

hT = o({T/ ln T} 1
2
−d) as T →∞, but we prefer to maintain (A3) because its requirement on

the relative asymptotic rates of h and T does not depend on the unknown memory parameter

d. Assumption (A4) guarantees that the polynomial

φ̂h(z) =
h∑

j=0

φ̂
(h)
j zj,
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has no zeroes on the closed disk {z ∈ C : |z| ≤ 1} (cf. Brockwell and Davis, 1991, p. 240).

Hence, for each fixed T ∈ N, the bootstrap process {y∗t , t ∈ Z} defined by (9) admits the

linear representation

y∗t − ȳT = ψ̂(L)ε∗t , t ∈ Z, (10)

where

ψ̂(z) = 1/φ̂h(z) =
∞∑

j=0

ψ̂jz
j, |z| ≤ 1,

with ψ̂0 = 1.

The following lemma gives a uniform bound for the sequence {ψ̂j, j ∈ Z+}. (In the sequel,

limits in order symbols are taken as T →∞, unless stated otherwise).

Lemma 1 Let {yt, t ∈ Z} satisfy (1)–(2) and suppose that assumptions (A1)–(A4) hold.

Then

sup
0≤j<∞

∣∣∣ψ̂j − ψj

∣∣∣ = op(1). (11)

Proof. Under the assumptions of the lemma, we have by Theorem 4.1 of Poskitt (2005)

that

max
1≤j≤h

|cT (j)− c(j)| = Op

(
{ln T/T} 1

2
−d

)
= op ({ln T}α) (12)

for every α > 0. Coupling this with the rate of decay of {φj, j ∈ Z+}, which is j−d−1 and

hence faster than (ln j)α, and by similar arguments to those used in the proof of Theorem 6

of An, Chen, and Hannan (1982), we deduce that

max
1≤j≤h

∣∣∣φ̂(h)
j − φj

∣∣∣ = Op

(
{ln T/T} 1

2
−d

)
= op ({ln T}α) . (13)

Now, following Bühlmann (1995), let {xt, t ∈ Z} be a process satisfying φ̂h(L)xt = ηt,

where {ηt, t ∈ Z} is a sequence of centred i.i.d. random variables with E(η2
0) = E(ε2

0) = σ2.

It is easy to see that, for any integer |k| ≤ h, we have cx(k) = Cov(x0, xk) = cT (k)σ2/σ̂2,

where σ̂2 = cT (0) + (φ̂
(h)

)′c(h)
T .

Proceeding as in the proof of Theorem 3.2 of Bühlmann (1995), we first need to show

that

σ̂2 = σ2 + op(1). (14)

We note that this result implies that cx(k) = Op(1) for all |k| ≤ h. From the Yule–Walker
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equations for σ2 and σ̂2, we have

|σ̂2 − σ2| ≤
∣∣∣∣∣

h∑
j=0

(
φ̂

(h)
j cT (j)− φjc(j)

)∣∣∣∣∣ +

∣∣∣∣∣
∞∑

j=h+1

φjc(j)

∣∣∣∣∣

≤ max
1≤j≤h

∣∣∣φ̂(h)
j − φj

∣∣∣ (h + 1) max
1≤j≤h

|cT (j)− c(j)|
h∑

j=1

|c(j)|

+ max
1≤j≤h

|cT (j)− c(j)|
h∑

j=0

|φj|+ |c(0)|
∞∑

j=h+1

|φj| . (15)

By the assumptions of the lemma, (12) and (13), the first term on the r.h.s. of (15) is op(1).

A similar argument shows that the second term is also op(1). For the third term, we note

that φj ∼ Kj−d−1 as j →∞, which implies that

∞∑

j=h+1

|φj| = o(1) as h →∞. (16)

Thus, (14) holds.

Next, for any j ∈ N,

∣∣∣ψ̂j − ψj

∣∣∣ ≤ σ−2

∞∑
i=0

∣∣∣φ̂(h)
i − φi

∣∣∣ |cx(j + i)|+ σ−2

∞∑
i=0

|φi| |cx(j + i)− c(j + i)|

= Ij1 + Ij2. (17)

Examining Ij1 first, we have

sup
j∈N

Ij1 ≤ σ−2 max
1≤i≤h

∣∣∣φ̂(h)
i − φi

∣∣∣
h∑

i=0

|cx(j + i)|+ σ−2

∞∑

i=h+1

|φi| |cx(0)| . (18)

But
∑h

i=0 |cx(j + i)| = Op({ln T}α) and max1≤i≤h

∣∣∣φ̂(h)
i − φi

∣∣∣ = op ({ln T}α), so the first term

on the r.h.s. of (18) is op(1). Moreover, by (16) and the fact that cx(0) = Op(1), the second

term on the r.h.s. of (18) is also op(1). For Ij2, we have

sup
j∈N

Ij2 ≤ σ−2 max
1≤i≤h−j

|cT (i)− c(i)|
h−j∑
i=0

|φi|+ σ−2 max
h−j+1≤i≤∞

|cT (i)− c(i)|
∞∑

i=h−j+1

|φi| . (19)

But, since max1≤i≤h−j |cT (i)− c(i)| = op(1), maxh−j+1≤i<∞ |cT (i)− c(i)| = Op(1),
∑h−j

i=0 |φi| =
O(1), and

∑∞
i=h−j+1 |φi| = o(1) as h → ∞, the r.h.s. of (19) is op(1). Consequently, (11)

holds.
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Next, we establish some properties of the resampled innovation process {ε∗t , t ∈ Z}.4

Lemma 2 Let {yt, t ∈ Z} satisfy (1)–(2) and suppose that assumptions (A1)–(A4) hold. If

E(|ε0|r) < ∞ for some r ≥ max{2w, 4}, w ∈ N, then

E∗(|ε∗0|2w) = E(|ε0|2w) + op(1). (20)

Proof. To prove the lemma, we follow the steps of the proof of Lemma 5.3 of Bühlmann

(1997). For ease of reference, we replicate the steps of that proof as most steps need to be

modified somewhat. We start with the equality

E∗(|ε∗0|2w) = (T − h)−1

T∑

t=h+1

(
ε̂t − ε̂

(.)
T

)2w

, (21)

where ε̂
(.)
T = (T − h)−1

∑T
t=h+1 ε̂t, and write

ε̂t = εt − (ȳT − µ)
∞∑

j=0

φj + It1 + It2, (22)

with

It1 =
h∑

j=0

(
φ̂

(h)
j − φ

(h)
j

)
(yt−j − ȳT ) ,

It2 =
∞∑

j=0

(
φ

(h)
j − φj

)
(yt−j − ȳT ) ,

(φ
(h)
1 , . . . , φ

(h)
h )′ = −[C(h)]−1c(h), and φ

(h)
j = 0 for j > h.

We first show that

ε̂
(.)
T = op(1). (23)

For this, observe that

ε̂
(.)
T = (T − h)−1

{
T∑

t=h+1

(
εt − (ȳT − µ)

∞∑
j=0

φj

)
+

T∑

t=h+1

It1 +
T∑

t=h+1

It2

}

= J1 + J2 + J3. (24)

It is easy to see that J1 = op(1). By the Cauchy–Schwarz inequality, we have

|J2| ≤
(

h∑
j=0

(
φ̂

(h)
j − φ

(h)
j

)2
) 1

2
(

(T − h)−1
T∑

t=h+1

h∑
j=0

(yt−j − ȳT )2

) 1
2

.

4Henceforth, L∗(·), E∗(·), Var∗(·), and Cov∗(·, ·) will be used to denote probability distribution, expec-

tation, variance, and covariance, respectively, under the probability measure P ∗ induced by the resampling

mechanism conditional on the original data yT .
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But (T − h)−1 ∑h
j=0 (yt−j − ȳT )2 = Op(1) and so (T − h)−1 ∑T

t=h+1

∑h
j=0 (yt−j − ȳT )2 =

Op(h) = Op({ln T}α). Moreover, by virtue of Corollary 4.1 and Theorem 5.1 of Poskitt

(2005),
∑h

j=0

(
φ̂

(h)
j − φ

(h)
j

)2

= Op

(
{ln T/T} 1

2
−d

)
= op ({ln T}α) for all α > 0. Hence,

J2 = op(1). Finally, by Theorem 7.6.6 of Anderson (1971), It2 converges to zero in mean

square for all t and hence J3 = op(1). Note that this implies that

∞∑
j=0

(
φ

(h)
j − φj

)
≤ K

∞∑

j=h+1

φj = o(1) as h →∞. (25)

Next, we show that

(T − h)−1

T∑

t=h+1

ε̂2w
t = E

(
ε2w
0

)
+ op(1). (26)

By using the Cauchy–Schwarz inequality and (25), we get

(T − h)−1

T∑

t=h+1

|It1|2w = Op

({
(ln T/T )

1
2
−d

}2w
)

= op(1) (27)

and

(T − h)−1

∞∑

t=h+1

|It2|2w = Op




{ ∞∑

j=h+1

|φj|
}2w


 = op(1). (28)

Hölder’s inequality, (27) and (28) now yield (26). Finally, by a binomial expansion of (21),

Hölder’s inequality, (26) and (23), we obtain (21).

Lemma 3 Let {yt, t ∈ Z} satisfy (1)–(2) and suppose that assumptions (A1)–(A4) hold.

Then, as T →∞,

L∗(ε∗0) →w L(ε0) in probability.

Proof. The assertion of the lemma can be proved by arguing as in the proof of Lemma 5.4

of Bühlmann (1997) and using (23), (27), (28) and the fact that ȳT − µ = op(1).

4 Bootstrapping the Sample Mean

Let ȳ∗T = T−1
∑T

t=1 y∗t denote the bootstrap sample mean. Then, the conditional distribution

of ȳ∗T − ȳT (suitably normalised), given yT , constitutes the sieve bootstrap approximation to

the sampling distribution of ȳT − µ (suitably normalised).

Our first theorem establishes the asymptotic behaviour of the variance of the bootstrap

sample mean. This result plays an important role in the proof of the consistency of the
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bootstrap estimator of the distribution of the sample mean but is also of interest in its own

right.

Theorem 1 Let {yt, t ∈ Z} satisfy (1)–(2) and suppose that assumptions (A1)–(A4) hold.

Then

Var∗(T
1
2
−dȳ∗T )− Var(T

1
2
−dȳT ) = op(1).

Proof. Let {y+
t , t ∈ Z} be the autoregressive process defined by the equation

φh(L)(y+
t − µ) = σhη

+
t , t ∈ Z,

where the parameters φ(h) = (φ
(h)
1 , . . . , φ

(h)
h )′ and σ2

h satisfy the Yule–Walker equations (7)–

(8) and {η+
t , t ∈ Z} is a sequence of i.i.d. random variables with E(η+

0 ) = 0 and E(
∣∣η+

0

∣∣2) = 1.

Writing ȳ+
T = T−1

∑T
t=1 y+

t , we must show that

Var∗(T
1
2
−dȳ∗T )− Var(T

1
2
−dȳ+

T ) + Var(T
1
2
−dȳ+

T )− Var(T
1
2
−dȳT ) = op(1). (29)

To this end, for any fixed h, T ∈ N, put

Φ
(h)
T =




−φ
(h)
1 −φ

(h)
2 −φ

(h)
3 · · · −φ

(h)
T−1 −φ

(h)
T

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0




(30)

with φ
(h)
j = 0 for j > h, and define Φ̂

(h)

T to be the matrix obtained by replacing φ
(h)
j

(1 ≤ j ≤ h) by φ̂
(h)
j in (30). Then, by taking into account Lemma 2 and the fact that

σ2
h → E(ε2

0) as h →∞, we have

plim
T→∞

T∑

k=1

{
Cov∗(y∗0, y

∗
k)− Cov(y+

0 , y+
k )

}

≤ plim
T→∞

∥∥∥∥E∗(|ε∗0|2)
(
IT − Φ̂

(h)
T ⊗ Φ̂

(h)
T

)−1

− σ2
h

(
IT −Φ

(h)
T ⊗Φ

(h)
T

)−1
∥∥∥∥

≤ plim
T→∞

E(ε2
0)

∥∥∥Φ̂
(h)
T ⊗ Φ̂

(h)
T −Φ

(h)
T ⊗Φ

(h)
T

∥∥∥ ,

where IT denotes the T -dimensional identity matrix, ⊗ is the Kronecker product operator,

and ‖A‖ = tr(A′A) for a matrix A. By using Corollary 4.1 and Theorem 5.1 of Poskitt

(2005), we may, therefore, conclude that

T∑

k=1

{
Cov∗(y∗0, y

∗
k)− Cov(y+

0 , y+
k )

}
= op(1). (31)

12



In a similar fashion, defining ΦT to be the matrix obtained by replacing φ
(h)
j (1 ≤ j ≤ T ) by

φj in (30), we have

lim
T→∞

T∑

k=1

{
Cov(y0, yk)− Cov(y+

0 , y+
k )

}

≤ lim
T→∞

∥∥∥∥E(ε2
0) (IT −ΦT ⊗ΦT )−1 − σ2

h

(
IT −Φ

(h)
T ⊗Φ

(h)
T

)−1
∥∥∥∥

≤ lim
T→∞

E(ε2
0)

∥∥∥ΦT ⊗ΦT −Φ
(h)
T ⊗Φ

(h)
T

∥∥∥

≤ lim
T→∞

E(ε2
0)

{∥∥∥ΦT ⊗ΦT −Φ
(h)
T ⊗ΦT

∥∥∥ +
∥∥∥Φ

(h)
T ⊗ΦT −Φ

(h)
T ⊗Φ

(h)
T

∥∥∥
}

≤ 2 lim
T→∞

E(ε2
0)

∥∥∥
(
ΦT −Φ

(h)
T

)
⊗ΦT

∥∥∥

≤ lim
T→∞

E(ε2
0)

∣∣∣∣∣
T∑

j=1

(
T∑

i=1

(
φ

(h)
i − φi

))
φj

∣∣∣∣∣

2

≤ lim
T→∞

E(ε2
0)




∣∣∣∣∣
h∑

j=1

(
φ

(h)
i − φi

)∣∣∣∣∣

2

+

∣∣∣∣∣
T∑

j=h+1

φj

∣∣∣∣∣

2



∣∣∣∣∣
T∑

j=1

φj

∣∣∣∣∣

2

.

Now, in view of Theorem 7.6.6 of Anderson (1971),
∑h

j=1

(
φ

(h)
j − φj

)
= o(1) as h → ∞.

Moreover, since limT→∞
∑T

j=1 φj = O(1) and
∑T

j=h+1 φj = o(1), we conclude that

T∑

k=1

{
Cov(y0, yk)− Cov(y+

0 , y+
k )

}
= o(1). (32)

Finally, it is easy to verify that

plim
T→∞

{
Var∗(T

1
2
−dȳ∗T )− Var(T

1
2
−dȳ+

T )
}
≤ plim

T→∞
T−2d

T∑

k=1

{
Cov∗(y∗0, y

∗
k)− Cov(y+

0 , y+
k )

}

and

lim
T→∞

{
Var(T

1
2
−dȳ+

T )− Var(T
1
2
−dȳT )

}
≤ lim

T→∞
T−2d

T∑

k=1

{
Cov(y+

0 , y+
k )− Cov(y0, yk)

}
,

which, together with (31) and (32), prove (29) and thus the theorem.

We are now ready to state the main result of this section, which shows that the sieve

bootstrap approximation to the sampling distribution of ȳT is asymptotically correct (to first

order).

13



Theorem 2 Let {yt, t ∈ Z} satisfy (1)–(2) and suppose that assumptions (A1)–(A4) hold.

Then

sup
x∈R

∣∣∣P ∗
(
T

1
2
−d(ȳ∗T − ȳT ) ≤ x

)
− P

(
T

1
2
−d(ȳT − µ) ≤ x

)∣∣∣ = op(1). (33)

Proof. Arguing as in the proof of Theorem 2.1 of Wang, Lin, and Gulati (2003), it can

be deduced that, under the assumptions of the theorem,

T 2Var (ȳT ) ∼ T 1+2dω2 as T →∞, (34)

where

ω2 =
E(ε2

0){π(1)}2Γ (1− 2d)

(1 + 2d)Γ (1 + d)Γ (1− d)
.

Then, an application of Theorem 18.6.5 of Ibragimov and Linnik (1971), in connection with

(34) and Pólya’s theorem, yields

sup
x∈R

∣∣∣P
(
T

1
2
−d(ȳT − µ) ≤ x

)
− Φ(x/ω)

∣∣∣ = o(1),

where Φ denotes the standard normal distribution function. Hence, in order to establish

(33), it suffices to show that

sup
x∈R

∣∣∣P ∗
(
T

1
2
−d(ȳ∗T − ȳT ) ≤ x

)
− Φ(x/ω)

∣∣∣ = op(1). (35)

Now observe that

Var∗(y∗0) = cT (0)E∗(|ε∗0|2)/σ̂2 = cT (0)(1 + op(1)) = Op(1),

which, in view of (10) and Lemma 2, implies that

∞∑
j=0

ψ̂2
j < ∞ in probability (36)

for sufficiently large T . Therefore, recalling that, conditional on yT , {ε∗t , t ∈ Z} is a collection

of i.i.d. random variables with E∗(ε∗0) = 0, it follows by Lemma 2, Theorem 1, (10), (34) and

(36) that, for each subsequence {Tn} of N, there exists a further subsequence {Tm} ⊂ {Tn}
along which {(y∗t − ȳT ), t ∈ Z} satisfies almost surely all the conditions of Theorem 18.6.5 of

Ibragimov and Linnik (1971). In consequence, by the bootstrap version of Slutsky’s theorem

and the continuity of Φ, we have

lim
m→∞

sup
x∈R

∣∣∣P ∗
(
T

1
2
−d

m (ȳ∗Tm
− ȳTm) ≤ x

)
− Φ(x/ω)

∣∣∣ = 0 a.s.,
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from which (35) follows.

A difficulty that arises in the application of Theorem 1 for inference purposes in practice is

that the rate of convergence T
1
2
−d depends on the unknown memory parameter d. However,

if an estimator d̂ = d̂(y1, . . . , yT ) of the memory parameter is available which converges to d

sufficiently fast as T →∞, then the problem may be overcome by using the estimated rate

of convergence T
1
2
−d̂ in lieu of T

1
2
−d. The following extension of Theorem 2 shows that the

asymptotic validity of the sieve bootstrap is not affected by substituting a suitable estimator

of d in the scaling factor T
1
2
−d.

Corollary 1 Let {yt, t ∈ Z} satisfy (1)–(2) and suppose that assumptions (A1)–(A4) hold.

If d̂ = d + op(1/ ln T ), then

sup
x∈R

∣∣∣P ∗
(
T

1
2
−d̂(ȳ∗T − ȳT ) ≤ x

)
− P

(
T

1
2
−d(ȳT − µ) ≤ x

)∣∣∣ = op(1). (37)

Proof. The claim (37) follows from Theorem 2 and the fact that T d−d̂ = 1 + op(1) as a

result of d̂− d = op(1/ ln T ).

It is worth mentioning that estimators of d satisfying the requirement of Corollary 1 are

readily available, such as semiparametric log-periodogram and local Whittle estimators.

5 Bootstrapping the Sample Autocovariances

In this section, we examine the properties of the sieve bootstrap estimator of the distribution

of sample autocovariances when the latter are asymptotically normal with an Op(1/
√

T )

convergence rate. As is well known, for a strongly dependent process satisfying (1)–(2) and

(A1)–(A2), this is the case when d < 1
4

(cf. Hosking (1996)).

For each T ∈ N, the bootstrap sample autocovariances are defined as

c∗T (k) = T−1

T−|k|∑
t=1

(y∗t − ȳ∗T )(y∗t+|k| − ȳ∗T ), k = 0,±1, . . . ,±(T − 1).

Then, the conditional distribution of
√

T{c∗T (k) − c∗(k)}, given yT , provides the bootstrap

approximation to the sampling distribution of
√

T{cT (k)−c(k)}, where c∗(k) = Cov∗(y∗0, y
∗
k).

The following theorem shows that such an approximation is asymptotically correct.
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Theorem 3 Let {yt, t ∈ Z} satisfy (1)–(2) with d ∈ (0, 1
4
) and suppose that assumptions

(A1)–(A4) hold. Then, for any k ∈ Z with |k| < T ,

sup
x∈R

∣∣∣P ∗
(√

T{c∗T (k)− c∗(k)} ≤ x
)
− P

(√
T{cT (k)− c(k)} ≤ x

)∣∣∣ = op(1). (38)

Proof. By reasoning along the lines of the proof of Theorem 2, assertion (38) follows

from the central limit theorem of Hannan (1976) after verifying that

∞∑

k=1

{
[Cov∗(y∗0, y

∗
k)]

2 − [Cov(y+
0 , y+

k )]2
}

= op(1) (39)

and ∞∑

k=1

{
[Cov(y0, yk)]

2 − [Cov(y+
0 , y+

k )]2
}

= o(1), (40)

where {y+
t , t ∈ Z} is the autoregressive process defined in the proof of Theorem 1. Focusing

on (39) first, and using the same notation as in the proof of Theorem 1, we have

plim
T→∞

T∑

k=1

({Cov∗(y∗0, y
∗
k)}2 − {Cov(y+

0 , y+
k )}2

)

≤ plim
T→∞

∥∥∥∥∥
[
E∗(|ε∗0|2)

(
IT − Φ̂

(h)
T ⊗ Φ̂

(h)
T

)−1
](2)

−
[
σ2

h

(
IT −Φ

(h)
T ⊗Φ

(h)
T

)−1
](2)

∥∥∥∥∥

≤ plim
T→∞

{∥∥∥∥E∗(|ε∗0|2)
(
IT − Φ̂

(h)
T ⊗ Φ̂

(h)
T

)−1

− σ2
h

(
IT −Φ

(h)
T ⊗Φ

(h)
T

)−1
∥∥∥∥

×
∥∥∥∥σ2

h

(
IT −Φ

(h)
T ⊗Φ

(h)
T

)−1
∥∥∥∥
}

, (41)

where A(r) denotes the rth Hadamard power of the matrix A. Given that σ2
h → E(ε2

0) as

h → ∞, relation (41), together with Lemma 2, Corollary 4.1 and Theorem 5.1 of Poskitt

(2005), implies (39). A similar argument may be used to show that (40) holds.

It is straightforward to infer that, under the conditions of Theorem 3, the bootstrap

approximation to the distribution of
√

T (cT (0) − c(0), cT (1) − c(1), . . . , cT (n) − c(n))′ is

consistent for any fixed n ∈ Z+. This result may in turn be used to establish consistency

of the bootstrap approximation to the distribution of functions of sample autocovariances.

An example is the minimum-distance estimator of the memory parameter d proposed by

Tieslau, Schmidt, and Baillie (1996), the small-sample properties of which will be examined

in the next section of the paper.
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6 Numerical Evidence

This section discusses some simulation experiments that illustrate the finite-sample perfor-

mance of the sieve bootstrap for strongly dependent process. We present two sets of experi-

ments, one for the case of the sample mean and one for the minimum-distance estimator of

the memory parameter.

6.1 Sample Mean

The data-generating mechanism used in the experiments is the ARIMA(1, d, 1) model (4)

with (ϕ1, ϑ1) = (0, 0), (ϕ1, ϑ1) = (−0.3, 0.4), or (ϕ1, ϑ1) = (0.3,−0.4). In each case, the

distribution of ε0 is standard normal, d ∈ {0.1, 0.2}, and µ = 0.

In Table 1, we report the mean, variance, skewness and kurtosis of the distribution of

the sample mean, along with their bootstrap estimates. The former are computed from 1000

Monte Carlo values of T
1
2
−d(ȳT −µ). The bootstrap estimates are computed as averages over

1000 Monte Carlo trials of the moments of 199 replicates of T
1
2
−d̂(ȳ∗T − ȳT ). The memory

parameter d is estimated by using the bias-reduced log-periodogram regression estimator of

Andrews and Guggenberger (2003) (with r = 2 and m = bT 0.8c, in their notation).5 The

sample size and autoregressive sieve order, both in this and the next subsection, are chosen

to be T ∈ {100, 200, 400} and h = b(ln T )2c.
The simulation results show that the sieve bootstrap approximation to the first four

moments of the finite-sample distribution of the normalised sample mean is quite accurate,

particularly when T = 400. The bootstrap approximation tends to have larger variance than

the distribution of the sample mean for the smaller sample sizes.

6.2 Minimum-Distance Estimator

The minimum-distance estimator of Tieslau, Schmidt, and Baillie (1996) minimises the dis-

tance between the sample and theoretical autocorrelations of a strongly dependent process.

In the case of an ARIMA(0, d, 0) process, on which we focus, the minimum-distance estimator

d̂ of d is defined as

d̂ = arg min
d

(
ρ

(n)
T − ρ(n)

)′
W

(
ρ

(n)
T − ρ(n)

)
,

where, for some fixed n ∈ N, ρ(n) = (ρ(1), . . . , ρ(n))′, ρ
(n)
T = (ρT (1), . . . , ρT (n))′,

ρ(j) =
Γ (1− d)Γ (j + d)

Γ (d)Γ (j − d + 1)
, j ∈ N,

5Here, we write bxc to denote the integer part of the real number x.
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ρT (j) = cT (j)/cT (0), |j| < T,

and W is a n × n symmetric, positive definite weighting matrix. When d ∈ (−1
2
, 1

4
),

the asymptotic distribution of
√

T (d̂ − d) is normal with mean zero and covariance ma-

trix (b′Wb)−1b′WV Wb(b′Wb)−1, where b = ∂ρ(n)/∂d and V = [vij] is the asymptotic

covariance matrix of
√

T
(
ρ

(n)
T − ρ(n)

)
,

vij =
∞∑

s=1

{ρ(s + i) + ρ(s− i)− 2ρ(i)ρ(s)}{ρ(s + j) + ρ(s− j)− 2ρ(j)ρ(s)}, i, j = 1, . . . , n.

Table 2 reports the exact moments of the minimum-distance estimator, computed from

1000 Monte Carlo replications, and the average bootstrap estimates of these moments based

on 199 bootstrap replications. The data-generating mechanism is a Gaussian ARIMA(0, d, 0)

process, and d̂ is computed by setting n = bT/10c and W = In (this choice for the weighting

matrix is made to ease computation). The finite-sample moments of the estimator are well

approximated by their sieve bootstrap estimates even for the smaller sample sizes.

7 Some Further Observations

We end with two final observations on the asymptotic results obtained in Sections 3–5.

First, the assumption that {εt, t ∈ Z} is a sequence of i.i.d. random variables can be

relaxed in certain circumstances, namely in Lemmas 1–3 and Theorem 3, without any essen-

tial changes in the proofs. To be more specific, (A1) may be replaced with the assumption

that {εt, t ∈ Z} is a strictly stationary and ergodic sequence such that E(εt|Ft−1) = 0 a.s.,

E(ε2
t |Ft−1) = σ2 a.s., and E(ε4

t ) < ∞, where Ft is the σ-algebra generated by {εs, s ≤ t}.
Second, although we have assumed throughout that d > 0, because of our interest in

strongly dependent processes, the conclusions of Theorems 1–3 remain valid when {yt, t ∈ Z}
satisfies (1)–(2) with d ∈ (−1

2
, 0]. If d = 0, then {yt, t ∈ Z} is evidently a weakly dependent

linear process such that
∑∞

j=0 |ψj| < ∞ and
∑∞

k=−∞c(k) > 0. When d ∈ (−1
2
, 0), {yt, t ∈ Z}

is usually said to be anti-persistent; in this case,
∑∞

j=0ψj =
∑∞

k=−∞c(k) = 0, but, unlike the

case d ∈ (0, 1
2
), the series

∑∞
k=−∞c(k) is absolutely convergent, even though c(k) tends to

zero at a hyperbolic rate as k →∞.
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Table 1. Distribution of the Normalised Sample Mean

d T Exact Moments Bootstrap Estimates

Mean Variance Skew Kurtosis Mean Variance Skew. Kurtosis

ϕ1 = 0, ϑ1 = 0

0.1 100 -0.04642 0.91175 -0.07685 3.20484 0.00147 2.10066 0.00278 2.93953
200 -0.02148 0.95351 -0.05424 3.08918 0.00296 2.01207 -0.00219 2.94836
400 -0.02066 0.96933 -0.10287 2.81121 -0.00077 1.64797 -0.00095 2.94906

0.2 100 0.06227 0.90547 -0.11519 3.00027 0.00107 2.02144 -0.00273 2.93361
200 0.01462 0.96454 -0.07740 2.96915 0.00368 1.46138 -0.00820 2.94306
400 0.01928 0.88641 -0.03137 2.88946 -0.00143 0.87627 -0.00152 2.95700

ϕ1 = −0.3, ϑ1 = 0.4

0.1 100 -0.06526 3.88057 -0.04235 2.92432 0.00160 6.46742 -0.00219 2.95105
200 -0.00720 4.00673 -0.05891 2.84396 0.00239 5.55128 0.00561 2.95731
400 -0.05300 3.84339 0.03108 2.80514 0.00233 4.50300 0.00068 2.95261

0.2 100 0.07912 3.82757 -0.05133 2.94615 -0.00100 6.20345 -0.00478 2.93877
200 0.06970 3.73352 0.01083 2.90068 0.00346 4.63784 -0.00423 2.95363
400 0.01138 3.59040 -0.04309 3.04852 -0.00907 3.14256 -0.00091 2.94150

ϕ1 = 0.3, ϑ1 = −0.4

0.1 100 -0.00501 0.20556 -0.04549 2.92632 0.00047 0.52266 -0.00407 2.95074
200 0.00440 0.21568 0.035061 3.02836 0.00065 0.49768 0.00377 2.93545
400 -0.01831 0.21165 -0.01803 2.98310 0.00235 0.30666 0.00016 2.92061

0.2 100 -0.00980 0.21491 0.00997 2.95249 -0.00083 0.27508 0.00014 2.94270
200 0.00097 0.20401 0.12586 2.92149 -0.00049 0.28233 0.00227 2.93752
400 -0.01442 0.20909 -0.00872 2.92541 0.00144 0.19989 0.00043 2.93173

Table 2. Distribution of the Minimum-Distance Estimator of d

d T Exact Moments Bootstrap Estimates

Mean Variance Skew. Kurtosis Mean Variance Skew. Kurtosis

0.1 100 0.08074 0.00214 -0.15803 3.07319 0.07748 0.00251 -0.13405 3.12112
200 0.08533 0.00191 0.16460 3.06314 0.08201 0.00202 -0.01210 3.04369
400 0.08350 0.00118 0.13181 3.21260 0.08247 0.00136 0.07634 3.06973

0.2 100 0.16534 0.00230 -0.15513 3.01301 0.16436 0.00251 -0.09461 2.88084
200 0.16973 0.00224 0.12000 2.57694 0.16745 0.00221 0.00857 2.83541
400 0.16910 0.00162 0.18399 2.83958 0.16894 0.00172 0.10313 2.81464
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