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Abstract

We explore how optimal information choices change the predictions of strategic models.
When a large number of agents play a game with strategic complementarity, information choices
exhibit complementarity as well: If an agent wants to do what others do, they want to know
what others know. This makes heterogeneous beliefs difficult to sustain and may generate mul-
tiple equilibria. In models with substitutability, agents prefer to differentiate their information
choices. We use these theoretical results to examine the role of information choice in recent
price-setting models and to propose modeling techniques that ensure equilibrium uniqueness.
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Recent work in many fields, including nominal price adjustment, asset pricing, financial crises,

political economy or competition in networks, shows that equilibrium outcomes, welfare and deter-

minacy all depend on what information agents can observe.1 In most of these models, the infor-

mation that agents are endowed with is exogenous. It usually represents a guess by the economist

about what information is available. In practice, the information people observe depends both on

its availability and on their choice of what to learn.

We ask what agents choose to observe when information is costly, and how these information

choices change the equilibrium outcomes. Comparing games with and without information acqui-

sition, we highlight one similarity and one difference. Our main result focuses on the similarity:

When agents choose how much information to acquire before choosing strategic actions, the in-

formation choice inherits the same strategic motives as the actions. Agents who want to do what

others do want to know what others know. Decision complementarities in the underlying game

produce coordination motives in information acquisition. The converse is also true. Agents who

want to do what others do not, want information others do not know. The difference is that

complementarity in information acquisition can cause the number of equilibria to change. Adding

information choice can resurrect multiple equilibria, even if the exogenous information model has

one equilibrium. Whether the equilibrium is unique depends on the public or private nature of the

information agents can acquire.

To explore strategic settings, we use a version of Morris and Shin’s (2002) static ‘beauty contest’

game (section 1). In a beauty contest, agents’ payoffs depend on how closely their action matches

an unknown target that depends on an exogenous state and other agents’ actions. This game has

been used to describe many strategic settings with incomplete information, including: financial

markets, investment decisions, or price adjustment with monopolistic competition. We add an

initial stage, in which agents can improve the quality of their information, at a cost.

It is well-known that common information helps agents to coordinate. Our main result goes

beyond this existing intuition in two ways. First, when actions are complements, information
1Among many other papers, see Mankiw and Reis (2002), Woodford (2002), Lorenzoni (2006) or Zeira (1999) for

models of price adjustment and business cycles. See Veronesi (1999), Bikhchandani, Hirshleifer, and Welch (1992),
Caplin and Leahy (1994), Morris and Shin (1998), Goldstein and Pauzner (2005), Angeletos and Werning (2006), or
Hellwig, Mukherji, and Tsyvinski (2005) for models of financial crises. See Farrell and Klemperer (2007), Stromberg
(2001), or Edmond (2005) for models of network competition and political economy.
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acquisition is complementary, even if that information is a private signal, conditionally independent

from all other signals. Second, one might think that agents whose actions are substitutes would still

want to know what others know, to better take the opposite action. This is not the case; agents

want to know what others do not. Section 1.2 shows that the strategic motives in information

acquisition come from the effects that others’ information choices have on the covariance between

the unobserved state and the aggregate action. When others are well-informed, aggregate actions

covary highly with the state. If actions are complements, this covariance makes learning about

the true state even more valuable because it reveals information about others’ actions. But when

actions are substitutes, the aggregate actions and the state have offsetting effects on a firm’s optimal

decision: Knowing the value of the state is high encourages a high action, while knowing that others

will choose high actions encourages a low action. Thus, the optimal action varies less across states,

when others are informed. If the state matters less for decisions, knowing the state becomes less

valuable. In short, information loses value when other firms observe it.

Section 1.3 shows that complementarity in actions, combined with investment in potentially

public information, is a new source of multiple equilibria: If an agent purchases one more bit

of potentially common information than any other agent, this bit remains private, and its value

is the marginal value of private information. But if the agent considers not purchasing a bit of

information that is observed by all others, its value is the marginal value of public information.

This discontinuity in marginal value arises because potentially public information only has the

value of public information when others choose to observe it. The result is that when actions

are complementary, agents want to observe additional information, only if others do so as well.

Equilibrium public information choice is indeterminate, even though the same model, with any of

the feasible information choices exogenously imposed, would have a unique equilibrium.

For applied theorists who want to formulate a model with coordination motives and information

choice and who want a unique prediction from that model, the solution lies in private information.

When agents invest only in conditionally independent, private signals, complementarity is weak.

The result is a unique equilibrium. While endowing agents with heterogeneous information guaran-

tees an unique equilibrium in Morris and Shin (2002), the game with information choice imposes an

additional requirement for equilibrium uniqueness: The information agents choose to acquire must
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also be private. Unfortunately, a small amount of private noise added to agents’ chosen signals will

not suffice. For the equilibrium to be unique, signal noise across agents must be independent. But

such an independence assumption should be well-founded because it is stringent and it ultimately

determines the model’s predictions.

Section 2 uses the theoretical results from the preceding section to critically examine recent

price-setting models with information choice. Woodford (2002) and Mankiw and Reis (2002) add

exogenous information heterogeneity and price-setting complementarity to get bigger real effects

from a demand shock in a setting like that of Lucas (1972). Sims (2003), Moscarini (2004) and Reis

(2006) model information choice, but neglect its strategic nature. Following Reis (2006), we analyze

monopolistically competitive firms who adjust prices every period, but update their information

infrequently. In each period, firms choose whether or not to pay a cost to“plan.” A firm that plans

observes all shocks and prices realized since it last planned.

Because competitive monopolists have a coordination motive when setting prices, they also have

a coordination motive in choosing when to plan. Planning complementarity changes the predictions

of the exogenous information and non-strategic learning models. Firms acquire less information

about demand because other firms are imperfectly informed. When all firms know less about

demand, average prices covary less with it. This price-demand covariance is the inverse of price

stickiness. Thus planning complementarity plays an important role in generating a realistic amount

of price stickiness, which is what the price-setting models are designed to explain.

Complementarity is both a blessing and a curse. Planning complementarity creates two prob-

lems that follow from the two main results we establish in section 1. First, because firms choose a

date at which to plan, they may synchronize their information acquisition by planning all on the

same date. This result is the dynamic analog to the static result that all firms want to observe

the same signals. Synchronized planning fundamentally alters the price response to a monetary

shock. Instead of the gradual price adjustment predicted by the non-strategic models, synchronized-

planning prices do not react at all, until they jump from the burst of new information. Second,

multiple equilibria can arise because of the public nature of price-relevant information (section 2.3).

Multiplicity makes the rate of price adjustment, crucial for monetary policy analysis, indetermi-

nate. Section 2.4 offers a solution; requiring the information price-setters acquire to be private
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can deliver a unique equilibrium. One micro-founded theory that justifies such an assumption is

rational inattention (Sims 2003). Agents with limited channel capacity always observe signals that

are the true state, plus independent noise.

These results provide a way to evaluate information assumptions made in a variety of strategic

settings. In settings with substitutability, such as financial investment, agents have a strong incen-

tive to differentiate their information. Markets with common knowledge, usually studied in finance,

are unlikely to arise. In models with complementarities, such as monopolistic price-setting, agents

want to acquire the same information. Heterogeneous beliefs are difficult to sustain endogenously.

In price-setting models, this effect creates the paradox that the pricing complementarity needed to

slow down price adjustment also makes differences in information and a gradual adjustment of the

aggregate price level difficult to sustain.

1 A Beauty Contest Model with Information Choice

We convey our main intuition using a beauty contest game (as in Morris and Shin (2002)). Agents

are rewarded for taking actions close to two values: the value of the true state and the average

action of other agents.2 Agents choose how precise a signal to purchase about the true state, before

they play this game. When other firms are poorly informed, signals reveal mostly just information

about the state. When others are well-informed, signals are informative about aggregate actions

as well. The results also illustrate how information choices can affect macroeconomic outcomes.

When agents learn more, aggregate actions become more volatile, and more correlated with the

true state. By quadratically approximating objectives, we can map many models into this linear-

quadratic framework. Section 2 is an example of such an approximation.

1.1 Model description

In stage one, nature draws the state variable s and a series of signals about s. Agents choose which

of these signals to observe. In stage two, agents observe their chosen signals and pick an optimal
2Other variants of the beauty contest game have been used by Allen, Morris, and Shin (2006) to study asset pricing,

by Froot, Scharfstein, and Stein (1992) to study the incentives of financial analysts, and by Angeletos and Pavan
(2007a), Hellwig (2006) and Cornand and Heinemann (2007) to study the welfare effects of information provision.
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action. Agents choose actions simultaneously. We’ll call this action, setting the price p. The results

generalize to a range of strategic actions in a quadratic loss setting.

A measure one continuum of agents, indexed by i ∈ [0, 1] choose a price pi ∈ R to minimize

the squared distance between their price and an unknown target price p∗. The target price has a

component that depends on an unknown state s and a component that depends on the aggregate

price: p̄ =
∫

pidi:

u (pi, p̄, s) = − 1
(1− r)2

(pi − p∗)2 where p∗ = (1− r) s + rp̄. (1)

If s is common knowledge, the best response is pi = (1− r) s + rp̄, and pi = p̄ = s constitutes the

unique equilibrium. The coefficient r < 1 measures the complementarity/substitutability of agents’

decisions. If r > 0, decisions are complementary: Best responses are increasing in the prices set by

other agents. if r < 0, decisions are strategic substitutes. A higher r means more complementarity.

The normalization by (1− r)2 is for pure notational convenience. We will use lower-case variables

in regular type face for scalars, boldface lower-case for vectors, and capital letters for matrices.

Information choices Nature selects a state s ∼ N (0, 1). In addition, nature selects a k × 1

vector of common signal noises u ∼ N (0, Ik), which are independent of the state s. Finally, for

each agent, nature selects an l× 1 vector of idiosyncratic signal noises vi, which are independently

and identically distributed across agents, with distribution vi ∼ N (0, Il), and are independent of

s and u.

These shocks generate an n× 1 vector of potentially observable signals zi:

zi = 1n·s + Au + Bvi

1n is an n× 1 vector of ones and A and B are arbitrary (n× k) and (n× l) matrices of coefficients.

The matrix [A B] has row rank n, so that no subset of signals in zi can fully reveal s.

This formulation imposes as little restriction as necessary on the possible information structure.

In particular, by setting either A or B equal to zero, we can allow for special cases where all signals

are either purely private, i.e. with noise independent across agents, or common. We also allow for
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an arbitrary structure of correlation across agents and/or signals.

Agents choose to observe a subset of the signal vector zi. Formally, their information choice

consists of a vector χi comprised of zeros and ones, such that χi
j = 1 means that agent i observes

the jth entry of zi. The information choice χi comes from a compact feasible set Υ ⊆ {0, 1}n. The

agent’s cost of information is determined by a function C (χ), which is increasing in χ. For each

χ, we construct a corresponding m× n matrix X of zeros and ones. The number of rows m is the

number of ones in χ. If the jth entry of χ is 1, then there is a row of X that is all zeros, except

for a one in the jth position. When setting prices, the agent’s information set Ii consists of his

information choice χi and the vector of signals he observes Xzi.

Equilibrium A Bayesian Nash Equilibrium is defined as a probability distribution µ over the

feasible set of information choices Υ, and a decision rule p
(Ii

)
, such that: (i) given the distribution

µ, the decision rule p
(Ii

)
solves p

(Ii
)

= (1− r) Ei (s)+rEi (p̄), and (ii) the distribution µ assigns

positive measure only to arg maxχ∈Υ

(
E0

[
u

(
p

(Ii
)
, p̄, s

)]− C (χ)
)
.

Agents update their beliefs about the state, using these observed signals, according to Bayes’

Law. E0 (·) denotes agents’ expectations prior to observing any signals, while Ei (·) denotes an

agent’s posterior expectations, conditional on Ii.

We focus on symmetric Nash equilibria, in which all agents follow the same (possibly mixed)

strategy in stage one. Agents’ information decisions will turn out to depend only on second moments

of the distributions of s and p̄. Since these second moments are not affected by signal realizations,

and are common knowledge in the model, information strategies will be common knowledge as well.

Ranking information choices When signals with different amounts of public and private infor-

mation are available, it is not obvious which signal sets are more informative than others. Therefore,

we define rankings of individual and aggregate information choices. The results use the following

two definitions to describe how an agent’s information choice changes when there is “more infor-

mation acquisition”.

Definition 1 For any χ, χ′ ∈ Υ, χ is at least as informative as χ′, if and only if χ − χ′ ≥ 0,

entry-by-entry.

6



Definition 2 For any µ, µ′ ∈ ∆(Υ), the information choice distribution µ generates more aggre-

gate information acquisition than µ′, if and only if µ first-order stochastically dominates µ′.

Thus, information choice χ is at least as informative as χ′, if every signal that an agent observes

under χ′ is also observed under χ. The second definition naturally extends this ranking of individual

information choices to aggregate distributions over information choices.

1.2 Results: the value of information

Expectations and actions in stage 2 are conditioned on the agent’s information sets. Agent i’s

information set includes the prior distribution of s (common knowledge), the stage 1 information

choice, and the realization of the acquired signals. We can solve the model by backwards induction:

For any given distribution of information choices µ, we characterize equilibrium strategies in stage

2, and use this to determine expected payoffs in stage 1. The results link the strategic motives in

information acquisition to the strategic motives in actions.

1.2.1 Bayesian Updating

We begin by computing posterior beliefs, conditional on an information choice and signal realiza-

tions. We define a k + 1× 1 vector of variables ω =
[

s u′
]′

. This is the relevant state variable

because agents want to forecast the true state s and the average action, which depends on common

signal noise u. The state ω, and signals Xzi are jointly normally distributed. Thus, conditional on

observing Ii, ω is normally distributed with posterior mean and variance-covariance matrix

E
(
ω|Ii

)
= Cov(ω,Xzi)′ V ar(Xzi)−1 Xzi (2)

Σ (χ) := V ar(ω|Ii) = V ar(ω)− Cov(ω, Xzi)′ V ar(Xzi)−1 Cov(ω, Xzi). (3)

This follows from standard formulas for the conditional distribution of normal variables. Appendix

A derives these conditional moments and shows that V ar(ω) = Ik+1, V ar(Xzi) = XΓΓ′X ′, where

Γ =
[

1n A B

]
, and Cov(ω,Xzi) = [1m, XA].

For any probability distribution µ ∈ ∆(Υ) of the information choices made by all agents in the
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economy, we also define the average posterior variance-covariance matrix of ω: Σ̄ (µ) =
∫

Σ(χ) dµ,

where integration is done entry-by-entry. This is a measure of the average level of uncertainty

agents are facing.

The next lemma relates our ranking of information choices to the posterior variance-covariance

matrices Σ and Σ̄. The proofs of this and all further results are in appendix A.

Lemma 1 (i) For any χ,χ′ ∈ Υ, if information choice χ is more informative than χ′, then Σ(χ′)−
Σ(χ) is positive semi-definite.

(ii) For any µ, µ′ ∈ ∆(Υ), if µ generates more aggregate information acquisition than µ′, then

Σ̄ (µ′)− Σ̄ (µ) is positive semi-definite.

If χ is more informative than χ′, the posterior beliefs about ω conditioned on χ have lower

variance than those conditioned on χ′. Since Σ (χ) corresponds to the mean squared forecast error,

a more informative choice therefore leads to more accurate forecasts on average and to higher

expected utility. Likewise, if a probability distribution µ ∈ ∆(Υ) of the information choices made

by all agents leads to more aggregate information acquisition than an alternative distribution µ′,

then the average posterior beliefs are on average more accurate under µ, than under µ′. This result

is useful because Σ (χ) and Σ̄ (µ) will show up in expected utility. The result tells us that these

two terms are sufficient to capture the effects of individual and aggregate information acquisition.

The converse of lemma 1 only holds in special cases (for example, when all signals are inde-

pendent of each other, but positively correlated across agents). In general it is possible for some

information choice χ to generate a smaller variance-covariance matrix than χ′, even though some

signals are observed under χ′ that are not observed under χ.

1.2.2 Optimal pricing strategies

Solving by backwards induction means that we first solve the equilibrium in the price-setting game

conditional on a given distribution of information choices, before solving the information choice

problem. We conjecture that the following is the equilibrium price function and then verify that

conjecture by showing that it satisfies the first-order condition. A separate technical appendix on
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the authors’ websites shows that this equilibrium is unique.3

p
(Ii

)
= (1− r)b′

∞∑

k=0

rkEi
(
Ē(k) (ω)

)
(4)

where b′ = [ 1 0 . . . 0 ], and the average expectations operator is Ē(k) (·) = ĒĒ(k−1) (·), such that

Ē(0) (ω) = ω, and Ē (ω) =
∫

Ei (ω) di. Averaging (2) across all i and using the fact that the vi’s

have mean zero reveals that the average expectation of ω is Ē (ω) =
[
I − Σ̄ (µ)

]
ω. Iterating on

this equation tells us that Ē(k) (ω) =
[
I − Σ̄ (µ)

]k
ω. After substituting this expression into (4) and

taking the limit of the infinite sum, the optimal pricing rule is

p
(Ii

)
= (1− r)b′

[
(1− r)I + rΣ̄(µ)

]−1
Ei (ω) (5)

where Ei (ω) is given by (2).4 Averaging (5) and substituting in the formula for Ē (ω) yields the

average price p̄ = (1− r)b′
[
(1− r)I + rΣ̄(µ)

]−1 (I − Σ̄(µ))ω. The resulting target price is p∗ =

(1− r)b′
[
(1− r)I + rΣ̄(µ)

]−1
ω. Substituting p(Ii), and p∗ into (1) and taking an expectation

delivers expected utility:

EU(χ, µ) ≡ Ei (u (pi, p̄, s)) = −b′
[
(1− r)I + rΣ̄(µ)

]−1 Σ(χ)
[
(1− r)I + rΣ̄(µ)

]−1 b (6)

A linear function of more posterior variance Σ decreases utility. In other words, more uncertainty

makes agents less happy.

1.2.3 Strategic incentives in information choice

Our main result is that with decision complementarities, the value of information increases as there

is more information acquisition; the opposite is true when decisions are strategic substitutes.

3See appendix A for derivations of the expressions that follow. The argument that (4) is the unique equilibrium
originally appeared in Morris and Shin (2002). However, Dewan and Myatt (2007) and Angeletos and Pavan (2007a)
pointed out gaps in their original proof, and Angeletos and Pavan (2007b) propose an alternative proof for uniqueness.
The separate appendix simplifies and adapts their argument to our model.

4Strictly speaking, equation (4) is well-defined only if r ∈ (−1, 1). Equation (6), however remains well-defined for
r ≤ −1, and continues to constitute a solution to the agent’s optimality condition, and hence an equilibrium.
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Proposition 1 Main Result: Suppose that χ is more informative than χ′, and µ leads to more

information acquisition than µ′. Then

If there is no strategic interaction (r = 0), the value of additional information is independent

of the other agents’ information choices: EU (χ, µ)− EU (χ′, µ) = EU (χ, µ′)−EU (χ′, µ′).

If decisions are complementary (r > 0), the value of additional information is increasing in the

information acquisition of other agents: EU (χ, µ)− EU (χ′, µ) > EU (χ, µ′)−EU (χ′, µ′).

If decisions are substitutes (r < 0), the value of additional information is decreasing in the

information acquisition of other agents: EU (χ, µ)− EU (χ′, µ) < EU (χ, µ′)−EU (χ′, µ′).

When r > 0, acquiring information is a complement, regardless of whether it is public or private

information. One might have imagined that complementarity only raises the value of public infor-

mation. However, even when agents invest in private signals, more investment in information leads

to a stronger covariance of prices with fundamentals, which in turn raises the value of information,

if and only if decisions are complementary.

Thus the reason for the strategic motives in information acquisition comes from the covariance

of the average prices with the state. As more agents become informed, their beliefs are closer to the

truth and their prices are more reflective of the true state. For all r < 1, the covariance of prices

with the state is decreasing in Σ̄ and thus increasing in the amount of aggregate information:

cov(p̄, s|χ) = (1− r)b′[(I − Σ̄(µ))−1 − rI]−1Σ(χ)b. (7)

When prices are complements (r ∈ (0, 1)), each firm’s target price p∗ = (1 − r)s + rp̄ puts

positive weight on the state and the average price. When aggregate information (Σ̄) increases, the

higher covariance of prices and the state makes the variance of p∗ rise: var(p∗) = (1− r)2var(s) +

r2var(p̄) + 2r(1− r)cov(p̄, s). A more variable target price is a more uncertain target price. More

uncertainty makes information more valuable. Conversely, when prices are strategic substitutes,

the state and the average sign enter in the target price with opposite signs. Since r(1−r) < 0, more

covariance reduces the target price variance. This lowers the value of information. In summary,

more aggregate information acquisition amplifies the agents’ uncertainty about the target price

when prices are complements and reduces uncertainty when prices are substitutes. This is why in
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the strategic motives in information acquisition mirror the strategic motives in price-setting.

This general theory of information acquisition underlies well-known results in other fields. For

example, in Grossman and Stiglitz (1980), investment is a strategic substitute: Investors prefer

purchasing assets that others don’t want, because these assets have low prices. Similarly, actions are

also substitutes in Cournot markets (Vives 1988) and winner-take-all forecasting contests (Ottaviani

and Sorensen 2006). Each paper finds that information is a strategic substitute as well: the more

information other agents purchase, the lower its value. Chamley (2006), Bullard, Evans, and

Honkapohja (2007) and Froot, Scharfstein, and Stein (1992) construct a ‘beauty contest’ asset

market, where investment is a strategic complement. They find that investors want to learn what

other investors know. Our results explain why these results differ and how they can be extended

to a broader class of settings: arbitrary combinations of public and private information, within a

linear-quadratic model.

1.3 Multiple Equilibria

Adding information choice to games with strategic complementarity raises a new problem - multiple

equilibria reappear in settings where the price-setting equilibrium would be unique. Two features

of the information choice sets can produce multiple equilibria: discreteness and the choice over

public or correlated information. This section shows that when either is present, multiple equilibria

emerge.

1.3.1 Discreteness in Information Choice

Discreteness in information choice coupled with complementarity creates multiple equilibria. This

result is not surprising because the same logic applies in games with discrete actions. We briefly

present the result because it contrasts with the multiple equilibria generated by public information

in the next section.

Agents decide whether to observe more or less information. Their choice set Υ contains χ and

a less informative, less costly choice χ′. This is equivalent to endowing every agent with the signals

corresponding to the positive entries of the vector χ′, and allowing them to purchase at a cost

C > 0 the additional signals corresponding to the positive entries of the vector χ− χ′.
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If r ∈ (0, 1), there exist multiple equilibria. Let µ ∈ [0, 1] denote the fraction of agents observing

χ. µ = 0 is an equilibrium if EU (χ, 0) − EU (χ′, 0) ≤ C, while µ = 1 is an equilibrium if

EU (χ, 1)−EU (χ′, 1) ≥ C. Proposition 1 says that this difference in marginal utilities is increasing

in µ if and only if r > 0. Thus, when r > 0, there is a set of information costs C that satisfy both

conditions and therefore generate multiple equilibria (µ = 0, µ = 1 and a symmetric mixed strategy

equilibrium), only when prices are complements. If instead prices are substitutes, proposition 1

tells us that the value of additional information is monotonically decreasing in µ. Therefore, for

each cost C there exists either a pure strategy equilibrium (µ = 0 or 1) or a unique mixed strategy

equilibrium µ ∈ (0, 1) such that EU (χ, µ)−EU (χ′, µ) = C.

1.3.2 A model of near-continuous information choice

To examine the effects of public or correlated signals, we consider the following special case of our

model. Let k = l = n, A = γδ−1/2In and B =
√

1− γ2δ−1/2In. This means that for a given

agent, all signals are independent of each other; across agents, each signal contains a common

noise component and a private noise component. The overall precision of any signal is δ and the

correlation in the signal noise between any two agents is γ2. We further suppose that the cost of

acquiring any m signals is C (mδ), where C (·) is differentiable, increasing and convex. We focus

on the limiting case when δ → 0 and n → ∞, so that the total number of signals becomes large,

but the information content of any given signal vanishingly small.

This formulation embeds as special cases the case where all signals are potentially common

(γ = 1), when signals are purely private (γ = 0) and any intermediate correlation.

Proposition 2 When information is near-continuous (δ → 0), an information choice χ is sus-

tainable as a symmetric pure-strategy equilibrium, if and only if the total signal precision φ = δχ′χ

satisfies
1

(1− rγ2 + (1− r) φ)2
≥ C ′ (φ) ≥

(
1− rγ2

)2

(1− rγ2 + (1− r) φ)2
.

On the left side of the inequality is the marginal value of the last signal acquired, which is

observed by all other agents. On the rights side is the marginal value of the next signal, which is

not observed by others. If the marginal value of information is continuous, the left and right sides
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of the inequality are equal. This means that there is only one equilibrium C ′(φ) and thus a unique

equilibrium level of signal precision. If the marginal value of information is discontinuous and there

is an interval where the marginal value of private information is below the marginal cost, but the

marginal value of public information is above it, multiple equilibria arise: It is optimal to acquire

another bit of information if others do so as well.

Multiple equilibria arise in two ways: in the choice of which signals to observe and in the

precision of the information acquired. The proposition bounds signal precision only. But many

combinations of signals deliver the same precision. When information is private, every set of signals

generates identical covariances with all aggregate variables, so this multiplicity is inconsequential.

But when information is public or correlated, agents may decide to learn about variable a, in which

case p will be correlated with a. Or they could learn about b, in which case p will be correlated

with b. If a and b are macro aggregates, the information choice will determine their covariance with

average actions. Multiple equilibria in signal precision is the topic we turn to next.

Multiple public/correlated information equilibria In price-setting games without informa-

tion choice, endowing agents with heterogeneous information and eliminating discreteness in their

choice sets is enough to guarantee unique outcomes. But when agents can choose to observe infor-

mation that is potentially public or observe signals with correlated signal noise, multiple equilibria

re-emerge. The existence of multiple equilibria follows directly from proposition 2. When informa-

tion is public or correlated (γ ∈ (0, 1]), the left and right sides of the inequality differ by the factor

1/(1 − rγ2)2. When r > 0, 1 >
(
1− rγ2

)2 and the left side is greater than the right. This means

that there is a set of signal precisions φ, whose cost is in the interval between the left and right

side values, each of which is sustainable as an equilibrium.

One example of potentially public information is a newspaper. Imagine that each agent gets

the same newspaper and chooses which pages of that paper to read. An additional page of the

newspaper is only public information if other agents choose to read it. When r > 0, public and

private information have different marginal values; the marginal value of an additional page is

discretely higher when that page is read by all other agents. This discontinuity creates multiple

equilibria.
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Furthermore, unlike in Morris and Shin (1998), adding some information heterogeneity to agents’

prior beliefs or to their signals will not unravel multiple equilibria. If firms observe signals with

(imperfectly) correlated errors, then when they set the wrong prices, those prices will at least be

similar and firms will benefit from being coordinated. Therefore, the marginal value of signals that

are correlated with the ones others observe is strictly higher than the marginal value of additional

information. The lower the correlation, the smaller the drop in the marginal value of extra signals

that others do not observe, and the smaller the set of multiple equilibria (see figure 1). As a practical

matter, a small degree of correlation is not very problematic because all of the information choices

in the equilibrium set have almost identical precisions. The Morris and Shin (1998) refinement does

not apply because signal heterogeneity affects beliefs about the level of s and p̄. But information

demand depends only on the variance and covariance of s and p̄, which are common knowledge.
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Figure 1: Choosing correlated information produces multiple equilibria. As the degree of correlation
falls, the equilibrium set shrinks.

When prices are substitutes r < 0, there is no symmetric pure strategy equilibrium in informa-

tion acquisition: When r < 0, no φz will satisfy the proposition’s inequality. The discontinuity in

the marginal value of information still generates a non-convexity. This non-convexity gives agents

an incentive to invest in bits of information that other agents have not invested in. This is the same

force that causes identical investors to acquire different information and thus hold different assets

in Van Nieuwerburgh and Veldkamp (2007). The result also explains why information sharing is

never optimal among Cournot competitors whose goods are substitutes, but is optimal for Bertrand

competitors whose prices are complements (Vives 1984, 1988).
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Equilibrium Uniqueness: Choosing Private Signals Even in models with complementarity

and information choice, multiple equilibria can be avoided. When agents choose the precision

of private information, the equilibrium is unique. To see this result for symmetric pure-strategy

equilibria, note that if γ = 0 in proposition 2, then the left and right sides of the inequality are

equal. This pins down a unique value for the marginal cost of information C ′ (φ). Since the cost

function is assumed to be convex, there is a one-to-one mapping between marginal costs and number

of signals. While proposition 2 suggests uniqueness of a pure strategy equilibrium, appendix A.5

generalizes this result by ruling out mixed or asymmetric equilibria.

One example of this type of information is the research of market analysts. Image an analyst

choosing how large a research department to form. One research department’s findings are uncor-

related with other departments’ because researchers each discover independent signals about the

truth. But with more researchers, the department’s information will be more precise. Regardless of

whether prices are complements or substitutes, when agents choose the precision of such a private

signal from a continuous interval of potential precisions, there is a unique equilibrium.
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Figure 2: Public information choice (panels 1-2) produces multiple equilibria. The private infor-
mation equilibrium (panel 3) is unique. In all three cases, prices are complements (r > 0). But the
price-setting game alone would have a unique equilibrium.

Figure 2 illustrates how the private information choice model, where the marginal value of

information is continuous, differs from the public information choice model where the marginal

value of information falls discretely once an agent has observed more information than others

have. Taken together, these results tell us that multiplicity is a robust phenomenon when agents
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play a coordination game with information choice. Simply adding private noise will not overturn

the results. While restricting agents to choose information from menus of private signals with

independent errors does guarantee uniqueness, it is a strong restriction.

2 Dynamic Information Choice in Price-Setting Models

While section 1 was about establishing our main results and showing why they were true, this

section argues that our results are of practical relevance in price-setting models. Complementarity

in price-setting creates complementarity in information acquisition, which helps create price rigidity.

But the combination of complementarity and potentially public information also creates multiple

equilibria. While our previous results tell us that uniqueness can be restored with private signals,

section 2.4 details two ways this solution can be incorporated in models of price-setting.

Our results contribute to a long-standing debate in the dynamic price-setting literature (Ball

and Romer 1989): Should firms who adjust prices infrequently synchronize or stagger their price-

setting? Only staggered price setting delivers the gradual response of aggregate price to monetary

shocks observed in the data. Yet, the coordination motive in price-setting that many models employ

to slow price adjustment also creates incentives to synchronize price-setting. A new generation of

models, starting with Mankiw and Reis (2002), use information acquisition to slow price adjustment

but ignore the strategic nature of information choice. By considering strategic information choice,

we show that the coordination motive re-emerges, and with it, synchronized information acquisition.

Of course, there are mechanisms that can sustain staggered price setting equilibria (Bhaskar 2002).

Costly information models could use the same mechanisms to ensure staggered planning. But

information choice, by itself, does not avoid the strategic problems that arise in standard price-

setting models.

The model, based on Reis (2006), is a dynamic version of the section 1 model. It builds on

standard New Keynesian models. In order to focus on information choices, we analyze a simplified

approximation to this micro-founded framework. In the underlying model, there is a continuum of

monopolistically competitive firms, each producing a single intermediate good. These intermediates

are bought by a representative household that combines them into a single final consumption good,
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using a CES technology with constant returns to scale. Intermediate firms continuously adjust

the prices for their intermediate goods, based on the information they have about the underlying

monetary shocks. The one non-standard piece of the model is that firms decide whether to pay a

fixed cost to acquire information (“to plan”). Intermediate goods trade at pre-announced prices

and labor inputs adjust to satisfy the resulting demand. All other market prices adjust to clear

markets. Pricing complementarities in the intermediate sector result either from decreasing returns,

or from equilibrium effects on wages and interest rates.

In the online technical appendix, we approximate this underlying model. To do this, we solve for

aggregate allocations and market-clearing prices and wages as a function of the posted intermediate

prices and the exogenous nominal shocks. Then, we determine the intermediate firm’s payoffs,

given their own price pi, the aggregate price p, and the state of aggregate demand s. The objective

function we use below is a quadratic approximation of firms’ payoffs. This objective turns out to

be similar to the one derived by Ball and Romer (1990) for a model with costly price adjustment.

2.1 The model

Time is continuous and infinite. There is a measure 1 continuum of firms. Each firm i’s objective

is to minimize the loss function

E0

{∫ ∞

0
e−ρt (pi (t)− p∗ (t))2 dt + C

∫ ∞

0
e−ρtdDi (t)

}
, (8)

where pi (t) denotes firm i’s (log-)price at instant t, Di (t) is the process determining the dates at

which the firm acquires information (plans): dDi (t) = 1 if the firm chooses to plan at instant t

and dDi (t) = 0 otherwise; p∗ (t) is an unknown, stochastic target price process that a firm with

full information would set; ρ > 0 is the firms’ discount rate, and C > 0 is the cost of planning.

Following the New Keynesian models of monopolistic competition, the target price is

p∗ (t) = (1− r) s (t) + rp (t) (9)

where s (t) is the log of nominal demand at date t, s (t) − p (t) is the log of real demand, p (t) =
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∫ 1
0 pi (t) di is the average price, and r < 1 is a coefficient indicating the degree of strategic comple-

mentarity or “real rigidity” in price setting. For simplicity, we assume that demand is exogenous:

s (t) = σZ (t), where σ > 0 and Z (t) is a standard Brownian motion.

Information Choices If firm i last planned at date τ̂ , it enters date t with an information set

Ii,t = Iτ̂ = {Z (t′) : t′ ≤ τ̂}, i.e. the firm knows the path of Z up to and including date τ̂ . If this

firm plans in the current date (dDi (t) = 1), its new information set contains all demand realizations

prior to the current date: Ii,t+dt = It = {Z (t′) : t′ ≤ t}.5 If the firm does not plan (dDi (t) = 0),

its information set remains unchanged: Ii,t+dt = Ii,t = Iτ̂ ; it does not observe any new information

about the state, including endogenous variables like the aggregate price level. This information

structure comes from Reis (2006). It keeps the model tractable because the firm’s last planning

date pins down its information set. The idea is that firms can always observe these prices, but

using them to infer demand or to re-compute their own optimal price requires a planning cost.

At any date t, the economy is characterized by the cross-sectional distribution of the firms’

last planning dates; Λt (τ̂) ∈ [0, 1] denotes the fraction of firms who last planned prior to date

τ̂ . Then 1 − Λt (τ̂) is the fraction of firms who know all the demand realizations up to date τ̂ :

{Z (t′)}t′≤τ̂ . Let dΛt (τ̂) be the fraction (or density) of firms who last planned exactly on date τ̂

and let Dt (τ̂) ∈ [0, 1] be the probability that a firm who last planned at date τ̂ will plan in period

t.

The evolution of Λt (τ̂) can be characterized recursively. The fraction of firms who will have

planned since τ̂ at t+dt is the fraction who planned between τ and t, plus the firms that last planned

at any date before τ̂ and now choose to plan at date t: Λt+dt (τ̂) = Λt (τ̂)− ∫ τ̂
−∞Dt (τ) dΛt (τ), for

τ̂ ≤ t, with Λt (t) = 1.

Equilibrium An equilibrium is a process of prices and planning choices by every firm i, {pi (t) , Di (t)},
that are Ii,t-measurable and maximize (8), taking as given the choices of all other firms.

5This assumption implies that information acquired at date t can not be used simultaneously for pricing decisions,
or equivalently, at each instant, prices are set before planning choices are made.
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Prices and Indirect Utility Next, we characterize average price and target price processes, and

expected losses, for arbitrary planning choices. At date t, a firm that last planned at date τ̂ sets its

price equal to its expected target price at time t: pi (t) = E (p∗ (t) |Iτ̂ ) = (1− r) E (s (t) |Iτ̂ ) +

rE (p (t) |Iτ̂ ). The average price is the average of the firms’ expected target prices: p (t) =
∫ t
−∞E (p∗ (t) |Iτ̂ ) dΛt (τ̂). Lemma 1 expresses this as a function of the demand shocks Z.

Lemma 2 In equilibrium, p∗ (t) and p (t) are characterized by

p∗ (t) = σ

∫ t

−∞

1− r

1− r + rΛt (τ)
dZ (τ) and p (t) = σ

∫ t

−∞

(1− Λt (τ)) (1− r)
1− r + rΛt (τ)

dZ (τ) .

Since the expected value of unobserved demand innovations is 0, the expected target price is the

target price integrated over all the known demand realizations. For an agents whose known demand

realizations end at date τ̂ , this price is E (p∗ (t) |Iτ̂ ) = σ
∫ τ̂
−∞ (1− r) / (1− r + rΛt (τ)) dZ (τ). It is

the price firm i chooses, pi(t).

From equation (9), we know that date-t instantaneous expected loss is E (pi(t)− p∗(t)|Iτ̂ )
2.

The difference between pi(t) and p∗(t) depends on the demand shocks realized in between the date

τ̂ when the firm last planned and t: pi(t) − p∗(t) = σ
∫ t
τ̂ (1 − r)/(1 − r + rΛt (τ))dZ (τ). Since the

variance of Z (τ) is 1 per unit time, the variance of the difference in prices is the coefficient squared:

L (t, τ̂) = σ2

∫ t

τ̂

(
1− r

1− r + rΛt (τ)

)2

dτ. (10)

We can use the instantaneous expected loss to construct a Bellman equation that characterizes

the lifetime expected loss of a firm that plans in the current period τ̂ and optimally chooses its

next planning date τ̂ ′:

L (τ̂) = min
τ̂ ′≥τ̂

{∫ τ̂ ′

τ̂
e−ρ(t−τ̂)L (t, τ̂) dt + e−ρ(τ̂ ′−τ̂)

[
C + L (

τ̂ ′
)]

}
. (11)

The longer it has been since a firm has last planned, the stronger are its incentives to plan at the

current date. An equilibrium is thus characterized by a threshold date τ∗ (t), such that firms who

have not planned since date τ∗ (t) find it strictly optimal to plan at date t, while firms that have
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find not planning strictly optimal.

2.2 Complementarity in Information Choice

When prices are complements, (r > 0), there is a complementarity in planning. When prices are

strategic substitutes (r < 0), the converse is true. This general principle in static models (propo-

sition 1) re-appears in dynamic price-setting. Planning complementarity is important because it

generates delays in price adjustment, which price-setting models are designed to explain.

To see where the planning complementarity arises, consider firms’ per-period loss from not

planning (10). The more firms are aware of the demand innovations that have occurred since

the firm last planned, the higher is the per-period loss of not being aware of these innovations:

∂L (t, τ̂) /∂(1 − Λt (τ)) > 0; this holds for all planning dates τ ∈ (τ̂ , t], if and only if prices are

complementary (r > 0). This is the complementarity in planning decisions: the more recently

other firms have planned, the higher is the cost to a firm of not planning in the current period.

To illustrate the effects of planning complementarity on price-setting, we next consider one

equilibrium of this planning game, which has been the focus of previous work (Reis 2006). In this

equilibrium, planning decisions are staggered, meaning that all firms plan after a fixed duration T ,

and over each interval of length dt, a fraction T−1dt of firms plan. This means that if τ < t − T ,

then Λt (τ) = 0, but if t − T < τ ≤ t, Λt (τ) = 1 − (t− τ) /T . Therefore, a firm who last planned

at date τ̂ has an instantaneous expect loss

L (t, τ̂) =





σ2
∫ t
τ̂

(
1−r

1−r(t−τ)/T

)2
dτ if τ̂ > t− T

σ2
∫ t
t−T

(
1−r

1−r(t−τ)/T

)2
dτ + σ2 (t− T − τ̂) if τ̂ < t− T

(12)

Using (12), we can solve the firm’s Bellman equation to determine when it is optimal to plan and

characterize the equilibrium planning horizon T .

Proposition 3 A Staggered Planning Equilibrium: There is a unique staggered planning

equilibrium. The equilibrium planning horizon T is defined by C = σ2 (1− r) T 2
∫ 1
0 e−ρTθ 1−θ

1−rθdθ .

More complementarity (higher r) lengthens the equilibrium planning horizon T .

The pricing complementarity generates delays in price adjustment through two channels: First,
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because many other firms have prices based on old information, firms that do plan temper their

reactions to recent information. This is the standard effect of complementarities in pricing mod-

els. Second, longer planning horizons means less information acquisition and less frequent price

adjustment. Because many firms have old information, having outdated information is less costly,

and frequent planning is less beneficial. This is planning complementarity. It amplifies the pricing

complementarity to create long delays in price adjustment.

Reis (2006) uses this effect to match the empirical extent of price rigidity. Our theory results

explain why it arises. As in the theory results, complementarity and covariance are mutually

reinforcing effects. With more incomplete information, the covariance of average prices and demand

falls. As that covariance falls, the incentive to plan for any individual firm falls because the

aggregate price level becomes more predictable on the basis of their old information. This covariance

effect is both the source of the information complementary and the key result of the price-setting

model that allows it to match the data.

2.3 Multiple Equilibria

Although complementarity in price-setting and in information acquisition helps to slow price ad-

justment, it has a downside. The complementarity also generates multiple synchronized equilibria,

in which all firms choose to plan at the same dates. The reason these equilibria arise is that when

all firms plan at the same date, this introduces a discontinuity in the marginal value of planning at

that date.

Without ruling out any other possibilities, we consider synchronized planning equilibria, in

which all firms decide to plan at intervals of length T , and update their information at dates

{T, 2T, 3T, ...}, for some T > 0. Let t denote the current date, and suppose all other firms last

planned at date τ̃ (Λt (τ) = 0 if τ ≤ τ̃ and Λt (τ) = 1 if τ ∈ (τ̃ , t]). All firms therefore know the

path of nominal spending s (t) up until date τ̃ , while its more recent realizations remain unknown.

For an individual firm that last planned in period τ̂ , its period-t expected loss is

L (t, τ̂) =





σ2 (1− r)2 (t− τ̂) if τ̂ ≥ τ̃

σ2 (1− r)2 (t− τ̃) + σ2 (τ̃ − τ̂) if τ̂ < τ̃
(13)
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Consider now how L (t, τ̂) changes when all the others plan in the current period (τ̃ shifts to

τ̃ = t). If r > 0, this leads to a discrete increase in L (t, τ̂), meaning that the loss from having

outdated information rises discretely once the other firms have more recent information. This

discrete jump generates multiple equilibria. When instead r < 0, an agent’s instantaneous loss

decreases discretely when all the other firms plan; this in turn implies that synchronized planning

cannot be sustained as an equilibrium, when pricing decisions are substitutes.

Proposition 4 Multiple synchronized planning equilibria

i. If r ∈ (0, 1), then any common planning horizon T ∈ [
T , T̄

]
is a synchronized planning

equilibrium, where T solves C = σ2T 2
∫ 1
0 e−ρTθ (1− θ) dθ and T̄ solves

C = (1− r)2 σ2T̄ 2
∫ 1
0 e−ρT̄ θ (1− θ) dθ.

ii. If r = 0, there exists a unique synchronized planning equilibrium with a planning horizon T ∗

implicitly defined by C = σ2 (T ∗)2
∫ 1
0 e−ρT ∗θ (1− θ) dθ.

iii. If r < 0, there does not exist a synchronized planning equilibrium.

The range of synchronized planning equilibria is bounded by two values: T̄ is the planning

horizon that would be optimal for any given firm, if all other firms were to never do any planning,

while T is the planning horizon that would be optimal for a given firm, if all other firms always

had complete information.

When actions are complements (r > 0), proposition 4 leaves open the possibility that there are

other synchronized planning equilibria with horizons outside the interval
[
T , T̄

]
. The actual range

of synchronized planning equilibria can easily be computed numerically. For any T > 0, define the

last planning date τ̂ ∈ [0, T ] as the firm’s state variable, and let L (τ̂) denote the lifetime expected

loss of a firm that just planned at date τ̂ .

The firm’s optimal planning strategy is then characterized by solving the Bellman equation

(11), where L (τ̂) = L (τ̂ − T ) for any τ̂ ≥ T , and L (t, τ̂) is given as above by (14), with τ̃ = nT ,

for t ∈ (nT, (n + 1)T ]. There exists a synchronized planning equilibrium if and only if the solution
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to this Bellman equation satisfies

L (0) =
1

1− e−ρT

{
(1− r)2 σ2

∫ T

0
e−ρttdt + e−ρT C

}
. (14)

Condition (14) implies that the proposed strategies do attain the optimum payoffs and hence

constitute an equilibrium.

Appendix A.9 derives bounds T and T such that synchronized planning cannot be an equilib-

rium, whenever T /∈
[
T , T

]
. These bounds are constructed by considering two types of deviations

that must be unprofitable in equilibrium: (1) marginal deviations that postpone or advance plan-

ning by a short time period and (2) deviations that skip a planning date or add extra dates, given

that all other firms plan at dates {T, 2T, . . .}. Numerical simulation confirms that any T ∈
[
T , T

]
is

sustainable as a synchronized planning equilibrium. In other words, our necessary condition turns

out to be sufficient as well.

How much does this matter for pricing? Multiple equilibria are not just a theoretical concern.

They open up a range of predictions for planning horizons and price rigidity, for commonly used

parameters. Figure 3 illustrates the set of equilibrium planning horizons sustainable for a range

of complementarity parameters. If price complementarity (r) is 0.85, a level commonly used in

new Keynesian models, possible planning horizons range from 3.2 to 64 quarters. The rate of

price-adjustment varies greatly, depending on which of these equilibria firms select.

Multiple equilibria arise because the information firms observe when they plan is potentially

public. Like reading an extra page of the newspaper, planning earlier than others plan delivers extra

private information. When firms coordinate planning, they obtain public information, which is

more valuable. The discontinuous value of information at the synchronized planning date produces

multiplicity.

2.4 Using Private Information To Make Equilibria Unique

Staggered Planning with a Continuous Choice Space Two key features of Mankiw and

Reis (2002) and Reis (2006) deliver a unique equilibrium and gradual price adjustment. First,
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Figure 3: Equilibrium planning horizons for synchronized planning (shaded) and staggered planning
(line). Two parameters being held fixed. One is the discount rate ρ = 0.01, which implies a 4% annual rate of
time-preference. Second is the ratio of the cost of information to the variance of demand shocks C/σ2 = 13. This
matches the 10-period staggered planning horizon in Reis (2006), for his calibrated degree of real rigidity, r = 0.85.

they use continuous time. Second, they restrict the model to staggered planning equilibria where

a constant fraction of firms plan at every date.

Since planning decisions are timing choices, the use of discrete time introduces discreteness in

information choices. As in section 1.3.1, discreteness creates additional equilibria, both staggered

and synchronized ones.6 In continuous time, multiple synchronized planning equilibria persist but

the staggered equilibrium is unique. The reason is revealed in section 1.3.2. When firms synchronize

their learning, they learn the same information as all other firms. Thus this is a public information

choice problem which produces multiple equilibria. By staggering their planning, firms observe

private information that others do not observe. The combination of private information and a

continuous choice set delivers unique model predictions.

While restricting attention to staggered planning equilibria resolves the multiplicity problem, it

does compromise the model’s robustness. The predictions now depend crucially on the assumption

that firms will stagger their planning. It is more desirable if the source of equilibrium uniqueness

is micro-founded, supported by evidence, or is an integral part of the theory. The second example

moves in this direction.
6A previous version of the paper examined the discrete-time version of this model.
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Rational Inattention An example of a price-setting model that has both private information

and a continuous choice set is Mackowiak and Wiederholt (2006). They model rational agents who

have limited information processing capability, as in Sims (2003), and who choose what shocks

to observe more precisely and which to observe less precisely. The nature of the limited channel

capacity is such that each agent observes signals with noise that is unique to them and is independent

across agents. In other words, this way of modeling imperfect information ensures that signals are

private and conditionally independent. While the mechanics of this model are quite similar to Reis

(2006), Mackowiak and Wiederholt (2006) show that their equilibrium is unique. The uniqueness

comes from the continuous nature of the precision allocation choice coupled with the private nature

of the signal errors inherent to rational inattention.

3 Conclusions

Our results offer simple guidance on information choice in strategic settings. When actions are

strategic substitutes, information is a substitute; when actions are complementary, information is a

strategic complement. This strategic nature of information choice is central to price-setting models

with costly information. Planning complementarity delays the adjustment of prices to shocks. But

the same complementarity can lead firms to synchronize learning and adjust prices simultaneously.

It can also generate multiple equilibria. These results do not make costly planning an untenable

model. They do tell us what model features make the equilibrium unique: The information choice

must be continuous and the signals must be private. This prescription is similar but not identical

to that of Morris and Shin (1998). While a small amount of heterogeneity in beliefs produces

unique outcomes in action games, information choice imposes the more stringent requirement that

the signals in the information choice set are private, with independent errors.

Allowing agents to freely observe aggregate variables, such as prices, may or may not change

the strategic incentives to acquire information. For example, in Grossman and Stiglitz (1980),

actions are strategic substitutes. Prices introduce an additional free-rider effect, that reinforces

substitutability in information choice: When others observe information, prices reveal some of

it publicly, which reduces the value of additional information. In contrast, Barlevy and Veronesi
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(2000) generate information complementarity in the same setting, because more private information

makes their asset prices less informative. Whether our conclusions are reversed or strengthened

depends on the distribution of the noise in the asset’s price. We leave the analysis of information

complementarity, in the presence of an observable price, for future work.

All our results can be traced back to one root cause: Information acquisition changes the co-

variance of the state with the aggregate action. The same idea could explain changing covariances

in macroeconomic variables. In fact, instability in the covariance of fundamentals and outcomes

is a pervasive feature of macro time series, the most unstable variable being inflation (Stock and

Watson 1996). More specifically, Olivei and Tenreyro (2007) document that monetary policy has

stronger and faster effects in the beginning of the year and argue that this is because of synchroniza-

tion in wage adjustments. A model of this phenomenon might resemble Cooper and John (1988)

with regime changes in information choice. But instead of high-action and low-action regimes

typical of action coordination games, actions covary strongly with an underlying state when it is

observed precisely, and do not covary much when information about the state is scarce. Informa-

tion demand might fluctuate for at least three reasons, 1) synchronized planning creates discrete

changes in information demand at planning dates, 2) switches between multiple information equi-

libria, or sunspots, or 3) changes in information costs. Information choice offers one theory for why

relationships between fundamentals and choices might fluctuate over time. Therefore, improving

our understanding and prediction of information choice could help economists to better understand

and forecast the relationships between macroeconomic fundamentals and aggregate actions.
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A Proofs and Derivations

The expressions used for Bayesian updating (section 1.2.1) and equations (4) - (8) in the main text involve lots of
algebraic manipulation at each step. Here, we provide additional detail for the reader who wants to replicate these
expressions, along with proofs of the lemmas and propositions.

A.1 Bayesian updating

Equations (2) and (3) in the main text are standard formulas for the linear projection of one normal variable
on another. We therefore need to derive the relevant unconditional variance and covariance terms. From zi =
1n·s + Au + Bvi, we have 


s
u

Xzi


 =




1 0 0
0 Ik 0

X1n XA XB







s
u
vi


 .

Now, recall that if x ∼ N (µ, Σ), then Cx ∼ N (Cµ, CΣC′). Since
(
s,u,vi

)
is jointly normally distributed with mean

zero and variance-covariance matrix being the identity, it follows that
(
s,u,Xzi

)
is jointly normally distributed with

mean zero and variance-covariance matrix equal to




1 0 0
0 Ik 0

X1n XA XB







1 0 1′nX ′

0 Ik A′X ′

0 0 B′X ′


 =




1 0 1′nX ′

0 Ik A′X ′

X1n XA XΓΓ′X ′




where Γ ≡ [1n, A, B]. Using the definition of ω = [s,u′]′, we can therefore read off the relevant variance and covariance
terms: V ar(ω) = V ar([s,u′]′) = Ik+1, V ar

(
Xzi

)
= XΓΓ′X ′, and Cov(ω, Xzi) = [X1n, XA] = [1m, XA], where we

use the fact that X1n = 1m, because X is an m× n matrix with a one in each row.

A.2 Proof of Lemma 1: Information set rankings and posterior variance

Since part (ii) is an immediate consequence of part (i), we focus just on (i). Consider therefore two information
choices χ and χ′, such that χ − χ′ ≥ 0 entry by entry, and χm − χ′m = 1, for some m (if χ = χ′, the result holds
trivially). Let X1 = Xχ′ and X2 = Xχ−χ′ , and notice that Xχ =

(
X ′

1 X ′
2

)′
, up to a permutation of rows (since

our definition - arbitrarily - orders signals in Xχzi according to the same order as in zi).
Substituting in the variances and covariances into (3) results in

Σ(χ) = I1+k −
[

1′n
F ′

]
X ′ {XΓΓ′X ′}−1

X
[

1n F
]
.

Thus, Σ (χ′)−Σ(χ) is positive semi-definite, if and only if X ′
χ

{
XχΓΓ′X ′

χ

}−1
Xχ−X ′

χ′
{
Xχ′ΓΓ′X ′

χ′
}−1

Xχ′ is positive
semi-definite. To compute these matrices, notice that

XχΓΓ′X ′
χ =

(
X1

X2

)
ΓΓ′

(
X ′

1 X ′
2

)
=

(
F G
G′ H

)

where F = X1ΓΓ′X ′
1, G = X1ΓΓ′X ′

2, and H = X2ΓΓ′X ′
2. Inverting this matrix, we have

{
XχΓΓ′X ′

χ

}−1
=

(
F̂ Ĝ

Ĝ′ Ĥ

)

where F̂ =
(
F −GH−1G′

)−1
, Ĝ = − (

F −GH−1G′
)−1

GH−1 = −F−1G
(
H −G′F−1G

)−1
, and

Ĥ =
(
H −G′F−1G

)−1
. It follows that

X ′
χ

{
XχΓΓ′X ′

χ

}−1
Xχ =

(
X ′

1 X ′
2

) (
F̂ Ĝ

Ĝ′ Ĥ

) (
X1

X2

)
= X ′

1F̂X1 + X ′
2Ĝ

′X1 + X ′
1ĜX2 + X ′

2ĤX2

= X ′
1F̂X1 −X ′

2

(
H −G′F−1G

)−1
G′F−1X1 −X ′

1F
−1G

(
H −G′F−1G

)−1
X2

+X ′
2

(
H −G′F−1G

)−1
X2

= X ′
1F̂X1 −X ′

1F
−1G

(
H −G′F−1G

)−1
G′F−1X1
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+
(
X ′

2 −X ′
1F

−1G
) (

H −G′F−1G
)−1 (

X2 −G′F−1X1

)

= X ′
1

[(
F −GH−1G′

)−1 − (
F −GH−1G′

)−1
GH−1G′F−1

]
X1

+
(
X ′

2 −X ′
1F

−1G
) (

H −G′F−1G
)−1 (

X2 −G′F−1X1

)

= X ′
1F

−1X1 +
(
X ′

2 −X ′
1F

−1G
) (

H −G′F−1G
)−1 (

X2 −G′F−1X1

)
.

On the other hand, X ′
χ′

{
Xχ′ΓΓ′X ′

χ′
}−1

Xχ′ = X ′
1 {X1ΓΓ′X ′

1}−1
X1 = X ′

1F
−1X1. It therefore suffices to show that(

H −G′F−1G
)−1

, or equivalently H −G′F−1G, is positive semi-definite. Now,

H −G′F−1G = X2ΓΓ′X ′
2 −X2ΓΓ′X ′

1

{
X1ΓΓ′X ′

1

}−1
X1ΓΓ′X ′

2

= X2Γ
{

I − Γ′X ′
1

{
X1ΓΓ′X ′

1

}−1
X1Γ

}
Γ′X ′

2.

The matrix I − Γ′X ′
1 {X1ΓΓ′X ′

1}−1
X1Γ is symmetric and idempotent, and therefore it is positive semi-definite, and

so is H −G′F−1G.

A.3 Derivation of equations 4-7

Derivation of equation 4 and proof that this characterizes an equilibrium Averaging the
agents’ first-order condition across all agents, we find that the average price must satisfy p̄ = (1− r) Ē(s) + rĒ(p̄).
If we repeatedly substitute this expression into the agents’ first-order condition, we find that any equilibrium price
must satisfy

p
(
Ii

)
= (1− r) Ei(s) + r (1− r) EiĒ(s) + r2EiĒ(p̄) = (1− r)

K∑

k=0

rkEi
(
Ē(k)(s)

)
+ rK+1Ei

(
Ē(K)(p̄)

)

If we let K go to infinity and conjecture that limK→∞ rK+1Ei
(
Ē(K)(p̄)

)
= 0, we arrive at the definition of p̂ that

is given in the main text. We can check that this indeed constitutes an equilibrium, by substituting it back into the

right-hand-side of the agents’ first-order condition: Averaging p̂ across all i, we find p̄ = (1− r)
∑∞

k=0 rk
(
Ē(k+1)(s)

)
,

so the right side of the agents’ first-order condition becomes

(1− r) Ei(s) + rEi(p̄) = (1− r) Ei(s) + rEi((1− r)

∞∑

k=0

rkĒ(k+1)(s)

= (1− r) Ei(s) + (1− r)

∞∑

k=0

rk+1Ei(Ē(k+1)(s))

= (1− r) Ei(s) + (1− r)

∞∑

k=1

rkEi(Ē(k)(s))

= (1− r)

∞∑

k=0

rkEi(Ē(k)(s)) = p̂
(
Ii

)
,

where we have first pulled the expectation and r inside the summation, then changed the index of the summation,
and finally combined the terms.

Derive equation 5 Equation (2) in the main text gives us E
(
ω|Xzi

)
= [1m, XA]′ [XΓΓ′X ′]−1

Xzi. Integrating
this expression across all agents, we find the average expectations of ω:

Ē(ω) =

∫

i

E
(
ω|Xzi

)
dµ(χi) =

∫ ∫
[1m, XA]′

[
XΓΓ′X ′]−1

XzidΦ
(
zi|ω

)
dµ(χ)

=

∫
[1m, XA]′

[
XΓΓ′X ′]−1

X

∫
zidΦ

(
zi|ω

)
dµ(χ).

Next we solve the inside integral. Since zi = [1n, A]ω + Bvi, we can rewrite this as
∫

zidΦ
(
zi|ω

)
=

∫ [
[1n, A]ω + Bvi

]
dΦ

(
vi

)
= [1n, A]ω + B

∫
vidΦ

(
vi

)
= [1n, A]ω,
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due to the fact that the cross-sectional mean of the vi’s is zero. We substitute this back into the expression for Ē(ω)
and solve the outer integral:

Ē(ω) =

∫
[1m, XA]′

[
XΓΓ′X ′]−1

X[1n, A]ωdµ(χ) =

∫
[1m, XA]′

[
XΓΓ′X ′]−1

X[1n, A]dµ(χ) · ω

=

∫
[1m, XA]′

[
XΓΓ′X ′]−1

[1m, XA]dµ(χ) · ω,

where we have once again used the fact that X1n = 1m. Now, using equation (3) from the main text, which states
that Σ(χi) = I − [1m, XA]′ [XΓΓ′X ′]−1

[1m, XA], along with the definition Σ̄(µ) =
∫

Σ(χi)dµ(χi), we find

Ē(ω) =

[
I −

∫
Σ(χi)dµ(χi)

]
· ω = [I − Σ̄(µ)]ω.

We next prove by induction that Ē(k)(ω) = [I − Σ̄(µ)]kω. For this, notice that the result already holds for k = 0
and k = 1, and suppose that it also holds for arbitrary k − 1. Then,

Ē(k)(ω) =

∫

i

E
[
Ē(k−1)(ω)|Xzi

]
dµ(χi) =

∫

i

E
[
[I − Σ̄(µ)]k−1ω|Xzi

]
dµ(χi)

= [I − Σ̄(µ)]k−1

∫

i

E
[
ω|Xzi

]
dµ(χi) = [I − Σ̄(µ)]k−1[I − Σ̄(µ)]ω = [I − Σ̄(µ)]kω.

The first equality follows from the definition of Ē (·), the second uses the induction hypothesis, the third takes the
non-stochastic matrix [I − Σ̄(µ)]k−1 outside the expectation, and the fourth makes use of our above characterization
for Ē(ω).

Finally, we solve out for the pricing function in equation (4). We first substitute s = b′ω into the equation and
take b outside the expectations. We then substitute in for the sequence of higher-order expectations Ē(k)(ω), and
solve out the infinite sum expression:

p̂
(
Ii

)
= (1− r)b′

∞∑

k=0

rkE
(
Ē(k)(ω)|Ii

)
= (1− r)b′

∞∑

k=0

rkE
(
[I − Σ̄(µ)]kω|Ii

)

= (1− r)b′
∞∑

k=0

rk[I − Σ̄(µ)]kE
(
ω|Ii

)
= (1− r)b′

[
I − r[I − Σ̄(µ)]

]−1
E

(
ω|Ii

)
.

Derive p∗ The target price p∗ is defined as p∗ = (1− r)s + rp̄. Substituting s = b′ω and

p̄ = (1− r)b′
[
(1− r)I + rΣ̄(µ)

]−1
(I − Σ̄(µ))ω into this expression, we find

p∗ = (1− r)b′ω + r (1− r)b′
[
(1− r)I + rΣ̄(µ)

]−1
(I − Σ̄(µ))ω

= (1− r)b′
{

I + r
[
(1− r)I + rΣ̄(µ)

]−1
(I − Σ̄(µ))

}
ω

= (1− r)b′
[
(1− r)I + rΣ̄(µ)

]−1 {
(1− r)I + rΣ̄(µ) + r(I − Σ̄(µ))

}
ω

= (1− r)b′
[
(1− r)I + rΣ̄(µ)

]−1
ω

Derive equation 6 Equation (1) defines realized utility. Taking its expectation, conditional on agent i’s
information,

EiU = Ei

[
− 1

(1− r)2
(p∗ − pi)

2

]
= − 1

(1− r)2
Ei {

(p∗ − pi) (p∗ − pi)
′}

.

From the equilibrium characterization, we have p∗ − pi = (1− r)b′
[
(1− r)I + rΣ̄(µ)

]−1 (
ω−Ei (ω)

)
. We substitute

this into EiU , and make use of the fact that Ei
{(

ω−Ei (ω)
) (

ω′ − Ei (ω′)
)}

corresponds to the posterior variance
covariance matrix, Σ (χ):

EiU = −Ei
{
b′

[
(1− r)I + rΣ̄(µ)

]−1
(
ω−Ei (ω)

) (
ω′ − Ei (

ω′
)) [

(1− r)I + rΣ̄(µ)
]−1

b
}

= −b′
[
(1− r)I + rΣ̄(µ)

]−1
Ei

{(
ω−Ei (ω)

) (
ω′ − Ei (

ω′
))} [

(1− r)I + rΣ̄(µ)
]−1

b

= −b′
[
(1− r)I + rΣ̄(µ)

]−1
Σ(χ)

[
(1− r)I + rΣ̄(µ)

]−1
b

Since there is no ex ante uncertainty about these second moments, this is also agents’ unconditional expected utility.
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Derive equation 7 Using the fact that s = b′ω and the derivation of p̄, cov(p̄, s) becomes

cov(p̄,b′ω) = cov
(
(1− r)b′

[
(1− r)I + rΣ̄(µ)

]−1
(I − Σ̄(µ))ω, b′ω

)
.

Pulling the various matrices out of this covariance expression, and once again using
cov(ω, ω) = E

{(
ω−Ei (ω)

) (
ω′ − Ei (ω′)

)}
= Σ(χ), we find

cov(p̄,b′ω) = (1− r)b′
[
(1− r)I + rΣ̄(µ)

]−1
(I − Σ̄(µ))cov (ω; ω)b

= (1− r)b′
[
(1− r)I + rΣ̄(µ)

]−1
(I − Σ̄(µ))Σ(χ)b.

The same expression with I instead of Σ(χ) characterizes the unconditional covariance of p̄ and s.

A.4 Proof of Proposition 1: Strategic incentives in information choice

The proof for no strategic interactions (r = 0) follows directly from the expected utility function.
For the case where r 6= 0, define Ψ (µ) ≡ I − Σ̄ (µ). Recall that b′ = [ 1 0 . . . 0 ]. Rearranging terms, we have

EU (χ, µ)− EU
(
χ′, µ

)− (
EU

(
χ, µ′

)− EU
(
χ′, µ′

))

= b′ [I − rΨ(µ)]−1 [
Σ

(
χ′

)− Σ(χ)
]
[I − rΨ(µ)]−1 b

−b′
[
I − rΨ

(
µ′

)]−1 [
Σ

(
χ′

)− Σ(χ)
] [

I − rΨ
(
µ′

)]−1
b

= b′
{

[I − rΨ(µ)]−1 − [
I − rΨ

(
µ′

)]−1
} [

Σ
(
χ′

)− Σ(χ)
]
[I − rΨ(µ)]−1 b

+b′
[
I − rΨ

(
µ′

)]−1 [
Σ

(
χ′

)− Σ(χ)
] {

[I − rΨ(µ)]−1 − [
I − rΨ

(
µ′

)]−1
}

b

= b′
{

[I − rΨ(µ)]−1 − [
I − rΨ

(
µ′

)]−1
} [

Σ
(
χ′

)− Σ(χ)
]
[I − rΨ(µ)]−1 b

+b′
{

[I − rΨ(µ)]−1 − [
I − rΨ

(
µ′

)]−1
} [

Σ
(
χ′

)− Σ(χ)
] [

I − rΨ
(
µ′

)]−1
b

= b′
{

[I − rΨ(µ)]−1 − [
I − rΨ

(
µ′

)]−1
} [

Σ
(
χ′

)− Σ(χ)
] {

[I − rΨ(µ)]−1 +
[
I − rΨ

(
µ′

)]−1
}

b

where the second-to-last step follows from symmetry (of a 1×1 matrix). In what follows, we use > 0 to signify that a
matrix is positive definite and < 0 to mean negative definite. We also use the fact that sums and products of positive
definite matrices are positive definite. Clearly, Σ (χ′)−Σ(χ) > 0 and [I − rΨ(µ)]−1 +[I − rΨ(µ′)]−1

> 0. Moreover,
if r > 0, Ψ (µ) − Ψ(µ′) > 0 implies r (Ψ (µ)−Ψ(µ′)) > 0 and [I − rΨ(µ)]−1 − [I − rΨ(µ′)]−1

> 0. Since any
positive-definite matrix, pre- and post-multiplied by the same vector yields a positive scalar, the overall expression is
positive whenever r > 0. Likewise, if r < 0, [I − rΨ(µ)]−1 − [I − rΨ(µ′)]−1

< 0 implying that the overall expression
is negative.

A.5 Proof of Proposition 2: Multiple equilibria

The definition of A and B implies that ΓΓ′ = 1n1′n + δ−1In, from which it follows that for any χ ∈ {0, 1}n,

XχΓΓ′X ′
χ = 1ñ1′ñ + δ−1Iñ, and hence

{
XχΓΓ′X ′

χ

}−1
= δIñ −

(
δ2/ (1 + δñ)

)
1ñ1′ñ, where ñ is the number of signals

observed under χ.
First, we solve for the equilibrium when all agents choose the same χ. Without loss of generality, suppose that

this χ dictates that agents observe the first ñ signals. Then, Xχ = [Iñ 0n−ñ], and Xχ [1n A] =
[
1ñ γδ−1/2Iñ 0n−ñ×ñ

]
,

using the fact that A = γδ−1/2In. Therefore,

Σ̄ (µ) = I1+n −



1′ñ
γδ−1/2Iñ

0n−ñ×ñ


 [

δIñ −
(
δ2/ (1 + δñ)

)
1ñ1′ñ

] [
1ñ γδ−1/2Iñ 0n−ñ×ñ

]

= I1+n −




δñ
1+δñ

γδ1/2

1+δñ
1′ñ 01×n−ñ

γδ1/2

1+δñ
1ñ γ2Iñ − γ2δ

1+δñ
1ñ1′ñ 0ñ×n−ñ

0n−ñ×1 0n−ñ×ñ 0n−ñ×n−ñ



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Then, (1− r) I1+n + rΣ̄ (µ) takes the form

(1− r) I1+n+rΣ̄ (µ) = I1+n−r




δñ
1+δñ

γδ1/2

1+δñ
1′ñ 01×n−ñ

γδ1/2

1+δñ
1ñ γ2Iñ − γ2δ

1+δñ
1ñ1′ñ 0ñ×n−ñ

0n−ñ×1 0n−ñ×ñ 0n−ñ×n−ñ


 =




a b1′ñ 01×n−ñ

b1ñ cIñ + d1ñ1′ñ 0ñ×n−ñ

0n−ñ×1 0n−ñ×ñ In−ñ×n−ñ




where a = 1− r δñ
1+δñ

, b = −r γδ1/2

1+δñ
, c = 1− rγ2, and d = r γ2δ

1+δñ
.

[
(1− r) I1+n + rΣ̄ (µ)

]−1
then takes the form

[
(1− r) I1+n + rΣ̄ (µ)

]−1
=




α β1′ñ 01×n−ñ

β1ñ c−1Iñ + ϑ1ñ1′ñ 0ñ×n−ñ

0n−ñ×1 0n−ñ×ñ In−ñ×n−ñ




where aα + βbñ = 1, bα + βc + βdñ = 0, aβ + b/c + bϑñ = 0 and bβ + cϑ + d/c + dϑñ = 0. These conditions are
solved by

α =
c + dñ

a (c + dñ)− b2ñ
=

1− rγ2 + δñ

1− rγ2 + (1− r) δñ

β = − b

a (c + dñ)− b2ñ
=

rγδ1/2

1− rγ2 + (1− r) δñ

ϑ =

(
b2 − ad

)
/c

a (c + dñ)− b2ñ
=

1− r

1− rγ2

rγ2δ

1− rγ2 + (1− r) δñ

and therefore, b′
[
(1− r) I1+k + rΣ̄ (µ)

]−1
= [α β1′ñ 0].

Next, we derive an agent’s best response to the conjectured information choice and equilibrium strategies. Any
information choice χ is summarized by two numbers m̂ and n̂, where n̂ denotes the agents’ total number of signals
observed, and m̂ ≤ min {n̂, ñ} the number of signals that are within the first ñ, and hence shared with all other
agents. To confirm our conjecture, we must verify when an agent optimally chooses to observe the same signals as
other agents (m̂ = n̂ = ñ).

Without loss of generality, let us suppose that the agent chooses to observe the first m̂ signals (which are shared
with all others) and the last n̂− m̂ signals (which are not shared). Then,

X(n̂,m̂) =

[
Im̂ 0m̂×n−n̂ 0m̂×n̂−m̂

0n̂−m̂×m̂ 0n̂−m̂×n−n̂ In̂−m̂

]
,

X(n̂,m̂) [1n A] =

[
1m̂ γδ−1/2Im̂ 0m̂×n−n̂ 0m̂×n̂−m̂

1n̂−m̂ 0n̂−m̂×m̂ 0n̂−m̂×n−n̂ γδ−1/2In̂−m̂

]
, and

and Σ (n̂, m̂) = I1+n − [1′n A′]′X ′
(n̂,m̂)

{
δIn̂ −

(
δ2/ (1 + δn̂)

)
1n̂1′n̂

}
X(n̂,m̂) [1n A], or

Σ (n̂, m̂) = I1+n −




n̂δ
1+n̂δ

γδ1/2

1+δn̂
1′m̂ 01×n−n̂

γδ1/2

1+δn̂
1′n̂−m̂

γδ1/2

1+δn̂
1m̂ γ2Im̂ − γ2δ

1+δn̂
1m̂1′m̂ 0m̂×n−n̂ − γ2δ

1+δn̂
1m̂1′n̂−m̂

0n−n̂×1 0n−n̂×m̂ 0n−n̂×n−n̂ 0n−n̂×n̂−m̂

γδ1/2

1+δn̂
1n̂−m̂ − γ2δ

1+δn̂
1n̂−m̂1′m̂ 0n̂−m̂×n−n̂ γ2In̂−m̂ − γ2δ

1+δn̂
1n̂−m̂1′n̂−m̂




Pre-and post-multiplying this matrix by [α β1′ñ 0], we find

EU (n̂, m̂; ñ) = −{
α2 + ñβ2} +

[
α β1′m̂

]
[

n̂δ
1+n̂δ

γδ1/2

1+δn̂
1′m̂

γδ1/2

1+δn̂
1m̂ γ2Im̂ − γ2δ

1+δn̂
1m̂1′m̂

] [
α

β1m̂

]

= −{
α2 + ñβ2} +

1

1 + n̂δ

{
n̂δα2 + 2δ1/2αγm̂β + γ2 (1 + δn̂) m̂β2 − γ2δm̂2β2

}

= − 1

1 + δn̂

{
α2 − 2δ1/2αγm̂β + γ2δm̂2β2

}
− ñβ2 + γ2m̂β2

= − 1

1 + δn̂

[
α− δ1/2γm̂β

]2

− (
ñ− γ2m̂

)
β2

=
−1

[1− rγ2 + (1− r) δñ]2

{
r2γ2 (

1− γ2) δñ + r2γ4δ (ñ− m̂) +

[(
1− rγ2

)
(1 + δñ) + rγ2δ (ñ− m̂)

]2
1 + δn̂

}
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When rγ2 = 0, this expression reduces to EU (n̂, m̂; ñ) = − (1 + δñ)2 [1 + (1− r) δñ]−2 (1 + n̂δ)−1. In the limit
as δ → 0, this yields a unique optimal level of information characterized by ∂EU (n̂, m̂; ñ) /∂n̂ =
(1 + δñ)2 [1 + (1− r) δñ]−2 (1 + n̂δ)−2 = C′ (n̂δ). At the equilibrium, n̂ = ñ, or

1

[1 + (1− r) δñ]2
= C′ (n̂δ) .

When rγ2 > 0, EU (n̂, m̂; ñ) is strictly increasing and concave in m̂ for m̂ ≤ ñ, implying that it is optimal to set
m̂ = min {ñ, n̂}. We therefore need to check when it is optimal to set ñ = n̂, i.e. acquire exactly the same signals as
all the others. For this, we consider separately the two deviations when n̂ > ñ and n̂ < ñ. When n̂ > ñ, m̂ = ñ, and

EU (n̂, ñ; ñ) = − 1

[1− rγ2 + (1− r) δñ]2

{(
1− rγ2

)2
(1 + δñ)2

1 + n̂δ
+ r2γ2 (

1− γ2) δñ

}

which is increasing and concave in n̂. Therefore, n̂ > ñ is strictly worse than n̂ = ñ, whenever

(
1− rγ2

)2

[1− rγ2 + (1− r) δñ]2
≤ C′ (δñ) .

On the other hand, if n̂ < ñ, m̂ = n̂, and

EU (n̂, n̂; ñ) = − 1

[1− rγ2 + (1− r) δñ]2

{((
1− rγ2

)
(1 + δñ) + rγ2δ (ñ− n̂)

)2

1 + n̂δ
+ r2γ2δ

(
ñ− γ2n̂

)
}

= − 1

[1− rγ2 + (1− r) δñ]2

{(
1− rγ2) (1 + δñ) + r2γ2 (

1− γ2) δñ +
(1 + δñ) δ (ñ− n̂)

1 + n̂δ

}

Taking the derivative w.r.t. n̂ yields

dEU (n̂, n̂; ñ)

dn̂
=

δ

[1− rγ2 + (1− r) δñ]2

(
1 + δñ

1 + δn̂

)2

,

which is positive and decreasing in n̂. Therefore, setting n̂ = ñ is optimal, whenever (dEU (n̂, n̂; ñ) /dn̂) |n̂=ñ ≥
δC′ (δñ), or equivalently,

1

[1− rγ2 + (1− r) δñ]2
≥ C′ (δñ) .

Finally, when rγ2 < 0, we wish to rule out the existence of pure strategy equilibria. To do so, we consider
the change in payoffs of an agent who deviates from the proposed equilibrium profile of setting ñ = n̂ = m̂, by
increasing n̂ to ñ + 1, or by reducing n̂ and m̂ to ñ − 1. The above derivations for the case rγ2 > 0 imply that the
former deviation increases payoffs, whenever

(
1− rγ2

)2
/

[
1− rγ2 + (1− r) δñ

]2
> C′ (δñ), while the latter increases

payoffs, whenever 1/
[
1− rγ2 + (1− r) δñ

]2
< C′ (δñ). When rγ2 < 0, we immediately find that either one or the

other of these inequalities is satisfied, thus ruling out the possibility of a pure strategy equilibrium.

Uniqueness of Private information equilibrium
The above proof implies that there is a unique pure strategy equilibrium in the limit as δ → 0, when information

is private, or when there are no complementarities (rγ2 = 0). To show that this is the unique equilibrium, we need
to rule out the possibility of mixed equilibria in the limit. Now, notice that when A = 0,

Σ (χ) =

(
Σ11 (χ) 01×n

0n×1 In

)

where the (1, 1)th entry Σ11 (χ) is given by Σ11 (χ) = 1−1′nX ′
χ

{
XχΓΓ′X ′

χ

}−1
Xχ1n = (1 + δñχ)−1, where ñχ is the

number of signals observed under χ. Payoffs in turn are given by EU (χ, µ) =
[
1− r + rΣ̄11 (µ)

]−2
Σ11 (χ), where

Σ̄11 (µ) is the (1, 1)th entry of Σ̄ (µ). In this special case, beliefs and actions are not affected by common signal noise,
and hence payoffs are only affected by individual and average uncertainty about the state s, which is measured by the
(1, 1) entries of Σ11 (χ) and Σ̄11 (µ). Weakening the requirement of definitions 1 and 2), we can say that information
choice χ is more informative as χ′, if and only if ñχ ≥ ñχ′ .

Since Σ11 (χ) is decreasing and convex in the number of observed signals ñχ, there exists a unique optimal

precision level φ∗
(
Σ̄

)
that minimizes

[
1− r + rΣ̄11 (µ)

]−2
(1 + φ∗)−1 − C (φ∗), for any Σ̄ ∈ [0, 1]. Thus for any
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aggregate information choice distribution µ, and resulting Σ̄11 (µ), the agent’s optimal information choice is almost
everywhere unique, and is no more than δ away from φ∗

(
Σ̄11 (µ)

)
. In the limit as δ → 0, the agent’s best response

profile is therefore characterized by φ∗
(
Σ̄11 (µ)

)
, which rules out the possibility of mixed strategies being optimal in

the limit.

A.6 Proof of Lemma 2: Equilibrium price in the planning model

Conjecture that p (t) takes the form p (t) = σ
∫ t

−∞ gt (τ) dZ (τ) for some function gt (τ). Then, p∗ (t) = σ·∫ t

−∞ (1− r + rgt (τ)) dZ (τ) and E (p∗ (t) |Iτ̂ ) = σ
∫ τ̂

−∞ (1− r + rgt (τ)) dZ (τ). Since p (t) =
∫ t

−∞E (p∗ (t) |Iτ̂ ) dΛt (τ̂),

p (t) = σ

∫ t

−∞

∫ τ̂

−∞
(1− r + rgt (τ)) dZ (τ) dΛt (τ̂)

= σ Λt (τ̂)

∫ τ̂

−∞
(1− r + rgt (τ)) dZ (τ)

∣∣∣∣
t

τ̂=−∞
− σ

∫ t

−∞
Λt (τ̂) (1− r + rgt (τ̂)) dZ (τ̂)

= σ

∫ t

−∞
(1− Λt (τ)) (1− r + rgt (τ)) dZ (τ)

where the last step follows from changing the order of integration. Setting gt (τ) = (1−Λt (τ)) (1− r + rgt (τ)) yields
the result. 2

A.7 Proof of Proposition 3: Staggered planning equilibria

Suppose that all other firms plan every T periods, and the proportion of firms planning over any interval of length
dt is T−1dt. Clearly, {Λt (τ)} and L (t, τ̂) only depend on the time δ = t − τ̂ since the last planning date, and are
stationary over time w.r.t. δ. Using δ as a state variable, the Bellman equation can now be rewritten as

L (δ) = min
δ̂≥δ

{∫ δ̂−δ

0

e−ρδ′L
(
δ′

)
dδ′ + e−ρ(δ̂−δ) [C + L (0)]

}

where the loss function is

L (δ) =





σ2
∫ δ

0

(1−r)2(
1−r δ′

T

)2 dδ′ if δ ≤ T

σ2
∫ T

0

(1−r)2(
1−r δ′

T

)2 dδ′ + σ2 (δ − T ) if δ > T

The solution to this Bellman equation is characterized by an optimal horizon T ∗, s.t. it is optimal to plan at
date t, if and only if t ≥ s + T ∗. T ∗ solves the first-order condition L (T ∗) = ρ [C + L (0)], where L (0) =(∫ T∗

0
e−ρδL (δ) dδ + e−ρT∗C

)
/(1− e−ρT∗). In equilibrium, T ∗ = T , so T ∗ has to satisfy

L (T ∗) =
ρ

1− e−ρT∗

[∫ T∗

0

e−ρδL (δ) dδ + C

]

or C =
∫ T∗
0

e−ρδ [L (T ∗)− L (δ)] dδ. Changing variables to θ = δ
T∗ , we write L (δ) as

L (δ) = σ2T ∗
∫ δ/T∗

0

(1− r)2

(1− rθ)2
dθ = σ2T ∗

(1− r)2

r

(
1

1− rδ/T ∗
− 1

)
= σ2 (1− r)2 T ∗

δ

T ∗ − rδ
,

with L (T ∗) = (1− r) T ∗. Substituting into the equilibrium condition, we have L (T ∗)− L (δ)
= (1− r) T ∗ (T ∗ − δ) / (T ∗ − rδ), and therefore

C = σ2 (1− r) T ∗
∫ T∗

0

e−ρδ T ∗ − δ

T ∗ − rδ
dδ,

The right side of this expression is increasing in T ∗, because r < 1. Thus, there exists a unique solution to this
equilibrium condition, which is increasing in C. With a change of variables, we can rewrite this equation as

C = σ2 (1− r) (T ∗)2
∫ 1

0

e−ρT∗θ 1− θ

1− rθ
dθ.
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This formulation reveals that the equilibrium planning horizon T is increasing in r and ρ because e−ρτ T−τ
T−rτ

(1− r) is

decreasing in r and in ρ for all τ ∈ (0, T ). Taking the limit as ρ → 0, the last expression converges to σ2 (T ∗)2 g (r),
with

g (r) =

∫ 1

0

(1− θ) (1− r)

1− rθ
dθ =

1− r

r

{
1 +

1− r

r
log (1− r)

}
.

2

A.8 Proof of Proposition 4: Existence of synchronized planning equilibrium

For arbitrary T > 0 let T ∗ = {nT}n∈N denote the conjectured equilibrium strategy, for a synchronized planning
equilibrium with horizon T . We begin by defining the expected loss L (T ) that is associated with an arbitrary
sequence of planning dates, T = {τ̂n}n∈N, when all other firms use strategy T ∗. T ∗ constitutes a synchronized
planning equilibrium, if and only if ∆ (T ) ≡ L (T )− L (T ∗) ≥ 0, for all sequences T .

Under T ∗, the instantaneous loss function at date t is L∗ (t) = (1− r)2 σ2 (t− Tint (t/T )), where int (x) denotes
the integer part of a real number x. Subtracting it from L (t, τ̂), we have

L (t, τ̂)− L∗ (t) =

{
(1− r)2 σ2 (Tint (t/T )− τ̂) if τ̂ ≥ T int (t/T )

σ2 (Tint (t/T )− τ̂) if τ̂ < T int (t/T ) .

We can rewrite L (t, τ̂)− L∗ (t) in two different ways, that will be useful below:

L (t, τ̂)− L∗ (t) = (1− r)2 σ2 (Tint (t/T )− τ̂) + σ2 (
1− (1− r)2

)
max {0, T int (t/T )− τ̂}

or L (t, τ̂)− L∗ (t) = σ2 (Tint (t/T )− τ̂)− σ2 (
1− (1− r)2

)
min {0, T int (t/T )− τ̂}

= σ2 (Tint (t/T )− τ̂) + σ2 (
1− (1− r)2

)
max {0, τ̂ − Tint (t/T )}

A convex combination of the above expressions, for any λ ∈ [0, 1], gives

L (t, τ̂)− L∗ (t) = σ2 [
λ (1− r)2 + 1− λ

]
(T int (t/T )− τ̂)

+σ2 (
1− (1− r)2

)
[λ max {0, T int (t/T )− τ̂}+ (1− λ)max {0, τ̂ − Tint (t/T )}]

Now, ∆ (T ) is given by:

∆ (T ) = σ2
∞∑

n=0

∫ τ̂n+1

τ̂n

e−ρt [
λ (1− r)2 + 1− λ

]
(Tint (t/T )− τ̂n) dt +

∞∑
n=0

(
e−ρτ̂n − e−ρnT

)
C

+σ2 (
1− (1− r)2

) ∞∑
n=0

∫ τ̂n+1

τ̂n

e−ρt [λ max {0, T int (t/T )− τ̂n}+ (1− λ)max {0, τ̂n − Tint (t/T )}] dt

where τ̂0 = 0. Solving the integral terms in the first line gives

∞∑
n=0

∫ τ̂n+1

τ̂n

e−ρtT int (t/T ) dt =

∫ ∞

0

e−ρtTint (t/T ) dt =

∞∑
n=0

nTe−ρnT

∫ T

0

e−ρtdt =
1

ρ
T

e−ρT

1− e−ρT

∞∑
n=0

∫ τ̂n+1

τ̂n

e−ρtτ̂ndt =
1

ρ

∞∑
n=0

τ̂n

[
e−ρτ̂n − e−ρτ̂n+1

]
=

1

ρ

∞∑
n=1

e−ρτ̂n (τ̂n − τ̂n−1)

∞∑
n=0

e−ρnT C =
1

1− e−ρT
C

and therefore, ∆ (T ) can be rewritten as

∆ (T ) =
1

ρ

e−ρT

1− e−ρT

{
σ2 [

1− λ + λ (1− r)2
]
T − ρC

}− 1

ρ

∞∑
n=1

e−ρτ̂n
{
σ2 [

1− λ + λ (1− r)2
]
(τ̂n − τ̂n−1)− ρC

}

+σ2 (
1− (1− r)2

) ∞∑
n=0

∫ τ̂n+1

τ̂n

e−ρt [λ max {0, T int (t/T )− τ̂n}+ (1− λ) max {0, τ̂n − Tint (t/T )}] dt

Case (i) (r ∈ (0, 1)): For all λ ∈ [0, 1], the second line of this expression is non-negative, and it is zero if and
only if T = T ∗ Therefore, if, for some λ ∈ [0, 1], T ∗ also minimizes the first line of this expression, it must be the
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case that ∆ (T ) is minimized at T ∗, and hence that T ∗ constitutes an equilibrium. Taking first-order conditions, the

first line is minimized, if and only if ρC =
[
1− λ + λ (1− r)2

] (
τ̂n − τ̂n−1 − 1

ρ

(
1− e−ρ(τ̂n+1−τ̂n)

))
, and T ∗ satisfies

these first order conditions, if and only if

ρC = σ2 [
1− λ + λ (1− r)2

] (
T − 1

ρ

(
1− e−ρT

))
.

Moreover, we have

T−1

ρ

(
1− e−ρT

)
=

∫ T

0

[
1− e−ρt] dt =

[
1− e−ρT

]
T−ρ

∫ T

0

e−ρttdt = ρ

∫ T

0

e−ρt (T − t) dt = ρT 2

∫ 1

0

e−ρTθ (1− θ) dθ.

Therefore, the first-order condition is satisfied for T at λ = 0, for T̄ at λ = 1, and for every T ∈ [
T , T̄

]
at some

intermediary λ ∈ [0, 1]. We conclude that any T ∈ [
T , T̄

]
is sustainable as a synchronized equilibrium planning

horizon.
Case (ii) (r = 0): the second line in our expression for ∆ (T ) above is exactly equal to zero, so minimizing the

first line is also a necessary condition for T ∗ to be an equilibrium. Moreover, in this case, we have T = T̄ = T ∗,
so there exists a unique synchronized equilibrium. Moreover, notice that the horizon in this case is identical to the
staggered planning equilibrium. Since there is no interaction in pricing and planning decisions, the distribution of
planning choices is indeterminate in equilibrium.

Case (iii) (r < 0): now, the second line in the expression for ∆ (T ) is negative, and is zero only if T = T ∗.
Consider then a firm that sets τ̂1 = T + δ (for small δ > 0), but keeps all other planning dates unchanged from T ∗,
setting τ̂n = nT . The resulting change in expected loss is:

∆+ =
1

ρ
e−ρT

{[
1− e−ρδ

] (
σ2T − ρC

)− (1− r)2 σ2δ
[
e−ρδ − e−ρT

]}

with limit lim
δ→0

(∆+/δ) = e−ρT

{
σ2T − ρC − (1− r)2 σ2 1

ρ

[
1− e−ρT

]}

If instead, the firm sets τ̂1 = T − δ for small δ, but keeps all other planning dates unchanged, the resulting change in
expected loss is

∆− =
1

ρ
e−ρT

{
σ2δ

[
1− e−ρT

]
−

[
eρδ − 1

] (
(1− r)2 σ2 (T − δ)− ρC

)}

with limit lim
δ→0

(∆−/δ) = e−ρT

{
σ2 1

ρ

[
1− e−ρT

]
− (

(1− r)2 σ2T − ρC
)}

T ∗ can be an equilibrium only if limδ→0 (∆+/δ) ≥ 0 and limδ→0 (∆−/δ) ≥ 0, but the above immediately implies that

lim
δ→0

(∆+/δ) + lim
δ→0

(∆−/δ) = e−ρT

{
σ2T − ρC − (1− r)2 σ2 1

ρ

[
1− e−ρT

]}

+e−ρT

{
σ2 1

ρ

[
1− e−ρT

]
− (

(1− r)2 σ2T − ρC
)}

= e−ρT σ2 (
1− (1− r)2

) {
T +

1

ρ

[
1− e−ρT

]}
< 0,

implying that either limδ→0 (∆+/δ) < 0 or limδ→0 (∆−/δ) < 0, and contradicting the possibility of a synchronized
equilibrium. 2

A.9 Necessary conditions for synchronized planning

Here, we construct bounds T and T , such that a synchronized planning equilibrium only exists for planning horizons

T ∈
[
T , T

]
. Using the numerical procedure discussed in the main text, we check that these conditions are also

sufficient.
Suppose that all other firms plan at dates {T, 2T, ...}. We construct these bounds by showing that whenever

T /∈
[
T , T

]
, the agent prefers to deviate from the proposed sequence of planning dates {T, 2T, ...}, in one of four

ways: (i) adding some additional planning date T ′ to the sequence, (ii) skipping a planning date nT for some n,
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(iii) delaying a planning date from nT to nT + ∆ (where ∆ is infinitesimal), and (iv) moving forward a planning
date from nT to nT −∆ (where ∆ is again infinitesimal). We now provide conditions on T under which these four
deviations are not desirable.

(i) adding a planning date T ′, between between T and 2T : This deviation reduces expected flow losses by
(1− r)2 σ2 (T ′ − T ) between dates T ′ and 2T , but incurs an additional planning cost at date T ′. Combining these

terms, the deviation is not profitable, whenever C ≥ (1− r)2 σ2
∫ 2T

T ′ (T ′ − T ) e−ρ(t−T ′)dt. Since this must hold for

every T ′ ∈ [T, 2T ], the condition can be rewritten as C ≥ (1− r)2 σ2 minx∈[0,T ] x
∫ T

x
e−ρ(t−x)dt

= (1− r)2 σ2 minx∈[0,T ] x
(
1− e−ρ(T−x)

)
/ρ.

(ii) skipping a planning date nT : This deviation saves the planning cost C at date nT , but increases the

expected losses by σ2T from nT to (n + 1) T , so the deviation is not profitable, whenever C ≤ σ2T
∫ T

0
e−ρtdt =

σ2T
(
1− e−ρT

)
/ρ.

Combining these two conditions, we have

(1− r)2 σ2 min
x∈[0,T ]

x
1− e−ρ(T−x)

ρ
≤ C ≤ σ2T

1− e−ρT

ρ
,

which implicitly defines T
1

and T 1. As ρ → 0, this condition converges to (1− r)2 σ2T 2/4 ≤ C ≤ σ2T 2, or

T
1

=
√

C/σ, and T 1 = 2/ (1− r) · √C/σ. Clearly, this spans the set
[
T , T

]
.

In addition, we check that no infinitesimal deviation from the proposed planning dates can be optimal.
(iii) delaying a planning date from nT to nT + ∆: This deviation postpones the planning cost, and reduces

expected losses between nT + ∆ and (n + 1) T by (1− r)2 ∆σ2, but it increases expected losses between nT and
nT + ∆ by Tσ2. Combining these terms, the deviation is not profitable, whenever

C
[
1− e−ρ∆

]
+ ∆ (1− r)2 σ2

∫ T

∆

e−ρtdt ≤ Tσ2

∫ ∆

0

e−ρtdt

Letting ∆ → 0, the condition becomes ρC ≤ σ2
(
T − (1− r)2

(
1− e−ρT

)
/ρ

)
, which defines an additional lower bound

T
2
.

(iv) advancing a planning date from nT to nT − ∆: This deviation advances the planning cost by ∆, and
increases expected losses between nT and T + 1 by ∆σ2, but lowers expected losses between nT and nT − ∆ by
(1− r)2 (T −∆) σ2. Combining these terms, the deviation is not profitable, whenever

C
[
eρ∆ − 1

]
+ ∆σ2

∫ T

0

e−ρtdt ≥ (1− r)2 (T −∆) σ2

∫ ∆

0

eρtdt.

Letting ∆ → 0, the condition becomes ρC ≥ σ2
(
(1− r)2 T − 1

ρ

[
1− e−ρT

])
, which defines an additional upper

bound T 2.

A synchronized planning equilibrium therefore only exists for T ∈
[
T , T

]
, where T = max

{
T

1
, T

2

}
and T =

min
{

T 1, T 2

}
. As ρ → 0, T

2
→ 0 and T 2 →∞, so the first set of bounds becomes the relevant one.
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