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1  Introduction 
 
Heckman’s (1979) sample selection model has been employed in three decades of applications of 
linear regression studies.  The formal extension of the method to nonlinear models, however, is of 
more recent vintage.  The familiar approach [i.e., add “lambda” to the equation – e.g., Bradford et 
al. (2000) in a stochastic frontier model and the earliest attempt to extend to nonlinear models, 
Wynand and van Praag (1981) in a probit model] is not appropriate for nonlinear models such as 
the stochastic frontier.  A method of incorporating “selectivity” in some nonlinear models, 
notably the Poisson and other loglinear models, was proposed in Terza (1995, 1998) and applied 
in Greene (1995, 1997).  The four studies were all based on either nonlinear least squares or on 
using quadrature to approximate an open form log likelihood function.  We have suggested an 
alternative approach for a class of nonlinear models in Greene (2006) that relies on a simulation 
based estimator.  The current work builds on this to obtain a sample selection correction for the 
stochastic frontier model. 
 We first show a surprisingly simple way to estimate the familiar normal-half normal 
stochastic frontier model using maximum simulated likelihood.  The method bears some 
similarity to Bayesian treatments of the stochastic frontier model in that the inefficiency 
component of the composed error is treated as data, then conditioned out of the likelihood 
function.  This particular step is of minor consequence, since the closed form of the log likelihood 
is already known.  The next step, which is somewhat more complicated, is to extend the 
technique to a model of sample selection.  Here, the log likelihood does not exist in closed form, 
and has not previously been analyzed.  We develop a simulation based estimation method for the 
stochastic frontier model.   
 In an application that seems superficially obvious, the method is used to revisit the World 
Health Organization (2000) data [see also Tandon et. al (2000)]where the sample partitioning is 
based on OECD membership.  The original study pooled all 191 countries (in a panel, albeit one 
with negligible within groups variation).  The OECD members appear to be discretely different 
from the rest of the sample. We examine the difference in a sample selection framework. 
 
2.  A Selection Corrected Stochastic Frontier Model 
 
 The canonical form of the stochastic frontier model [Aigner, Lovell and Schmidt (1977)] 
(ALS) is specified with 
 
 yi  =  β′xi  +  vi - ui 
where ui  =  |σuUi|  =  σu |Ui|,  Ui ~ N[0,12], 
 vi  =  σvVi , Vi ~ N[0,12]. 
 
The stochastic frontier model is documented elsewhere, for example at length in ALS (1977) and 
Greene (2008a).  (The utility of isolating the scaling of ui and vi will emerge shortly.)   A vast 
literature has explored variations in the specification to accommodate, e.g., heteroscedasticity, 
panel data formulations, etc. [See, e.g., Greene (2008a) for a survey.] It will suffice for present 
purposes to work with the simplest form.  Extensions will be considered later. The model can be 
estimated by modifications of least squares [e.g., Greene (2008a)], the generalized method of 
moments [Kopp and Mullahy (1990)] or, as conventional in the current literature, by maximum 
likelihood (ALS). [A spate of Bayesian applications has also appeared in the recent literature, 
e.g., Koop and Steel (2001).]  In this study, we will suggest (as a means to another end), a fourth 
estimator, maximum simulated likelihood. 
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2.1  Maximum Likelihood Estimation of the Stochastic Frontier Model 
 
 The log likelihood for the normal-half normal model for a sample of N observations is 
 
 logL(β,σ,λ)  = ( ) 21 2 1

2 21
log log ( / ) log ( / )π=

⎡ ⎤− σ − ε σ + Φ −λε σ⎣ ⎦∑N
i ii

 

where εi  =  yi - β′xi = vi – ui, 
 λ  =  σu /σv, 
 σ =  2 2σ + σv u  
 
and Φ(.) denotes the standard normal cdf.  Details on estimation of the model can be found in 
ALS and elsewhere.  Estimation is a straightforward enough problem to have been installed in the 
standard menu of supported techniques in a variety of programs including LIMDEP, Stata and 
TSP.  The density satisfies the standard regularity conditions, and maximum likelihood estimation 
of the model is a conventional problem handled with familiar methods.  [See, e.g., Econometric 
Software (2007) and Greene (2008b, Chapter 16).] 
 
2.2  Maximum Simulated Likelihood Estimation 
 
 Based on the specification above, conditioned on ui, the central equation of the model 
would be a classical linear regression model with normally distributed disturbances.  Thus, 
 

 f(yi|xi,Ui)  =  
2 21

2exp[ ( |) / ]
2

′− − + σ σ
σ π

xi i u i v

v

y |Uβ
. 

 
The unconditional log likelihood for the model is obtained by first integrating the unobserved 
random variable, |Ui|, out of the conditional density, then summing the logs of the resulting 
unconditional densities.  Thus, 
 

 f(yi|xi)  =  
2 21

2
 | |

exp[ ( |) / ]
(| |) | |

2
′− − + σ σ
σ π∫

x
i

i i u i v
i iU

v

y |U
p U d U

β
 

where p(|Ui|)  =  
21

22exp[ | | ]
. 

2
−
π

iU
 

 
The closed form of the integral is in fact known.  [See, e.g., ALS (1977).]  (Its log was given 
earlier in the log likelihood function.)  Consider using simulation to approximate the integration; 
 

 f(yi|xi)  
2 21

2
1

exp[ ( |) / ]1 
2=

′− − + σ σ
≈

σ π
∑ xR i i u ir v

r
v

y |U
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where Uir is a sequence of R random draws from the standard normal population.  The simulated 
log likelihood is 
 

 
2 21

2
=1 1

exp[ ( |) / ]1log ( , , )  = log
2=

⎧ ⎫′− − + σ σ⎪ ⎪σ σ ⎨ ⎬
σ π⎪ ⎪⎩ ⎭

∑ ∑ xN R i i u ir v
S u v i r

v

y |U
L

R
β

β  

 
The maximum simulated likelihood estimators of the model parameters are obtained by 
maximizing this function with respect to the unknown parameters.  The simplicity of the log 
likelihood for the linear regression model makes this straightforward.  [See Gourieroux and 
Monfort (1996), Train (2003), Econometric Software (2007) and Greene (2008b).] 
 
2.3  Sample Selection in a Linear Model 
 
 Heckman’s (1979) generic sample selection model for the linear regression case is 
specified as 
 
 di  =  1[α′zi  +  wi  >  0],  wi ~ N[0,12] 
 yi  =  β′xi  +  εi,  εi  ~  N[0,σε

2] 
 (wi,εi)  ~  N2[(0,1), (1, ρσε, σε

2)] 
 (yi,xi) observed only when di = 1. 
 
[The selection model is documented elsewhere, e.g., Greene (2008b).]  Two familiar methods 
have been developed for estimation of the model parameters.  Heckman’s (1979) two step method 
builds on the result 
 
 E[yi|xi,di=1]   =  β′xi  +  E[εi|di=1] 
   =  β′xi  +  ρσεφ(α′zi)/Φ(α′zi) 
   =  β′xi  +  θλi. 
 
In the first step, α in the probit equation is estimated by unconstrained single equation maximum 
likelihood and the inverse Mills ratio (IMR), ˆ ˆ ˆ( ) / ( )′ ′λ = φ Φz zi i iα α is computed for each 
observation, where φ is the standard normal density and Φ is the standard normal cdf.  (We 
acknowledge the conflict in notation at this point. The use of the symbol λ for the two results 
given earlier is standard in both literatures. We will make distinction here by using λ without a 
subscript to denote the crucial parameter in the stochastic frontier model, λ = σu/σv, and λi with a 
subscript to indicate the inverse Mills ratio shown above for the selectivity model.)  The second 
step in Heckman’s procedure involves linear regression of yi on the augmented regressor vector, 
xi* = (xi, λ̂i ), using the observed subsample, with a correction of the OLS standard errors to 
account for the fact that an estimate of α is used in the constructed regressor. 
 The maximum likelihood estimator for the same model is developed, e.g., in Maddala 
(1983).  The log likelihood function for the same model is 
 

 logL(β,σε,α,ρ)  =  
( )2 21

2

1 2

exp ( / ) ( / )log (1 ) ( )
2 1

ε ε
=

ε

⎡ ⎤⎛ ⎞− ε σ ′ρε σ +⎢ ′ ⎥⎜ ⎟Φ + − Φ −
⎜ ⎟σ π⎢ ⎥− ρ⎝ ⎠⎣ ⎦

∑ z zN i i i
i i ii

d dα
α . 

 
[See, e.g., Econometric Software (2007) for details.]  This likewise has become a conventional, if 
relatively infrequently used estimator that is built into most contemporary software. 
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2.4  Sample Selection in Nonlinear Models 
 
 The received literature abounds with studies in which authors have ported Heckman’s 
selectivity model to nonlinear settings, such as count data (e.g., Poisson), nonlinear regression, 
and binary choice models.  The typical approach taken “to control for selection bias” is to fit the 
probit model as in the first step of Heckman’s two step estimator, then append λ̂i  to the linear 
index part of the nonlinear model wherever it happens to appear.  The first such application of 
this method was, in fact, the first application of the sample selection treatment in a nonlinear 
setting, Wynand and van Praag’s (1981) development of a probit model for binary choice.  The 
approach is in fact, inappropriate, as can be seen immediately in the specification.  Note that λ̂i  
arises as E[εi|di=1] in a linear model.  The expectation of some g(β′xi + εi) might well exist in the 
nonlinear setting as well, but it will not produce the form E[g(β′xi + εi)|di=1] = g(β′xi + λi) which 
can then be imported back into the otherwise unchanged nonlinear model. [The precise 
expression, for example in a linear exponential model, is given in Terza (1995, 1998).]  Indeed, in 
some cases, such as the probit and count data models, the εi for which the expectation given di = 1 
is taken does not even appear in the original model; it is unclear as such what the “correction” is 
correcting.  [Greene (1995, 1997) does the full development for the Poisson model by introducing 
εi into the Poisson mean as a form of latent heterogeneity.] 
 A second defect in the common strategy for nonlinear models is that the distribution of 
the observed random variable conditioned on the selection will not be what it was without the 
selection (plus the addition of the inverse Mills ratio, λi to the index function).  Thus, one cannot 
just add λi to the same likelihood function.  (In fact, this can be seen even for the linear case.  The 
least squares estimator (with λi) is not the MLE; it is merely a feasible consistent estimator.  The 
appropriate log likelihood, which corresponds to a skewed distribution, appears above.  (One 
might then ask, since OLS is consistent in the linear case, would “conventional MLE” be 
consistent in the nonlinear case?  This remains an area for research, but it seems unlikely.  Terza 
(1995, 1998) and Greene (1997) have examined this in detail for the Poisson regression model, 
where it appears not to be the case.  One well worked out special case does appear in the literature 
already.  Maddala (1983) and Boyes, Hoffman and Lowe (1989) obtained the appropriate closed 
form log likelihood for a bivariate probit model subject to sample selection.  The other well 
known example is the open form result for the Poisson regression model obtained by Terza (1995, 
1998) and Greene (1995, 1997). 
 A generic log likelihood for nonlinear models with sample selection is developed in 
Terza (1998) and Greene (2006).   The model will take the form 
 
 di    =  1(α′zi  +  wi > 0)  wi ~ N[0,1], 

 gi|εi =  g(β′xi,σε εi)  εi ~ N[0,1]  

 yi |xi, εi  ~  f [yi | g(β′xi,σε εi)] 

 [wi,εi] ~ N[(0,1),(1,ρ,1)] 

 yi,xi  are observed only when zi = 1. 
 
Note that the model is assumed to involve an index function, β′xi and the normally distributed 
heterogeneity, εi, not necessarily, albeit usually, combined in a term β′xi+εi.  The density that enters  
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the log likelihood will then be. 
 

     f (yi,di|xi,zi) = −∞
∞
∫ {(1 –  di) + di f [yi| g(β′xi,σε εi)]} ( )2(2 1)[ ]/ 1′Φ − + ρε − ρzi i id α ( )i idφ ε ε , 

 
Since the integrals do not exist in closed form, they are approximated either by quadrature 
[Terza(1998)] or by simulation [Greene (2006)]. 
 
2.5  Estimating a Stochastic Frontier Model with Sample Selection. 
 
 The combination of efficiency estimation and sample selection appears in several studies.  
Bradford, et. al (2000) studied patient specific costs for cardiac revascularization in a large 
hospital.  They state “... the patients in this sample were not randomly assigned to each treatment 
group.  Statistically, this implies that the data are subject to sample selection bias. Therefore, we 
utilize a standard Heckman two-stage sample-selection process, creating an inverse Mill’s ratio 
from a first-stage probit estimator of the likelihood of CABG or PTCA. This correction variable 
is included in the frontier estimate....” (page 306).  (The authors opt for the GMM estimator based 
on Kopp and Mullahy’s (1990) (KM) relaxation of the distributional assumptions in the standard 
frontier model and, it is suggested, that KM “find that the traditional maximum likelihood 
estimators tend to overestimate the average inefficiency.” (Page 304)  KM did not, in fact, make 
the latter argument, and we can find no evidence to support it in the since received literature.  
KM’s support for the GMM estimator is based on its more general, distribution free specification.  
We do note, Newhouse (1994), whom Bradford et. al cite, has stridently argued against the 
stochastic frontier model, but not based on the properties of the MLE.) 
 Sipiläinen and Oude Lansink (2005) have utilized a stochastic frontier, translog model to 
analyze technical efficiency for organic and conventional farms.  They state “Possible selection 
bias between organic and conventional production can be taken into account [by] applying 
Heckman’s (1979) two step procedure.” (Page 169.)  In this case, the inefficiency component in 
the stochastic frontier translog distance function is distributed as the truncation at zero of a Ui 
with a heterogeneous mean.  [See Battese and Coelli (1995).] The IMR is added to the 
deterministic (production function) part of the frontier function. 
 Other authors have acknowledged the sample selection issue in stochastic frontier studies.  
Kaparakis, Miller and Noulas (1994) in an analysis of commercial banks and Collins and Harris 
(2005) in their study of UK chemical plants both suggested that “sample selection” was a 
potential issue in their analysis.  Neither of these formally modified their stochastic frontier 
models to accommodate the result, however. 
 If we specify that the unobservables in the selection model are correlated with the “noise” 
in the stochastic frontier model, then the combination of the two models is 
 
 di  =  1[α′zi  +  wi  >  0],  wi ~ N[0,12] 
 yi  =  β′xi  +  εi,  εi  ~  N[0,σε

2] 
 (yi,xi) observed only when di = 1. 
 εi  =  vi - ui 
 ui  =  |σuUi|  =  σu |Ui| where Ui ~ N[0,12] 
 vi  =  σvVi   where Vi ~ N[0,12]. 
 (wi,vi)  ~  N2[(0,1), (1, ρσv, σv

2)] 
 
(“Sample selection bias” arises as a consequence of the correlation of the unobservables in the 
main equation with those in the sample selection equation.  Thus, the ambiguity in adding an IMR 
to a model that contains no such unobservables, such as the probit model [Wynand and van Praag 
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(1981) or the base case Poisson model [Greene (1994).]) The conditional density for an 
observation in this specification is 
 

     f [yi|xi,|Ui|,zi,di,]=  
( )2 21

2

2

exp ( | |) / ) ( | |) /
2 1

                                               (1 ) ( )

ε
⎡ ⎤⎛ ⎞′− −β + σ σ ′ ′ρ −β + σ σ +⎢ ⎥⎜ ⎟Φ

⎜ ⎟σ π⎢ ⎥− ρ⎝ ⎠⎢ ⎥
′+ − Φ −⎢ ⎥⎣ ⎦

z

z

i i u i v i i u i i
i

v

i i

y x U y x Ud

d

α

α

 

 
The log likelihood is formed by integrating out the unobserved |Ui| then maximizing with respect 
to the unknown parameters.  Thus, 
 
 logL(β,σu,σv,α,ρ) =  

1
log) (| |) | |

=∑N
i ii

p U d U . 
 
In this instance, the integral is not known; it must be approximated, once again either by 
quadrature or by simulation.  Using the latter, we obtain the simulated log likelihood, 
 

 logLS(β,σu,σv, α,ρ)= 

( )2 21
2

1 1 2

exp ( | |) / )

2

1 ( | |) /log
1

 
(1 ) ( )

ε
= =

⎡ ⎤′− − + σ σ
⎢ ⎥×

σ π⎢ ⎥
⎢ ⎥

⎛ ⎞′ ′⎢ ⎥ρ − + σ σ +
⎜ ⎟Φ⎢ ⎥⎜ ⎟− ρ⎢ ⎥⎝ ⎠

⎢ ⎥
⎢ ⎥

′⎢ ⎥+ − Φ −⎣ ⎦

∑ ∑

x

x z

z

i i u ir v
i

v

N R
i i u ir i

i r

i i

y U
d

y U
R

d

β

β α

α

. 

 
 To simplify the estimation, we have used a two step approach.  The single equation MLE 
of α in the probit equation is consistent, albeit inefficient.  For purposes of estimation of the 
parameters of the stochastic frontier model, however, α need not be reestimated.  We take the 
estimates of α as given in the simulated log likelihood at the second step, then use the Murphy 
and Topel (2002) correction to adjust the standard errors (in essentially the same fashion as 
Heckman’s correction of the canonical selection model).  Thus, our conditional simulated log 
likelihood function is 

 logLS,C(β,σu,σv, ρ)= 

( )2 21
2

1 1 2

exp ( | |) / )

2

( | |) /1log
1

 (1 ) ( )

ε
= =

⎡ ⎤′− − + σ σ
⎢ ⎥×

σ π⎢ ⎥
⎢ ⎥

⎛ ⎞′⎢ ⎥ρ − + σ σ +
⎜ ⎟Φ⎢ ⎥⎜ ⎟− ρ⎢ ⎥⎝ ⎠

⎢ ⎥+ − Φ −⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑

x

x

i i u ir v
i

v

N R i i u ir i
i r

i i

y U
d

y U a
R

d a

β

β . 

 
where ai = ˆ ′ziα .  With this simplification, the nonselected observations (those with di = 0) do not 
contribute information about the parameters to the simulated log likelihood.  Thus, the function 
we maximize becomes 
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 logLS,C(β,σu,σv, ρ) = 

( )2 21
2

1 1

2

exp ( | |) / )

21log
( | |) /

1

= =

ε

⎡ ⎤′− −β + σ σ
⎢ ⎥×

σ π⎢ ⎥
⎢ ⎥

⎛ ⎞′⎢ ⎥ρ −β + σ σ +
⎜ ⎟Φ⎢ ⎥⎜ ⎟− ρ⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑
i

i i u ir v

vR

d r
i i u ir i

y x U

R y x U a
. 

 
The parameters of the model were estimated using a conventional gradient based approach, the 
BFGS method. The derivatives of the function must be simulated as well.  The BHHH estimator 
is used to estimate the standard errors for the parameter estimators. Note that when ρ = 0, the 
maximand reduces to that of the maximum simulated likelihood estimator of the basic frontier 
model shown earlier. This provides us with a method of testing the specification of the selectivity 
model against the simpler model using a (simulated) likelihood ratio test. 
 
2.6  Estimating Observation Specific Inefficiency 
 
 The end objective of the estimation process is to characterize the inefficiency in the 
sample, ui or the efficiency, exp(-ui).  Aggregate summary measures, such as the sample mean and 
variance are often provided (e.g., Bradford, et. al (2000) for hospital costs).  Researchers also 
compute individual specific estimates of the conditional means based on the Jondrow et al. (1982) 
(JLMS) result 

 2

( )[ | ] ,  
1 ( )

⎡ ⎤φ μ −λεσλ
ε = μ + μ =⎢ ⎥+ λ Φ μ σ⎣ ⎦

i i
i i i i

i

E u , εi = yi - β′xi. 

 
The standard approach computes this function after estimation based on the maximum likelihood 
estimates.  In principle, we could repeat this computation with the maximum simulated likelihood 
estimates.  An alternative approach takes advantage of the simulation of the values of ui during 
estimation.  Using Bayes theorem, we can write 
 

 
 

( , ) ( | ) ( )( | ) = .
( ) ( | ) ( )
ε ε

ε =
ε ε∫

i

i i i i i
i i

i i i i iu

p u p u p up u
p p u p u du

 

 
Recall ui = σu|Ui|.  Thus, equivalently,  
 

 
 

[( | |), ] [ | ( | |)] ( | |)[( | |) | ]   = .
( ) [ | ( | |)] ( | |) ( | |)

σ ε ε σ σ
σ ε =

ε ε σ σ σ∫
i

u i i i u i u i
u i i

i i u i u i u iu

p U p U p Up U
p p U p U d U

 

 
The desired expectation is, then 
 
 

  | |

 | |

( | |) [ | ( | |)] ( | |) ( | |)
[( | |) | ] .

([ | ( | |)] ( | |) ( | |)
σ

σ

σ ε σ σ σ
σ ε =

ε σ σ σ

∫
∫

u i
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u i i u i u i u iU
u i i

i u i u i u iU

U p U p U d U
E U

p U p U d U
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These are the terms that enter the simulated log likelihood for each observation.  The simulated 
denominator would be 
 

 

( )2 21
2

1 1

2

ˆ ˆ ˆexp ( | |) / )

ˆ 21 1 ˆˆ
ˆˆ ˆ ˆ( | |) /

ˆ1

= =

ε

⎡ ⎤′− − + σ σ
⎢ ⎥×
⎢ ⎥σ π

= =⎢ ⎥
⎛ ⎞⎢ ⎥′ρ − + σ σ +
⎜ ⎟Φ⎢ ⎥⎜ ⎟− ρ⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑

x

x

i i u ir v

R Rv
i irr r

i i u ir i

y U

B f
R Ry U a

β

β
 

 

while the numerator is simulated with 
1

1 ˆˆ ˆ( | |)
=

= σ∑ R
i u ir irr

A U f
R

.  The estimate of E[ui|εi] is then 

ˆ ˆ/i iA B .  These are computed for each observation using the estimated parameters, the raw data 
and the same pool of random draws as were used to do the estimation.  As shown below, this 
gives a strikingly similar answer to the JLMS plug in result suggested at the outset. 
 
3.  Application 
 
 In 2000, the World Health Organization published its millennium edition of the World 
Health Report (WHR) [WHO (2000).]  The report contained Tandon at al’s (2000) (TMLE) 
frontier analysis of the efficiency of health care delivery for 191 countries.  The frontier analysis 
attracted a surprising  amount of attention in the popular press (given its small page length, minor 
role in the report and highly technical nature), notably for its assignment of a rank of 37 to the 
United States’s health care system.  [Seven years after the report, it still commanded attention, 
e.g., New York Times (2007).]  The authors provided their data and methodology to numerous 
researchers who have subsequently analyzed, criticized, and extended the WHO study.  [E.g., 
Gravelle et al. (2002a,b), Hollingsworth and Wildman (2002) and Greene (2004).]   
 TMLE based their analysis on COMP, a new measure of health care attainment that they 
created: (The standard measure at the time was DALE, disability adjusted life expectancy.) “In 
order to assess overall efficiency, the first step was to combine the individual attainments on all 
five goals of the health system into a single number, which we call the composite index. The 
composite index is a weighted average of the five component goals specified above. First, country 
attainment on all five indicators (i.e., health, health inequality, responsiveness-level, 
responsiveness-distribution, and fair-financing) were rescaled restricting them to the [0,1] 
interval. Then the following weights were used to construct the overall composite measure: 25% 
for health (DALE), 25% for health inequality, 12.5% for the level of responsiveness, 12.5% for 
the distribution of responsiveness, and 25% for fairness in financing. These weights are based on 
a survey carried out by WHO to elicit stated preferences of individuals in their relative valuations 
of the goals of the health system.” (TMLE, page 4.)  (It is intriguing that in the public outcry over 
the results, it was never reported that the WHO study did not, in fact, rank countries by health 
care attainment, COMP, but rather by the efficiency with which countries attained their COMP.  
(That is, countries were ranked by the difference between their COMP and a constructed country 
specific optimal COMP*.)  In terms of COMP, itself, the U.S. ranked 15th in the study, not 37th, 
and France did not rank first as widely reported, Japan did.  The full set of results needed to reach 
these conclusions are contained in TMLE.) 
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 The data set used by TMLE contained five years (1993-1997) of observations on the time 
varying variables COMP, per capita health care expenditure and average educational attainment, 
and time invariant, 1997 observations on the set of variables listed in Table 1.  TMLE used a 
linear fixed effects translog production model, 
 
 logCOMPit = β1 + β2logHExpit + β3logEducit  
   + β4 log2Educit + β5log2HExpit + β6 logHExpit logEducit - ui + vit. 
 
in which health expenditure and education enter loglinearly and quadratically.  (They ultimately 
dropped the last two terms in their specification.) Their estimates of ui were computed from the 
estimated constant terms in the linear fixed effects regression. Since their analysis was based on 
the fixed effects regression, they did not use the time invariant variables in their regressions or 
subsequent analysis. [See Greene (2004) for discussion.] Their overall efficiency indexes for the 
191 WHO member countries are published in the report (Table 1, pages 18-21) and used in the 
analysis below. 
 Table 1 lists descriptive statistics for the TMLE efficiencies and for the variables present 
in the WHO data base.  The COMP, education and health expenditure are described for the 1997 
observation.  Although these variables are time varying, the amount of within group variation 
ranges from very small to trivial.  [See Gravelle et. al (2002a) for discussion.]  The time invariant 
variables were not used in their analysis.  The data in Table 1 are segmented by OECD 
membership.  The OECD members are primarily 30 of the wealthiest countries (thought not 
specifically the 30 wealthiest countries).  The difference between OECD countries and the rest of 
the world is evident.  Figure 1 below plots the ETML efficiency estimates versus per capita GDP, 
segmented by OECD membership.  The figure is consistent with the values in Table 1.  This 
suggests (but, of course, does not establish) that OECD membership may be a substantive 
selection mechanism.  OECD membership is based on more than simply per capita GDP.  The 
selectivity issue is whether other factors related to OECD membership are correlated with the 
stochastic element in the production function. 
 Figure 1 plots TMLE’s estimated efficiency scores against per capita GDP for the 191 
countries stratified by OECD membership.  The difference is stark.  The layer of points at the top 
of the figure for the OECD countries suggests that, as might be expected, wealth produces 
efficiency in the outcome.  The question for present purposes is whether the selection based on 
the observed GDP value is a complete explanation of the difference, or whether there are latent 
factors related to OECD membership that also impact the placement of the frontier function.  We 
will use the sample selection model developed earlier to examine the issue.  We note, it is not our 
intent here to replace the results of the WHO study.  Rather, this provides a setting for 
demonstrating the selection model.  Since we will be using a stochastic frontier model while they 
used a fixed effects linear regression, there is no reason to expect the resulting efficiency scores 
to be similar or even comparable.  It is interesting to compare the rankings produced by the two 
methodologies, though we will do so without naming names. 
 We have estimated the stochastic frontier models for the logCOMP measure using 
TMLE’s truncated specification of the translog model. Since the time invariant data are only 
observed for 1997, we have used the country means of the logs of the variables COMP, HExp and 
Educ in our estimation.  Table 2 presents the maximum likelihood and maximum simulated 
likelihood estimates of the parameters of the frontier models.  The MSL estimates are computed 
using 200 Halton draws for each observation for the simulation.  [See Greene (2008) or Train 
(2003) for discussion of Halton sequences.]  By using Halton draws rather than pseudorandom 
numbers, we can achieve replicability of the estimates.  To test the specification of the selection 
model, we have fit the sample selection model while constraining ρ to equal zero.  The log 
likelihood functions can then be compared using the usual chi squared statistic.  The results 
provide two statistics for the test, then, the Wald statistic (t ratio) associated with the estimate of 
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ρ and the likelihood ratio statistic.  Both Wald statistics fail to reject the null hypothesis of no 
selection.  For the LR statistics (with one degree of freedom) we do not reject the base model for 
the non-OECD countries, but we do for the OECD countries, in conflict with the t test.  Since the 
sample is only 30 observations, the statistic may be suspect.  We would conclude that the 
evidence does not strongly support the selection model.  It would seem that the selection is 
dominated by the observables, presumably primarily by per capita income.  Figure 2 plots the 
estimated efficiency scores from the stochastic frontier model versus those in the WHO report.  
As anticipated in Greene (2004), the impact of the fixed effects regression is too attribute to 
inefficiency effects that might be better explained by cross country heterogeneity.  These effects 
would be picked up by the noise term in the frontier model.  Figure 3 shows a plot of the two 
estimators of the inefficiency scores in the selectivity corrected frontier model, the JLMS 
estimator and the simulated values of E[u|ε] computed during the estimation.  As noted earlier, 
they are strikingly similar.  Finally, figure 4 shows a plot of the country ranks based on the 
stochastic frontier model versus the country ranks implicit in the WHO estimates for the non-
OECD countries.  The essential lack of correlation in the two sets of results should cast at least 
some suspicion on the original study; the results depend crucially on the specification.  
 
4.  Conclusions 
 
 We have developed a maximum simulated likelihood estimator ALS’s the normal – half 
normal stochastic frontier model.  The normal exponential model, a normal –t model, or normal 
anything else model would be trivial modifications. The manner in which the values of ui are 
simulated is all the changes.  The identical simulation based estimator of the inefficiencies is used 
as well.  We note that in a few other cases, such as the t distribution, simulation (or MCMC) is 
the only feasible method of proceeding. [See Tsionas, Kumbhakar and Greene (2008).] 
 Replication of the Pitt and Lee (1981) random effects form of the model, again with any  
distribution from which draws can be simulated, is simple.  The term Bi defined earlier that enters 
the log likelihood becomes 
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Further refinements, such as a counterpart to Battese and Coelli (1992, 1995) and the Stevenson’s 
(1980) truncation model may be possible as well. This remains to be investigated. 
 The assumption that the unobservables in the selection equation are correlated with the 
heterogeneity in the production function but uncorrelated with the inefficiency is an important 
feature of the model. It seems natural and appropriate in this setting – one might expect that 
observations are not selected into the sample based on their being inefficient to begin with.  
Nonetheless, that, as well, is an issue that might be further considered. A related question is 
whether it is reasonable to assume that the heterogeneity and the inefficiency in the production 
model should be assumed to be uncorrelated.  Some progress has been made in this regard, e.g., 
in Smith (2003), but the analysis is tangential to the model considered here. 
 We have re(-re)visited the WHO (2000) study, and found, once again, that the results 
vary greatly depending on the specification.  It does appear that our expectation that selection on 
OECD membership was not supported statistically, however. 
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Table 1  Descriptive Statistics for WHO Variables, 1997 Observations* 
 Non-OECD OECD All 
 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev 
COMP  70.30   10.96   89.42    3.97  73.30   12.34 
HEXP 249.17  315.11 1498.27  762.01 445.37  616.36 
EDUC   5.44    2.38    9.04    1.53   6.00    2.62 
GINI   0.399    0.0777    0.299   0.0636   0.383   0.0836 
VOICE  -0.195    0.794    1.259    0.534   0.0331    0.926 
GEFF  -0.312    0.643    1.166    0.625  -0.0799    0.835 
TROPICS   0.596    0.492   0.0333    0.183    0.508    0.501 
POPDEN 757.9 2816.3   454.56 1006.7   710.2 2616.5 
PUBFIN  56.89   21.14    72.89   14.10    59.40   20.99 
GDPC 4449.8 4717.7 18199.07 6978.0  6609.4 7614.8 
Efficiency   0.5904   0.2012   0.8831   0.0783   0.6364   0.2155 
Sample 161 30 191 
* Variables in the data set are as follows: 
 COMP = WHO health care attainment measure. 
 HEXP  = Per capita health expenditure in PPP units. 
 EDUC = Average years of formal education. 
 GINI  = World bank measure of income inequality. 
 VOICE  = World bank measure of democratization. 
 GEFF  = World bank measure of government effectiveness. 
 TROPICS  = Dummy variable for tropical location. 
 POPDEN  = Population density in persons per square kilometer. 
 PUBFIN  = Proportion of health expenditure paid by government. 
 GDPC  = Per capita GDP in PPP units. 
 Efficiency  = TMLE estimated efficiency from fixed effects model. 
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Table 2  Estimated Stochastic Frontier Modelsa (Estimated standard errors in parentheses) 
 Non-OECD Countries OECD Countries 
 Stochastic 

Frontier 
Sample Selection Stochastic 

Frontier 
Sample Selection 

Constant 
  3.76162 
 (0.05429) 

   3.74915 
  (0.05213) 

  3.10994 
 (1.15519) 

  3.38244 
 (1.42161) 

LogHexp 
  0.08388 
 (0.01023) 

   0.08842 
  (0.010228) 

  0.04765 
 (0.006426) 

  0.04340 
 (0.008805) 

LogEduc 
  0.09096 
 (0.075150) 

   0.09053 
  (0.073367) 

  1.00667 
 (1.06222) 

  0.77422 
 (1.2535) 

Log2Educ 
  0.00649 
 (0.02834) 

   0.00564 
  (0.02776) 

 -0.23710 
 (0.24441) 

 -0.18202 
 (0.28421) 

σu
   0.12300    0.12859   0.02649   0.01509 

σv
   0.05075    0.04735   0.00547   0.01354 

λ   2.42388    2.71549   4.84042    1.11413 

σ   0.13306    0.13703   0.02705   0.02027 

ρ   0.0000 
   0.63967 
  (1.4626)   0.0000 

 -0.73001 
 (0.56945) 

logL 160.2753  161.0141  62.96128  65.44358 

LR test 1.4776 4.9646 

N 161 30 
aThe estimated probit model for OECD membership (with estimated standard errors in parentheses) is 
  OECD = -9.2404 (3.369) + 0.7388 (0.3820) + 0.6098 (0.4388) + 0.7291 (0.3171)  
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   Figure 1   Efficiency Scores Related to Per Capita GDP. 
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                Figure 2  Estimated Efficiency Scores 
 
 



 15

                        

Simulation vs. Plug-in Efficiency Estimates
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                        Figure 3  Alternative Estimators of Efficiency Scores   
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