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Abstract

Instrumental variable estimation is central to econometric analysis and has justifi-
ably been receiving considerable and consistent attention in the literature in the past.
Recent developments have focused on cases where instruments are either weak, in
terms of correlations with the endogenous variables, or many or both. The present pa-
per suggests a new way to deal with many, possibly weak, instruments. Our suggestion
is to cross-sectionally average the instruments and use these averages as instruments.
Intuition and interesting recent work by Hahn (2002) suggest that parsimonious de-
vices used in the construction of the final instruments, may provide effective estimation
strategies. Our use of cross-sectional averaging promotes parsimony and therefore falls
within the context of such arguments. We provide a theoretical analysis of this ap-
proach in terms of its consistency properties and also show, via a Monte Carlo study,
that the approach can provide improved estimation compared to standard instrumental
variables estimation.

Keywords: Instrumental Variable Estimation. 2SLS, cross-sectional average.

JEL classification: C13, C23, C51.

1 Introduction

Recent work in instrumental variable estimation has considered two distinct routes. The

first is one where instrumental variables are only weakly correlated with the endogenous

explanatory variables of an instrumental variables (IV) regression. Work by, e.g., Phillips

(1983), Rothenberg (1984), Stock and Yogo (2003b) and Chao and Swanson (2005) consider

a natural measure of instrument weakness (or strength) in a linear IV framework to be the

so-called concentration parameter. In standard analysis the concentration parameter is taken

to grow at the rate of the sample size whereas in the case of weak instruments this parameter

grows more slowly or in the extreme case introduced and considered by Staiger and Stock

(1997) it remains finite asymptotically. In the case of weak instruments, the properties of IV

estimators such two stage least squares (2SLS) and limited information maximum likelihood

(LIML) are affected relative to the case of strong instruments and the estimators may, in
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fact, be inconsistent.

Another direction in IV research involves the case where the number of available instru-

ments is large. This approach was first taken by Morimune (1983) and later generalized by

Bekker (1994). Other relevant papers include Donald and Newey (2001), Hahn, Hausman,

and Kuersteiner (2001), Hahn (2002), and Chao and Swanson (2004). More recently, the two

different stands have been combined to provide a comprehensive framework for the analysis

of the properties of IV estimators in the case of many weak instruments. Work on this

includes Hansen, Hausman, and Newey (2006), Stock and Yogo (2003a), Newey (2004) and

Chao and Swanson (2005). A clear conclusion from this work suggests that inconsistency of

IV estimators is a probable outcome when many weak instruments are used.

With this in mind, a further recent development focuses on considering parsimonious

modeling assumptions for the set of instruments to avoid IV estimator inconsistency. In

particular, Kapetanios and Marcellino (2006) suggest that imposing a factor structure on

the set of instruments, extracting estimates of these factors and using them as instruments

can be very useful. Of course, an issue with this approach is the need to assume a factor

structure, albeit a possibly weak one, as discussed in detail in Kapetanios and Marcellino

(2006). Simulation evidence suggests that if no factor structure exists then assuming one is

problematic for IV estimation as one would expect.

The present paper aims to provide a new method in a similar spirit to Kapetanios and

Marcellino (2006) but designed to parsimoniously summarise large sets of instruments in the

complete absence of a factor structure. There is a reasonably strong case for parsimony to be

made for IV estimation. In a very interesting and stimulating paper, Hahn (2002) provides

grounds for parsimony in terms of optimal inference when many instruments are available.

The basic idea of our paper is that a finite number of cross-sectional weighted averages of

the available instruments can, under certain conditions, be valid instruments themselves.

We explore in some detail the necessary condition for validity of cross-sectional averages as

instruments. A Monte Carlo study provides support for the new method.

The paper is structured as follows: Section 2 presents the theoretical results. Section 3

reports results of the Monte Carlo study. Finally, Section 5 concludes.
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2 Theoretical Considerations

The model is given by

y1n = Y2nβ + un

Y2n = ZnΠn + Vn

where y1n and Y2n are respectively an n× 1 vector and an n×G matrix of observations on

the G + 1 endogenous variables of the system, Zn is an n × Kn matrix of observations on

the Kn instrumental variables, and un = (u1, ..., ui, ..., un)′ and Vn = (v1, ..., vi, ..., vn)′ are,

respectively, an n× 1 vector and an n×G matrix of random disturbances.

Define a weight matrix Wn = [wij] to be an Kn ×G matrix of weights. Then, the cross-

sectional average (CSA) instrumental variables are defined to be Ȳ2n = ZnWn. We make the

following assumption

Assumption 1 (i) Zn and ηi = (ui, v
′
i)
′ are independent for all i, n, (ii) ηi ∼ i.i.d.(0, Σ),

where Σ =

(
σuu σ′V u

σV u ΣV V

)

Then, we have the following theoretical result:

Theorem 1 Let Assumption 1 hold. Let β̂2SLS =
(
Ȳ ′

2nY2n

)−1
Ȳ ′

2ny1n be the 2SLS estimator

of β using the CSA instrumental variables. Assume that there exists rn → ∞ such that

rn/n → κ and 0 ≤ κ < ∞, and an invertible matrix Ψ, for which W ′
nZ ′

nZnΠn/rn
a.s.→ Ψ.

Further, assume that W ′
nZ ′

nZnWn/r
2
n

a.s.→ 0. Then, β̂2SLS − β = op(1).

Proof of Theorem 1:

We have that

β̂2SLS − β =

(
Ȳ ′

2nY2n

rn

)−1
Ȳ ′

2nun

rn

We first examine
Ȳ ′2nY2n

rn
. We have

Ȳ ′
2nY2n = W ′

nZ ′
nZnΠn + W ′

nZ
′
nVn

By the assumption of the Theorem W ′
nZ ′

nZnΠn/rn
a.s.→ Ψ. We next examine W ′

nZ
′
nVn/rn. We

have

E

[∥∥∥∥
W ′

nZ
′
nVn

rn

∥∥∥∥
2
]

= E

(
Tr

[
W ′

nZ
′
nVnV

′
nZnWn

r2
n

])
=

Tr [ΣV ] E

(
Tr

[
W ′

nZ
′
nZnWn

r2
n

])
≤
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C1E

(
Tr

[
W ′

nZ ′
nZnWn

r2
n

])
= o(1)

for some constant C1. Thus, overall,

Ȳ ′
2nY2n

rn

a.s.→ Ψ

Next, we examine
Ȳ ′

2nun

rn

=
W ′

nZ ′
nun

rn

Then, similarly to above we have

E

[∥∥∥∥
W ′

nZ ′
nun

rn

∥∥∥∥
2
]

=

σ2
uE

(
Tr

[
W ′

nZ
′
nZnWn

r2
n

])
≤

C2E

(
Tr

[
W ′

nZ ′
nZnWn

r2
n

])
= o(1)

for some constant C2. Overall, it then follows that β̂2SLS − β = op(1) proving the Theorem.

Q.E.D.

The main condition of the Theorem is given by W ′
nZ

′
nZnΠn/rn

a.s.→ Ψ, where Ψ is an

invertible matrix, and rn/n → κ and 0 ≤ κ < ∞. This condition needs to be further

explored and for this we provide a number of specific examples below.

Example 1 Let G = 1. Let Πn = ($1, ..., $Kn)′ and $i = $/
√

Kn, $ 6= 0. For

simplicity, assume all instruments have mean zero. E(zinz
′
in) = diag(σ2

1, ..., σ
2
Kn

) where

Zn = (z1n, ..., znn)′ and zin is an Kn × 1 vector and σ2
i , i = 1, ..., Kn, are finite positive

constants. We set wij = 1/
√

Kn and consider W ′
nZ ′

nZnΠn/rn, which for this case becomes

1/n
∑n

i=1

(
$/
√

Knι′zin

) (
1/
√

Knι′zin

)
. Under either sequential asymptotics whereby n →∞

followed by Kn →∞, or joint asymptotics where n,Kn →∞ jointly,

1/n
n∑

i=1

(
$/

√
Knι′zin

)(
1/

√
Knι

′zin

)
a.s.→ $σ2

where σ2 = limKn→∞ 1/Kn

∑Kn

i σ2
i .

Example 2 Consider the setup of Example 1, but in this case set $ = 0. Then, obviously

the main condition of Theorem 1 is not satisfied as the instruments are not related to the en-

dogenous variables. Slightly more subtly, we can extend Example 1 to have $i ∼ i.i.d.($, σ2
$)

where $i are independent of all other stochastic quantities in the model and σ2
$ is a finite
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constant. Then, it is straightforward to see that the result of Example 1 holds as long as

$ 6= 0. If $ = 0, then although the original instruments are relevant, IV estimation using

CSA instrumental variables fails. Note that, in this case it is also straightforward to see that

Π′
nZ ′

nZnΠn/n
a.s.→ σ2

$σ2 thus showing that the last part of Assumption 1 of Chao and Swanson

(2005) holds thereby making standard IV estimation valid. But if only a finite number of $i

are non zero then Π′
nZ

′
nZnΠn/rn

a.s.→ 0 for all rn → ∞. Then, standard IV estimation fails

as well. It is clear that the last part of Assumption 1 of Chao and Swanson (2005), although

less strict than the main Condition of Theorem 1, is not innocuous either. It is also easy to

see that the above results extend straightforwardly to the case where E(zinz
′
in) is not diagonal

but has bounded column sum norm.

Example 3 For this example we extend the setup of Example 1 to G > 1. Thus, let Πn =

($̃1, ..., $̃G) where $̃j = ($j1, .., $jKn)′, j = 1, ..., G and $ij = $j. Further, we set wij =

wj/
√

Kn The rest of the setup of Example 1 is kept intact. Then,

Π′
nZ

′
nZnWn/n

a.s.→




$1w1σ
2 $1w2σ

2 ... $1wGσ2

$2w1σ
2 ... ... $2wGσ2

... ... ... ...
$Gw1σ

2 ... ... $GwGσ2


 = σ2




$1

...

...
$G


 (w1, ...wG)

and

Π′
nZ

′
nZnΠn/n

a.s.→




$2
1σ

2 $1$2σ
2 ... $1$Gσ2

$2$1σ
2 ... ... $2$Gσ2

... ... ... ...
$G$1σ

2 ... ... $G$Gσ2


 = σ2




$1

...

...
$G


 ($1, ...$G)

In both cases the rank of the limit is 1 implying that neither the main condition of Theorem 1

not the last part of assumption 1 of Chao and Swanson (2005) holds. If we instead assume

that $ij ∼ i.i.d.($j, σ
2
$j

) then the limit of Π′
nZ ′

nZnWn/n will still be of rank equal to 1. But

Π′
nZ

′
nZnΠn/n

a.s.→




σ2
$1

σ2 $1$2σ
2 ... $1$Gσ2

$2$1σ
2 ... ... $2$Gσ2

... ... ... ...
$G$1σ

2 ... ... σ2
$G

σ2




The limit now is a full rank matrix. Again, though, if all but a finite number of the elements

of the j-th row of Π′
n are equal to $j then standard IV estimation fails.

Example 4 The problem that became apparent in Example 3 relates to the fact that a neces-

sary (but not sufficient) condition for validity of standard IV is that Πn is full column rank,

and a necessary (but, again, not sufficient) condition for CSA IV is that both Πn and Wn are

full column rank. Exploring further, the condition for validity of CSA IV estimation we can
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see that Wn can be made full rank by associating different groups of instruments to different

columns of Wn. So for example, in the context of Example 3, the g-th column of Wn can be

given by

(

Pg−1
s=1 Ks

n︷ ︸︸ ︷
0, ..., 0 ,

Kg
n︷ ︸︸ ︷

1/
√

n, ..., 1/
√

n,

PG
s=g+1 Ks

n︷ ︸︸ ︷
0, ..., 0 ) (1)

where
∑G

s=1 Ks
n = Kn. Of course, different columns of Wn can overlap as long as they are

not identical. As we said, full column rank for Wn is not a sufficient condition for the main

condition of Theorem 1 to hold. A number of further assumptions can be made though to

get such a result. One set of such assumptions imposes mild structures on Πn. For example,

partition zin comformably to Wn in the case where the columns of Wn are constructed as

in (1), to get zin = (z1′
in, ..., z

G′
in )′ where zg

in, g = 1, ..., G is a Kg
n × 1 vector. Next, partition

Πn comformably to zin to get Πn = (Π1′
n , ..., ΠG′

n )′ where Πg
n = [$g

ij] are Kg
n × G matrices.

Then, setting $g
ij ∼ i.i.d.($g

j , σ
2
$g

j
) and restricting $g

j to take different values across j and

g ensures that the limit of Π′
nZ

′
nZnW̃n/n is full rank.

Example 5 Examples 1-4 have provided some detailed analysis of particular cases where the

main condition of Theorem 1 holds or does not hold. We saw that allowing the elements of Πn

to be stochastic may pose problems for the validity of the condition. However, it is also worth

noting that previous work in the literature has mainly focused on non-stochastic elements for

Πn. In this case constructing particular designs that allow an exploration of the validity of

the main condition of Theorem 1 are much more difficult. In this case it is worth noting

that a sufficient condition for the condition of Theorem 1 is that there exist r1n → ∞ and

r2n →∞ such that limn→∞ Π′
nWn/r1n and plimn→∞Z ′

nZn/r2n have nonsingular and positive

definite limits respectively. A necessary condition for the first of the above conditions is, of

course, as we noted earlier, that for all n both Πn and Wn have full column rank.

Remark 1 The importance of parsimony for IV estimation has been pointed out by Hahn

(2002) who conjectured that a 2SLS estimator using a small subset of available instruments,

when the number of available instruments is large, may be optimal. We view our cross-

sectional averaging estimator in the same spirit as the estimator suggested by Hahn (2002).

As the above discussion makes clear, the cross-sectional average instrumental variable

estimator has the potential to provide consistent estimation when standard instrumental

variable estimation cannot. On the other hand the main condition of Theorem 1 is not nec-

essarily true and, therefore, it would be useful to have some means for its verification. This

condition is essentially needed for making the cross-sectional averages relevant instruments.

In the case where the condition is not satisfied the instruments are completely irrelevant.
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However, the study of the relevance of instruments has received some attention in the liter-

ature. We therefore suggest that standard existing tools may be used on the cross-sectional

average instrumental variables to ascertain their relevance. As we are dealing with a finite

number of instruments standard theory applies. Examples of work that provides tools for

investigating instrument relevance include Hall, Rudebusch, W., and Wilcox (1996), Bound,

Jaeger, and Baker (1995), Shea (1997) and Poskitt and Skeels (2002). The last paper is

especially relevant given its main focus on completely irrelevant instruments, which is the

case for the cross-sectional averages relevant instruments if the main condition of Theorem

1 fails, rather than weak instruments.

3 Monte Carlo Evidence

In this section we provide a Monte Carlo study of the cross-sectional average instrumental

variables estimator and its relative performance compared to the standard instrumental

variable estimator and to the Factor IV estimator introduced by Kapetanios and Marcellino

(2006). We focus on 2SLS estimation. The basic setup of the Monte Carlo experiments is:

yi = xi + εi, i = 1, ..., n (2)

zij = eij, j = 1, ..., Kn, i = 1, ..., n (3)

xi =
Kn∑
j=1

K−1/2
n (1 + αj)zij + ui, (4)

where eij ∼ i.i.d.N(0, 1), αj ∼ N(0, c2) and cov(eil, esj) = 0 for i 6= s or l 6= j . c =

0.1, 0.2, 0.5, 2. Let κi = (εi, ui)
′. Then, κi = Pηi, where ηi = (η1,i, η2,i)

′, ηj,i ∼ i.i.d.N(0, 1)

and P = [pij], pij ∼ i.i.d.N(0, 1). The errors eij and us are independent for each i and s.

The CSA is computed using equal weigths of 1/Kn, and the factor 2SLS is based on one

factor, estimated as the first principal component of z1, ..., zKn where zj = (z1j, ..., znj)
′.

In all cases the 2SLS and CSA 2SLS estimators have negligible biases, while the bias of

the Factor 2SLS estimator is slightly larger, and we therefore concentrate on their variances,

which are reported in Table 1. Results make interesting reading. Focusing first on the com-

parison CSA 2SLS - standard 2SLS estimator, the former dominates the latter in most cases

in terms of variance. More specifically, results in general improve as n increases for both

estimators and low values of Kn, but only for the CSA 2SLS when Kn is large. This is in line

with the existing literature, since 2SLS is not consistent for large values of Kn. Therefore,

CSA 2SLS is clearly superior in this case.
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Another feature that deserves a comment is that the variation of the coefficients that

explain xi in terms of zi make a difference (i.e., the value of the parameter c). This effect

seems to work in opposite directions for the CSA 2SLS and 2SLS. For CSA 2SLS, small

variation seems to improve performance, whereas large variation seems to do so for 2SLS.

However, this is only a small sample effect, with both estimators performing very similarly

for large values of n and small values of Kn, and CSA 2SLS outperforming the standard

2SLS for large values of n and Kn, in accordance with our asymptotic results. Note further

that some variation in the coefficients is needed for the CSA 2SLS to be consistent according

to Theorem 1 (see also Examples 1 and 2).

As fas as the performance of the Factor 2SLS is concerned, it is very poor, even worse

than standard 2SLS, in line with the findings of Kapetanios and Marcellino (2006) for the

case of a very weak factor structure. Two additional comments are worth making. First, for

fixed Kn the performance improves with the sample size n. Second, for increasing Kn the

variance of the Factor 2SLS estimator increases, in line with its non consistency in this case.

Overall, the conclusion is clear: CSA 2SLS systematically outperforms 2SLS when the

main condition of Theorem 1 is satisfied, as is the case in our Monte Carlo study, and it is

better than the Factor 2SLS in the absence of a clear factor structure for the large set of

instruments.

4 Empirical Examples

In this Section we discuss two empirical applications of the CSA IV estimation. The former

concerns estimation of a forward looking Taylor rule, along the lines of Clarida, Gaĺı, and

Gertler (1998) (CGG), Clarida, Gaĺı, and Gertler (2000) (CGG2)) and Favero, Marcellino,

and Neglia (2005). The latter focuses on estimation of a New-Keynesian Phillips curve, along

the lines of Gaĺı and Gertler (1999) (GG 1999) and Beyer, Farmer, Henry, and Marcellino

(2005). Kapetanios and Marcellino (2006) (KM) have considered Factor IV estimation of the

parameters of these two equations, and shown that it produces efficiency gains with respect to

standard IV. Here we are particularly interested in the comparison among standard, Factor

and CSA IV. More precisely, since the underlying economic models are fairly complicated,

we will use GMM estimation with standard variables, cross sectional averages or factors as

instruments. The extension of the theoretical results from IV to GMM is straightforward,

see e.g. Kapetanios and Marcellino (2006) for details on the Factor IV case.
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4.1 Taylor rule

For the Taylor rule, we adopt the following specification1 :

rt = α + (1− ρ)β(πt+12 − π∗t ) + (1− ρ)γ(yt − y∗t ) + ρrt−1 + εt, (5)

where εt = (1 − ρ)β(πe
t+12 − πt+12) + vt, and vt is an i.i.d. error. We use the federal funds

rate for rt, annual cpi inflation for πt, 2% as a measure of the inflation target π∗t , and the

potential output y∗t is the Hodrick Prescott filtered version of the IP series. Since πt+12 is

correlated with the error term εt, and the error term has an MA structure, we adopt GMM

estimation with a correction for the MA component in the error εt and a proper choice of

instruments.

In particular, as in KM, we use a HAC estimator for the weighting matrix, based on a

Bartlett kernel with Newey and West (1994) automatic bandwith selection. For the set of

instruments, in the base case the choice is similar to that in CGG and CGG2. We use one

lag of the output gap, inflation, commodity price index, unemployment and interest rate.

We focus on the period 1985-2003, since Beyer, Farmer, Henry, and Marcellino (2005) have

detected instability in Phillips curves and Taylor rules estimated on a longer sample with an

earlier start date.

For the Factor GMM estimator, as in KM, we add to the set of instruments the (one

period lagged) factors extracted from a large dataset of 132 monthly macroeconomic and

financial variables for the US, extracted from the dataset in Stock and Watson (2005). The

number of factors is eight, as indicated by the Bai and Ng (2002) criteria, which suggests

that the factor structure is rather weak. We also consider a subset of 12 of the 132 variables,

those with an absolute correlation with inflation higher than 0.40, since this can strenghten

the factor structure and improve the information content of the factors for future inflation.

In fact, in this case one factor explains over 60% of the variance of all variables, and we use

one to twelve lags of this factor as instruments, in addition to those in the base case.

For the CSA GMM, we add to basic set of instruments the simple average of either all

the (standardized) 132 macroeconomic variables, or of only the subset of 12 variables mostly

correlated with inflation. In both cases, we included one to twelve lags of the averages as

instruments.

1Note that for this subsection which deals with time series data we change notation so that the observation
index is t rather than i.

9



Finally, we also considered one lag of the 12 selected macroeconomic variables as instru-

ments, to compare the performance of standard and CSA IV with a relatively small set of

instruments.

The results from the six estimation methods (Base, Factor-GMM All data, CSA-GMM

All data, Factor GMM Select data, CSA GMM Select data, and Select data as instruments)

are reported in Table 2. For the base case, which is the same as in KM, the estimated values

for β and γ are, respectively, about 2.3 and 1, and the fact that the output gap matters less

than inflation is not surprising. The persistence parameter, ρ, is about 0.88, in line with

other studies. An LM test for the null hypothesis of no correlation in the residuals of an

MA(11) model for ε̂t does not reject the null hypothesis, which provides evidence in favor

of the correct dynamic specification of the Taylor rule in (5). The p-value of the J-statistic

for instrument validity is 0.11, so that the null hypothesis is not rejected at the conventional

level of 10%.

Adding the ”All data” factors to the instrument set does not improve the precision of

the estimators of ρ, γ and β. Instead, the CSA GMM using ”All data” produces a major

reduction in the variance of the estimators, about 100% for ρ, 20% for γ, and 15% for β. This

suggests that CSA GMM can be useful in cases where the large set of instruments presents

a weak factor structure, in line with the results of the Monte Carlo experiments.

Using the ”Select data” factors, the precision of the Factor GMM improves, and becomes

comparable to that of the CSA GMM based on the ”Select data”. The ranking between ”All

data” and ”Select data” for CSA GMM is not clear cut.

Using directly the lagged ”Select data” as additional instruments produces bad results

in terms of variances of the estimators, even worse than in the base case for γ and β. The

point parameter estimates are also fairly different from the other five cases. These findings

indicate that GMM estimation based on 18-20 macroeconomic instruments can already be

problematic.

Finally, a regression of future (12 months ahead) inflation on the alternative sets of

instruments indicates that each set of factors is significant at the 10% level when added to

the macro variables, while the CSA from the ”All data” are not, and those from ”Select data”

only marginally so. However, a few of the lagged CSA variables are strongly significant in

both cases. Moreover, the values of the adjusted R2 in these equations are all of comparable
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size.

4.2 Phillips curve

For the second empirical example, as in KM, the New-Keynesian Phillips curve is specified

as,

πt = c + γπt+1 + αxt + ρπt−1 + εt, (6)

where εt = γ(πe
t+1−πt+1)+ vt, and vt is an i.i.d. error. Moreover, πt is annual CPI inflation,

πe
t+1 is the forecast of πt+1 made in period t, and xt is unemployment, with reference to

Okun’s law, as in e.g. Beyer and Farmer (2003).

As for the Taylor rule, πt+1 is correlated with the error term εt, which in turn is corre-

lated over time. Hence, we estimate the parameters of (6) by GMM, with a correction for

the MA component in the error εt, and the same six sets of instruments as for the Taylor rule.

The results are reported in Table 3. For the base case, the coefficient of the forcing

variable is not statistically significant (though it has the correct sign), while the coefficients

of the backward and forward looking components of inflation, ρ and γ, are similar and close

to 0.5.

Adding the ”All data” factors to the instrument set improves the precision of the estima-

tors of all parameters, but the gains are much larger with the ”Select” data factors. For the

latter, the gains are about 10% for α and 120% for γ and ρ. Moreover, a regression of future

(1 month ahead) inflation on the instruments indicates that only the Select data factors are

strongly significant when added to the set of macroeconomic regressors.

As for the Taylor rule, the CSA GMM based on ”All data” performs much better than

the corresponding Factor GMM. However, CSA and Factor GMM based on ”Select data”

produce very similar results in terms of both point estimates of the parameters, and the

variances of the estimates. The CSA from ”Select data” are also strongly jointly significant

in a regression of future (1 month ahead) inflation on the instruments.

Finally, in this case using directly the ”Select data” as instruments is slightly better in

terms of efficiency than the base case, but much worse than either CSA or Factor GMM.

In summary, the two empirical examples in this Section confirm that CSA GMM is often
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better than standard GMM. It can be even better than Factor GMM, in particular when the

factor structure is weak.

5 Conclusions

Instrumental variable estimation is central to econometric analysis and has justifiably been

receiving considerable and consistent attention in the literature in the past. Recent develop-

ments have focused on the cases where instruments are either weak, in terms of correlations

with the endogenous variables, or many or both.

A clear conclusion of past work is that the number of instruments can be too large in

the sense that too many instruments can make estimators inconsistent. The exact condi-

tions on the number of instruments is closely related to the extent to which instruments

are weak, making the two issues closely interlinked. The case for parsimony in this context

has been made convincingly, in an interesting paper by Hahn (2002), which advocates parsi-

mony as a prerequisite for optimal inference when a large number of instruments is available.

In a similar spirit as Hahn (2002), the present paper suggests a new way to deal with many,

possibly weak, instruments. Our suggestion is to cross-sectionally average the instruments

and use these averages as instruments. We have provided a theoretical analysis of this

approach in terms of its consistency properties and also showed, via a Monte Carlo study

and two detailed empirical applications, that the approach can provide improved estimation

and inference compared to standard instrumental variables estimation.
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Table 1: Monte Carlo results on the variance of alternative 2SLS estimators
CSA 2SLS 2SLS Factor 2SLS

c n/Kn 30 50 100 200 400 30 50 100 200 400 30 50 100 200 400
30 0.210 0.205 0.217 0.238 0.214 0.373 0.369 0.362 0.379 0.366 1.751 1.835 1.785 1.804 1.867
50 0.157 0.167 0.160 0.152 0.156 0.276 0.358 0.364 0.357 0.366 1.550 1.699 1.782 1.878 1.900

0.1 100 0.104 0.103 0.103 0.104 0.105 0.178 0.245 0.353 0.363 0.363 1.496 1.570 1.646 1.665 1.906
200 0.072 0.074 0.073 0.070 0.075 0.107 0.146 0.239 0.353 0.348 1.239 1.396 1.624 1.628 1.688
400 0.051 0.052 0.050 0.053 0.050 0.066 0.090 0.144 0.234 0.354 1.148 1.188 1.345 1.404 1.533
30 0.219 0.224 0.223 0.200 0.212 0.373 0.368 0.367 0.367 0.357 1.721 1.958 1.691 1.801 1.997
50 0.146 0.154 0.158 0.155 0.153 0.269 0.361 0.359 0.363 0.352 1.441 1.506 1.789 1.651 1.952

0.2 100 0.100 0.109 0.103 0.101 0.105 0.169 0.242 0.354 0.356 0.356 1.353 1.742 1.757 1.750 1.630
200 0.072 0.071 0.074 0.074 0.071 0.104 0.144 0.233 0.352 0.350 1.431 1.346 1.481 1.459 1.597
400 0.049 0.051 0.050 0.050 0.050 0.063 0.086 0.143 0.235 0.352 1.206 1.312 1.480 1.411 1.648
30 0.228 0.228 0.221 0.202 0.257 0.336 0.339 0.329 0.340 0.331 1.642 1.604 1.705 1.658 1.872
50 0.161 0.159 0.163 0.157 0.152 0.251 0.333 0.324 0.327 0.324 1.372 1.558 1.588 1.761 1.777

0.5 100 0.103 0.107 0.107 0.105 0.105 0.157 0.214 0.322 0.329 0.324 1.312 1.513 1.647 1.570 1.754
200 0.074 0.075 0.073 0.072 0.069 0.093 0.125 0.203 0.319 0.309 1.348 1.474 1.276 1.653 1.652
400 0.050 0.051 0.050 0.054 0.050 0.056 0.075 0.127 0.204 0.320 1.233 1.186 1.331 1.481 1.503
30 0.645 0.582 0.753 0.596 0.455 0.146 0.138 0.141 0.139 0.137 1.306 1.375 1.447 1.455 1.456
50 0.400 0.346 0.272 0.278 0.471 0.097 0.135 0.131 0.130 0.131 1.125 1.292 1.172 1.148 1.448

2 100 0.227 0.323 0.157 0.132 0.140 0.060 0.080 0.124 0.126 0.120 1.190 1.086 1.201 1.151 1.396
200 0.143 0.096 0.115 0.080 0.074 0.038 0.045 0.072 0.119 0.120 0.924 0.991 1.123 0.996 1.182
400 0.096 0.062 0.058 0.056 0.052 0.025 0.028 0.040 0.067 0.122 0.889 0.853 0.948 0.974 1.222

Notes: The Monte Carlo design is yi = xi + εi, zij = eij , j = 1, ..., Kn, xi =
∑Kn

j=1 K
−1/2
n (1 +

αj)zij + ui, , where eij ∼ i.i.d.N(0, 1), αj ∼ N(0, c2) and cov(eil, esj) = 0 for i 6= s or l 6= j

. Let κi = (εi, ui)
′. Then, κi = Pηi, where ηi = (η1,i, η2,i)

′, ηj,i ∼ i.i.d.N(0, 1) and P = [pij],

pij ∼ i.i.d.N(0, 1). The errors eij and us are independent for each i and s. The standard 2SLS estimator

uses the z variables as instruments, the CSA 2SLS estimator uses their cross sectional average with weights

1/N, and the Factor 2SLS the first principal component of z1, ..., zKn .
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Table 2. Results for alternative GMM estimators of the parameters of a Taylor rule

First stage regression (infl+12)
ρ γ β R2-adj S.E. regr Pval J-stat R2-adj S.E. regr Pval F-stat

Base 0.883 0.993 2.310 0.98 0.27 0.11 0.12 0.002
st. err 0.037 0.241 0.278

Factors 0.908 1.261 2.905 0.98 0.27 0.13 0.15 0.002 0.05
All data st. err 0.024 0.291 0.394

Average 0.901 1.102 2.206 0.98 0.24 0.47 0.20 0.002 0.47
All data st. err 0.018 0.189 0.228

Factors 0.884 1.122 2.251 0.98 0.27 0.52 0.15 0.002 0.08
Select data st. err 0.028 0.233 0.204

Average 0.877 1.086 2.353 0.98 0.28 0.50 0.15 0.002 0.10
Select data st. err 0.030 0.227 0.216

All 0.940 1.723 2.953 0.99 0.23 0.18 0.14 0.002 0.14
Select data st. err 0.019 0.412 0.479

Notes: The estimated equation is rt = α+(1−ρ)β(πt+12−π∗t )+(1−ρ)γ(yt−y∗t )+ρrt−1+εt (see

text for details). The parameters are estimated by GMM over 1986.01-2003.12. In the base case (no factors)

the set of instruments used includes lags of the output gap, unemployment, inflation, interest rate and

commodity price index. In the Factors cases, the SW factors are added to the instruments. In particular,

in ”All data” the (8) factors are extracted from the whole dataset; in ”Select data” the (1) factor extracted

from.a subset of the variables selected with the Boivin and Ng (2006) criterion. The number of factors is

based on the Bai and Ng (2002) criteria for ”All data”, while it is set to one for ”Select data”. We use one

lag of each factor, but 12 lags for the ”Select data” factor. In the Average cases, the instruments are one

to 12 lags of the simple average of the standardized variables in ”All data” or in ”Select data”. In the ”All

select data” case, the instruments are one lag of all the variables selected with the Boivin and Ng (2006)

criterion. The last three columns contain statistics related to the first-stage regression of the one-year ahead

expected inflation on the set of instruments used. In particular, we report the adjusted R2, the standard

error of the regression and the F-test for the joint significance of the coefficients on factors, when factors are

added to the baseline model.
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Table 3. Results on alternative GMM estimators of the parameters of a New Keynesian Phillips curve
First stage regression (infl+1)

α γ ρ R2-adj S.E. regr Pval J-stat R2-adj S.E. regr Pval F-stat

Base -0.002 0.538 0.462 0.98 0.16 0.62 0.12 0.002
st. err 0.007 0.048 0.047

Factors -0.000 0.513 0.492 0.98 0.16 0.30 0.11 0.002 0.48
All data st. err 0.006 0.038 0.038

Average -0.002 0.473 0.532 0.98 0.16 0.29 0.12 0.002 0.37
All data st. err 0.006 0.030 0.029

Factors -0.002 0.500 0.509 0.98 0.15 0.12 0.23 0.002 0.00
Select data st. err 0.006 0.021 0.020

Average -0.002 0.501 0.509 0.98 0.16 0.10 0.16 0.002 0.03
Select data st. err 0.006 0.021 0.020

All -0.000 0.551 0.459 0.98 0.16 0.27 0.11 0.002 0.64
Select data st. err 0.006 0.043 0.042

Notes: The estimated equation is πt = c+α(urt)+γ(πt+1)+ρπt−1 + εt (see text for details). The

parameters are estimated by GMM over 1986.01-2003.12. In the base case (no factors) the set of instruments

used includes lags of the output gap, unemployment, inflation, interest rate and commodity price index. In

the Factors cases, the SW factors are added to the instruments. In particular, in ”All data” the (8) factors

are extracted from the whole dataset; in ”Select data” the (1) factor extracted from.a subset of the variables

selected with the Boivin and Ng (2006) criterion. The number of factors is based on the Bai and Ng (2002)

criteria for ”All data”, while it is set to one for ”Select data”. We use one lag of each factor, but 12 lags for

the ”Select data” factor. In the Average cases, the instruments are one to 12 lags of the simple average of

the standardized variables in ”All data” or in ”Select data”. In the ”All select data” case, the instruments

are one lag of all the variables selected with the Boivin and Ng (2006) criterion. The last three columns

contain statistics related to the first-stage regression of the one-year ahead expected inflation on the set of

instruments used. In particular, we report the adjusted R2, the standard error of the regression and the

F-test for the joint significance of the coefficients on factors, when factors are added to the baseline model.
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