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Abstract 
 
This study presents several extensions of the most familiar models for count data, the Poisson and 
negative binomial models.  We develop an encompassing model for two well known variants of 
the negative binomial model (the NB1 and NB2 forms). We then propose some alternative 
approaches to the standard log gamma model for introducing heterogeneity into the loglinear 
conditional means for these models.  The lognormal model provides a versatile alternative 
specification that is more flexible (and more natural) than the log gamma form, and provides a 
platform for several “two part” extensions, including zero inflation, hurdle and sample selection 
models. We also resolve some features in Hausman, Hall and Griliches’s (1984) widely used 
panel data treatments for the Poisson and negative binomial models that appear to conflict with 
more familiar models of fixed and random effects.  Finally, we consider a bivariate Poisson 
model that is also based on the lognormal heterogeneity model.  Two recent applications have 
used this model. We suggest that the correlation estimated in their model frameworks is an 
ambiguous measure of the correlation of the variables of interest, and may substantially overstate 
it.  We conclude with a detailed application of the proposed methods using the data employed in 
one of the two aforementioned bivariate Poisson studies. 
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1  Introduction 
 
Models for count data have been prominent in many branches of the recent applied literature, for 
example, in health economics (e.g., in numbers of visits to health facilities1) management (e.g., 
numbers of patents2) and industrial organization (e.g., numbers of entrants to markets3). The 
foundational building block in this modeling framework is the Poisson regression model.4  But, 
because of its implicit restriction on the distribution of observed counts – in the Poisson model, 
the variance of the random variable is constrained to equal the mean – researchers routinely 
employ more general specifications, usually the negative binomial (NB) model which is the 
standard choice for a basic count data model.5  There are also many applications that extend the 
Poisson and NB models to accommodate special features of the data generating process, such as 
hurdle effects,6 zero inflation7 and sample selection.8  The basic models for panel data, fixed and 
random effects, have also been extended to the Poisson and NB models for counts.9  Finally, there 
have been several proposals for extending the Poisson model to bivariate and multivariate 
settings.10 This list includes a substantial fraction of the received extensions of the basic Poisson 
and NB models. There have, however, been scores of further refinements and extensions that are 
documented in a huge literature and several book length treatments such as Cameron and Trivedi 
(CT) (1998), Winkelmann (2003) and Hilbe (2007). 
 This paper will survey some practical extensions of the Poisson and NB models that 
practitioners can employ to refine the specifications or broaden their reach into new situations. 
We will also resolve some apparent inconsistencies of the panel data models with other more 
familiar results for the linear regression model. 
•        There are two well known, nonnested forms of the negative binomial model, denoted NB1 

and NB2 in the literature.  [See CT (1986).]  Researchers have typically chosen one form or 
the other (typically NB2), but not generally formed a preference for one or the other.  We 
propose an encompassing model that nests both of them parametrically and allows a 
statistical test of the two functional forms against a more general alternative. 

•        The NB model arises as the result of the introduction of log gamma distributed unobserved 
heterogeneity into the loglinear Poisson mean.  A lognormal model provides a suitable 
alternative specification that is more flexible than the log gamma form, and provides a 
platform for several useful extensions, including hurdle, zero inflation, and sample selection 
models.  We will develop this alternative to the NB model, then show how it can be used to 
accommodate in a natural fashion, e.g., sample selection, hurdle effects, and a new model for 
zero inflation. 

•        The most familiar panel data treatments, fixed effects (FE) and random effects (RE), for 
count models were proposed by Hausman, Hall and Griliches (HHG) (1984).  The Poisson 
FE model is particularly simple to analyze, and has long been recognized as one of a very few 

                                                 
1 Contoyannis, Jones and Rice (2004), Munkin and Trivedi (1999), Riphahn, Wambach and Million 
  (RWM) (2003).  See, as well, Cameron and Trivedi (2005). 
2 Hausman, Hall and Griliches (1984) and Wang, Cockburn and Puterman (1998). 
3 Asplund and Sandin (1999). 
4 HHG (1984), Cameron and Trivedi (1986, 1998), and Winkelmann (2003). 
5 The NB model is by far the most common specification.  See Hilbe (2007).  The latent class (finite 
  mixture) and random parameters forms have also been employed.  See, e.g., Wang et al., op. cit. 
6 See, e.g., Mullahy (1986), Rose, Martin, Wannameuhler and Plikaytis (2006) and Yen and Adamowicz 
  (1994) on separately modeling participation and usage. 
7 See, e.g., Heilbron (1994) and Lambert (1992) on industrial processes, Greene (1994) on credit defaults 
  and Zorn (1998) on Supreme Court Decisions. 
8 See, e.g., Greene (1995) on derogatory credit reports and Terza (1998). 
9 See, again, HHG (1984) on the relationship between patents and research and development. 
10 See King (1989), Munkin and Trivedi (1999) and Riphahn, Wambach and Million (RWM) (2003). 
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known models in which the incidental parameters problem [see Neyman and Scott (1948) and 
Lancaster (2000)] is, in fact, not a problem.  The same is not true of the NB model.  
Researchers are sometimes surprised to find that the HHG formulation of the FE NB model 
allows an overall constant – a quirk that has also been documented elsewhere [see Allison 
(2000) and Allison and Waterman (2002), for example].  We resolve the source of the 
ambiguity, and consider the difference between the HHG FE NB model and a ‘true’ FE NB 
model that appears in the familiar index function form.  The true FE NB model has not been 
used by applied researchers, probably because of the absence of a computational method.  We 
have developed a method of computing the true FE NB model that allows a comparison to the 
HHG formulation.   

The familiar RE Poisson model using a log gamma heterogeneity term produces the NB 
model.  We consider the lognormal model as an alternative, again, as a vehicle for more 
interesting specifications, and compare it to the HHG formulation.  The HHG RE NB model 
is also unlike what might seem the natural application in which the heterogeneity term 
appears as an additive common effect in the conditional mean.  Once again, this was a 
practical solution to the problem.  The lognormal model provides a means of specifying the 
RE NB model in a natural index function form.  We will develop this model, and, once again, 
compare it to the HHG formulation. 

•        Two recent applications, Munkin and Trivedi (1999) and RWM (2003), have used a form of 
the bivariate Poisson model in which the correlation is introduced through additive correlated 
variables in the conditional mean functions. Both of these studies have misinterpreted (and 
overstated) the correlation coefficient estimated in their model frameworks.  What they have 
specified is correlation between the logs of the conditional mean functions.  How this 
translates to correlation between the count variables themselves is quite unclear.  We will 
examine this in detail. 

The study is organized as follows:  Section 2 will detail the basic modeling frameworks 
for count data, the Poisson and NB models and will propose models for observed and unobserved 
heterogeneity in count data.  This section will suggest a parameterization of the of the NB model 
that introduces measured heterogeneity into the scaling parameter. We then develop the NBP 
model to encompass NB1 and NB2.  Finally, we propose the lognormal model as an alternative to 
the log gamma model that produces the NB specification.  Section 3 will extend the lognormal 
model to several two part models.  Section 4 will examine the fixed and random effects models 
for panel data.  Section 5 will consider applications of the Bivariate Poisson model.  The various 
model extensions proposed are applied to the RWM panel data on health care utilization in 
Section 6.  Some conclusions are drawn in Section 7. 

 
2  Basic Functional Forms for Count Data Models 
 
This section details the basic functional forms for count data models.  The literature abounds with 
alternative models for counts – see, e.g., CT (1998) and Winkelmann (2003).  However, the Poisson 
and a few forms of the negative binomial model overwhelmingly dominate the received 
applications.  [See, as well, Hilbe (2007).]  We will summarize the basic forms of the model and 
propose a few extensions that provide the departure point for more elaborate two part models in Part 
3. 
 
2.1  The Poisson Regression Model 
 
The canonical regression specification for a variable Y that is a count of events is the Poisson 
regression, 
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(2.1-1)  exp( )Prob[ | ] , exp( ), 0,1,..., 1,...,
(1 )

i i
i i i i i

i

iy
Y y y i N

y
−λ λ ′= = λ = α + = =

Γ +
x x β , 

 
where xi is a vector of covariates and, i = 1,…,N, indexes the N observations in a random sample.  
For reasons that will emerge below, we explicitly assume that there is a constant term in the model.  
(The regression model is developed in detail in a vast number of standard references such as CT 
(1986, 1998, 2005), Winkelmann (2003) and Greene (2008), so we will refer the reader to one of 
these sources for background results.)  The Poisson model has the convenient feature that 
 
(2.1-2)  E[yi|xi] = λi. 
 
It has the undesirable characteristic that 
 
(2.1-3)  Var[yi|xi] = λi. 
 
This is the ‘equidispersion’ aspect of the model.  Since observed data will almost always display 
pronounced overdispersion, analysts typically seek alternatives to the Poisson model, such as the 
negative binomial model described below.   
 Estimates of the parameters of the model using a sample of N observations on (yi,xi), i = 
1,…,N, are obtained by maximizing the log likelihood function,11 
 
(2.1-4)  lnL= [ ]1

( ) ln (1 )N
i i i ii

y y
=

′α + − λ − Γ +∑ x β . 
 
The likelihood equations take the characteristically simple form12 
 

(2.1-5)  ∂lnL/∂
α⎛ ⎞
⎜ ⎟
⎝ ⎠β

= 
1 1

1 1
( ) .N N

i i ii i
i i

y e
= =

⎛ ⎞ ⎛ ⎞
− λ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ 0

x x
 

The partial effects in the Poisson model are 
 
(2.1-6)  ∂E[yi|xi]/∂xi = λiβ = gx. 
 
The delta method can be used for inference about the partial effects.  The necessary Jacobian is 
 

(2.1-7)  J = [ ](1, )  
( , ) i i
∂ ′= + λ

′∂ α
x

x
g g x 0 I
β

, 

 
where 0 indicates a conformable column vector of zeros. The estimator of the asymptotic 
covariance for gx evaluated at a particular (1,xi) (or the sample mean, (1, )x would be 
 

                                                 
11 The conditions on the data generating mechanism for xi that are necessary for the MLE to be well 
behaved and to have the familiar properties of consistency, asymptotic normality, efficiency and invariance 
to one to one transformations are all assumed, and will not be treated separately.  The assumptions are 
carried through to the other models discussed below.  Aside from some complications arising from the need 
to approximate certain integrals by quadrature or simulation, the models examined here are all amenable to 
straightforward maximum likelihood estimation. 
12 Estimation and inference  for the Poisson regression model are discussed in standard sources such as CT 
(1998) and Greene (2008).  
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(2.1-8)  Est.Asy.Var [ ]ˆ xg  = ( )ˆˆ ˆˆ. . ,Est AsyVar ⎡ ⎤ ′α⎣ ⎦J Jβ , 

 
where “^” indicates a matrix or vector evaluated at the maximum likelihood estimates.  In the 
various developments below, we will present the only elements of the Jacobians, J, for each 
estimator of the partial effects.  Computation of asymptotic covariance matrices follow along these 
lines in all cases. 
 
 
2.2  The Negative Binomial and Poisson Lognormal Regression Models 
 
As noted in (2.1-2) and (2.1-3), the Poisson model imposes the (usually) transparently restrictive 
assumption that the conditional variance equals the conditional mean.  The typical alternative is the 
negative binomial (NB) model.  The model can be motivated as an attractive functional form simply 
in its own right that allows overdispersion.  However, it is useful for present purposes to obtain the 
specification through the introduction of unobserved heterogeneity in the Poisson regression model. 
We consider two possible cases, the conventional approach based on the log gamma distribution 
and, we will argue, a more flexible approach based on the lognormal distribution. 
 
2.2.1  The Negative Binomial Model 
 
To introduce latent heterogeneity into the count data model, we write 
 
(2.2-1)  E[yi|xi,εi] = exp(α+xi′β + εi) = hiλi, 
 
where hi = exp(εi) is assumed to have a one parameter gamma distribution, G(θ,θ) with mean 1 and 
variance 1/θ  = κ. That is 
 

(2.2-2)  f(hi) = 
1exp( ) , 0, 0.

( )
i i

i
h h h

θ θ−θ −θ
≥ θ >

Γ θ
13 

 
The nonzero mean of εi will be absorbed in the constant term of the index function.  Making the 
change of variable to εi = lnhi produces the log gamma variate with density 
 

(2.2-3)  f(εi) = [ ][ ] exp exp( ) exp( )
, , 0.

( )
i i

i

θθθ −θ ε ε
−∞ < ε < ∞ θ >

Γ θ
 

 
It will be useful for the empirical results below to obtain the mean and variance of the random 
variable εi.  The end result is 
 
  E[εi]  =  ψ(θ) – ln θ, 
 
  Var[εi] = ψ′(θ), 
 

                                                 
13 This general approach is discussed at length by Gourieroux, Monfort and Trognon (1984), CT (1986, 
1997), Winkelmann (2003) and HHG (1984). 
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where ψ(θ) is the digamma function, dlnΓ(θ)/dθ and ψ′(θ) is the trigamma function, d2lnΓ(θ)/dθ.  
To prove this, we will, we will use an indirect method of derivation so as to employ some simple 
known results. For convenience, we drop the observation subscript.  Taking logs in (2.2-2), 
 
  lnf(h) = θlnθ – lnΓ(θ) – θh + (θ – 1)lnh. 
 
The density in (2.2-2) is “regular” according by the Fischer criteria for the properties of maximum 
likelihood estimation.  [See Greene (2008, Ch. 16).]  Thus, 
 
  E[∂lnf(h)/∂θ]     =  1 + lnθ - ψ(θ) – E[h] + E[lnh] 

    =  0. 
 
We know that E[h] equals 1 from earlier results for the gamma distribution, so the first part of the 
result for E[εi] follows immediately, since lnh = ε.  For the second result, we know from the 
information matrix equality that 
 
  Var[∂lnf(h)/∂θ]  =  -E[∂2lnf(h)/∂θ2] 

    =  ψ′(θ) – 1/θ. 
 
But,   Var[∂lnf(h)/∂θ]  = Var[h] + Var[lnh] – 2Cov[h,lnh] 
 
and  Var[h]  =  1/θ, 
 
so  ψ′(θ) – 1/θ = Var[lnh] + 1/θ – 2Cov[h,lnh]. 
 
We need Cov[h,lnh] to obtain Var[lnh] = Var[ε]; 
 
  Cov[h,lnh] = E[h lnh] – E[h]E[lnh] 

    = E[h lnh] –  1×(ψ(θ) - lnθ). 
 
Once again reverting to the gamma density for h, 
 

  

1 

 0

 

 0

1 ( 1) 1 

 0

exp( )[ ln ] ln d
( )

exp( )               ln d
( )

exp( )               ln d .
( 1)

h hE h h h h h

h hh h

h hh h

θ θ−∞

θ θ∞

θ+ θ+ −∞

θ −θ
=

Γ θ

θ −θ
=

Γ θ

θ −θ
=

Γ θ +

∫

∫

∫

 

 
We have used the recursion Γ(θ+1) = θΓ(θ) in the third line,.  The third line gives E[lnh] when h 
has a gamma(θ,θ+1) density, so it follows from our earlier result that E[hlnh] = ψ(θ+1) – lnθ.  
Collecting terms, 
 
  ψ′(θ) – 2/θ  =  Var[lnh] – 2[(ψ(θ+1) – lnθ) – (ψ(θ)– lnθ)]. 
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Finally, we use the recursion ψ(θ+1) = ψ(θ) + 1/θ.  [See Abramovitz and Stegun (1971).]  Inserting 
this in the line above produces the final result for Var[lnh] = Var[ε] = ψ′(θ). 
 The conditional Poisson regression model is, therefore, 
 

(2.2-4)  [ ]exp exp( ) [exp( ) ]
Prob[ | , ] , exp( ), 0,1,...

(1 )
i i i i

i i i i i i
i

iy
Y y y

y
− ε λ ε λ

′= ε = λ = α + =
Γ +

x x β  

 
The unconditional density, that is, conditioned only on xi, is obtained by integrating εi out of the 
joint density.  That is, 
 

(2.2-5)    [ ] 
 

 0

 
Prob[ | ] Prob[ | , ] ( )

exp( exp( )) exp( )exp( exp( ))( exp( ))                          .
(1 ) ( )

i

i

i i i i i i i

i ii i i i
i

i

y

Y y Y y f d

d
y

θθ
∞

ε
= = = ε ε ε

θ −θ ε ε−λ ε λ ε
= ε

Γ + Γ θ

∫

∫

x x

 

 
At this point, it is convenient to make the change of variable back to hi = exp(εi).  Then, the 
conditional density is 
 

(2.2-6)  exp( )( )Prob[ | , ] , exp( ), 0,1,...
(1 )

i
i i i i

i i i i i i
i

yh hY y h y
y

− λ λ ′= = λ = α + =
Γ +

x x β  

 
and the unconditional density is 
 

(2.2-7)  

 

1 

 0

 1

 0

Prob[ | ] Prob[ | , ] ( )

exp( )( ) exp( )                        
(1 ) ( )

                        exp( ( ))
(1 ) ( )

        

i

i

i
i

i i i i i i ih

i i i i i i
i

i

i
i i i i

i

y

y
y

Y y Y y h f h dh

h h h h dh
y

h h dh
y

θ θ−∞

θ ∞ θ+ −

= = =

− λ λ θ −θ
=

Γ + Γ θ

θ λ
= − λ + θ
Γ + Γ θ

∫

∫

∫

x x

( )                .
(1 ) ( ) ( )

i

i

i i

i i
y

y y
y

θ

θ+

θ λ Γ θ +
=
Γ + Γ θ λ + θ

 

 
Defining ri = θ/(θ+λi) produces 
 

(2.2-8)  Prob[Y = yi|xi] = ( ) (1 ) , 0,1,..., 0,
(1 ) ( )

i
i i i

i
i

yy r r y
y

θΓ θ + −
= θ >

Γ + Γ θ
 

 
which is the probability density function for the negative binomial distribution. 
 The conditional mean and variance of the NB random variable relate to the Poisson 
moments as follows: 
 
(2.2-9)    E[yi|xi] = λi,  
 
(2.2-10)    ∂E[yi|xi]/∂xi = λiβ  =  gx, 
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(2.2-11)    J = [ ](1, ,0)   
( , ) i i
∂ ′= + λ

′∂ α θ
x

x
g g x 0 I 0
β ,

, 

 
 (the same as in the Poisson model) and 
 
(2.2-12)    Var[yi|xi]  =  λi [1 + (1/θ)λi] 

    =  λi [1 + κ λi] 

where    κ  = Var[hi]. 
 
Maximum likelihood estimation of the parameters of the NB model (α,β,θ) is straightforward, as 
documented in, e.g., Greene (2007).  Inference proceeds along familiar lines.14  Inference about the 
specification, specifically the presence of overdispersion, is the subject of a lengthy literature, as 
documented, e.g., in CT (1990, 1998, 2005) and Hilbe (2007). 
 
2.2.2  Poisson  Lognormal Mixture Model 
 
Consider, instead, introducing the heterogeneity in (2.2-1) as a normally distributed variable with 
mean zero and standard deviation σ, which we introduce into the model explicitly by standardizing 
εi.  Then, the Poisson model is 
 

 (2.2-13)   P(yi|xi,εi) = exp( )( ) ,  exp( )
(1 )

y
i i i i

i i i i
i

ih h h
y

− λ λ ′λ = α + + σε
Γ +

x β , εi ~ N[0,1]. 

 
The unconditional density would be 
 

(2.2-14)  P(yi|xi)  =  
 

 -

exp[ exp( ) ][exp( ) ] ( )d
(1 )

y
i i i i

i i
i

i

y
∞

∞

− σε λ σε λ
φ ε ε

Γ +∫ , 

 
where here and in what follows, φ(εi) denotes the standard normal density.  The unconditional log 
likelihood function is 
 
 (2.2-15) lnL  =  

1

N

i=∑ ln P(yi | xi) 

   =  
 

1  -

exp[ exp( ) ][exp( ) ]ln ( )d
(1 )

y
N i i i i

i ii
i

i

y
∞

= ∞

⎧ ⎫− σε λ σε λ⎪ ⎪φ ε ε⎨ ⎬
Γ +⎪ ⎪⎩ ⎭

∑ ∫ . 

 
Maximum likelihood estimates of the model parameters are obtained by maximizing the 
unconditional log likelihood function with respect to the model parameters (α, β, σ).   
 The integrals in the log likelihood function do not exist in closed form.  The quadrature 
based approach suggested by Butler and Moffitt(1982) is a convenient method of approximating 
them. Let  
  vi  =  εi / 2   
                                                 
14 It is common to base inference about the parameters on ‘robust’ covariance matrices (the familiar 
‘sandwich’ estimator).  See, e.g., Stata (2006).  Since the model has been obtained through the introduction 
of latent heterogeneity, which is now explicitly accounted for; it is unclear what additional specification 
failure the MLE (or pseudo-MLE) would be robust to.  See Freedman (2006). 
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and 
  ω = σ 2 .  
 
After making the change of variable from εi to vi and reparameterizing the probability, we obtain 
 

(2.2-16)     P(yi|xi)  = 1
π

 

 

∞

−∞∫ exp(-vi
2) P(yi|xi,vi)dvi 

 
where the conditional mean is now E[yi|xi,vi] =  exp(α+β′xi + ωvi).  Maximum likelihood estimates 
of (α,β, ω) are obtained by maximizing the reparameterized log likelihood.  In this form, lnL can 
be approximated by Gauss-Hermite quadrature. The approximation is  
 

(2.2-17)  ln LQ  = 
1 1

1ln ( | , )N H
h i i hi h

W P y V
= =

⎡ ⎤
⎢ ⎥π⎣ ⎦

∑ ∑ x , 

 
where Vh and Wh are the nodes and weights for the quadrature.  The BHHH estimator of the 
asymptotic covariance matrix for the parameter estimates is a natural choice given the complexity 
of the function.  The first derivatives must be approximated as well.  To save some notation, 
denote the individual terms summed in the log likelihood as ln LQ,i. We also use the result that 
∂P(.,.)/∂z  =  P×∂lnP(.,.)/∂z for any argument z which appears in the function.  Then, 
 

(2.2-18)  ln /QL
α⎛ ⎞
⎜ ⎟∂ ∂⎜ ⎟
⎜ ⎟ω⎝ ⎠

β  = [ ]{ }1 1
,

1
1 1 ( | , ) exp( )N H

h i i h i h i ii h
Q i

h

W P y V y V
L

V
= =

⎛ ⎞
⎜ ⎟− ω λ ⎜ ⎟π ⎜ ⎟
⎝ ⎠

∑ ∑ x x .  

 

The estimate of σ is recovered from the transformation σ = ω/ 2 .  
 Simulation is another effective approach to maximizing the log likelihood function.  [See 
Train (2003) and Greene (2008).] In the original parameterization in (2.2-13), the  log likelihood 
function is  
 

(2.2-19)  lnL = 
1
lnN

i=∑
 

 

∞

−∞∫  P(yi|xi,εi)] ( )i idφ ε ε . 
 
The simulated log likelihood would be 
 

(2.2-20)  lnLS = 
1
lnN

i=∑ 1

1 M

mM =∑ P(yi|xi,σεim)] 

 
where εim is a set of M random draws from the standard normal population.  [We would propose 
to improve this part of the estimation by using Halton sequences, instead.  See Train (2003, pp. 
224-238) and Greene (2008).]  Extensive discussion of maximum simulated likelihood estimation 
appears in Gourieroux and Monfort (1996), Munkin and Trivedi (1999), Train (2003) and Greene 
(2008).]15 Derivatives of the simulated log likelihood for the ith observation are 

                                                 
15 One could preserve the log gamma specification by drawing him from a gamma(1,1) population and using 
the logs in the simulation, rather than using draws from N[0,1] for wim.  This approach, which obviates 
deriving the unconditional distribution analytically, was used in Munkin and Trivedi (1999). 
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(2.2-21)  , 1
,

1
1 1ln / ( | , )[ exp( ) ]

ln
M

S i i i im i im i im
S i

im

L P y y
L M =

α⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟∂ ∂ = ε − σε λ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟σ ε⎝ ⎠ ⎝ ⎠

∑ x xβ . 

 
 The mean and variance of the lognormal variable are 
 
  E[exp(σεi)]  = exp(σ2/2) 
(2.2-22)      

and 
  Var[exp(σεi)]  = E[exp(σεi)2] – {E[exp(σεi)]}2 

    = exp(σ2)[exp(σ2) – 1]. 

 
The conditional mean in the Poisson lognormal model is 
 
(2.2-23)  E[yi| xi,εi]  =  λi exp(σεi). 
 
It follows that 
 
  E[yi|xi]  =  Eε[E[yi|xi,εi]] 

(2.2-24)   =  λi exp(σ2/2) 

   =  exp[(α + σ2/2) + xi′β]. 
 
To obtain the unconditional variance, we use 
 
(2.2-25)  Var[yi|xi]  =  Eεi[Var[yi| xi,εi] + Varεi[E[yi| xi,εi]]. 
 
Combining the results above, we find 
 
 (2.2-26) Var[yi|xi]   =  λiexp(σ2/2){1 + λiexp(σ2/2)[exp(σ2)-1]} 

    =  E[yi| xi,εi]{1 + τ E[yi| xi,εi]}, τ = [exp(σ2)-1]. 
 
Thus, the variance in the lognormal model has the same quadratic form as that in the negative 
binomial model in (2.2-12). 
 For the log gamma model, the partial effects and Jacobian have the same form as in the  
Poisson model; 
 
  gx = exp(σ2/2)λi 
(2.2-27) 

  [ ]2(1, , ) exp( / 2)
( , , ) i i
∂ ′= = σ + σ λ

′∂ α σ
x

x
gJ g x 0 I 0
β

. 

 
 One could argue that the lognormal model is a more natural specification. If the 
heterogeneity captures the aggregate of individually small influences, then an appeal to the central 
limit theorem would motivate the normal distribution more than the log gamma.   [See Winkelmann 
(2003).]  The attraction in this development is the ease with which the normal mixture model can be 
extended and adapted to new models and formulations, such as the two part models below.  The log 
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gamma model that underlies the familiar negative binomial specification provides no means doing 
so.  [See, as well, RWM (1003, p. 395) and Million (1998).] 
 
2.3  Observed and Unobserved Heterogeneity in the NB Model – A Heterogeneous 
       NB Model 
 
The negative binomial random variable with density in (2.2-8) is heteroscedastic as can be seen in 
(2.2-12).  However, the scedastic function is a simple function of the mean λi; Var[yi|xi] = λi 
[1+(1/θ)λi].  In this model, 1/θ represents a scaling parameter.  A logical extension of the model is 
to allow this parameter to be heterogeneous, in the form16 
 
(2.3-1)  θi  =  exp(zi′γ). 
 
The conditional mean and partial effects in (2.2-9)-(2.2-11) are unchanged by this modification of 
the model.  This is a straightforward extension of the NB model.  Maximum likelihood estimation 
and inference are routine. 
 Assuming that the NB model is the functional form of choice, not through the introduction 
of heterogeneity, but as the base model in its own right, one might be tempted to (re)introduce latent 
heterogeneity in the conditional mean function as in (2.2-1).  The full model would be 
 

  Prob[Y = yi|xi,εi] = ( ) (1 ) , 0,1,..., 0,
(1 ) ( )

i i
i i i i

i i
i i

yy r r y
y

θΓ θ + −
= θ >

Γ + Γ θ
 

(2.3-2) 
  ri = θi /(θi +hiλi), 
 
  θi  =  exp(zi′γ), 
 
  hi  =  exp(εi).  
 
The distribution of εi remains to be specified.  Assuming, once again, a log gamma distribution, 
G(μ,μ), does not produce the same benefit as before, since the functional form of the NB model is 
not conjugate with respect to a gamma(μ,μ) model for hi.  The normal distribution would provide a 
useful alternative, though the model would still have to be estimated by maximum simulated 
likelihood or by using quadrature to eliminate the open form integral.  The simulated log likelihood 
for this extended NB model for a sample of n observations would be 
 

                                                 
16 This specification has been labeled the ‘generalized negative binomial model.’  [See, e.g., Stata (2006) and 
Econometric Software (2007).]  However, that term was applied to a much earlier (no longer current) model 
[see Amid (1978) and Jain and Consul (1971)].  What Stata calls the ‘generalized NB model is more 
appropriately labeled the heterogeneous NB model, so we will use that label here.  What might rightfully be 
called the generalized NB model would be the NB P model developed in the next section.  However, the name 
NegBin P, or NB P, will turn out to be much more useful as a descriptor of the model.  We note, finally, there 
is a well established ‘generalized Poisson model,’ P(yi|xi)=(λi/ai)yi [ai/Γ(1+yi)] exp[-λi(1+θyi)/ai], ai = 1+θλi, 
that reverts to the Poisson model if θ = 0. [See Econometric Software (2007), Sec. 24.4.2, and Wong and 
Famoye (1997).]  However, this generalization of the Poisson model has no obvious connection to the 
generalizations of the NB model we consider here. 



 12

(2.3-3)  
1 1

( ) (1 )1ln ( , , , ) ln ,
(1 ) ( )

exp( )                     ,
exp( ) exp( )

i iN M i i im im
S i m

i i

i i
im

i i im i im i

yy r rL
M y

r
w h

θ

= =

Γ θ + −
α σ =

Γ + Γ θ
′ θ

= =
′ ′+ α + + σ θ + λ

∑ ∑
z

z x

β γ

γ
γ β

 

 
where M is the number of draws for the simulation, wim ~ N[0,1], m = 1,...,M  and σ is the standard 
deviation of the latent variable, εi = σwi.  [Further results on simulation appear below in Section 3.1.  
 From the general form of the model, we have 
 
(2.3-4)  E[yi|xi,εi]  =  exp(α + xi′β + εi). 
 
Since εi is unobserved, in order to obtain the conditional mean function, we seek 
 
(2.3-5)  E[yi|xi]  =  Eε{E[yi|xi,εi]} = λi Eε[exp(εi)] = λi E[hi]. 
 
The result is straightforward for the two cases we have considered,.  For a Gamma(μ,μ) model, the 
same result as before is obtained, since E[exp(εi)] = E[hi] = 1.  Thus, in this case, we still have 
E[yi|xi] = λi, though the unconditional distribution is not the negative binomial.  Likewise, if the 
heterogeneity is assumed to be normally distributed, then the conditional mean is, once again, 
exp(σ2/2)λi. 
 Since the NB model ultimately arises from the introduction of latent heterogeneity into the 
Poisson model, arguably, the NB model with latent heterogeneity is overspecified.  There could be 
different explanations for a finding of a ‘significant’ estimate of σ (or, 1/μ).  It could be explained in 
terms of functional form of the assumed distribution of hi in the Poisson model, or misspecification 
of the Poisson or NB models, themselves..  If the assumptions of the Poisson model with log-
gamma heterogeneity are all correct, then it would seem that σ should equal zero by construction. 
 
2.4  The NEGBIN P Model 
 
The negative binomial model in (2.2-8) was labeled the NEGBIN 2 (NB2) model by CT (1986), in 
reference to the appearance of the quadratic term for λi in the conditional variance function: 
 
(2.4-1)  Var[yi|xi] = λi  + (1/θi)λi

2 = λi[1 + (1/θi)λi] 

     = λi  + κi λi
2, κi  =  exp(-zi′γ). 

 
[We have also incorporated (2.3-1).] CT (1986) suggested a reparameterization of the model, 
 
(2.4-2)  Var[yi|xi] = λi  + κiλi

1 = λi [1 + κi], 
 
and label the resulting specification NB1.  The model is obtained by replacing θi with θiλi in (2.2-8).  
After simplification, we obtain the density for NB1, 
 

(2.4-3)  

( ) (1 )Prob[ | ] , 0,1,...,
(1 ) ( )

1 .
1

i i i
i i i i i

i i i
i i i

i
i

yy q qY y y
y

q

θ λΓ θ λ + −
= = =

Γ + Γ θ λ

=
+ θ

x
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The authors note in (1998) that other exponents would be possible.  [See their p. 73 and (3.26).]  By 
replacing θi with θiλi

2-P, we obtain the NEGBIN P, or NBP model, 
 

(2.4-4)  

22

2

2

( ) (1 )Prob[ | ] , 0,1,...,
(1 ) ( )

.

P
i i iP

i i i i i
i i iP

i i i

i
i P

i i i

yy s sY y y
y

s

−θ λ−

−

−

Γ θ λ + −
= = =

Γ + Γ θ λ
λ

=
λ + θ λ

x
 

(The log likelihood function and its derivatives are given in Appendix A.)  The NB1 and NB2 
models  are the special cases of P =1 and P = 2. The conditional mean in this model is still λi, so the 
partial effects are still those in (2.2-9), while the conditional variance is 
 
(2.4-5)  Var[yi|xi] = λi [1 + (1/θi)λi

P-1]. 
 
 CT (1998) focus on the P = 1 and P = 2 forms, but suggest that the “generalized event 
count model” (see their Section 4.4.1) does include the NEGBIN P as a special case.  (CT (1986) 
also mentions the possibly of this extension of the model, but does not develop it at any length.)  
The GEC model [Winkelmann and Zimmermann (1991, 1995), King (1989)] which does include 
NEGBIN P is sufficiently cumbersome to have greatly restricted its general use.  The NEGBIN P 
model achieves somewhat less of the generality of the GEC model, but is much simpler to 
implement.17  An application appears below.18   
 Since the NB1 and NB2 models are not nested, there is no simple parametric test that one 
can employ to choose between them. (E.g., CT do not express a preference for either one or the 
other in (1986) or (1998); they merely note the difference.  They do state “[T]he NB2 MLE [is] 
favored by econometricians and the NB1 GLM [generalized linear model] [is] used extensively by 
statisticians.” This appeal to the estimation algorithm appears to be the closest to a preference for 
one or the other as appears in the recent literature.  On the other hand, the various references to 
GEC and NBP models do suggest an attraction to a more general specification than NB1 or NB2. 
 For choosing statistically between NB1 and NB2, the models are nonnested and essentially 
equivalently parameterized, so a direct test is precluded.  However, one possibility is the Vuong 
(1989) test based on 
 

(2.4-6)  
,

ln ( 2) ln ( 1).
m

i i i

n mV
s

m L NB L NB

=

= −

 
 

 
When the underlying conditions for its validity are met, the Vuong test statistic has a limiting 
standard normal distribution.  Large positive values would favor NB2.  We have found in 
applications that this statistic is rarely outside the inconclusive region (-1.96 to +1.96) for this 
model.  It may be that NB1 and NB2 are not sufficiently different to enable a distinction on this 
basis. Since the NBP model does nest both of them, it provides a partial solution to the specification 

                                                 
17 Winkelmann and Zimmermann (1995) develop a maximum likelihood estimator for the equivalent of the 
NEGBIN P model, but their formulation adds what appears to be a considerable yet unnecessary layer of 
difficulty to the derivation.  In applications, the direct MLE based on (27) appears to be quite well behaved. 
18 The GEC model allows underdispersion as well as overdispersion and, as such, is more general than the 
NEGBIN P form.  Overdispersion is the more common problem to be solved with an extended functional 
form. 
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problem.  For example, in our application below, a simple likelihood ratio test rejects both the NB1 
and NB2 null hypotheses.   
 
3.  Two Part Models 
 
This section develops three “two part” extensions of the count data models, a model for sample 
selection, the zero inflated Poisson model (ZIP) (and the ZINB model), and a hurdle model.  Each 
of these models consists of an equation for “participation” and a model for the event count that is 
conditioned on the outcome of the first decision.  The third part of each specification is the 
observation mechanism that links the participation equation and the count outcome model.  The 
sample selection model appears first in Greene (1995, 1997), Terza (1998) and Greene (2006), and 
is included here for completeness and to develop the platform for the other two.  The ZIP and ZINB 
models are also established, e.g., by Heilbron (1992), Lambert (1994) and Greene (1994). The 
following presents an extension of this model to allow correlation between the regime and the count 
variable.  The hurdle model [Mullahy (1986)] has been widely used, e.g., in health economics.  The 
extensions of the ZIP/ZINB and hurdle models proposed here also allows correlation across the two 
equations. 
 
3.1  Sample Selection 
 
The generic sample selection model builds on (2.1-1) (Poisson) or (2.2-8) (NB) with latent 
heterogeneity in (2.3-1), 
 
(3.1-1a)  di*    =  wi′δ  +  ui  ui ~ N[0,1], 

  di     =  1(di*   >  0), 

  Prob(di = 0|wi)   = Π0(wi′δ)  (generic, binary choice, zero),   

  Prob(di = 1|wi)   = Φ(wi′δ)  (probit selection equation), 

(3.1-1b)  yi |xi,εi  ~  P(yi | xi,εi)   (conditional on εi Poisson or NB model), 

  E[yi| xi,εi]=  exp(α+xi′β + σεi) = hiλi, (conditional mean with heterogeneity), 

  εi ~ N[0,1] 

(3.1-1c)  [ui,εi] ~ N2[(0,1),(1,1),ρ)]  (selection effect), 

  yi,xi  are observed only when di  = 1. (observation mechanism). 
 
(We use the notation N2[(μ1,μ2),(σ1

2,σ2
2),ρ] to denote the bivariate normal distribution with 

correlation ρ.)  “Selectivity” is transmitted through the correlation parameter ρ.  Drawing on the 
results of Heckman (1979), it is tempting to estimate this model in the same fashion as in the 
linear case by (a) fitting the probit model by MLE and computing the inverse Mills 
ratio, ˆ ˆˆ ( ) / ( )w wi i i′ ′ψ = φ δ Φ δ , for each observation in the selected subsample, then (b) adding ˆ iψ to 
the right hand side of the Poisson or NB model and fitting it by MLE, adding a Murphy and Topel 
(2002) correction to the estimated asymptotic covariance matrix.  However, this would be 
inappropriate for this case (and other nonlinear models): 
 
•    The impact on the conditional mean in the Poisson model will not take the form of an inverse 

Mills ratio.  That is specific to the linear model.  (See Terza (1998) for a development in the 
context of the exponential regression. The result is given below.) 
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•    The dependent variable, conditioned on the sample selection, is unlikely to have the Poisson or 
NB distribution in the presence of the selection. That would be needed to use this approach.  
Note that this even appears in the canonical linear case.  The normally distributed disturbance in 
the absence of sample selection has a nonnormal distribution in the presence of selection.  That 
is the salient feature of Heckman’s development. 

 
We develop, instead, a full information maximum likelihood estimator. [See Greene (1997).] 
 The log likelihood function for the full model is the joint density for the observed data.  
When di equals one, (yi,xi,di,wi) are all observed. To obtain the unconditional, joint discrete 
density, P(yi,di = 1|xi,wi) we proceed as follows: 

(3.1-2)  P(yi, di = 1|xi,wi) = 
 

 
( , 1| , , ) ( )di i i i i i iP y d

∞

−∞
= ε φ ε ε∫ x w , 

where φ(εi)is the standard normal density.  Conditioned on εi, di and yi are independent, so, 
 
(3.1-3)  P(yi,di = 1|xi,wi,εi)  =  P(yi|xi,εi)Prob(di = 1|wi,εi). 
 
The first part, P(yi|xi,εi) is the conditional Poisson or NB density in (3.1-1). By joint normality,  
 
(3.1-4)  f(ui|εi)  =  N[ρεi, (1-ρ2)],  
so  
(3.1-5)  ui = ρεi + 21iv −ρ  where vi ~ N[0,1] i⊥ ε . 
 
Therefore, using (3.1-1a), 

(3.1-6)  di* = wi′δ + ρεi + 21iv −ρ  
so 

(3.1-7)  Prob(di = 1|wi,εi)  = ( )2[ ]/ 1w i i′Φ + ρε − ρδ . 

 
Combining terms, the unconditional joint density is obtained by integrating εi out of the 
conditional density.  Thus,  
 

(3.1-8)  P(yi,di = 1|xi,wi) =
 

 

∞

−∞∫ P(yi|xi,εi) ( )2[ ]/ 1w i i′Φ + ρε − ρδ ( )i idφ ε ε . 

 
By exploiting the symmetry of the normal cdf 
 

(3.1-9)  Prob(di = 0|xi,wi,εi)  = ( )2[ ]/ 1w i i′Φ − + ρε − ρδ  

and 

(3.1-10)  Prob(di = 0| xi,wi)     = ( )2[ ]/ 1i i

∞

−∞
′− + ρε − ρ∫

 

 
wΦ δ ( )i idφ ε ε . 

 
Expressions (3.1-8) and (3.1-10) can be combined by using the symmetry of the normal cdf, 
 

(3.1-11)    P(yi,di|xi,wi) =
 

 

∞

−∞∫  [(1 –  di) + di P(yi|xi,εi)] ( )2(2 1)[ ]/ 1wi i id ′Φ − + ρε − ρδ ( )i idφ ε ε , 
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where for di equal to zero, P(yi,di | xi,wi) is just Prob(di = 0|wi).   
 Maximum likelihood estimates of the model parameters are obtained by maximizing the 
unconditional log likelihood function, 
 
(3.1-12)  ln L  = 

1

N

i=∑ ln P(yi,di | xi,wi), 
 
with respect to the model parameters (α, β, σ, δ, ρ).  We now consider how to maximize the log 
likelihood.  Butler and Moffitt’s (1982) quadrature based approach suggested in Section 2.2.2 is a 
convenient method. Let  
 
  vi  =  εi/ 2 ,  
  ω = σ 2 ,  

(3.1-13)  τ = ( )22 / 1ρ −ρ ,  

  η = [1/ 1 2− ρ ]δ.   
 
After making the change of variable from εi to vi and reparameterizing the probability, we obtain 
 

(3.1-14)   P(yi,di = 1|xi,wi)  = 1
π

 

 

∞

−∞∫ exp(-vi
2) P(yi|xi,vi)Φ(wi′η + τvi) dvi, 

 
where the conditional mean is now E[yi|xi,vi] =  exp(α+β′xi + ωvi).  Maximum likelihood estimates 
of (α,β, ω, η, τ) are obtained by maximizing the reparameterized log likelihood.19  The Gauss-
Hermite approximation is  
 

(3.1-15)       ln LQ  = [ ] ( )1 1

1ln (1 ) ( | , )  (2 1)N H
h i i i i h i i hi h

W d d P y V d V
= =

⎡ ⎤′− + Φ ⎡ − + τ ⎤⎢ ⎥⎣ ⎦π⎣ ⎦
∑ ∑ x w η , 

 
where Vh and Wh are the nodes and weights for the quadrature.  The BHHH estimator of the 
asymptotic covariance matrix for the parameter estimates is a natural choice given the complexity  
of the function.  The first derivatives must be approximated as well.  For convenience, let 
 
  Pih   =   P(yi| xi, Vh),  

(3.1-16)  Φih =  Φ[(2di – 1)(wi′η + τVh )]  (normal CDF), 

  φih =  φ[(2di – 1) (wi′η + τVh )]  (normal density), 
 
and to save some notation, denote the individual terms summed in the log likelihood as ln LQ,i. 
Then, 

  ln /QL
α⎛ ⎞
⎜ ⎟∂ ∂⎜ ⎟
⎜ ⎟ω⎝ ⎠

β  =
1 1

,

1
ln ( | , )1 ( )

( )
N Hi i i h

h ih ih h i ii h
Q i h i

h

d P y VW P h
L h

V
= =

⎛ ⎞
⎡ ⎤∂ ⎜ ⎟Φ λ⎢ ⎥ ⎜ ⎟∂ λπ ⎣ ⎦ ⎜ ⎟

⎝ ⎠
∑ ∑ x x ,  

                                                 
19 The dispersion parameter, θ (or the heterogeneous version, θi) would appear in the parameter vector and 
in the derivatives in (3.1-17) and (3.1-19) if the (heterogeneous) NB model were used here instead of the 
Poisson. 
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(3.1-17)  hh = exp(ωVh), 

  ln /QL
⎛ ⎞

∂ ∂⎜ ⎟τ⎝ ⎠

η
 =   

1 1
,

1 1 [(1 ) ]N H i
h ih i i ihi h

hQ i

W d d P
VL= =

⎛ ⎞
φ − + ⎜ ⎟

π ⎝ ⎠
∑ ∑

w
.    

 
Estimates of the structural parameters, (δ,ρ,σ) and their standard errors can be computed using 
the transformations shown above and the delta method or the method of Krinsky and Robb 
(1986).  
 Simulation can also be used to maximizing the log likelihood function.  [See Train (2003) 
and Greene (2008).] Using the original parameterization of the conditional mean function. The 
simulated log likelihood based on (3.1-11) is 
 

(3.1-18)  lnLS = 
1
lnN

i=∑ 1

1 M

mM =∑ [(1-di) + di P(yi|xi,σεim)] ( )[(2 1) ]wi i imd ′Φ − + τεη  

 
where εim is a set of M random draws from the standard normal population (or transformations of 
a Halton sequence).  Derivatives of the simulated log likelihood for the ith observation are 
 

  , 1
,

1
ln ( | , )1ln / ( )

ln ( )
Mi i i im

S i im im im i im
S i im i

im

d P yL P h
L M h=

α⎛ ⎞ ⎛ ⎞
⎡ ⎤∂ σε⎜ ⎟ ⎜ ⎟∂ ∂ = Φ λ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ λ⎣ ⎦⎜ ⎟ ⎜ ⎟σ ε⎝ ⎠ ⎝ ⎠

∑ x xβ ,  

(3.1-19)  him=exp(σεim), 

  , 1
,

1 1ln / [(1 ) ]
ln

M i
S i im i i imm

imS i

L d d P
L M =

⎛ ⎞⎛ ⎞
∂ ∂ = φ − + ⎜ ⎟⎜ ⎟ ετ⎝ ⎠ ⎝ ⎠

∑
wη

, 

 
where Φim, φim and Pim are defined as in (3.1-16) using εim in place of Vh. 
 The sample selection alters the conditional mean as follows: [See Terza (1985).]  From 
(3.1-1b), the overall mean is 
 
(3.1-20)  E[yi|xi]  =  Eε{E[yi|xi,εi]} = exp(σ2/2)λi. 
 
However,  
 
  E[yi|xi,wi,di = 1]  =  λi E[exp(σεi)|wi,di = 1] 
(3.1-21)) 

     =  λi 
2exp(( ) / 2) ( )

( )
i

i

′ρσ Φ ρσ +
′Φ

w
w

δ
δ

. 

This greatly complicates the partial effects; 
 

      
2[ | , , 1] exp(( ) / 2) ( )

( )
i i i i i

i
i i

E y d ′⎡ ⎤∂ = ρσ Φ ρσ +
= λ ⎢ ⎥′∂ Φ⎣ ⎦

x w w
x w

δ
β

δ
 

(3.1-22) 

      
2[ | , , 1] ( )exp(( ) / 2) ( ) ( )

( ) ( )
i i i i i

i i i
i i i

E y d ⎡ ⎤′⎛ ⎞ ⎛ ⎞∂ = Φ ρσ +ρσ ′ ′= λ φ ρσ + − φ⎢ ⎥⎜ ⎟ ⎜ ⎟′ ′∂ Φ Φ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

x w ww w
w w w

δ
δ δ δ

δ δ
. 
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The effects are added for variables that xi and wi variables in common.  These might be logically 
labeled the direct and indirect effects, since the latter arise only due to the effect of the selection.  
Note that the large bracketed term in the indirect effect equals zero if ρ equals zero.  Jacobians of 
the partial effects for use in obtaining standard errors are given in Appendix B. 
 
3.2  Zero Inflation 
 
The zero inflated Poisson and NB (ZIP and ZINB) models can be viewed as partial observation 
models or latent class models of a sort.20  The familiar structure of the model is 
 
(3.2-1a)  di*        =  wi′δ  +  ui, 

  di         =  1(di*   >  0) , 

  Prob(di  = 0|wi) = Π0(wi′δ)  (regime selection equation), 

  Prob(di  = 1|wi) = 1 – Π0(wi′δ)  (regime selection equation), 

 (3.2-1b) yi* |x     ~  P(yi* | xi)   (latent Poisson or NB model), 

  E[yi*| xi]  =  exp(α+xi′β) = λi,  (conditional mean), 

(3.2-1c)  yi    =  di yi* and xi  are observed (observation mechanism). 
 
Thus, if di equals zero, then the observed yi equals zero regardless of the latent value of yi*.  If di 
equals one, the Poisson or NB variable (which might then still equal zero) is observed.  The joint 
density for yi and di is derived as follows; 
 
  Prob(yi = 0|xi,wi,di = 0) = 1; Prob(di = 0|xi,wi) = Π0(wi′δ), 
(3.2-2) 
  Prob(Yi = yi |xi,wi,di = 1)  =  P(yi*| xi); Prob(di = 1|xi,wi) = 1 - Π0(wi′δ). 

Combining terms, the joint density is 
 
  P(yi,di| xi,wi)  = P(yi| xi,wi,di )P(di|xi,wi)  
(3.2-3) 
    = (1 – di) Π0(wi′δ) + di [1 - Π0(wi′δ)]P(yi*| xi). 
 
The conditional mean function is 
 
(3.2-4)  

d y∑ ∑ yi P(yi,di|xi,wi)  = E[yi|xi,wi]  =  [1 - Π0(wi′δ)]λi, 

 
so the partial effects are  
 
(3.2-5)  ∂E[yi|xi,wi]/∂xi   =   λi [1 - Π0(wi′δ)]β = gx 
and 
  ∂E[yi|xi,wi]/∂wi  =  -λi [dΠ0(wi′δ)/d(wi′δ)]δ = gw  
with 

                                                 
20 See Heilbron (1992), Lambert (1992), Greene (1994) and Zorn (1998). 
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(3.2-6)  
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 A variety of specifications have appeared in the literature.  As noted, the event count model 
could be Poisson, NB, or something else, though these two are the only forms that have been used.21  
The form of Π0(wi′δ) is often based on the logistic probability model, though the probit model is 
equally common.  Finally, a rarely used specification proposed in Lambert (1992) is the ZIP(τ) 
model in which Π0(wi′δ) = 1–F[τ(α+xi′β)] for the same α and β that appear in the count model, and 
unrestricted scale parameter τ.  This form is extremely restrictive and difficult to motivate. 
 The zero inflation model accommodates data such as the count of doctor visits that we will 
examine in the applications in Section 6.  Figure 2 below gives a histogram for this variable.22 The 
conspicuous spike at zero in this variable is decidedly nonPoisson.23  The preponderance of zeros in 
these data might be motivated by the possibility that the population consists of “healthy” individuals 
who never need to visit the doctor (or refuse to do so), and “less healthy” individuals who may or 
may not visit the doctor, depending on circumstances. 
 The latent class interpretation of the model suggests a two level decision process, the 
regime and the event count.  (The hurdle model of the next section might be a yet more natural 
candidate for this interpretation.)   The ZIP and ZINB models have been widely used in a variety of 
applications.   A common element throughout is the assumption that the latent effects in the regime 
equation and the count outcome are uncorrelated.  The model developed in the preceding section 
can be adapted to allow this correlation to be unrestricted.  The extended model would be 
 

(3.2-7a)  di*        =  wi′δ  +  ui, ui ~ N[0,1], 

  di     =  1(di*   >  0),    

  Prob(di = 0|wi) = Π0(wi′δ) 

  Prob(di = 1|wi) = Φ(wi′δ)            (probit regime selection equation), 

 (3.2-7b) yi* |xi,εi  ~  P(yi* |xi,εi)           (Poisson or NB model with heterogeneity), 

  E[yi*| xi,εi] =  exp(α+xi′β+σεi) = hiλi    (heterogeneous conditional mean), 

  [ui,εi] ~ N2[(0,1),(1,1),ρ], 

                                                 
21 Greene, Harris, Hollingsworth and Maitra (2007) have adapted the zero inflation model developed here 
to an ordered probit specification.  Econometric Software, Inc. (2003) includes a zero inflated gamma 
model. [See Winkelmann (2003) for discussion of the gamma model for count data.] 
22 The sample size is 27,326.  To help format the figure, we have dropped 196 observations (0.7% of the 
sample) for which Docvis is greater than 30. 
23 Greene (2008, Section 16.9.5.b) suggests a “geometric” count data model, P(yi|xi)=θi(1-θi)

yi, where 
θi=1/(1+λi) and λi = exp(α+xi′β) for these data.  The fit of the geometric model to the zero heavy variable is 
dramatically better than that for the Poisson or NB models. 
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 (3.2-7c) yi  =  di yi* and (xi,wi) are observed       (observation mechanism). 
 
It is now straightforward to adapt the derivation of the preceding section to this model.  The 
conditional (on εi) zero inflated Poisson probability joint density function for yi and di would be 

(3.2-8)  P(yi, di | xi,wi,εi)  =  (1 – di)Prob(di = 0| wi,εi) + [1 - Prob(di = 0| wi,εi)]P(yi|xi,εi) 

   =  
2 2

( ) ( ) exp( )( )(1 )
( 1)1 1

iy
i i i i i i i i

i
i

h hd
y

⎡ ⎤ ⎡ ⎤′ ′− + ρε + ρε − λ λ
− Φ +Φ⎢ ⎥ ⎢ ⎥

Γ +⎢ ⎥ ⎢ ⎥− ρ −ρ⎣ ⎦ ⎣ ⎦

w wδ δ  

where, once again, hiλi = exp(σεi)exp(α + xi′β) = exp(α + xi′β + σεi).  (The ZINB model is obtained 
by the corresponding replacement of P(yi|xi,εi) in (3.2-8).  As before, maximum likelihood estimates 
of the parameters of the model are obtained by maximizing the unconditional log likelihood. It is 
convenient to reparameterize the model.  Then, 

(3.2-9)  lnL = 
1

lnN

i

∞

= −∞∑ ∫ 2 2

( ) ( ) exp( )( )(1 )
( 1)1 1

iy
i i i i i i i i

i
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h hd
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φ(εi)dεi 

   = 
1

lnN

i

∞
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[ ]
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(1 )

exp[ exp( )][exp( )]
( 1)

i

i i i

y
i i i i

i i
i

d
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′⎧ ⎫− Φ − τε
⎪ ⎪

′ ′⎨ ⎬− α + + σε α + + σε′+Φ τε⎪ ⎪Γ +⎩ ⎭

w

x xw

η−

β β
η+

φ(εi)dεi. 

At this point, the specification differs only slightly from the formulation in the preceding section, in 
(3.1-11).  Either quadrature or simulation can be used to maximize the likelihood function, with the 
corresponding adaptation of either (3.1-15) for the quadrature approach or (3.1-18) for the 
simulation based estimator. 

 For convenience, let Ai = 
2

( )

1
i i′ + ρε

− ρ

w δ .  The conditional mean function for the ZIP model 

with latent heterogeneity is 
 
(3.2-10)  E[yi| xi,wi,,εi]  =  [ ]iAΦ exp( )i i′α + + σεx β  
 
The observable counterpart is 
 

(3.2-11)  E[yi| xi,wi]   =  λi [ ]iA
∞

−∞
Φ∫

 

 
 exp( )iσε φ(εi)dεi 

 
which must be computed either by simulation or quadrature.  The partial effects are computed 
likewise.  For the variables in the primary equation, 
 

(3.2-12)  ∂E[yi| xi,wi]/∂xi = λi β [ ]iA
∞

−∞
Φ∫

 

 
 exp( )iσε φ(εi)dεi = gx. 

 
For the variables in the regime equation, 
 

(3.2-13)  ∂E[yi| xi,wi]/∂wi = λi 
2

1
1

⎛ ⎞
⎜ ⎟
⎜ ⎟− ρ⎝ ⎠

δ [ ]{ }exp( ) ( )di i i iA
∞

−∞
φ σε φ ε ε∫

 

 
= gw. 
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Note that in the expression above, if the correlation, ρ, equals zero, then the conditional mean for 
the (only) heterogeneous ZIP model becomes 
 

(3.2-14)  E[yi| xi,wi]   =  λi ( ) exp( ) ( )di i i i

∞

−∞
′Φ σε φ ε ε∫

 

 
w δ  

    =  λi ( ) 2exp( / 2)i′Φ σw δ  
 
and the partial effects simplify considerably.  Jacobians for these vectors of partial effects are given 
in Appendix C. 
 The original ZIP or ZINB model is restored if ρ equals zero and σ equals zero.  A ZIP 
model with heterogeneity in P(yi|xi,εi) results if only ρ equals zero.  (A nonzero ρ with a zero σ is 
internally inconsistent.)  The ZIP model with heterogeneity has appeared elsewhere in the literature, 
in the form of random effects in a panel data application (see Hur (1998), Hall (2000) and Xie, Hur 
and McHugo (2006)].  This appears to be the first application that relaxes the restriction of zero 
correlation across the two equations. 
 
3.3  Hurdle Models 
 
The hurdle model is also a two part decision model.  The first part is a participation equation and 
the second is an event count, conditioned on participation.  Formally, the model can be constructed 
as follows: 
 
(3.3-1a)  di*    =  wi′δ  +  ui, 

  di     =  1(di*   >  0),    

  Prob(di  = 0|wi) = Π0(wi′δ)      (hurdle equation), 

  Prob(di = 1|wi) = Φ(wi′δ)        (probit hurdle model), 

 (3.3-1b) yi |xi,(di = 0) = unobserved      (nonparticipation), 

  yi |xi,(di = 1) ~  P+(yi | xi)        (truncated Poisson or NB model given participation). 

(Note, we distinguish between yi = “unobserved” and yi = 0 in the nonparticipation case.)  The 
central feature of the model is the effect of the hurdle decision on the event count equation, which 
we denote P+(yi | xi).  If di = 1, then by the construction, yi > 0.  Thus, the resulting count model has 
the truncated form.  [See Terza (1985), Econometric Software (2007), Greene (2008).]  The 
underlying motivation is similar to the latent class interpretation in the preceding section. 
 To obtain a likelihood for the hurdle model, we first obtain the joint density for yi and di in 
this specification.  Since nonzero values of yi are only observed when di = 1, we can write 
 
  Prob(yi is unobserved| xi,di = 0) = 1, Prob(di  = 0|wi) = Π0(wi′δ) 
(3.3-2) 
  P(yi|xi,di = 1)  = P+(yi | xi)  

    = 
[ ]

exp( )
1 exp( ) (1 )

iy
i i

i iy
−λ λ

− −λ Γ +
,yi = 1,2,...,   

  Prob(di  = 1|wi) =1 –  Π0(wi′δ) 
 
Combining terms in the familiar fashion and once again, maintaining the Poisson model for 
convenience, we have 
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(3.3-3)  P(yi, di |xi, wi)  =  (1-di) Π0(wi′δ) + [ ]
[ ]

01 ( ) exp( )
1 exp( ) (1 )

iy
i i i

i
i i

d
y

′−Π −λ λ
− −λ Γ +

w δ
,yi = 1,2,... 

 
(Note, again, it is understood that in the di = 0 regime, yi is unobserved; it is not assumed to be equal 
to zero.)  The log likelihood takes a convenient form for this case.  Taking the two parts separately, 
we find 
 

(3.3-4)         { }
{ }
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1
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x
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The first term in braces is the log likelihood for the binary choice model (probit or logit) for di.  The 
second term is the log likelihood for the truncated (at zero) Poisson (or NB) model.  Thus, the 
hurdle model can be estimated in two independent parts.  (This will not be true when we extend the 
model below.)  The conditional mean function in the truncated Poisson model is  
 

(3.3-5)  E[yi| xi,di = 1) =  exp( )
1 (0 | )

i

iP
′α +

−
x
x
β . 

Therefore, 

(3.3-6)  E[yi|xi,wi]  =  [ ]
[ ]

1 0
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1 ( )
( , | , )
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As usual, the alteration of the distribution carries through to the partial effects; 
 

  ∂E[yi|xi,wi,di]/∂xi  =  [ ]
[ ]

01 ( ) exp( )1
1 exp( ) 1 exp( )

i i i
i

i i

′−Π ⎛ ⎞λ −λ
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(3.3-7) 

  ∂E[yi|xi,wi,di]/∂wi  =  
[ ]

0d ( ) / d( )
1 exp( )

i i
i

i

′ ′− Π
λ

− −λ
w wδ δ

δ  = gw. 

 
Derivatives of these partial effects for use in computing standard errors are given in Appendix D. 
 To relax the restriction that the two decisions are uncorrelated, we use the same device as 
before and now assume joint normality for the underlying heterogeneity.  The extended model is  
 
 (3.3-8a) di*    =  wi′δ  +  ui,  ui ~ N[0,1], 

  di     =  1(di*   >  0),    

  Prob(di  = 0|wi) = 1 - Φ(wi′δ)  (probit hurdle equation), 

 (3.3-8b) yi |xi,εi,(di = 0) = unobserved  (nonparticipation), 

  yi |xi,εi, (di = 1) ~  P+(yi | xi,εi)  (truncated Poisson or NB model), 

  [ui,εi] ~ N[(0,1),(1,1),ρ]. 

Using the same devices as in the earlier derivations, we have,  
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(3.3-9)  P(y,di i|xi,wi,εi)  =  (1-di) [ ]i i′Φ − τεw η−  + 

     [ ]
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[ ]exp( exp( ) ) exp( )
1 exp( exp( ) ) (1 )
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i i i i i i
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d
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and, finally, 

(3.3-10)) lnL  =  
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i i i i i i ii
P y d
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ε φ ε ε∑ ∫ x w . 

 
For analysis of the partial effects, the conditional mean will be 
 

(3.3-11)  E[yi|xi,wi]  =  [ ]
[ ]
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From this point, estimation and analysis of the partial effects proceeds in the same fashion as in the 
preceding two sections.  Note, in all three cases, the differences in the models consists of the density 
for yi in the template function as in (3.1-15) or (3.1-18).  The partial effects and derivatives for this 
model are extremely cumbersome.  They are presented in Appendix E. 
 
4.  Models for Panel Data 
 
We consider the most familiar treatments for panel data, the fixed and random effects models.  For 
each of these, a separate set of results for Poisson and NB models have come into common use.  
These build on the familiar treatments in the linear model, but for the treatments in common  use, 
only the Poisson FE model follows along the familiar lines. 
 
4.1  Fixed Effects Poisson and NB Models 
 
 The now standard Poisson fixed effects model, 
 

(4.1-1)  P(yit|xit)  =  exp( ) , exp( )
(1 )

ity
it it

it i it
ity

−λ λ ′λ = α +
Γ +

x β , 

 
is one of only a few known cases in which maximization of the full log likelihood with respect to 
(αi,i=1,...,N, β) produces the numerically identical result for β as maximization of the conditional 
log likelihood based on 
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T
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[See Lancaster (2000).]  Note that the conditional log likelihood does not involve the constant 
terms, αi.  Nonetheless, the β that maximizes (with the solutions for αi) the unconditional log 
likelihood, 
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(4.1-4)  lnL  =  
1 1

N T

i t= =∑ ∑ ln P(yit|xit)  
is numerically identical to the maximizer of the conditional log likelihood, 
 
(4.1-5)  lnLC  =  

1

N

i=∑ ln P(yi1,...,yiT| 1
T
t=Σ yit,Xi). 

 
This is the commonly used form of the Poisson model that is built into widely used commercial 
software such as Stata, SAS and LIMDEP. 
 To set the stage for the development below, consider the implication of a time invariant 
variable in xit.  If the conditional mean is written in the implied form 
 
(4.1-6)  λit  =  ( )1exp N

i i it i itf z= ′Σ α + δ + x β  

where fi are the individual specific dummy variables, then it becomes obvious on inspection that 
the model is fundamentally unidentified.  For each i, the T observations, zi is are a multiple of the 
T nonzero observations in variable fi. The NT observations in the column vector z can be 
replicated by a linear combination of the N dummy variables. The impact of this form of 
multicollinearity on a nonlinear model can be seen as follows:  The log likelihood function for the 
fixed effects Poisson regression model is 
 
(4.1-7)  lnL =  

1 1
ln ( | )N T

it i iti t
P y

= =
′α∑ ∑ + x β  

 
where the density appears in (1)  The likelihood equation for a time invariant variable xit,k = zi is 
 
(4.1-8)  ∂lnL/∂βk = 

1 1
( )N T

it it ii t
y z

= =
− λ∑ ∑  

 
and the likelihood equation for each of the fixed effects coefficients is 
 
(4.1-9)  ∂lnL/∂αi = 

1
( )T

it itt
y

=
− λ∑  

 
[see (2.1-5)].  Therefore, at any parameter vector, ∂lnL/∂βk = 1

N
i=Σ zi∂lnL/∂αi. The N+K columns of 

the derivatives of the log likelihood function are linearly dependent; the model is not identified.  
For example, this precludes separate estimation of the fixed effects model as shown with an 
additional overall constant.  (This merely reinforces the widely understood principle that fixed 
effects models cannot include time invariant independent variables. 

Hausman, Hall and Griliches (1984) (HHG) report the following conditional density for 
the fixed effects negative binomial (FENB) model: 

(4.1-10)       ( ) 1 1
1 2 1

11 1

(1 ) ( ) ( ), , , | ,
( ) (1 ) ( )i
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T t it t it it it

i i iT i t it T T
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=
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Γ Σ +Σ λ Γ + Γ λ∏X… , 

 
which is free of the fixed effects.  This is the default FENB formulation used in popular software 
packages such as Stata, SAS and LIMDEP.  Researchers accustomed to the earlier admonishment 
that fixed effects models cannot contain overall constants or time invariant covariates are 
sometimes surprised to find (perhaps accidentally) that this fixed effects model allows both. [This 
issue is explored at length in Allison (2000) and Allison and Waterman (2002).]   The resolution 
of this apparent contradiction is that the HHG FENB model is not obtained by shifting the 
conditional mean function by the fixed effect, lnλit = xit′β + αi, as it is in the Poisson model and in 
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other familiar models.  Rather, the HHG model is obtained by building the fixed effect into the 
model as an individual specific θi in the Negbin 1 form in (2.4-3).  In the two negative binomial 
models, the conditional mean functions are 

 
 NB1(HHG):  E[yit | xit]  =  φit = exp(α + xit′β ), 

(4.1-11) 
 NB2(FE):      E[yit | xit]  =  exp(αi)φit = λit = exp(αi + xit′β), 

 
Thus, the conditional mean function in the HHG model is homogeneous.  The fixed effect in the 
model is introduced through the scaling parameter, θi, which enters the conditional variance of 
the random variable; 
 
  NB1(HHG):  Var [yit | xit] = φit[1 + (1/θi)], 
(4.1-12) 
  NB2(FE):      Var [yit | xit] = λit [1 + (1/θ)λit]. 
 
The relationship between the mean and the variance is quite different for the two models.  For 
estimation purposes, one can explain the apparent contradiction noted earlier by observing that in 
the NB1 formulation, the individual effect is built into the scedastic (scaling) function, not the 
conditional mean. (In principle, given this finding, one could have a second set of fixed effects, in 
the mean of the HHG model.)  Greene (2007a) analyzes the more familiar, FENB2 form with the 
same treatment of λit.  Estimates for both models appear below.    

Theory does not provide a reason to prefer the NB1 formulation over the more familiar 
NB2 model.  The NB1 form does extend beyond the interpretation of the fixed effect as carrying 
only the sum of all the time invariant heterogeneity into the conditional mean function. The 
appearance of lnθi in the conditional mean is an artifact of the exponential mean form; θi is a 
scaling parameter in this model.  In its favor, the HHG model, being conditionally independent of 
the fixed effects, finesses the incidental parameters problem – the estimator of β in this model is 
consistent.  This is not the case for the FENB2 form.  But, it remains unclear what role the fixed 
effects play in this model, and how they relate to the fixed effects in other familiar treatments. 
 The conditional NB1 model obviates brute force maximization of the unconditional NB2 
(or NB1) log likelihood function with respect to β and all N constants αi, which is a significant 
practical advantage (notwithstanding the incidental parameter problem).  However, Greene 
(2004) provides a solution to this problem that enables the computation even with large N.  The 
estimates below are based on this method. 
 
4.2  Random Effects Models 
 
The random effects Poisson model can be formed by writing  
 
(4.2-1)  λit = exp(xit′β + ui) 
 
where ui is independent of xit.  Under the assumption that ui has a log gamma density with exp(ui) 
~ G(θ,θ) as earlier in the cross section case, the unconditional joint density for individual i is 
 

(4.2-2)  P(yi1,yi2,...,yiT|Xi) = 
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where  
1

.i T
t it

Q
=

θ
=
θ + Σ λ

 

 
This is a negative binomial distribution for Yi = 1

T
t=Σ yit with mean Λi = 1

T
t=Σ λit.  As noted earlier, 

the choice of the log gamma formulation is motivated by mathematical convenience, not by an 
appeal to an underlying model of heterogeneity.  The Poisson RE model could also be specified 
with lognormal heterogeneity.  Analysis would follow precisely along the lines of Section 2.3.  
The joint probability would be computed from 
 

(4.2-3) 

[ ] 1

1 1 

T
1t=1  

exp( exp( ) )(exp( ) )( ,..., | ) ( )
(1 )

                            exp exp( ) exp( ) ( ) .
(1 )

i

Tit
t

i

it

it

T i it i it
i iT i i itu

it

y
Tit

i t it i i iu
it

y

y

u uP y y f u du
y

u u f u du
y

=

=

=

− λ λ
=

Γ +

⎡ ⎤λ ∑⎡ ⎤= − Σ λ⎢ ⎥ ⎣ ⎦Γ +⎣ ⎦

∏∫

∏ ∫

X
 

 
This function and its derivatives can be approximated using either quadrature or simulation.   

Like the fixed effects model, introducing random effects into the negative binomial 
model adds some additional complexity.  Since the negative binomial model derives from the 
Poisson model by adding latent heterogeneity to the conditional mean, adding a random effect to 
the negative binomial model could be viewed as introducing the heterogeneity a second time.  
However, an approach that would preserve the form of the model would be to begin with a 
Poisson model and write 

 
(4.2-4)  λit = exp(xit′β + εit + ui), 
 
where both εit and ui are log gamma distributed with parameters θ and μ, respectively.  This 
would correspond to the mixed negative binomial model at the end of Section 2.3 [and the model 
used in RWM (2003) – see (5-12) below].  Departing from (4.2-4), if it is assumed that εit has the 
G(θ,θ) distribution assumed in Section 2 and ui has a normal distribution, then we obtain a “true” 
random effects model that parallels the fixed effects treatments developed earlier.  The 
conditional negative binomial model will result from 
 
(4.2-5)  P(yit|xit,ui)  =  

 
( | , , ) ( )

it
it it i i it itP y x u f d

ε
ε ε ε∫ . 

 
Changing the variable to hit = exp(εit) and integrating over hit instead produces the negative 
binomial model with conditional mean E[yit|xit,ui] = exp(xit′β + ui) and dispersion parameter θ. 
The resulting conditional density is 
 

  P(yit|xit,ui) =  ( ) (1 )
(1 ) ( )

ityit
it it

it

y r r
y

θΓ θ +
−

Γ + Γ θ
, 

(4.2-6)  λit     = exp( )xit′ β , 

  rit    =  θ/ (θ +exp(ui)λit). 
 
We can then estimate the parameters by forming the conditional (on ui) log likelihood and 
integrating ui out either by quadrature or simulation.   

Hausman et al.’s (1984) random effects negative binomial model is a hierarchical model 
that derives from a heterogeneous Poisson model.  The mean in the Poisson model is exp(ui)λit 
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where exp(ui) has G(θ,θ) density.  This produces the NB kernel.  The unconditional distribution is 
obtained by treating pit = [exp(ui)λit]/[Σtexp(ui)λit] as a random vector with Dirichlet mixing 
distribution. Each pair of means, μit = exp(ui)λit  μis = exp(ui)λis is such that μit/(μit+μis) has a beta 
distribution with parameters a and b.  The resulting unconditional density is 

(4.2-7)  
( ) ( )
( )

1 1
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1 1
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This is the common form of the RENB model that is incorporated in several contemporary 
computer packages.  As before, the relationship between the heterogeneity and the conditional 
mean function is unclear, and there is no obvious interpretation of the hyperparameters a and b.  
The parameters are simpler to interpret in the effects model in (4.2-4), where the estimated standard 
deviation of ui can be directly interpreted against the other parameters in the model.  Moreover, the 
HHG model does not admit of a ready test of the homogeneous model.  It is unclear what the 
implication of a = b = 0 would be.  Estimates of the two forms of the random effects model are 
presented in Section 6 for a comparison. 
 
5.  The Bivariate Poisson Model 
 
There have been a variety of proposals for a bivariate (or multivariate) count data model.  The 
earliest form is that of Kocherlakota and Kocherlakota (1992) which is based on the trivariate 
reduction method.  Let z1, z2 and u denote three Poisson distributed random variables.  Then, the 
observed random variables are 
 
  y1 = z1 + u 
(5-1)   and 
  y2 = z2 + u 
 
have a bivariate Poisson distribution with covariance equal to Var[u].  This model does produce a 
pair of correlated Poisson variables, however the correlation must be positive, which severely limits 
the generality of this specification.  (For the outcomes examined in Section 6, doctor visits and 
hospital visits, a negative correlation would not be surprising.) 24  Munkin and Trivedi (1999) 
present a survey of other approaches.   
 Two recently developed approaches considered here [Munkin and Trivedi (1999) and 
RWM (2003)] build the bivariate model into latent heterogeneity structures, as employed in the 
various models proposed above.  These allow the sign of the correlation to vary.  However, they 
shift the impact of the bivariate distribution from the variables of interest, as in the trivariate model 
above, to the unobservables in the conditional mean function.  The bivariate count outcomes model 
is still preserved.  However, the estimated correlations in these models do not provide a clear picture 
of the implied correlations between the outcome variables that was the objective to begin with.  As 
a general proposition, the correlation between the observed counts will be less, potentially far less, 
than the estimated correlation between the underlying unobserved heterogeneity. 
 The bivariate probit model specified in Munkin and Trivedi (1999) and Riphahn, Rambach 
and Million (2003) is  
 
  exp(x1i′β1 + σ1ε1i)  =  λ1i exp(σ1ε1i) 

   exp(x2i′β2 + σ2ε2i) =  λ2i exp(σ2ε2i) 
                                                 
24 The trivariate reduction method was employed e.g., by Jung and Winkelmann (1993), Karlis and 
Ntzoufras (2003) and King (1989).  
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(5-2)  (ε1i,ε2i) ~ N2[(0,0),(1,1),ρ] 

  P(yji|xji,εji) = 
exp( exp( ) )(exp( ) )

, 1,2
(1 )

ji
ji ji ji ji

ji
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j
y

− σε λ σε λ
=

Γ +
 

 
Both studies build the empirical measurement of correlation of the two outcomes around the 
estimation of ρ.  However, as we now demonstrate, the correlation coefficient, ρ, provides a 
misleading description of this correlation.   Superficially, this is obvious from the construction.  The 
coefficient ρ is not the correlation between y1i and y2i; it is the correlation between lnE[y1i|x1i,ε1i] 
and lnE[y2i|x2i,ε2i].  How this relates to Corr[y1i,y2i|x1i,x2i] is less than clear.  To deduce this from 
the model specification, we proceed as follows: 
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For convenience, let 
 
(5-4)  μji = λji exp(σj

2/2). 
 
The terms in the denominator were derived earlier.  The unconditional variance is 
 
  Var[yji|xji]   =  λjiexp(σj

2/2)[1 + λjiexp(σj
2/2)[exp(σj

2)-1]] 

(5-5)    = μji {1 + μji[exp(σj
2)-1]}, j = 1,2. 

 
For the terms in the numerator, the first is zero, since conditioned on ε1i and ε2i, y1i and y2i (given x1i 
and x2i) are independent.  Thus, what remains to derive is 
 

(5-6)     
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The two conditional means are the means for the univariate lognormals, 
 
(5-7)  E[exp(σjεji)]  =  exp(σj

2/2). 
 
The remaining term is straightforward; 
 

(5-8)  1 1 2 2 1 1 2 2

2 2
1 2 1 2

[exp( )exp( )] [exp( )]
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Combining terms and manipulating the expression produces 
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(5-9)  
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Combining all terms and simplifying (slightly), we obtain the final result 
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How this relates to ρ is unclear.  It has the same sign, but the magnitudes are likely to be essentially 
unrelated.  We will examine it in the application below. 
 Munkin and Trivedi (1999) also develop a bivariate negative binomial model.  The model 
is constructed as the joint density for two Poisson models with common heterogeneity, vi.   That is,  
 
  yji ~ P(yji|xji,vi) 
(5-11) where 
  λji = exp(α + xji′β + vi), j = 1,2. 
 
For hi = exp(vi) distributed with Gamma(θ,θ) distribution, this is precisely equivalent to the two 
period random effects Poisson model shown in Section 4.2.  Although the functional form for the 
log likelihood function is known (see Section 4.2) (and it is given in the paper), the authors used 
simulation to estimate the parameters of the model.  Since they assume the value of θ (one), the 
results cannot be compared to the Poisson – lognormal mixture model.  One could, instead, form the 
bivariate NB model using correlated lognormal mixtures along the lines suggested at the end of 
Section 2.3.  We leave this derivation for future research. 
 Finally, RWM (2003) extended this development to a panel data setting.  Their random 
effects model is 
 
  lnλit,1 = α1 + xit,1′β1 + ui,1 + εit,1  =  α1 + xit,1′β1 + vit,1, 

  lnλit,2 = α2 + xit,2′β2 + ui,2 + εit,2  =  α2 + xit,2′β2 + vit,2, 

(5-12)  (εit,1,εit,2) ~  N2[(0,0),(σ1,σ2),ρ], 

  (ui,1,ui,2)  ~  N2[(0,0),(ω1,ω2),0]. 
 
The correlation between εit,1 and εit,2 creates the bivariate model.  In the notation of our earlier 
formulation, the correlation of interest, between vit,1 and vit,2, is 
 

(5-13)  ρ12 = 1 2
2 2 2 2
1 1 2 2

ρσ σ

ω + σ ω + σ
. 

 
And the counterparts to σ1 and σ2 are the two terms in the denominator.  The model also implies a 
T-variate Poisson-lognormal mixture model for each group for each of the two variables.  The 
implied correlation is ρts,j = ωj

2/(ωj
2 + σj

2), j = 1,2.  As they note and discuss, ρ is the correlation 
between the unique unobservable factors in the two equations.  One could, however, misinterpret 
the magnitude of the value as representative of the correlation between the composed heterogeneity 
or, worse yet, between the outcome variables, themselves.  For example, for their equation system 
applied to the males in their sample, they report ρ = 0.599, σ1 =0.996, σ2 =  1.244, ω1 = 0.795 and 
ω2 = 1.195.  The computation above produces ρ12 = 0.276.  The calculation is relevant because the 
unobservable propensities are difficult to partition neatly into time varying and time invariant parts.  
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It is speculative to assume that ρ in isolation captures the full correlation of the unobservables apart 
from persistent, time invariant components (and leaves ui,j truly unexplained).  We will revisit the 
computation of the implied correlation between the two outcomes below. 
 
6.  Applications 
 
 In "Incentive Effects in the Demand for Health Care: A Bivariate Panel Count Data 
Estimation," Riphahn, Wambach and Million (2003) employed a part of the German 
Socioeconomic Panel (GSOEP) data set to analyze two count variables, DocVis, the number of 
doctor visits in the last three months and HospVis, the number of hospital visits in the last year.  
The authors employed a bivariate panel data (random effects) Poisson model to study these two 
outcome variables.  A central focus of the investigation was the role of the choice of private 
health insurance in the intensity of use of the health care system, i.e., whether the data contain 
evidence of moral hazard. We will use these data to illustrate the model extensions described 
above.25  The authors of this study presented estimates for the Poisson-lognormal model in 
Section 2.2.2 and the bivariate Poisson model in (5-12).  We will analyze the single equation and 
two part models in some detail, but only analyze the correlation structure developed for the 
bivariate Poisson model in Section 5.  (We have not proposed any extensions for this model; our 
analysis has only provided a more detailed interpretation of the existing model results.)  In order 
to keep the amount of reported results to a manageable size, we will also restrict attention to 
DocVis, the count of doctor visits.  Analysis of the count of hospital visits is left for further 
research. 
 
6.1  The Data 
 
The RWM data set is an unbalanced panel of 7,293 individual families observed from one to 
seven times. The number of observations varies from one to seven (1,525, 1,079, 825, 926, 1,051, 
1000, 887) with a total number of observations of 27,326.   The composition of the panel is 
shown in Figure 1. 
 The variables in the data file are listed in Table 1 with descriptive statistics for the full 
sample. They estimated separate equations for males and females and did not report any estimates 
based on the pooled data.  Table 2 reports descriptive statistics for the two subsamples.  The 
figures given all match those reported by RWM.  (See their Table II, page 393.)  The outcome 
variables of interest in the study were doctor visits in the last three months and number of hospital 
visits last year.  Histograms for these variables for the full data set are shown in Figures 2 and 3.  
(Figure 1 was truncated at 20 visits.  Figure 2 was truncated at 10.  These remove about 200 
observations from the sample used to form the figures.) 
 The base case count model used by the authors included the following variables in 
addition to the constant term: 
 
 xit =  (Age, Agesq, HSat, Handdum, Handper, Married, Educ, Hhninc, 
   Hhkids, Self, Civil, Bluec, Working, Public, AddOn) 
 
and a set of year effects, 
 
 t = (YEAR1985, YEAR1986, YEAR1987, YEAR1988, YEAR1991, YEAR1994). 
 

                                                 
25 The raw data are published and available for download on the Journal of Applied Econometrics data 
archive website, The URL is given below Table 1. 
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The same specification was used for both DocVis and HospVis.  We will use their specification in 
our count models.  The estimated year effects are omitted from the reported results in the paper.  
The variables used in the participation equation in the two part models are discussed in Section 
6.3. 
 
6.2  Functional Forms and Heterogeneity 
 
Table 3 presents estimates of the Poisson regression models for males and females.  The pooled 
(across genders and across time) results appear in the first column.  We tested for homogeneity of 
the coefficient vectors for males and females using a likelihood ratio test; the chi squared statistic 
is 
 
 λLR = 2[90097.4 – (42927.6+46275.1)]  =  1789.4. 
 
This is substantially larger than the critical chi squared with 16 degrees of freedom (26.30), so the 
hypothesis that the same model applies to males and females is rejected for the Poisson model.  
The Poisson specification is, itself, rejected in favor of a model with heterogeneity, so we 
repeated the homogeneity test with the log gamma (negative binomial) results.  The log 
likelihood for the pooled data is -58082.0 – the pooled NB results are not shown – so the LR 
statistic for the NB model is 678.60, with 17 degrees of freedom.  On this basis, we will not use 
the pooled data in any of the models estimated below.  For brevity, we will present only the 
results for the males in the sample (n = 14,243).  (Qualitative results for the two samples are the 
same.  RWM do not pursue the differences in the results for males and females.) 
 The immediate impression is that the presence of public insurance and private addon 
insurance in the pooled model both have a significant influence on usage of physician visits.  
However, when the models are fit separately for males and femalse, the latter effect is dissipated.  
It appears that generally, the former effects disappears from the models that account for latent 
heterogeneity – of the four sets of results in Table 3, the effect of Addon remains significant only 
in the NB model for females. 
 As noted, the Poisson model is rejected based on the likelihood ratio test for either of the 
heterogeneity models (log gamma or lognormal) for both males and females.  For the males, for 
example, for the negative binomial vs. the Poisson model, the chi squared is 2(42774.7 – 
27480.4) = 30588.6, with one degree of freedom. Thus, the hypothesis is rejected.  Similar results 
occur for the other three cases shown.  The results are convincing that the Poisson model does not 
adequately account for the latent heterogeneity.  The last four rows of Table 3 show the estimates 
of the parameters of the estimated distribution of latent heterogeneity.  The estimated structural 
parameter is shown in boldface.  The other values are derived as shown in the footnotes in the 
table.  The two models produce similar results, however, the variance of the multiplicative 
heterogeneity (hi) is substantially larger for the lognormal model.  This is a reflection of the thick 
upper tail of the lognormal distribution.  The overall impression of the distribution of εi might be 
a bit erroneous on this basis, as the mean of εi in the lognormal model is zero while the mean of εi 
in the log gamma model is ψ(θ) - lnθ = -1.09 for the males.  Thus, the range of variation of the 
centered variables in the two models is somewhat closer (though the lognormal still has the larger 
variance). 
 The third column of the two groups of estimates present the lognormal model as an 
alternative specification to the log gamma (negative binomial).  These are the counterparts to 
RWM’s results in their Table IV.   Our estimates differ slightly; the difference appears small 
enough to be attributable to difference in the approximation methods.  We used a 48 point 
Hermite approximation.  RWM do not note what method they used for the heterogeneous Poisson 
model.  They used a modification of the Hermite quadrature for the bivariate Poisson model.  For 
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example, for the log likelihood function, their reported value is -27411.4 vs. our -27408.6.  The 
counterparts for females are -30213.4 for RWM and -30214.7 for ours.  Based on the likelihoods, 
the lognormal model appears to be superior to the negative binomial model.  Since the models are 
not nested, a direct test based on these values is inappropriate.  The Vuong statistic suggested in 
(2.4-6) equals 2.329 in favor of the lognormal model. 
 Table 4 presents estimates of the parameters of the different specifications of the negative 
binomial model.  The base case Poisson model corresponds to P = 0 in the encompassing NBP 
specification. Based on the likelihood ratio tests, any of the alternative specifications in the table, 
all of which nest the Poisson, will dominate it.  As suggested earlier, NB1 and NB2 produce 
similar results, but nonetheless, are manifestly different specifications.  The log likelihood for 
NB1 is significantly larger than that for NB2.  However, as these two models are not nested, the 
LR test is inappropriate.  Using the Vuong statistic in (2.2-6), we obtain a value of -1.63 in favor 
of NB1.  In spite of the log likelihoods, this is in the inconclusive region.  As expected, NBP 
produces a greater likelihood than either NB1 or NB2.  Using a likelihood ratio statistic for 
testing against NB1, we obtain a chi squared of  207.8 with one degree of freedom.  Thus, NB1 
and, a fortiori, NB2 are rejected in favor of NBP for these data.  The estimated standard error for 
the estimator of P for this model is 0.02293.  The t (Wald) test against the null hypothesis that P 
equals 1.0 gives a statistic of 21.33, which, once again, would decisively reject the NB1 
specification.  The second rightmost column in Table 4 presents estimates of a heterogeneous 
model in which income and education influence the dispersion parameter in the NB2 model.  The 
significantly negative coefficient on income indicates that increasing income increases the 
dispersion, since in this expanded model, κi  = (1/θ)exp(-zi′γ).   
 The last column in Table 4 presents of the heterogeneous NB2 model.  This model 
specifies the NB2 functional form with, in addition, 
 
  λi = exp(xi′β + σεi) 
 
where εi has a standard normal distribution.  One way to view the model would be as a Poisson 
model with a compound disturbance in it, 
 
  λi = exp(xi′β + σnεni + εgi) 
 
where εni is the standard normally distributed component and εgi is the log of hi, which has the log 
gamma distribution that produces the NB model.  If εni and εgi are statistically independent, then 
the unconditional (on εgi) density will be the NB2 model, still with latent normally distributed 
heterogeneity.  Though it might appear otherwise, there is no problem of identification in the 
model; the two variance components are identified through different features of the distribution; 
the variance of εgi, identified through θ, appears in the dispersion of yi (and, indeed, in all higher 
moments).  The estimation of this model is precisely analogous to estimation of the variance 
components in the stochastic frontier framework [See Aigner, Lovell and Schmidt (1977) and 
Greene (2006)], where the parameters are identifiable because of the different shapes of the 
distributions of the two random variables in the sum.  Curiously, the estimate of the total variance 
of the heterogeneity in the compound model is smaller than that of the implied heterogeneity in 
NB2.  Based on the two formulations above, we obtain, for the variance of lnhi in NB2, 
ψ′(0.5707) = 3.949, and for the variance of σnεn + lnhi, ψ′(0.9043) + 0.69612 = 2.393.  The 
respective standard deviations are 1.987 and 1.547 
 Based on the likelihood, the NB normal mixture model dominates NB2.  The likelihood 
ratio statistic is 9.4, again with one degree of freedom.    The mixture model does not dominate 
the NBP model.  However, the models are not nested so the simple LR test is not usable. 
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 RWM note based on comparing the Poisson-lognormal to the bivariate model that the 
significance and, in some cases, the signs of the coefficients change with the specification.  We 
find generally, that this applies to the marginal variables, but that the pattern of significance of 
most of the variables in the equation is extremely stable.  The very important exception is the 
variables that were the focus of the study, the insurance variables.  What we find is that as the 
model is extended to account for latent heterogeneity, the importance of the private insurance 
variable diminishes consistently. 
 
6.3  Two Part Models 
 
6.3.1  Sample Selection 
 
RWM used a type of selection model for AddOn (not the full information approach suggested 
here) to study the issue of adverse selection.  They used a logit model for the choice of AddOn.  
We will use their specification for the participation equation, though we will be using a probit 
model throughout.  The specification is 
 
 wit = (Constant,  Handdum, Handper, Educ, Haupts, Reals, Abitur, Fachhs, Univ, 
            Whitec, Married, Hhninc, Hhkids, 
  1(30<Age<34), 1(35<Age<39), 1(40<Age<44), 1(45<Age<49), 1(50<Age<54), 
  1(55<Age<59), 1(Age>59), 
  YEAR1985, YEAR1986, YEAR1987, YEAR1988, YEAR1991, YEAR1994, 
   
The authors’ logit model also included a variable, Number of health insurances (“the number of 
private health insurance firms in an individual’s state of residence”).  This appears to be a 
variable that is not in the published data set. Moreover, it is unclear how the sample subsets for 
the decision variable were constructed; 9,274 of the 14,243 observations on men and 11,669 of 
the 13,083 women were used in this model.26   We will use the variables listed in wit above 
without a surrogate for the number of insurances for our sample selection approach and for our 
two part models.  Since the issues of adverse selection and moral hazard are interesting ones in 
the study, we will take their approach in the sample selection model, but “select” on the PUBLIC 
variable for health insurance, purely for the sake of a numerical example.  (Note that one must 
have the public insurance in order to obtain the addon insurance.) 
 The adverse selection issue turns on the endogeneity of the insurance coverage variable.  
As noted, the authors were interested in the marginal impact of the add-on insurance.  (They 
found weak support for the adverse selection hypothesis.)  To develop a numerical application, 
we have treated the entire insurance package, rather than just the add-on component.  Thus, our 
“selection” model considers the possible endogeneity of PUBLIC.  (One must purchase the public 
insurance to add the add-on.)  Tables 5 and 6 present FIML estimates of the sample selection 
models for males and females.  The hypothesis test turns on the estimated correlation, which is 
near zero and insignificant in the equation for males, but highly significant for females.  The 
likelihood ratio test is carried out based on the likelihood function for the full model minus the 
sum of the two values for the equations with ρ = 0.  The statistic is 10.6 for the females and only 
0.16 for the males.  The negative sign on the correlation indicates that the unobservable factors 
that increase the probability of purchasing the insurance are negatively correlated with the 
unobservable factors that increase demand on the health care system. 

                                                 
26 RWM also report that the variable Fachhs is a perfect predictor of Addon in their restricted sample of 
males.  We did not find this to be the case in the full data set, so we will not further restrict the 
specification. 
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6.3.2  Zero Inflation and Hurdle Models 
 
Figure 2 is persuasive that the Poisson model probably does not assign sufficient mass to the zero 
outcome.  The zero inflation model explicitly builds on the Poisson or NB model to shift the 
distribution toward the zero outcome.  Tables 7 and 8 present four specifications of the ZIP model 
for the male subsample.  The first model is the base case Poisson.  The second is the conventional 
ZIP model proposed by Lambert (1992), Heilbron (1994) and Greene (1994).  The Poisson model is 
not nested in the ZIP model; there is no parametric restriction on the ZIP model that produces the 
Poisson specification.  Thus, an LR test is inappropriate.  From Table 7, the difference of the two 
log likelihoods of roughly 700 is strongly suggestive.  The Vuong statistic of 28.83 strongly favors 
the zero inflation model, as might be expected.  Figure 4 compares the predictions from the ZIP 
model (the center bar in each cell) to the Poisson (the right bar) and the actual data.  (Predictions for 
the two models are computed using the largest integer less than or equal to the predicted conditional 
mean.)  For the large majority of the observations, that is, for the 0, 1, and 2 values, the ZIP model 
predicts substantially better than the Poisson model. 
 We note, in the first ZIP specification, in contrast to RWM’s results, we find strong 
suggestion of moral hazard; that is, the coefficients on both PUBLIC and ADDON are strongly 
significant.  Table 8 extends the model by adding unobserved heterogeneity to the Poisson part of 
the model.  Endogeneity in this case would turn on the correlation between the latent heterogeneity 
in the regime equation (zero/not zero) and the count model.  In the first set of results in Table 8, this 
correlation is assumed to be zero.  In the second model, the correlation is unrestricted; the estimated 
value is 0.154.  However, we do not find statistical evidence of endogeneity.  The t statistic on the 
estimated correlation is only 0.14 and the LR statistic is only 1.6.  A pattern that persists here as in 
the preceding specifications is that the statistical significance of the insurance indicators declines 
substantially when the model more explicitly accounts for latent heterogeneity.  The persistent 
conclusion is that so far, the data do not contain evidence of moral hazard. 
 The hurdle model is related to the sample selection and zero inflation models.  The 
applicable situation arises when one observes the data “on site.”  That is, by the nature of the 
observation mechanism, the count will be at least one.  The model consists of a participation 
equation and the truncated (at zero) count model.  Since that situation does not apply here (and as 
we have already used a large amount of space for this review), we will not pursue the hurdle model 
in this application. 
 
6.4  The Bivariate Poisson Model 
 
Result (5-10) provides the implied correlation between yi1 and yi2 in the bivariate Poisson model in 
which 
  λi1  =  exp(xi1′β1 + σ1εi1) 
and 
  λi1  =  exp(xi2′β2 + σ2εi2) 
 
where  (εi1,εi2) ~ N2[(0,1),(1,1),ρ]. 
 
Munkin and Trivedi (1999) used this specification in a model for the joint determination of the 
counts of emergency room visits and hospital visits for a sample of 4,406 elderly Americans drawn 
from the National Medical Expenditure Survey from 1987 and 1988.  The authors report the 
estimates of β1 and β2 and, in addition, σ̂ 1 = 1.39, σ̂ 2 = 1.36 and ρ̂  = 0.92.  The last of these might 
lead one to suspect that emergency room visits and hospital visits were extremely highly correlated.  
However, as derived in Section 5, the 0.92 reflects only the correlation between the latent effects in 
the conditional means.  In order to evaluate the correlation between the two outcomes, we propose 
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to evaluate (5-10) at the sample observations, and then average the outcomes.  However, without 
the Munkin and Trivedi in hand – we do have the RWM data, which we will examine below – we 
resort to an approximation.  To a reasonable approximation, the sample average of λi evaluated at 
the individual data will equal the mean of the outcome variable.  (The result is exact in the base case 
Poisson model – this is the likelihood equation for the constant term.)  The authors report sample 
means of 1y = 0.26 and 2y = 0.92.  Thus, in (5-10), we use 
 
  μi1 ≈ 1y exp(.5×1.392) = 0.683162 
  μi2 ≈ 2y exp(.5×1.362) = 0.756409, 
 
and complete the computation with a hand calculator.  The result is an estimated correlation of 
0.668929, which is substantially less than 0.92.  Munkin and Trivedi do not report the sample 
correlation of their two outcome variables, so we cannot measure the implied estimate against the 
sample statistic. 
 The RWM model is 
 
(6-1)  lnλit,1 = α1 + xit,1′β1 + ui,1 + εit,1  =  α1 + xit,1′β1 + vit,1, 

  lnλit,2 = α2 + xit,2′β2 + ui,2 + εit,2  =  α2 + xit,2′β2 + vit,2, 

  (εit,1,εit,2) ~  N2[(0,0),(σ1,σ2),ρ], 

  (ui,1,ui,2)  ~  N2[(0,0),(ω1,ω2),0]. 
 
for which we derived 

(6-2)  ρ12 = 1 2
2 2 2 2
1 1 2 2

ρσ σ

ω + σ ω + σ
. 

 
The result in (5-10) can be used by using this expression for ρ and the two standard deviations, τ1 = 

2 2
1 1ω + σ  and τ2 = 2 2

2 2ω + σ  for σ1 and σ2 in (5-10).   The authors did not report the full set of 
estimated parameters (they omitted the coefficients on the year dummy variables).  Rather than 
reestimate the full bivariate Poisson model, we proceeded as follows.  Each of the equations in (6-1) 
can be consistently estimated in isolation.  Moreover, we note that the marginal distribution of each 
of the observations, (i,t), in the sample, has a marginal Poisson distribution with normally 
distributed heterogeneity with mean zero and standard deviation τj.  Thus, we estimated the four 
equations singly using the lognormal heterogeneity model discussed in Section 2.2.2.  This provides 
consistent, albeit inefficient estimators of the parameters of the four equations.  These are shown in 
Table 9.  (RWM’s counterparts are shown in Table 10 for comparison.).  The estimated variance, σ2 
in each of these equations is an estimate of τ2 = σε

2 + ωu
2 in the RWM model.  This is also shown in 

Table 9.  Only an estimate of ρ is needed to complete the calculations in (5-4), (5-10) and (5-13).  
We used the estimate of ρ reported in RWM for males and females, which appears in the last row of 
Table 9.  For comparison purposes, we have decomposed the estimated variance from our estimates 
using the implied analysis of variance in RWM.  The computations appear at the bottom of Table 9.  
The proportion denoted “p” in the table inferred from the RWM results is used to decompose the 
estimated variance from our model.  With these statistics in hand, and with the estimated 
coevvicient vectors, we are able to compute the implied correlations for the two models (males and 
females).  Using (5-13), we obtain individual specific estimates of the correlations of the outcome 
variables of 0.06938 for males and 0.05795 for females.  These are an order of magnitude less than 
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the estimate of ρ reported in the paper, and moreover, only about half of the actual correlation 
between the outcomes in the data. 
 
6.5   Panel Data Models 
 
Table 11 presents the estimated fixed and random effects Poisson  models   Based on the 
likelihood ratio test (which is valid in this case because the MLE is consistent), the “no effects” 
model is rejected convincingly.  the chi squared statistic with (3,687-714) degrees of freedom is 
41,156.36.  The large degrees of freedom approximation in Greene (2008, result B-37) provides a 
standard normal test statistic of 209.79.  (Note, there 3,687 individuals in the sample.  However, 
714 of them had zero visits in every period.  These observations contribute a 1.00 to the 
likelihood function – Prob(yi1=0,yi2=0,...|Σ t yit=0) = 1, so constant terms cannot be estimated for 
them.  The marked difference between the base case Poisson model (no effects) and the fixed 
effects estimates in the second column are to be expected.  The random effects estimates in the 
third and fourth columns are quite similar.  Two noticable differences are the coefficients on 
marital status and children in the household.  Save for these, the Poisson random effects do not 
differ appreciably across the two platforms.  The estimated variances of the heterogeneity are 
likewise quite similar.  The similarities of the competing models does not carry over to the 
negative binomial specifications. 
 Estimates for the fixed and random effects negative binomial models appear in Table 12.  
The two sets of fixed effects estimates are quite different.  The statistical significance and the 
signs of several of the coefficients change across the two specifications, including AGE, 
MARRIED, EDUC, CIVIL, and ADDON.  The magnitude of several of the coefficients changes 
substantively, notably the coefficient on PUBLIC, which is five times larger in the “true” fixed 
effects estimates.  The signs and statistical significance of the period effects reverse several times 
as well.   The difference between the HHG and true FE models is that HHG builds the effects into 
the variance of the random variable, not the mean.  Thus, we cannot conclude that the HHG 
estimator is a consistent estimator of a model that contains a heterogeneous mean.  It is a 
consistent estimator in the context of a model with heterogeneous variance.  We have convincing 
evidence from the Poisson model that there is substantial latent heterogeneity in the mean of the 
random variable.  The log likelihood function for the “no effects” NB model falls to -27,480, 
which is thousands less than the log likelihood for either fixed effects specification.  Thus, it is 
reasonable to conclude that the HHG estimator is at least potentially problematic.  This finding 
does not weigh in favor of the true FE estimator, however.  There is no minimally sufficient 
statistic for αi in the NB2 model, so we are led to expect that the incidental parameters problem 
will surface in this setting.  It remains to be investigated how substantial the biases (if there are 
any) will be, however.  It seems unlikely that the simple proportional results widely known for 
the probit and logit models will carry over to this setting.  The FE approach produces a bit of a 
Hobson’s choice.  The HHG model does not actually build the heterogeneity into the mean of the 
random variable, so we might suspect that it suffers from an “omitted variable” problem.  The 
true fixed effects estimates differ enough from the HHG estimates in this very large sample that 
one might suspect the appearance of the incidental parameters problem. 
 The random effects estimates for the NB models also differ substantially.  In this case, 
however, there is no simple comparison one can draw.  There are fewer sign changes, however, 
the magnitudes and statistical significance are surprisingly variable for a sample as large as this 
one.  Once again, we suspect that the models differ in subtle, but significant structural ways.  We 
have no way of interpreting the parameters of the beta distribution in the HHG model that implies 
a decomposition of the variance of the heterogeneity.   For the lognormal model, we can 
decompose the variance as follows:  The variance of the log gamma term is ψ′(θ) = ψ′(1/1.0192) 
= 1.681.  The variance of the time invariant lognormal component is .79792 = .637.  The total is 
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thus 2.318.  A counterpart that does not assume that the lognormal component is time invariant 
appears in the second to last column of Table 4.  The same decomposition produces 
ψ′(.9043)=1.909 and .69612 = .485 for a nearly identical total of 2.394. 
 
7.  Conclusions 
 
This study has proposed several extensions to some familiar models for count data including: 
 
 1.  The NBP encompassing form for the negative binomial model; 
 2.  The lognormal model as an alternative to the log gamma model for unobserved 
      heterogeneity in count data models; 
 3.  Extensions of some conventional two part models to allow for endogeneity of the 
       participation decision in the first equation; 
 4.  A detailed interpretation of some applications of the bivariate Poisson model; 
 5.  Some alternative natural and convenient forms of the widely used forms of panel 
      data models for count data. 
 
We have also applied the techniques in an analysis of a large sample of German households. 
 The NBP variant of the negative binomial model is a convenient form that provides a 
means of formalizing the specification choice.  Most received applications of the model have used 
the NB2 form.  In a few other cases, such as HHG (1984), the NB1 model is used.  In none of the 
cases, does the presentation provide a formal means of preferring one or the other.  The NBP is an 
encompassing form that is simple to operationalize.  In the application here (and in others we have 
considered), likelihood ratio tests suggest that the NBP form would be preferred to both NB1 and 
NB2. 
 The negative binomial has been used for a generation as the standard vehicle for 
introducing unobserved heterogeneity into loglinear count data models.  The vast array of functional 
forms that appear in the literature, and the NB model itself, have largely been motivated by a desire 
to accommodate over or underdispersion.  In fact, the Poisson form is probably unique in its 
restriction of the random variable to equidispersion.  It is convenient, however, that the NB model 
also arises as a byproduct of the introduction of a particular form of latent heterogeneity – log 
gamma in distribution.  A number of authors, e.g., Winkelmann (2003), Million (1998), RWM 
(2003), Greene (2008a), have suggested that the normal distribution would be a preferable platform 
on which to build the model.  In addition to deriving from a natural assumption about the source of 
latent heterogeneity, a model based on the normal distribution provides a convenient setting in 
which to build useful extensions.  We developed the methods for accommodating this form of 
heterogeneity in the count data model – this follows earlier applications such as Greene (1997), 
Munkin and Trivedi (1999) and RWM (2003).  We then extended the lognormal model to several 
two part models, sample selection, zero inflation and hurdle models, to allow the participation to be 
endogenous.  The development provides a unified framework that will accommodate other similar 
models with minimal change in the basic template. 
 One of the recent applications of the methods extended in this paper is in a type of bivariate 
count model.  We found that in these models, the introduction of a “correlation coefficient” into the 
model within the conditional means provides only a partial indication of the degree of correlation 
between the outcome variables. We derived the relationship between the structural parameters and 
the reduced form correlation between the outcome variables in the bivariate Poisson model.  In the 
application carried out in this paper, we find that the estimated correlation coefficient is far higher 
than the actual correlation of the variables in the model.  Moreover, the implied correlation 
coefficient based on the model estimates, which is a function of the data and thus varies by 
observation, does a strikingly poor job of reproducing the actual, simple correlation of the outcome 
variables and, moreover, appears, on average in these data, to be a full order of magnitude less than 
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the simple reported correlation coefficient.  This calls into question the precise interpretation of this 
part of the model and whether this form of correlation is an effective approach to modeling the 
correlation across related count data outcome variables. 
 Finally, we examined some aspects of the most familiar forms of fixed and random effects 
models for count data.  As in the earlier models, we find that the lognormal distribution provides a 
natural method of introducing time invariant heterogeneity into the equation.  Likewise, we propose 
an alternative to the HHG fixed effects model.  In this case, the results leave a choice to be made, 
and a point for further research.  In the HHG fixed effects NB model, the fixed effects enter the 
model through the dispersion parameter rather than the conditional mean function. This has the 
implication that time invariant variables can coexist with the effects.  This calls the interpretation of 
the heterogeneity in the model into question.  We propose to apply the direct fixed effects approach 
suggested in Greene (2004) as an appropriate approach to introducing fixed effects into the NB 
model.  While the proposed approach does parallel the treatment of fixed effects in other received 
models, like many of them, the specification may also suffer from the incidental parameters 
problem.  In some specific cases, such as binary choice models, the MLE FE estimator has been 
found to exhibit a significant bias when T is small (as it is in our application).  However, the 
negative binomial model remains to be examined.  As shown in Greene (2004), not all estimators 
are biased away from zero, and some are (apparently) not biased at all.   On the other hand, the 
HHG model provides a sufficient statistic for the fixed effects, so the estimator in their model would 
not exhibit an “incidental parameters problem.”  Because the conditional mean function in the HHG 
model remains homogeneous, however, one might expect a “left out variable” problem instead. We 
cannot characterize at this point which specification is likely to be more problematic in terms of the 
features of the population one is interested in studying. This remains an issue to be studied further. 
 Finally, the methods developed here were applied to the data set used in RWM(2003).  Our 
results were largely similar to theirs.  We do find that on the question of moral hazard – whether the 
presence of insurance appears positively to influence demand for health services – the apparent 
effect that shows up in the simple models (e.g., a pooled Poisson model) almost completely 
disappears when latent heterogeneity is formally introduced into the model. 
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APPENDIX A: Log Likelihood and Gradient for NBP model 
 
 The Negbin P model is obtained by replacing θ in NB2, 
 

(A-1)  Prob(Y = yi|xi) =  ( ) (1 )
( ) (1 )

iyi
i i

i

y r r
y

θΓ θ +
−

Γ θ Γ +
 

where  ri =  θ / (θ + λi) 
 
with θλi

P-2..  For convenience, let Q = P – 2. Then, the density is 
 

(A-2)  Prob(Y = yi|xi) =  ( )
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Derivatives of lnLi for the Negbin P model are straightforward, albeit tedious.  We obtain them by 
writing the density as 
 
  lnLi  =  lnΓ(yi + gi) - lnΓ(gi) - lnΓ(1+yi) + gi lnri + yi ln(1-ri) 
(A-3) where  
  gi  =  θ λi

Q  and  wi = gi / (gi + λi). 
Then,  
  ∂lnLi / ∂λi   =  [Ψ( yi + gi) - Ψ(gi) + lnwi] ∂gi /∂λi + [gi /wi – yi /(1-wi)] ∂w i/∂λi 
(A-4)  ∂lnLi / ∂θ   =  [Ψ( yi + gi) - Ψ(gi) + lnwi] ∂gi /∂θ   + [gi /wi – yi /(1-wi)] ∂w i/∂θ 

  ∂lnLi / ∂Q   =  [Ψ( yi + gi) - Ψ(gi) + lnwi] ∂gi /∂Q + [gi /wi – yi /(1-wi)] ∂wi /∂Q. 
 
The inner parts are:   
 
  ∂gi / ∂λi  =  θQλi

Q-1 = (Q/λi)gi  
  ∂gi / ∂θ   =  λi

Q  =  (1/θ)gi 
  ∂gi/ ∂Q   =  θλi

Q logλi =  lnλi gi 
(A-5)  ∂wi / ∂λi   = [(Q-1)/λi]wi (1-wi) 
  ∂wi / ∂θ   =  (1/θ)wi (1-wi) 
  ∂wi / ∂Q   =  logλi wi (1-wi) 
 
Collecting terms, now, let   
 
(A-6)  Ai =  [Ψ( yi + gi) - Ψ(gi) + lnwi] 
  Bi  =  [gi (1 – wi) – yi wi], 

to obtain 
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. 

 
The final element needed is ∂lnLi/∂β = (∂lnLi/∂λi)(∂λi/∂β) where ∂lnLi/∂λi appears above and ∂λi/∂β 
= λixi.  We use these and the BHHH estimator to compute the maximum likelihood estimates and 
their asymptotic standard errors for the NBP model.  Good starting values for NBP iterative 
estimator are the NB2 estimates of β and θ with P=2 (Q = 0). 
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Appendix B  Derivatives of Partial Effects in the Poisson Model with Sample 
Selection 
 
The conditional mean function is 
 

(B-1)  E[yi|xi,wi,di = 1]  =  λi 
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For the variables in the count model, 
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For the variables in the selection equation, 
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Appendix C  Derivatives of Partial Effects of ZIP Model with Endogenous 
Zero Inflation. 
 
Let A(εi) = 
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These must be approximated either by quadrature or by simulation.  If ρ equals zero, then most of 
the preceding vanishes.  The conditional mean is =  λi ( ) 2exp( / 2)i′Φ σw δ and the partial effects are 
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Appendix D  Derivatives of Partial Effects in Hurdle Models 
 
We assume that the hurdle equation is a probit model.  Adaptation to a logit hurdle equation 
requires substitution of Λ(wi′δ) for Φ(wi′δ), {Λ(wi′δ)[1–Λ(wi′δ)]} for φ(wi′δ) and [1–
2Λ(wi′δ)]{Λ(wi′δ)[1-Λ(wi′δ)]} for –(wi′δ)φ(wi′δ)] in what follows.  The conditional mean is 
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The derivatives are cumbersome.  We proceed as follows:  Write 
 
  c(λi)  =  λi / [1 – exp(-λi)]. 
Then 
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Appendix E  Partial Effects and Derivatives of Partial Effects in Hurdle 
Models with Endogenous Participation 
 
The conditional mean is 
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and the partial effects are 
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Table 1.  Variables in German Health Care Data File 
Variable Measurement Mean Standard 

Deviation 
ID household identification, 1,...,7293   
YEAR calendar year of the observation 1987.82 3.17087 
YEAR1984 dummy variable for 1984 observation .141770 .348820 
YEAR1985 dummy variable for 1984 observation .138842 .345788 
YEAR1986 dummy variable for 1984 observation .138769 .345712 
YEAR1987 dummy variable for 1984 observation .134158 .340828 
YEAR1988 dummy variable for 1984 observation .164056 .370333 
YEAR1991 dummy variable for 1984 observation .158823 .365518 
YEAR1994 dummy variable for 1984 observation .123582 .329110 
AGE   age in years 43.5257 11.3302 
AGESQ** age saquared/1000 2.02286 1.00408 
FEMALE female = 1; male = 0 .478775 .499558 
MARRIED married = 1; else = 0 .758618 .427929 
HHKIDS children under age 16 in the household = 1; else = 0 .402730 .490456 
HHNINC*** household nominal monthly net income,  

German marks / 10000 
.352084 .176908 

EDUC years of schooling 11.3206 2.32489 
WORKING employed = 1; else = 0 .677048 .467613 
BLUEC blue collar employee = 1; else = 0 .243761 .429358 
WHITEC white collar employee = 1; else = 0 .299605 .458093 
SELF self employed = 1; else = 0 .0621752 .241478 
CIVIL civil servant = 1; else = 0 .0746908 .262897 
HAUPTS highest schooling degree is Hauptschul = 1; else = 0 .624277 .484318 
REALS highest schooling degree is Realschul = 1; else = 0 .196809 .397594 
FACHHS highest schooling degree is Polytechnical= 1; else = 0 .0408402 .197924 
ABITUR highest schooling degree is Abitur = 1; else = 0 .117031 .321464 
UNIV highest schooling degree is university = 1; else = 0 .0719461 .258403 
HSAT health satisfaction, 0 - 10 6.78543 2.29372 
NEWHSAT*,** health satisfaction, 0 - 10 6.78566 2.29373 
HANDDUM handicapped = 1; else = 0 .214015 .410028 
HANDPER degree of handicap in pct, 0 - 100 7.01229 19.2646 
DOCVIS number of doctor visits in last three months 3.18352 5.68969 
DOCTOR** 1 if DOCVIS > 0, 0 else 629108 .483052 
HOSPVIS number of hospital visits in last calendar year .138257 .884339 
HOSPITAL** 1 of HOSPVIS > 0, 0 else .0876455 .282784 
PUBLIC insured in public health insurance = 1; else = 0 .885713 .318165 
ADDON insured by add-on insurance = 1; else = 0 .0188099 .135856 
Data source: http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/.   
From Riphahn, R., A. Wambach and A. Million "Incentive Effects in the Demand for Health Care: A 
Bivariate Panel Count Data Estimation," Journal of Applied Econometrics, 18, 4, 2003, pp. 387-405. 
Notes: * NEWHSAT = HSAT; 40 observations on HSAT recorded between 6 and 7 were changed to 7. 
            ** Transformed variable not in raw data file. 
            *** Divided by 1,000 rather than 10,000 by RWM.  We used this scale to ease comparison of 
      coefficients. 
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 Table 2.  Descriptive Statistics by Gender 
Males Females  

Variable Mean Standard Dev. Mean Standard Dev. 
YEAR 1987.84 3.19003 1987.80 3.14985 
YEAR1984 .141613 .348665 .141940 .349002 
YEAR1985 .138875 .345828 .138806 .345757 
YEAR1986 .138173 .345094 .139418 .346395 
YEAR1987 .134171 .340848 .134144 .340820 
YEAR1988 .162396 .368826 .165864 .371973 
YEAR1991 .157551 .364332 .160208 .366813 
YEAR1994 .127220 .333231 .119621 .324530 
AGE   42.6526 11.2704 44.4760 11.3192 
AGESQ    1.94628 .987385 2.10623 1.01543 
FEMALE .000000 .000000 1.00000 .000000 
MARRIED .765148 .423921 .751510 .432154 
HHKIDS .412975 .492386 .391577 .488122 
HHNINC .359054 .173564 .344495 .180179 
EDUC 11.7287 2.43649 10.8764 2.10911 
WORKING .850312 .356777 .488420 .499885 
BLUEC .340237 .473805 .138730 .345677 
WHITEC .299937 .458246 .299243 .457944 
SELF .0856561 .279865 .0366124 .187815 
CIVIL .117812 .322397 .0277459 .164250 
HAUPTS .601137 .489682 .649469 .477155 
REALS .176086 .380907 .219369 .413835 
FACHHS .0536404 .225315 .0269051 .161812 
ABITUR .146949 .354068 .0844608 .278088 
UNIV .0961876 .294859 .0455553 .208527 
HSAT 6.92436 2.25148 6.63417 2.32951 
NEWHSAT 6.92459 2.25148 6.63441 2.32953 
HANDDUM .227295 .419007 .199559 .399538 
HANDPER 8.13371 20.3288 5.79143 17.9562 
DOCVIS 2.62571 5.21121 3.79080 6.11113 
DOCTOR .559503 .496464 .704884 .456112 
HOSPVIS .127782 .930209 .149660 .831416 
HOSPITAL .0779330 .268076 .0982191 .297622 
PUBLIC .861055 .345902 .912558 .282492 
ADDON .9175525 .131323 .0201789 .140617 
Sample Size 14,243 13,083 
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Table 3.  Poisson Models and Heterogeneity in Poisson (t ratios in parentheses) 

Males Females  
Variable Pooled 

Poisson Poisson Log 
gamma Lognormal Poisson Log 

gamma Lognormal 

Constant  2.639 
(39.46) 

2.771 
(28.85) 

3.1488 
(13.74) 

2.8079 
(11.26) 

2.546 
(28.54) 

3.0245 
(15.03) 

2.7556 
(12.47) 

AGE      -0.00732 
(-2.64) 

-0.02387
(-5.44) 

-0.03983
(-4.07) 

-0.05858 
(-5.51) 

-0.01320
(-3.64) 

-0.03119 
(-3.78) 

-0.04485 
(-4.90) 

AGESQ    0.1407   
(4.54) 

0.3693 
(7.45) 

0.5467 
(4.77) 

0.7853 
(6.45) 

0.1794 
(4.46) 

0.3727 
(4.02) 

0.5421 
(5.27) 

HSAT     -0.2149 
(-151.9) 

-0.2253 
(-104.1)

-0.2392 
(-42.44)

-0.2650 
(-50.93) 

-0.2034 
(-108.3)

-0.2080 
(-47.30) 

-0.2225 
(-46.54) 

HANDDUM 0.1011 
(8.71) 

0.06899 
(4.09) 

-0.02090
(-0.46) 

-0.01093 
(-0.23) 

0.1379 
(8.55) 

0.1133 
(2.79) 

0.1011 
(2.48) 

HANDPER 0.001992 
(10.73) 

0.002858
(10.04) 

0.006614
(8.05) 

0.007398 
(9.08) 

0.002414
(9.48) 

0.004359 
(5.92) 

0.004432 
(6.14) 

MARRIED 0.02058 
(2.32) 

0.05831 
(3.89) 

0.06582 
(2.18) 

0.1276 
(3.67) 

0.02718 
(2.39) 

0.02816 
(1.13) 

0.04590 
(1.63) 

EDUC     -0.01483 
(-7.96) 

-0.02348
(-8.43) 

-0.02623
(-4.59) 

-0.02297 
(-3.43) 

0.01473 
(5.65) 

0.007725 
(1.36) 

0.01318 
(2.09) 

HHNINC -0.1729 
(-7.27) 

-0.2220 
(-5.93) 

-0.1917 
(-2.48) 

-0.1257 
(-1.44) 

-0.2063 
(-6.53) 

-0.1624 
(-2.57) 

-0.1417 
(-1.92) 

HHKIDS   -0.1108 
(-12.86) 

-0.07598
(-5.75) 

-0.08440
(-3.32) 

-0.09013 
(-2.94) 

-0.1338 
(-11.63)

-0.1243 
(-4.91) 

-0.1360 
(-4.81) 

SELF     -0.2914 
(-16.18) 

-0.2110 
(-8.98) 

-0.2179 
(-5.02) 

-0.3590 
(-6.81) 

-0.2175 
(-7.47) 

-0.2424 
(-4.51) 

-0.2885 
(-4.55) 

CIVIL    -0.05026 
(-2.64) 

0.09144 
(3.78) 

0.08411 
(1.56) 

0.01916 
(0.32) 

-0.07113
(-1.91) 

-0.01982 
(-0.34) 

-0.03188 
(-0.39) 

BLUEC    -0.08920 
(-9.01) 

0.01779 
(1.24) 

.03706 
(1.20) 

-0.03137 
(-.93) 

-0.03543
(-2.38) 

-0.04010 
(-1.31) 

-0.09991 
(-2.81) 

WORKING -0.07478 
(-7.62) 

-0.05539
(-3.17) 

-0.01545
(-0.38) 

0.03119 
(0.78) 

0.01490 
(1.29) 

0.03046 
(1.23) 

0.03851 
(1.38) 

PUBLIC   0.1145 
(7.32) 

0.1001 
(4.27) 

.09340 
(1.83) 

0.05150 
(0.91) 

0.1312 
(6.22) 

0.09530 
(2.44) 

0.08076 
(1.72) 

ADDON    0.06084 
(2.39) 

0.06655 
(1.63) 

0.05506 
(0.50) 

0.1954 
(1.81) 

0.02071 
(0.63) 

0.03088 
(0.32) 

0.1175 
(1.25) 

θ   0.5707 
(59.96) 

  0.8289 
(64.44) 

 

κ     1.7522 
(59.96) 

    1.2064 
(64.44) 

  

σ(ε)     1.9874 
(72.19) 

1.2520 
(104.61) 

  1.4757 
(84.33) 

1.0608 
(114.80) 

σ(h)   1.3237 
(119.92)

4.2651 
(29.49) 

 1.1.0984 
(128.89) 

2.5325 
(41.13) 

ln L -89641.2 -42774.7 -27480.4 -27408.6 -45900.2 -30262.3 -30214.7 
n 27326 14243 13083 
Notes: Estimated coefficients for year dummy variables, excluding year 1984, are not reported. 
 θ = the estimated parameter for the log gamma (NB) model 
 κ = 1/θ = Var[h] for log gamma model.  
 σ(ε) = ( )′ψ θ  = Var(lnhi) for the log gamma model.  Estimated directly for the lognormal model. 

 σ(h) = κ  for the log gamma model, 2 2exp [exp 1]( ) ( )σ σ −  for the lognormal model.
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Table 4.  Specifications for the Negative Binomial Model (t ratios in parentheses) 

Variable Poisson NB 1 NB 2 NB P NB 
lognormal 

Heterogeneous
NB 

Constant 2.771 
(28.85) 

2.7760 
(14.06) 

3.1488 
(13.74) 

3.0500 
(13.14) 

3.1751 
(12.0) 

3.1446 
(13.72) 

AGE      -0.02387 
(-5.44) 

-.04768 
(-5.61) 

-0.03983
(-4.07) 

-.04679 
(-4.76) 

-.05635 
(-4.86) 

-.04018 
(-4.08) 

AGESQ    0.3693 
(7.45) 

.6340 
(6.58) 

0.5467 
(4.77) 

0.6373 
(5.66) 

.7600 
(5.62) 

.5507 
(4.79) 

HSAT     -0.2253 
(-104.1) 

-.1886 
(-44.58) 

-0.2392 
(-42.44)

-.2279 
(-46.17) 

-.2558 
(-39.16) 

-.2396 
(-42.30) 

HANDDUM 0.06899 
(4.09) 

.02292 
(0.67) 

-0.02090
(-0.46) 

.01660 
(0.41) 

-.01128 
(-0.21) 

-.02042 
(-0.44) 

HANDPER 0.002858 
(10.04) 

.004141 
(7.33) 

0.006614
(8.05) 

.005031 
(7.30) 

.006995 
(7.22) 

.006631 
(7.93) 

MARRIED 0.05831 
(3.89) 

.1299 
(4.50) 

0.06582 
(2.18) 

.1139 
(3.55) 

.1054 
(2.83) 

.06592 
(2.17) 

EDUC -0.02348 
(-8.43) 

-.009550 
(-1.80) 

-0.02623
(-4.59) 

-.01794 
(-2.86) 

-.02083 
(-3.06) 

-.02595 
(-4.46) 

HHNINC     -0.2220 
(-5.93) 

-.07878 
(-1.13) 

-0.1917 
(-2.48) 

-.1462 
(-1.78) 

-.1470 
(-1.63) 

-.1673 
(-2.30) 

HHKIDS   -0.07598 
(-5.75) 

-.07435 
(-2.95) 

-0.08440
(-3.32) 

-.08672 
(-3.10) 

-.08395 
(-2.58) 

-.08219 
(-3.23) 

SELF     -0.2110 
(-8.98) 

-.2439 
(-5.56) 

-0.2179 
(-5.02) 

-.2628 
(-5.42) 

-.2887 
(-5.38) 

-.2130 
(-4.92) 

CIVIL    0.09144 
(3.78) 

.02782 
(0.60) 

0.08411 
(1.56) 

.05148 
(0.93) 

.04781 
(0.79) 

.08376 
(1.58) 

BLUEC    0.01779 
(1.24) 

-.009478 
(-0.35) 

.03706 
(1.20) 

.005597 
(0.17) 

.01142 
(0.32) 

.04093 
(1.32) 

WORKING -0.05539 
(-3.17) 

.01258 
(0.37) 

-0.01545
(-0.38) 

-.001046 
(-0.20) 

.02404 
(.50) 

-.01888 
(-0.46) 

PUBLIC   0.1001 
(4.27) 

.06067 
(1.38) 

.09340 
(1.83) 

.07823 
(1.50) 

.06632 
(1.16) 

.09601 
(1.91) 

ADDON    0.06655 
(1.63) 

.1393 
(1.72) 

0.05506 
(0.50) 

.1363 
 (1.34) 

.1250 
(1.07) 

.05276 
(0.48) 

θ  0.2058 
(62.08) 

0.5707 
(59.96) 

0.3460 
(36.47) 

0.9043 
(18.17) 

0.5112 
(11.61) 

κ 0.0000 
(fixed) 

4.8598 
(62.08) 

1.7522 
(59.96) 

2.8905  
(36.47) 

1.1058 
(18.17) 

1.9562 
(11.61) 

P 0.0000 
(fixed) 

1.0000 
(fixed) 

2.0000 
(fixed) 

1.4897 
(64.96) 

2.0000 
(fixed) 

2.0000 
(fixed) 

σ(ε) 0.0000 
(fixed) 

0.0000 
(fixed) 

0.0000 
(fixed) 

0.0000 
(fixed) 

0.6961 
(19.39) 

0.0000 
(fixed) 

HHNINC 0.0000 
(fixed) 

0.0000 
(fixed) 

0.0000 
(fixed) 

0.0000 
(fixed) 

0.0000 
(fixed) 

-.3388 
(-3.24) 

EDUC 0.0000 
(fixed) 

0.0000 
(fixed) 

0.0000 
(fixed) 

0.0000 
(fixed) 

0.0000 
(fixed) 

.000540 
(0.071) 

ln L -42774.7 -27410.0 -27480.4 -27306.1 -27357.8 -27475.7 

Notes: Estimated coefficients for year dummy variables, excluding year 1984, are not reported. 
 θ = the estimated parameter for the log gamma (NB) model 
 κ = 1/θ = Var[h] for log gamma model.  
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Table 5  Estimated Sample Selection Model, Males  

ρ=0  -  No Selection Sample Selection Variable 
Probit - PUBLIC Poisson - DOCVIS Probit - PUBLIC Poisson - DOCVIS 

Constant 3.1416  (11.24) 2.7833   (10.77) 3.1465   (11.24) 2.8533   (10.01) 

AGE       -.06454  (-5.67)  -.06691  (-5.73) 

AGESQ      .8689    (6.62)   .8974    (6.65) 

HSAT      -.2548  (-44.51)  -.2565  (-45.15) 

HANDDUM  .07328  (1.06)  .006177   (.12)  .07362   (1.06)  .008152   (.16) 

HANDPER -.0000  (-.001)  .007824  (9.28)  .0000   (-.001)  .007792  (9.24) 

MARRIED -.01347  (-.31)  .06478   (1.80) -.01353   (-.33)  .06610   (1.83) 

EDUC -.1808  (-7.39)  -.01501   (1.91) -.1813   (-7.09) -.01681  (-1.58) 

HHNINC     -1.024 (-11.94) -.08076   (-.85) -1.025  (-14.41) -.08917   (-.85) 

HHKIDS    .06995  (1.85) -.02862   (-.89)  .07007   (1.88) -.03045   (-.95) 

SELF      -.3116   (-5.54)  -.3264   (-5.11) 

CIVIL      .02953    (.38)   .01633    (.19) 

BLUEC      .006345   (.18)  -.005491  (-.13) 

WORKING   .03976    (.90)   .05594   (1.15) 

YEAR1985  .04480   (.75)  .07375   (1.53)  .04418    (.73)  .07153   (1.49) 

YEAR1986 -.01027  (-.17)  .1704    (3.52) -.01094   (-.18)  .1694    (3.51) 

YEAR1987 -.08772 (-1.14)  .07857   (1.38) -.08815  (-1.14)  .07343   (1.30) 

YEAR1988 -.06434 (-1.15)  .09794   (2.02) -.06476  (-1.15)  .09290   (1.93) 

YEAR1991 -.03130  (-.55)  .1077    (2.06) -.03161   (-.56)  .1015    (1.95) 

YEAR1994  .05901   (.98)  .3428    (6.52)  .05850    (.96)  .3397    (6.48) 

AGE3034 -.2211  (-4.06)  -.2208   (-4.00)  

AGE3539 -.3089  (-6.02)  -.3089    (-6.0)  

AGE4044  .5164   (9.96)   .5160   (10.08)  

AGE4549 -.1473  (-2.73)  -.1468   (-2.78)  

AGE5054  .2120   (3.55)   .2113    (3.43)  

AGE5559  .4462   (6.53)   .4463    (6.23)  

AGE60UP  .5531   (7.25)   .5532    (7.04)  

HAUPTS    .3631   (3.36)   .3635    (3.51)  

REALS    -.3657  (-3.21)  -.3646   (-3.24)  

FACHHS    .1456    (.95)   .1476     (.94)  

ABITUR    .06202   (.40)   .06490    (.40)  

UNIV      .03097   (.31)   .03274    (.31)  

WHITEC   1.1305  (27.83)  1.1307   (30.23)  

σ     1.2377   (99.92)  1.2394   (97.08) 

ρ 0.0000   (fixed) .02246  (.23) 

ln L -4294.89 -24044.20 -28339.01 

n 14243 12264 14243 12264 
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Table 6  Estimated Sample Selection Model, Females (t ratios in parentheses) 

ρ=0  -  No Selection Sample Selection Variable 
Probit - PUBLIC Poisson - DOCVIS Probit - PUBLIC Poisson - DOCVIS 

Constant 3.0642  (11.76) 2.5493   (11.52) 3.0694   (11.40) 2.1856    (9.51) 

AGE       -.04117  (-4.37)  -.03866  (-4.07) 

AGESQ      .5218    (4.93)   .4857    (4.56) 

HSAT      -.2215  (-45.51)  -.2197  (-43.31) 

HANDDUM  .1104   (1.19)  .1001    (2.48)  .07195    (.85)  .1205    (2.43) 

HANDPER  .003088 (1.97)  .004725  (6.64)  .0032745 (2.32)  .004808  (5.93) 

MARRIED  .003124  (.95)  .05571   (1.91) -.0027795 (-.06)  .03836   (1.28) 

EDUC -.1678  (-7.38)  .02748   (3.91) -.1593   (-7.02)  .06077   (7.47) 

HHNINC     -1.183  (-12.9) -.1607   (-2.08) -1.1620 (-15.00)  .08070    (.97) 

HHKIDS    .08852  (1.95) -.1306   (-4.44)  .08804   (1.89) -.1255   (-4.23) 

SELF      -.3444   (-4.78)  -.2340   (-3.14) 

CIVIL      .2667    (1.58)   .4428    (2.80) 

BLUEC     -.09816  (-2.73)   .03352    (.90) 

WORKING   .04561   (1.61)   -.05897 (-1.88) 

YEAR1985 -.00536  (-.07) -.0279    (2.19)  .007422   (.11) -.03663   (-.86) 

YEAR1986 -.00267  (-.04)  .09287   (.028) -.005941  (-.09)  .1289    (3.08) 

YEAR1987 -.1215  (-1.21) -.03763   (-.79) -.08333   (-.89) -.08684  (-1.54) 

YEAR1988 -.0909  (-1.42) -.1467   (-3.46) -.09197  (-1.43) -.1391   (-3.18) 

YEAR1991  .03407   (.51) -.06931  (-1.54)  .01679    (.26) -.06926  (-1.51) 

YEAR1994  .1665   (2.28)  .2642    (5.86)  .1555    (2.16)  .2202    (4.76) 

AGE3034 -.1565  (-2.27)  -.1604   (-2.35)  

AGE3539 -.1581  (-2.49)  -.1642   (-2.57)  

AGE4044  .1901   (3.00)   .1809    (2.81)  

AGE4549 -.1017  (-1.56)  -.08129  (-1.24)  

AGE5054  .06098   (.89)   .07611   (1.14)  

AGE5559  .1323   (1.83)   .1231    (1.72)  

AGE60UP  .1221   (1.68)   .1095    (1.47)  

HAUPTS    .4737   (3.89)   .3792    (3.21)  

REALS     .2016   (1.56)   .1203     (.98)  

FACHHS    .4686   (2.66)   .3346    (1.97)  

ABITUR    .4092   (2.38)   .2705    (1.64)  

UNIV     -.1886   (1.70)  -.2206    (2.00)  

WHITEC    .9482  (18.99)   .9087   (18.98)  

σ    1.0560  (109.96)  1.0993   (84.92) 

ρ 0.0000 (fixed) -.5339 (-8.87) 

ln L -3099.5 -27833.5 -30927.7 

n 13083 11939 13083 11939 
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Table 7  Estimated Zero Inflated Poisson Model, Males (t ratios in parentheses)  

No Zero Inflation Zero Inflated Poisson (No Heterogeneity) Variable 
Probit – Zero State Poisson - DOCVIS Probit – Zero State Poisson - DOCVIS 

Constant  2.771    (28.85) -.01432   (-.07) 2.5722   (57.10) 

AGE       -.02387  (-5.44)  -.005731 (-3.21) 

AGESQ      .3693    (7.45)   .1285    (6.34) 

HSAT      -.2253  (-104.1)  -.1564 (-186.94) 

HANDDUM   .06899   (4.09)  .1274    (3.58)  .07641  (12.53) 

HANDPER   .00286  (10.04) -.01374 (-15.65)  .00081   (8.34) 

MARRIED   .05831   (3.89) -.1228   (-3.79) -.01578  (-2.71) 

EDUC  -.02348  (-8.43) -.01112   (-.65) -.01896 (-14.04) 

HHNINC      -.2220   (-5.93) -.06780   (-.92) -.2240  (-14.07) 

HHKIDS    -.07598  (-5.75)  .07732   (2.67) -.03190  (-6.19) 

SELF      -.2110   (-8.98)  -.1084  (-10.49) 

CIVIL      .09144   (3.78)   .1111   (10.16) 

BLUEC      .01779   (1.24)   .04336   (7.21) 

WORKING  -.05539  (-3.17)  -.05992  (-9.02) 

PUBLIC   .1001    (4.27)   .07612   (7.07) 

ADDON   .06655   (1.63)  -.07040  (-3.67) 

YEAR1985  2.7719   (28.85)   .09084  (11.58) 

YEAR1986  -.02387  (-5.44)   .1840   (23.93) 

YEAR1987   .3693    (7.45)   .1150   (14.64) 

YEAR1988  -.2253  (-104.1)   .00065    (.08) 

YEAR1991   .06899   (4.09)  -.1058  (-12.99) 

YEAR1994   .00286  (10.04)   .1810   (22.07) 

AGE3034    .02866    (.69)  

AGE3539    .06424   (1.58)  

AGE4044   -.1434   (-3.45)  

AGE4549    .1521    (3.47)  

AGE5054   -.1562   (-3.47)  

AGE5559   -.1864   (-3.93)  

AGE60UP   -.3261   (-5.89)  

HAUPTS      .06593    (.79)  

REALS       .07693    (.85)  

FACHHS      .1143     (.95)  

ABITUR      .2539    (2.10)  

UNIV        .01076    (.13)  

WHITEC     -.005596  (-.21)  

σ       0.0000  (fixed) 

ρ  (0.0000)  (fixed) 

ln L -42774.7 -35757.0 

n 14243 14243 

Voung Stat. 0.00 28.83 
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Table 8  Estimated Zero Inflated Poisson Models with Latent Heterogeneity, Males  
(t ratios in parentheses)  

Exogenous Zero Inflation Endogenous Zero Inflation  Variable 
Probit – Zero State Poisson - DOCVIS Probit – Zero State Poisson - DOCVIS 

Constant -.3218   (-.95) 2.4564    (8.83) -.3015    (-.93) 2.5220    (8.74) 

AGE       -.02405  (-2.02)  -.02436  (-1.96) 

AGESQ      .3650    (2.67)   .36660   (2.56) 

HSAT      -.2310  (-41.48)  -.2312  (-39.85) 

HANDDUM  .3784   (5.02)  .03262    (.72)  .3933    (5.12)  .03832    (.82) 

HANDPER -.02667 (-6.36)  .002292  (2.98) -.02830  (-6.36)  .001453  (1.43) 

MARRIED -.2088  (-3.29)  .005705   (.14) -.1916   (-3.03)  .007373   (.17) 

EDUC -.02912  (-.96) -.01201  (-1.52) -.02994  (-1.03) -.01053  (-1.26) 

HHNINC     -.2411  (-1.51) -.2310   (-2.39) -.2410   (-1.53) -.2498   (-2.46) 

HHKIDS    .1193   (2.05) -.02546   (-.72)  .1105    (1.92) -.02517   (-.65) 

SELF      -.2350   (-4.22)  -.2474   (-4.33) 

CIVIL      .07712   (1.23)   .06009    (.94) 

BLUEC      .04352   (1.13)   .04617   (1.15) 

WORKING  -.05616  (-1.21)  -.04573   (-.94) 

PUBLIC   .06828   (1.21)   .04932    (.88) 

ADDON   .05530    (.52)   .05892    (.56) 

YEAR1985   .1125    (2.41)   .1237    (2.67) 

YEAR1986   .2171    (4.67)   .2198    (4.73) 

YEAR1987   .2142    (4.06)   .2299    (4.26) 

YEAR1988   .05805   (1.26)   .06311   (1.37) 

YEAR1991   .02592    (.53)   .02908    (.59) 

YEAR1994   .3226    (6.43)   .3189    (6.21) 

AGE3034  .05143   (.71)   .05491    (.80)  

AGE3539  .1164   (1.70)  .1168     (1.76)  

AGE4044 -.2525  (-3.57)  -.2409   (-3.43)  

AGE4549  .1770   (2.47)   .1735    (2.51)  

AGE5054 -.2060  (-2.49)  -.1892   (-2.41)  

AGE5559 -.1555  (-1.79)  -.1464   (-1.75)  

AGE60UP -.4165  (-3.29)  -.3874   (-3.19)  

HAUPTS    .1363    (.83)   .1045     (.68)  

REALS     .1287    (.73)   .1034     (.63)  

FACHHS    .2027    (.91)   .1796     (.86)  

ABITUR    .4061   (1.84)   .3680    (1.76)  

UNIV      .07217   (.51)   .09214    (.69)  

WHITEC   -.03377  (-.63)  -.02770   (-.52)  

σ     .9875   (70.08)   .9902   (66.31) 

ρ 0.0000 (fixed) .1540 (.14) 

ln L -27183.9 -27183.1 

n 14243 14243 

Vuong Stat. 24.16 24.17 
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Table 9.  Single Equations Estimates of Bivariate Poisson Models 

Males Females Variable 
DocVis HospVis DocVis HospVis 

Constant 2.95829046 -.71769354 2.65970461 -.92395935 

AGE      -.06039694 -.01495334 -.03467601 -.04182897 

AGESQ     .81046943  .17526254  .40417087  .32800832 

HSAT     -.26979714 -.28467610 -.22492822 -.21283211 

HANDDUM -.10360835 -.15938867  .14118341  .04898526 

HANDPER  .00811821  .00687895  .00436759  .01053000 

MARRIED  .06801734 -.11266046  .09394893 -.03039990 

EDUC -.02141476 -.05611756  .00669951 -.02245035 

HHNINC     -.09317739  .28561716 -.10306991  .45290684 

HHKIDS   -.05833037  .06532961 -.18274059  .02830548 

SELF     -.27162867 -.07241379 -.27422854 -.12053254 

CIVIL     .03028441 -.15292197 -.00966680  .16538415 

BLUEC    -.05264588  .19299252 -.09417967 -.31982329 

WORKING  .00747418 -.29732586  .01608792  .01324764 

PUBLIC    .04537642 -.25102523  .08274879  .07493233 

ADDON     .15634672  .61629605  .11353610  .28858560 

YEAR1984  .00000000  .00000000  .00000000  .00000000 

YEAR1985  .01555697  .38790097 -.02109554  .18039499 

YEAR1986  .14371463 -.03957923  .11756445  .28653104 

YEAR1987  .16606851  .06845882 -.10021643  .12299139 

YEAR1988  .04018257 -.05038515 -.16888748  .43457292 

YEAR1991  .02525603 -.06140680 -.06445527  .44076348 

YEAR1994  .28195404  .07614490  .26471138  .13759322 

σ 1.23777937 1.78190925 1.04809696 1.47269236 

σ2 1.53209777 3.17228488 1.09850724 2.16882279 

σε  .96737031 1.28460990  .79772504 1.00736894 

ωu  .77219975 1.23371888  .67981026 1.07425817 

ρDW 0.276 0.201 

Average Correlation 0.06938 0.05795 

Sample Corr(Doc,Hosp) 0.1477 0.1255 
RWM Reported Results 

σ(εit)  0.996  1.244  0.822  1.053 

ω(ui)  0.795  1.195  0.701  1.123 

σ2(εit)  0.992  1.548  0.676  1.109 

ω2(ui)  0.632  1.428  0.491  1.261 

p=σ2(εit)/[ σ2(εit)+ ω2(ui)]  0.6108  0.5202  0.5793  0.4679 

τ=[σ2(εit)+ ω2(ui)]1/2  1.274  1.725  1.080  1.540 

ρDH 0.276 0.201 

ρ 0.490 0.386 
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Table 10.  RWM Estimated Bivariate Poisson Models 

Males Females Variable 
DocVis HospVis DocVis HospVis 

Constant  2.563 -0.206  2.423 -1.567 

AGE      -0.060 -0.077 -0.040 -0.032 

AGESQ     0.823  0.942  0.499  0.234 

HSAT     -0.237 -0.243 -0.191 -0.196 

HANDDUM -0.029 -0.086  0.063  0.039 

HANDPER  0.007  0.008  0.004  0.010 

MARRIED  0.085 -0.054  0.009 -0.044 

EDUC -0.022 -0.051  0.014 -0.015 

HHNINC     -0.090  0.375 -0.107  0.407 

HHKIDS   -0.059  0.103 -0.117  0.073 

SELF     -0.356 -0.196 -0.256 -0.117 

CIVIL    -0.011 -0.086 -0.069  0.281 

BLUEC    -0.029  0.173 -0.034 -0.320 

WORKING  0.041 -0.026  0.002 -0.014 

PUBLIC    0.075 -0.136  0.058  0.246 

ADDON     0.090  0.549  0.096  0.219 

σ  (εit)  0.996  1.244  0.822  1.053 

ω  (ui)  0.795  1.195  0.701  1.123 

ρ 0.490 0.386 
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Table 11  Estimated Panel Data Poisson Models, Males  (t ratios in parentheses)  

Fixed Effects Random Effects  Variable 
No Effects Unconditional FE log gamma (NB) lognormal 

Constant 2.639   (39.46)  2.6369   (24.56)  2.0775  (19.39) 

AGE      -.00732 (-2.64)  .0008051  (.06) -.02950  (-7.56) -.02694  (-6.96) 

AGESQ     .1407   (4.54)  .4797    (4.42)  .4883   (10.94)  .5003   (11.39) 

HSAT     -.2149  (-51.9) -.1682  (-50.59) -.1808 (-160.17) -.1828 (-161.27) 

HANDDUM  .1011   (8.71)  .003135   (.17) -.001932  (-.24)  .000159   (.02) 

HANDPER  .001992(10.73)  .0000     (.01)  .001630  (7.68)  .001198  (5.81) 

MARRIED  .02058  (2.32) -.01136   (-.34) -.01282  (-1.22)  .03822   (3.55) 

EDUC -.01483 (-7.96) -.06482  (-3.02) -.03379  (-5.85) -.03474  (-5.95) 

HHNINC     -.1729  (-7.27) -.1786   (-2.72) -.1759   (-6.16) -.2058   (-7.04) 

HHKIDS   -.1108 (-12.86)  .04577   (1.95)  .007354   (.86) -.01688  (-1.87) 

SELF     -.2914 (-16.18) -.03933   (-.71) -.1372   (-7.39) -.1517   (-8.38) 

CIVIL    -.05026 (-2.64) -.1375   (-2.01) -.01156   (-.45) -.01119   (-.43) 

BLUEC    -.08920 (-9.01) -.06725  (-2.18) -.03458  (-2.63) -.04332  (-3.34) 

WORKING -.07478 (-7.62)  .03806   (1.23)  .004875   (.37) -.001994  (-.16) 

PUBLIC  .1145   (7.32)  .1044    (2.30)  .1057    (5.53)  .1109    (5.80) 

ADDON  .06084  (2.39) -.04068   (-.73) -.03437  (-1.19) -.0343   (-1.21) 

YEAR1985 2.639   (39.46)  .05690   (2.37)  .08268   (8.87)  .08383   (8.95) 

YEAR1986 -.00732 (-2.64)  .1063    (3.53)  .1622   (18.82)  .1618   (18.86) 

YEAR1987  .1407   (4.54)  .04392   (1.11)  .1145   (11.32)  .1109   (10.64) 

YEAR1988 -.2149 (-151.9) -.09314  (-1.94)  .01033   (1.00)  .002153   (.20) 

YEAR1991  .1011   (8.71) -.2429   (-3.10) -.05520  (-4.22) -.07157  (-5.64) 

YEAR1994  .001992(10.73) -.06790   (-.62)  .1985   (12.53)  .1713   (11.17) 

κ      .9879   (38.57)  

σ    1.0051   (91.11) 

ln L -42774.74 -21696.56 -32850.59 -32897.37 

N 3687 (714 unusable in FE) 3687 

Σi Ti 14243 14243 
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Table 12  Estimated Panel Data Negative Binomial Models, Males  (t ratios in parentheses)  

Fixed Effects Random Effects  Variable 
HHG Unconditional FE HHG lognormal 

Constant 1.2571   (4.04)  1.8500    (8.79) 2.8711    (9.85) 

AGE      -.06890 (-5.23) -.01465   (-.55) -.06123  (-6.54) -.04729  (-3.64) 

AGESQ     .9328   (6.23)  .6122    (2.95)  .8085    (7.51)  .6677    (4.41) 

HSAT     -.1461 (-26.53) -.1858  (-27.74) -.1839  (-42.07) -.2287  (-37.96) 

HANDDUM -.02760  (-.74) -.02142   (-.54) -.01461   (-.43) -.02789   (-.59) 

HANDPER  .003961 (4.74)  .002916  (2.40)  .004813  (7.52)  .006229  (5.92) 

MARRIED  .04188   (.97) -.01870   (-.30)  .1158    (3.84)  .07753   (1.92) 

EDUC  .04176  (4.09) -.07045  (-2.02) -.004814  (-.85) -.02949  (-3.45) 

HHNINC     -.006220 (-.07) -.08619   (-.75) -.04278   (-.59) -.1071   (-1.15) 

HHKIDS    .02149   (.63)  .03225    (.74) -.05129  (-1.98) -.05727  (-1.65) 

SELF     -.2327  (-3.66) -.3279   (-3.25) -.2792   (-6.31) -.3388   (-5.40) 

CIVIL    -.09470 (-1.33) -.3001   (-2.46)  .002865   (.06) -.007380  (-.11) 

BLUEC    -.1222  (-3.12) -.1035   (-1.76) -.05024  (-1.76) -.02313   (-.55) 

WORKING  .1358   (2.91)  .1051    (1.74)  .05998   (1.64)  .02431    (.48) 

PUBLIC  .01414   (.22)  .07094    (.91)  .06681   (1.46)  .06861   (1.10) 

ADDON  .1136   (1.06) -.005359  (-.05)  .1273    (1.45)  .03729    (.32) 

YEAR1985  .06908  (1.61)  .09386   (2.12)  .06592   (1.64)  .1147    (2.62) 

YEAR1986  .1312   (3.15)  .1551    (2.84)  .1379    (3.57)  .2103    (4.87) 

YEAR1987  .1025   (2.24)  .07871   (1.10)  .09462   (2.29)  .1335    (2.52) 

YEAR1988  .06409  (1.55) -.001798  (-.02)  .07583   (2.02)  .09372   (2.22) 

YEAR1991  .06162  (1.41) -.1119    (-.83)  .09586   (2.47)  .05652   (1.23) 

YEAR1994  .2230   (4.83)  .07991    (.43)  .2544   (6.54)  .3137    (6.47) 

κ   1.8131   (41.31)  1.0192   (50.76) 

σ     .7979   (34.31) 

a   3.1782 (21.53)  

b   6.2577 (17.94)  

ln L -15690.87 -23000.24 -26824.63 -26881.20 

N 3687 (714 have Σtyit = 0) 3687 

Σi Ti 14243 14243 
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  Figure 1   Group Sizes in RWM Panel Data 
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Figure 2   Histograms for DocVis 
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Figure 3   Histograms for HospVis 
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Figure 4  Predictions from ZIP and Poisson Models and Actual DocVis 
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