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Abstract

This paper characterizes revenue maximizing auctions for a �nite horizon version
of the standard IV P model of Myerson (1981) for a seller who cannot commit not to
propose a new mechanism, if previously chosen ones fail to allocate the object. We
show that a revenue maximizing mechanism in the �rst period assigns the good to
the buyer with the highest virtual valuation, provided that it is above a buyer-speci�c
reserve price. If no buyer obtains the good in the �rst period, the same procedure
is repeated in the second period, where virtual valuations are calculated using the
posterior distributions and the reserves prices are lower, and so forth, until we reach the
last period of the game. This is the �rst paper that characterizes optimal mechanisms
in a multi-agent environment where the designer behaves sequentially rationally. The
characterization procedure can be applicable to other multi-agent mechanism design
problems �with limited commitment.�Keywords: mechanism design, optimal auctions,
limited commitment. JEL Classi�cation Codes: C72, D44, D82.

1. Introduction

The classical works on optimal auctions (see Myerson (1981) and Riley and Samuelson
(1981)) characterize the revenue-maximizing allocation mechanism for a risk-neutral seller
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who owns one object and faces a �xed number of buyers whose valuations are private infor-
mation. An important assumption in these papers is that the seller can commit to withdraw
the item from the market in the event that it is not sold. In other words, the seller is free
to employ any mechanism to sell the object, but she should respect its outcome forever.
This commitment assumption is far-fetched and often not met in reality. Auction houses
very seldom remove from the market items that remain unsold. For instance, Christies in
Chicago auctions the same bottles of wine that failed to sell in earlier auctions. The US
government re-auctions properties that fail to sell: lumber tracts, oil tracts and real estate
are put up for a new auction if no bidder bids above the reserve price.1 As Porter (1995)
reports, 46.8 percent of the oil and gas tracts with rejected high bids were put up for a new
auction. The mean time elapsed between the �rst and the second auction is 2.7 years.

The inability of a seller to commit to a given institution in the event that it fails to realize
all gains of trade, has been studied extensively in the durable good monopolist literature,
(Bulow (1982), Gul-Sonnenschein and Wilson (1986), Stokey (1981)), and by a more recent
paper in an auction set-up by McAfee and Vincent (1997). A crucial assumption in these
papers is that the seller�s action in each stage is restricted to be out of a speci�c class.
The seller chooses prices in the durable goods case, and reservation prices in McAfee and
Vincent (1997).2 Skreta (2006b) examined the case where the seller faces one buyer whose
valuation is private information in a �nite horizon model (essentially the durable good case)
and showed that in fact posted prices are revenue maximizing among all possible conceivable
mechanisms. It is interesting and relevant to characterize what is the revenue maximizing
procedure when the seller faces many buyers. This is what the present paper does.

We consider the following problem. There is a risk neutral seller who owns a single
object and faces I risk neutral buyers, whose valuation is private information. Valuations
are private, independently distributed across buyers, and they remain constant overtime.
The buyers and the seller interact for a maximum of T < 1 periods, and discount the
future with the same discount factor. At the beginning of each period the seller proposes
a mechanism to sell the object. If the object is sold, the game ends, otherwise, the seller
returns the next period and o¤ers a new mechanism. The game ends after T periods even
if the object remains unsold. We show that the seller will maximize expected discounted
revenue by running at t = 1 a �Myerson�auction with buyer-speci�c cuto¤s. A �Myerson�
auction assigns the object to the buyer with the highest virtual valuation if it is above a
cut-o¤. A buyer can either claim a type above his/her cut-o¤ or wait until next period. If
no bidder claims a value above his/her cut-o¤, no trade takes place in the �rst period and
the seller runs a �Myerson�auction in the second period, and so forth, until we reach the
�nal period. When buyers are ex-ante symmetric this procedure is equivalent to running

1These examples are also mentioned in McAfee and Vincent (1997).
2Other papers that study reserve price dymanics without commitment are Burguet and Sakovics (1996)

who examine cases of costly bidding and Caillaud and Mezzetti (2004) who look at sequential auctions of
many identical units.
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either a sequence of second- or �rst price auctions with optimally chosen reservation prices
in each period. The reservation prices depend on the discount factor and on the distribution
of valuations and they are decreasing overtime.

When the designer is free to choose new rules or change the pre-existing ones in each
period we talk about mechanism design with no- or with limited commitment. This paper
is the �rst work that characterizes optimal mechanisms under non-commitment in a multi-
agent asymmetric information environment. Mechanism design under non-commitment
is notoriously di¢ cult even in single agent environments. Also, as we discuss below, in
mechanism design without commitment going from a single- to a multi-agent environment
introduces new challenges and conceptual di¢ culties. This is in contract to the standard
mechanism case with commitment, where the single- and multi-agent cases are similar. We
�rst discuss the challenges that are present both in single- and multi-agent environments
and then we discuss the new issues that arise explicitly because of the presence of multiple
agents.

Mechanism design with no- or limited commitment is quite di¢ cult, even in single
agent environments, because, as it was �rst observed by the literature on the ratchet e¤ect
(Freixas, X., R. Guesnerie, and J. Tirole (1985) and La¤ont and Tirole (1988)) one cannot
use the revelation principle. One of the main assumptions of the revelation principle is
that the choice of mechanism(s) is done once and for all. This assumption implies that the
designer can never change the rules in the future, even though it might be then obvious
that there exist better ones. When this commitment assumption fails, there is no generally
applicable canonical class of mechanisms. A very important step towards the direction of
providing a �canonical�class of mechanisms for environments of limited commitment is the
paper by Bester and Strausz (2001). That paper establishes that for single agent and �nite
type models it is without loss of generality to restrict attention to mechanisms with message
spaces that have the same cardinality as the type space and where the agent reports his
true type with strictly positive probability. However, as Bester and Strausz (2000) show
this result fails with multiple agents.

Another set of complications that is both present in single- and multi agent environments
arise because we cannot impose any assumptions on the distributions of types. This is
because in all but the �rst period of the game, distributions arise endogenously by updating
the prior given the information released up to that stage. Then, one does not have the luxury
of imposing assumptions on the distributions without loosing generality. Our analysis does
not rely on the existence of densities (we allow for discrete and/or mixed distributions) nor
on other convenient properties such as the monotone hazard rate.3

The most important conceptual challenges of multi-agent environments are two. The
�rst is related to the fact that what buyers observe at each stage, that is the transparency

3Skreta (2007b) characterizes revenue maximizing auctions with commitment allowing for general distri-
butions.
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of the mechanisms, critically a¤ects their beliefs about each other. For example, competing
in a sealed-did auction versus an open outcry auction has di¤erent implications about what
buyers learn about each other, which a¤ects their future behavior. The issue of transparency
is not captured by the classical de�nition of mechanisms, which are de�ned as game forms,
because two institutions that are very di¤erent in terms of transparency can have the same
game form representation. In order to address this new issue we propose here an alternative
de�nition of mechanisms that captures also the degree of transparency of mechanisms. The
second di¤erence is that the mechanism designer may become privately informed overtime.
This is because it is possible that the seller (mechanism designer) observes more than what
the other buyers (agents) observe about the behavior of their competitors; think for instance
sealed bid auctions. Then the seller becomes endogenously an informed principal, since she
possesses information that is not available to the agents.4 These two issues do not arise
when there is a single buyer since trivially the buyer does not need to worry about the
private information of his competitors - there are none . To summarize, the multi-buyer
problem is di¤erent from the single buyer one, because how transparent a mechanism is
matters, and because the seller may become endogenously privately informed overtime.5

The aforementioned phenomena are exclusive to the multi-agent problem and compound
the di¢ culties arising from the lack of an appropriate �revelation principle.�Fortunately,
the solution approach developed in Skreta (2006b) can be adjusted and enriched to address
these new issues. That method does not rely on restricting attention to some �canonical�
class of mechanisms, rather it relies on characterizing equilibrium outcomes. Outcomes is
all that matters for payo¤s and in mechanism design we care primarily for payo¤s.

The ideas and techniques developed in the present paper have a large set of potential
applications. One area where the designer (in that case the buyer) is choosing mechanisms
sequentially is the area of government procurement and in particular defense procurement.
There, there are typically multiple stages until the �nal winner is determined, and in each
of these stages sellers submit bids, and based on the bids a subset of them advances to the
next stage. Even though this problem is admittedly quite di¤erent from one analyzed in
this paper, the designer and bidders face similar issues: namely if a bidder signals too much
about his private information early on, his rents may be reduced at a later stage. Also, how
bidders compete at each stage may depend on what information they obtain about their
competitors in earlier stages, so the issue of transparency arises here too.

Another area of possible applications is related to ability of sellers to track the in-
teractions with various buyers. Nowadays, keeping track of buyers has become easy and

4For a brief account of the literature on informed principal problems see Skreta (2007).
5Even without these two conceptual challenges the analysis of our multi-agents problem is still quite more

involved because at each point the seller has to choose an optimal mechanism as a function of her posterior
beliefs, anticipating that this choice itself a¤ects the future set of possible posterior beliefs. When there are
many buyers optimal mechanisms as functions of posterior beliefs are signi�cantly more complicated objects
than what they are in a the single-agent version of the problem.
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inexpensive, and the old theories that had �rms or sellers treat buyers as being anonymous
are enriched with ones where the sellers do not only keep track of the buyers that they
are dealing, but they also design their pricing schemes (coupons, loyalty programs) based
on the information that they have obtained thus far. In such problems, the ratcheting
and transparency issues present in our analysis are central.6 Our techniques could be ap-
plicable in situations where other issues relating to transparency, for example privacy, are
important.7,8

Coming to some more related work, no sale is not the only form of ine¢ ciency of the
classical optimal auction. Sometimes is allocates the object to a buyer other than the one
with the highest valuation, thus leaving open resale opportunities for the new owner. Zheng
(2002) studies optimal auctions allowing for resale. With an impressive construction, that
paper derives conditions under which the optimal allocation derived in Myerson (1981)
can be attained also by a seller who cannot prevent resale. In Zheng (2002) there is no
discounting. Here we look at a complementary problem and we allow for discounting. We
characterize what mechanisms maximize revenue for a seller who cannot prevent herself
from re-auctioning the good.

Other works study sellers that have even less commitment than the seller in this paper,
in the sense that she does not even commit to carry out the rules of the current auction.
McAdams and Schwarz (2006) consider a symmetric IPV environment without discounting,
where the seller after observing the bids cannot commit not to ask for other rounds of bids.
Only the seller incurs a cost of asking for a new round of o¤ers, and the o¤ers are only made
by the buyers. If the cost of negotiating is very low or prohibitively high, the seller does not
su¤er from her inability to commit, and her revenue is the one corresponding to an e¢ cient
mechanism. Otherwise, there are multiple rounds of o¤ers because buyers initially hesitate
to make serious o¤ers and this reduces seller�s revenue signi�cantly. The current paper
in contrast, assumes that the seller commits at each stage to carry out the mechanism
for that stage. Moreover the seller is choosing revenue maximizing auctions. Vartiainen
(2007) examines again a symmetric model, where buyers�types are �nite and there is no
discounting. He allows both forms of no commitment (no commitment to current nor future
mechanisms) and asks what mechanism leads to a sustainable outcome given complete lack
of commitment. He shows that essentially only the English auction achieves sustainability.
Again, this paper is di¤erent from Vartiainen (2007) because the interest is in designing

6See for instance Acquisti and Varian (2001) and Fudenberg and Villas-Boas (2005) for an excellent and
comprehensive survey of the work in this area.

7The pioneering papers on the economics of privacy are Hirshleifer (1980), Posner (1981) and Stigler
(1980). For a recent survey see Hui and Png (2006). For a paper contributing to the policy debate on
privacy issues see Varian (1996).

8Some recent work on mechanism design that addresses these issues marries mechanism design theory with
cryptography. Two recent contributions are Izmalkov, Lepinski and Micali (2005) and Izmalkov, Lepinski,
Micali and Shelat (2007).
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optimal mechanisms and there is discounting.9 We also allow for general uncertainty and
for non-transparent mechanisms. Vartiainen (2007) allows only for public mechanisms.

The paper is structured as follows. The environment under consideration is described in
Section 2. Section 3 outlines our method for characterizing the optimal mechanism under
non-commitment. The main analysis and results of this work can be found in Section 4,
which examines in great detail the case where the game lasts for two periods. Section 5
discusses the case where T > 2. Concluding remarks are in Section 6.

2. The Environment

A risk neutral seller, indexed by zero, owns a unit of an indivisible object, and faces I
risk neutral buyers. We use the female pronoun for the seller and male pronouns for the
buyers. The set of all players, (buyers and the seller) is denoted by �I. The seller�s valuation
is denoted by v0 � 0 and is common knowledge, whereas that of buyer i; denoted by vi;
is private information and it remains constant overtime. It is distributed on Vi according
to Fi. The convex hull of Vi is [ai; bi] with �1 < ai � bi < 1: Buyers�valuations are
private and are independently distributed across buyers. We use F (v) = �i2IFi(vi); where
v 2 V = �i2IVi and F�i(v�i) = �j2I

j 6=i
Fj(vj). Time is discrete and the game lasts T periods,

t = 1; 2; :::; T: The buyers and the seller discount the future with the same discount factor
� 2 [0; 1]. All elements of the game except the realization of the buyers� valuations are
common knowledge. The seller�s goal is to maximize expected discounted revenue. The
buyers aim to maximize expected surplus.

We now describe the timing of the game.

Timing

� At the beginning of period t = 1 nature determines the valuations of the buyers.
Subsequently, the seller proposes a mechanism: The mechanism is played, and if one
of the buyers obtains the object the game ends, else we move on to period t = 2:

� At t = 2 the seller proposes a mechanism. The mechanism is played and if one of the
buyers obtains the object the game ends, else we move on to period t = 3:

....

� At t = T the seller proposes a mechanism. The mechanism is played and the game
ends at the end of period T; irrespective of whether trade takes place or not.

9 In contrast, to Vartiainen�s (2007) problem, our problem without discounting is trivial: in that case the
seller would wait until the last period of the game and o¤er the mechanism described in Myerson (1981).
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We will use the variable �t to keep track of whether trade takes place at t or not; in

particular �t =

(
1 if trade takes place at t

0 otherwise
.

We now de�ne mechanisms.

Mechanisms

Usually a mechanism is de�ned as a game form.
A game form Gt = (St; gt) consists of a set of actions for each player St = St0�St1�St2�

::: � StI and an outcome mapping gt : St ! [0; 1]
�I � R�I ; which determines the probability

of obtaining the good, and an expected payment for each player. That is,

gt(st) = (qt0(s
t); qt1(s

t); :::; qtI(s
t); zt0(s

t); zt1(s
t); :::; ztI(s

t)); (1)

with the properties that

�IX
i=0

qti(s
t) = 1; qti(s

t) � 0; (2)

zti(s
t) 2 R for i 2 I and zt0(st) = ��i2Izti(st):

The equality zt0(s
t) = ��i2Izti(st) holds because the expected payments incurred by the

buyers are received by the seller. Notice also that by de�nition we have that

qt0(s
t) � 1� �i2Iqti(st);

which is the probability that the seller keeps the good, or put di¤erently, the probability
that no trade occurs at period t, when the vector of actions chosen is st:

A buyer can always choose not to participate, in which case he does not get the object
and he does not pay anything: We include the choice of non-participation in the de�nition
of each game form by assuming that it contains an action for each buyer, call it sNPi ; such
that when i chooses it he does not get the object and he does not pay anything irrespective
of what the other buyers do.

Note that in our de�nition of game forms we also allow the seller to choose actions. We
do so, because, as we explain in what follows, the seller may obtain private information as
the game progresses and in those cases the seller�s �reports�or actions matter.

When the choice of the mechanism(s) is done once and for all, as in a one-shot scenario,
or a multi-period environment with commitment, de�ning a mechanism as a game form is
the most general de�nition, since the object of interest is to map preferences to outcomes.
However, in general an institution or a set of rules, can also a¤ect what information players
obtain during play, and this can be crucial in a dynamic setup. This is especially true when,
as in the environment under consideration, more than one party has private information.
In these set-ups modelling a mechanism simply as a game form does not capture the fact
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that two di¤erent institutions may lead to the same current outcome, but provide their
participants with di¤erent information. For instance, a second price auction and an English
auction allocate the good in the same way (when agents use their weakly dominant actions
to bid their value), but at the end of the second price auction a buyer will have not ob-
served his opponents bids, whereas at the end of the English auction he will have observed
everyone�s drop-out prices. What buyers�observe determines what they know and think
about their competitors which may a¤ect their future behavior, and hence the set of future
equilibrium outcomes. From these considerations it is clear that the complete description
of an institution in a dynamic setup should consist (i) of the economic outcomes that result
from the interaction of agents, that is, the allocations, and (ii) of the information that its
participants obtain during play. We model this second feature of institutions by endowing
the game form with an information disclosure policy.

An information disclosure policy is a mapping from the vector of actions chosen, to a
vector of messages, one for each buyer, or Dt : St ! �(�t) where �t := �i2I�ti and �ti is
the set of messages that the seller can send to buyer i at date t:

Each buyer i observes only the message disclosed to him, that is �ti: However, buyers
know the rule Dt:

This modelling of information revelations is very general. It encompasses, private and
public disclosure, no disclosure, full disclosure and partial disclosures. A fully revealing
information disclosure policy is one where �ti = s

t; for all i and for all st 2 St; think of open
outcry auctions. An information disclosure policy that reveals no information is one where
�i = si; for all i; think for instance sealed bid auctions. A disclosure policy that reveals

some partial information is one where, for instance, �ti =

(
st�i with probability 0.5
ŝt�i with probability 0.5

:

We are now ready to de�ne mechanisms in our setup.

De�nition 1 A mechanism, M t; consists of a game form Gt and an information disclo-
sure policy Dt.

The set of all possible mechanisms is denoted byM.
We now proceed to specify what the seller and the buyers observe during play. We

assume that all players observe the mechanism proposed by the seller as well as whether
trade takes place or not.10 Hence a public history at t contains all the mechanisms proposed
up to t; denoted by M (t) = fM1; :::;M tg; and whether trade has taken place up to t,
�(t) = f�1; :::; �tg: The seller observes (i) the actions chosen by the buyers at each stage,
that is he knows the vector (st0; s

t
1; s

t
2; :::; s

t
I), as well as the message that each buyer receives

by the information disclosure policy, that is �t = (�t1; �
t
2; :::; �

t
I). An information set of the

seller at the beginning of period t; �t0; is of the form �t0 = fM (t�1); �(t�1); s(t�1); �(t�1)g;
10The information about whether trade has taken place or not, can be inferred by the buyers from the

seller�s behavior, since the seller continues to propose mechanisms only if no trade has taken place
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where s(t�1) = fs1; :::; st�1g and �(t�1) = f�1; :::; �t�1g. The set of all information sets
of the seller is denoted by I0: Buyer i observes at each stage the action that he chooses,
as well as the message that he receives from the information disclosure policy. Hence,
we have that an information set of buyer i at the beginning of period t; after the seller
proposed M t; is given by �ti = fv;M (t); �(t�1); s

(t�1)
i ; �

(t�1)
i g; where s(t�1)i = fs1i ; :::; st�1i g

and �(t�1)i = f�1i ; :::; �t�1i g. The set of all information sets of buyer i is denoted by Ii:
Assessments: Beliefs and Strategies
What players observe determines their beliefs about the parameters that are not com-

monly known. What the seller observes is particularly crucial because it determines, is some
sense, her commitment power.11 The beliefs of the buyers and the seller comprise the games�
belief system which we denote by �: A strategy pro�le � = f�igi=0;1;:::;I speci�es a strategy
for each player. A strategy for the seller, �0; is a mapping from I0 to the set of mechanisms
M.12 A behavioral strategy of the buyer i, �i; consists of a mapping from his information
sets Ii to a probability distribution over actions. An assessment (�; �) denotes the pair of
strategies and beliefs. We will require (�; �) to form a Perfect Bayesian Equilibrium of the
game, (PBE):

This completes our description of the game and of our solution concept. We move on
to describe our solution procedure.

3. The Procedure

Our objective is to �nd an assessment that is a PBE; and guarantees highest expected
revenue for the seller among all PBE0s. Finding, which among all PBE0s; is the one that
maximizes the seller�s expected revenue is quite complicated given the complexity of the
strategy spaces of the game under consideration. As we mentioned in the introduction, and
is well understood by now,13 when the mechanism designer behaves sequentially rationally,
one cannot apply the standard revelation principle. Moreover, the extended revelation
principle for environments with limited commitment by Bester and Strausz (2001), is not
applicable in multi-agent environments, see Bester and Strausz (2000).

Without the help of a �revelation principle,� any a priori restrictions on the class of
mechanisms that the seller is allowed to employ and on the buyers�behavior may be with
loss of generality. For this reason we consider mechanisms with arbitrary message spaces.
But then how can one write down the seller�s optimization problem, when she can employ
arbitrary mechanisms? The idea was developed in Skreta (2006b) and it amounts to ex-

11 If the seller does not observe anything, then all BNE0s are PBE0s and the �commitment solution� is
sequentially rational.
12To be more precise, we have to account also for the fact that the seller herself maybe submitting reports

in the mechanism, but soon in our analysis, we will conclude that it is without any loss to have the seller
just choose mechanisms, where only the buyers make reports.
13See La¤ont and Tirole (1988), Salanie (1997), or for a more recent treatment Skreta (2006b).
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amining equilibrium outcomes rather than strategies. To be more precise, we search for a
social choice function that maximizes expected revenue among all social choice functions
that are implemented by assessments that are PBE0s: We now de�ne what we mean by an
outcome of an assessment ; a social choice function and implementation.

Outcomes from Assessments

The outcome of assessment (�; �), (not necessarily an equilibrium), is an allocation rule
p(�; �) and a payment rule x(�; �):14 The rule pi(�; �)(v); i 2 �I is the expected, discounted
probability that player i will obtain the object; and xi(�; �)(v); i 2 �I is the expected,
discounted payment that player i will incur given the assessment (�; �) when the realized
vector of buyers�valuations is v: These expectations are taken from the ex-ante point of
view. Then, buyer i0s expected discounted payo¤ given (�; �) is

Ui(p(�; �); x(�; �); vi) = Pi(�; �)(vi)vi �Xi(�; �)(vi);

where Pi(�; �)(vi) =
R
V�i
pi(�; �)(vi; v�i)dF�i(v�i) andXi(�; �)(vi) =

R
V�i
xi(�; �)(vi; v�i)dF�i(v�i):

Since x0(�; �)(v) = ��i2Ixi(�; �)(v); the seller�s expected payo¤, given (�; �); isZ
V
�i2Ixi(�; �)(v)dF (v):

Note that it is possible that di¤erent strategy pro�les lead to the same allocation and
payment rules.

Social Choice Functions

A social choice function speci�es for each vector of valuations v and each period t; a
vector of probabilities qt(v) = (qt0(v); q

t
1(v);....; q

t
I(v)); with q

t
i(v) � 0 and �i2�Iq

t
i(v) = 1;

and a vector of expected payments zt(v) = (zt0(v); z
t
1(v);....; z

t
I(v)), with z

t
i(v) 2 R: Given a

social choice function fqti(v); zti(v)gt2T;i2�I we can de�ne for all i 2 �I

pi(v) = q1i (v) + q
1
0(v)�

�
q2i (v) + q

2
0(v)� [:::::]

�
and

xi(v) = z1i (v) + q
1
0(v)�

�
z2i (v) + q

2
0(v)� [:::::]

�
:

There are many di¤erent social choice functions that lead to the same pi(v) and xi(v); and
hence to the same ex-ante payo¤s for the buyers and for the seller. All such social choice
functions are equivalent for our purposes and hence when we talk about a social choice
function we will simply mean its �reduced version� given by p and x: Now that we have
speci�ed what we mean by a social choice function we can talk about implementation.

14We need to include the belief system in the arguments of p and x because it is part of our equilibrium
concept.
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Implementation

An assessment (�; �) implements the (reduced) social choice function p and x if for all
v 2 V and i 2 �I we have that pi(�; �)(v) = pi(v) and xi(�; �)(v) = xi(v).

The set of implementable social choice functions depends on the solution concept. A
solution concept imposes restrictions on (�; �); which in turn, translate to restrictions on p
and x: Our objective is to identify a Perfect Bayesian Equilibrium, PBE; that implements
p� and x�; that maximize expected discounted revenue among all allocation and payment
rules implemented by a PBE of the game. To simplify the notation we will often omit
(�; �) from the arguments of pi; xi; Pi; Xi:

Analogously, but with more involved notation, we can de�ne allocation and payment
rules implemented by continuation strategy pro�les.15

With the help of these de�nitions we can express various restrictions dictated from our
solution concept into properties of allocation and payment rules. This allows us to formulate
a maximization problem without the need to restrict attention to some canonical class of
mechanisms. We proceed as follows. First we solve the problem when the game lasts two
periods: Most of the di¢ culties of the problem are already present when the game lasts
merely two periods, so examining the T = 2 case in detail allows one to see the issues
that arise in the simplest possible setup. The T = 2 result is then used as a basis for the
characterization of revenue maximizing mechanisms when T = 3. Finally, by induction, and
by following an analogous procedure we argue how one can show that the characterization
extends for any T <1.

4. Analysis of the Problem when T = 2

In this section analyze the case where the game lasts two periods: The analysis of the T = 2
case proceeds as follows. We �rst formulate the seller�s problem for �nding the revenue
maximizing PBE in terms of a maximization problem where the seller chooses allocation
and payment rules. Then we establish that the transparency of �rst period mechanisms
is irrelevant, in the sense that it does not a¤ect the optimal mechanisms at t = 2: This
observation allows us to model �rst period mechanisms simply as game forms and to simplify
greatly the problem we formulated initially. Then we move on to solve the problem ignoring
the sequential rationality constraints. As we explain, this problem is non-standard because
we allow for general distributions. In the last and longest part of analysis we solve the
problem taking explicitly into account the sequential rationality constraints.

15For more details see the longer working paper version, available at the author�s website.
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4.1 Formulating the Seller�s Problem

In this section we �rst formulate the seller�s problem for �nding the revenue maximizing
PBE in terms of a maximization problem where the seller chooses allocation and payment
rules.

The seller seeks an allocation and a payment rule that maximize expected discounted
revenue among all allocation and payment rules implemented by a PBE of the game. In
other words, the seller seeks:

max
p;x

Z
V
�i2Ixi(v)dF (v) (3)

subject to p; x being PBE implementable.

Our �rst goal is to translate the requirement that p and x be PBE implementable into
properties of p and x. In order to do so, we express p and x in terms of �rst and second
period mechanisms.

Fix an assessment (�; �) and suppose that the seller at t = 1 employs a mechanism M

that consists of a game form G and an information disclosure policy D: Recall that the
game form consists of a set of vectors of actions S and a mapping g from S to outcomes
that satis�es (1) and (2). Essentially then a game form can be described by the menus
fqi(s); zi(s); i 2 �Igs2S : Now, the probability that buyer i is choosing action si when his type
is vi is denoted by m

si
i (vi) 2 [0; 1] for all vi. We assume that m

si
i is a measurable mapping

of vi: The set Vi(si) contains all v0is for which m
si(vi) > 0: Its convex hull is denoted by

�Vi(si) � [vi(si); �vi(si)]:16 Also de�ne �V�i(s�i) = �j2I
j 6=i
�Vi(si) and �V (s) = �i2I �Vi(si): Let

ms(v) = �i2Imsi(vi) (4)

denote the probability that the vector of actions chosen at t = 1 is s when the buyers�
valuations are v:

Recall that the disclosure policy is a mapping from S messages, to �: We use d(� js)
to denote the probability that the vector of messages received by the buyers is �; when the
vector of actions chosen is s: Let �i(si) denote the set of messages that buyer i may be
receiving given the disclosure policy D when he has chosen si at t = 1: In other words, a
message �i is in �i(si) if d(�i; ~��i jsi; s�i ) > 0; for some s�i 2 S�i and ��i 2 ��i:

Since the second period is the �nal period of the game, the seller�s problem at each
continuation game at t = 2 is like a static auction problem hence we can use the revelation
principle. However this problem is quite more complicated, than the classical optimal
auction problem. The main di¤erences are two. The �rst one, is that the seller has private
information as well, since she knows s; �; whereas each buyer knows only si; �i: The second
di¤erence, is that buyer i0s type now consists of a payo¤-relevant part vi; and a belief-

16 It is very well possible that msi
i (vi) = 0 for some vi in [vi(si); �vi(si)]:
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relevant part si; �i:17 The set of types for the seller, denoted by �0; consists of vectors
�0 = (s; �); where d(� js) > 0 and s 2 S; and the one for buyer i; is denoted by �i, and
it consists of triplets (vi; si; �i), where vi 2 Vi(si) and �i 2 �i(si) and si 2 Si: A vector of
types � is

� = (�i; ��i; �0) =

 
vi; si; �i| {z }
buyer i�s

;
v�i; s�i; ��i| {z }
buyers �i

;
s; �|{z}
seller

!
;

and the set of all vector of types is denoted by �: In what follows � will be abbreviated to
v; s; �:

By the revelation and the inscrutability principles, (Myerson (1979), (1981) and (1983)),
we can without loss of generality restrict attention to mechanisms where both the seller and
the buyers report their types and they do so truthfully.

A direct revelation mechanism, (DRM); M = (p2; x2) consists of an assignment rule
p2 : � �! �(�I) and a payment rule x2 : � �! R�I . The assignment rule speci�es a
probability distribution over the set of buyers given a vector of reports. We denote by p2i (�)
the probability that i obtains the good when the vector of reports is �. Similarly; x2i (�)
denotes the expected payment incurred by i; given �:

After these de�nitions we are ready to obtain more precise expressions of the allocation
and the payment rules.

Consider an assessment of the two-period version of our game. Then, the allocation and
payment rule implemented by it have the following form:

pi(v) � �s2Sm
s(v)

�
qi(s) + q0(s)���2�d(� js)p2i (v; s; �)

�
(5)

xi(v) � �s2Sm
s(v)

�
zi(s) + q0(s)���2�d(� js)x2i (v; s; �)

�
;

where ms(v) is de�ned in (4). We also let Pi; Xi (respectively P 2i and X
2
i ) denote the

expectations of pi and xi (respectively p2i and x
2
i ) from i0s perspective, that is

Pi(vi) =

Z
V�i

pi(v)dF�i(v�i); Xi(vi) =

Z
V�i

xi(v)dF�i(v�i) (6)

P 2i (vi; si; �i) = Ev�i;s�i;��i
�
p2i (v; s; �) jvi; si; �i

�
; X2

i (vi; si; �i) = Ev�i;s�i;��i
�
x2i (v; s; �) jvi; si; �i

�
:

With the help of (5) and (6) we now translate the requirement that an assessment be
a PBE; into properties of the allocation and the payment rule it implements.

First of all, the allocation rule p, as well the allocation rules implemented by continuation
equilibria p2; have to satisfy resource constraints, (RES). Second, at a PBE buyer i�s and
the seller�s strategy must be best responses at each information set. For buyer i; this

17Each buyer�s beliefs about another buyer are private information, because they depend on the infor-
mation that the buyer has received from the disclosure policy which is not publicly available. Since the
disclosure policy a¤ect buyers�beliefs. it may create correlation in types, (types consist by valuation plus
beliefs because si and �i are private information), even though the buyers�initial information was statistically
independent.
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implies at the very least, that there is no type of i that can strictly bene�t by behaving as
another type of i does at each information set. We call these the incentive constraints for i:
The overall constraints are denoted as ICi and the ones at the information set si; �i18 are
denoted by ICi(si; �i): Also, from the fact that buyer i can always choose not to participate
in a mechanism, we get that buyer i�s expected payo¤ at each information set must be
non-negative. We call these participation constraints and we denote them by PCi and
PCi(si; �i) respectively. For the seller now, the requirement that her strategy is a best
response in each information set, implies that at each information set, her strategy speci�es
an optimal sequence of mechanisms employed in the remainder of the game. Then given a
�rst period mechanism, as each information set of the seller (s; �); the mechanism p2 and x2

maximizes the seller�s revenue among all feasible mechanisms given her posterior beliefs at
that information set. We call these the sequential rationality constraints and denote them
by SRC(s; �): Finally the seller�s beliefs can be derived from the buyers�strategies with
the help of Bayes�rule as follows. If the seller observed that buyer i chose action si and i0s
strategy is such that

R
Vi(si)

msi
i (ti)dFi(ti) > 0; then the seller�s posterior beliefs about vi

conditional on si; i 2 I; are given by19

fi(vi jsi ) =

8<:
m
si
i (ti)fi(ti)R

Vi(si)
m
si
i (ti)dFi(ti)

; for vi 2 Vi(si)

0 otherwise
: (7)

Because buyers behave non-cooperatively, they choose their actions at t = 1 independently
from one another. Then, upon observing the vector of actions s; with

R
�V (s)m

s(t)f(t)dt > 0;

the seller�s posteriors beliefs about the buyers�valuations are given by

f(v js) �
(

ms(v)f(v)R
�V (s)m

s(t)f(t)dt
= �i2Ifi(vi js); for v 2 �V (s)
0 otherwise

: (8)

Putting the pieces together, in order for p and x, de�ned in (5), to be PBE imple-
mentable, they must at the very least, satisfy the constraints of the following problem:

max
p;x

Z
V
�i2Ixi(v)dF (v)

Subject to:
ICi �incentive constraints,�
Pi(vi)vi �Xi(vi) � Pi(v0i)vi �Xi(v0i); for all i 2 I; vi; v0i 2 Vi
PCi � participation constraints,�Pi(vi)vi �Xi(vi) � 0; for all i 2 I; vi 2 Vi

18With some abuse of terminology, we summarize an i0s information set by si; �i: By doing so we omit
the �rst period mechanism and whether trade took place or not, which are parts of the public history.
Analogously we summarize an information set of the seller by (s; �):
19Densities can be written down also for discrete or mixed measures with the help of Dirac�s Delta function,

see for example Skreta (2007b).
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RES �resource constraints,�0 � pi(vi; v�i) for all i 2 �I and p0(vi; v�i) = 1��i2Ipi(vi; v�i)
and for all v 2 �i2IV

SRC(s; �) �sequential rationality constraints,�for all t = 2; and for each pair (s; �) the
seller chooses a mechanism that maximizes revenue:

max
p2;x2

Z
V (s)

�i2Ix
2
i (v; s; �)dF (vjs) (9)

Subject to:
I. The constraints for the buyers:
ICi(si; �i): P

2
i (vi; si; �i)vi � X2

i (vi; si; �i) � P 2i (v
0
i; s

0
i; �

0
i)vi � X2

i (v
0
i; s

0
i; �

0
i),

for all �i; �0i 2 �i:
PCi(si; �i): P

2
i (vi; si; �i)vi �X2

i (vi; si; �i) � 0; for all �i 2 �i:
II. The constraints for the seller:
ICS(s; �):

R
V (s)�i2I [��2�d(� js)x

2
i (v; s; �)dF (v js) �

R
V (s)�i2I [��2�d(� js)x

2
i (v; ŝ; �̂)dF (v js);

for all �0; �̂0 2 �0:
PCS(s; �):

R
V (s)�i2I��2�d(� js)x

2
i (v; s; �)dF (v js) � 0; for all �0 2 �0:

III. Resource Constraints are given by
RES : 0 � p2i (v; s; �) and p0(v; s; �) = 1� �i2Ip2i (v; s; �); for all � 2 �:
Seller�s Beliefs: posterior beliefs are given by (7) whenever possible;
where p and x, de�ned in (5), and Pi; Xi and P 2i ; X

2
i are de�ned in (6)

Remark 1 Note that the problem stated in SRC contains also incentive and participation
constraints for the seller, because she also has private information.

We call this problem Program A. Before proceeding any further, it is important to
relate the value of Program A with what the seller can achieve at a PBE. This is done in
the Proposition that follows.

Proposition 1 The value of Program A is an upper bound for what the seller can achieve
at a PBE:

Proof. First, note that the revelation principle applies at t = 2; because it is the last
period, hence the conditions we impose on each p2; x2 are necessary and su¢ cient for what
the seller can achieve at the given continuation game. However, the conditions stated in IC
and PC are only necessary. This means that the feasible set of Program A is a superset
of the set of PBE�implementable allocation and payment rules and the desired conclusion
follows.

From Proposition 1 we see that a solution of ProgramA need not be PBE�implementable
and the revenue generated by such a solution is an upper bound for the revenue that the
seller can generate at a PBE: In what follows we obtain a solution of Program A and we
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construct an assessment that is a PBE and it implements it: Hence the upper bound is
indeed achieved.

Our �rst step towards �nding a solution amounts to showing that optimal mechanisms
after a vector of actions s are independent from the disclosure policies, irrespective of
how complicated they are. In other words, we show that the transparency of �rst period
mechanisms is irrelevant, since it does not a¤ect the mechanisms that the seller employs at
t = 2: This is established in the subsection that follows.

4.2 The Irrelevance of Transparency of First Period Mechanisms

We now discuss why disclosure policies, irrespective of how sophisticated they are, and
irrespective of the correlations that they induce in types, do not have any impact on what
mechanisms the seller will choose at t = 2: In particular, we discuss20 why no matter what
disclosure policy the seller employs, the revenue generated by an optimal mechanism at
t = 2 is always, meaning for all possible vectors of actions that could have been chosen at
t = 1; that is for all s 2 S, equal to the revenue she can achieve when s is observed by
everyone. Put di¤erently, the degree of �transparency� (what buyers observe) of the �rst
period mechanism has no e¤ect on expected revenue generated from an optimal mechanism
at t = 2; nor on the buyers�payo¤s at t = 2:

Formally, the result states that an optimal p2,x2 is independent of � conditional on s
and that for all v; and �; it holds that

p2i (v; s; �) = p
2(s)(v) and x2i (v; s; �) = x

2(s)(v);

where p2(s); x2(s) is optimal for the seller when the vector of actions s is common knowledge.
This result is established in Theorem 1 Skreta (2007). Before we explain the forces

behind this result we argue why the current problem �ts the formulation of Skreta (2007).
That paper considers a problem analogous to the problem stated in SRC(s; �) given some
exogenous process that generates signals �s = (s1; ::; sI):�For each i signal si is correlated
with vi; but s0js are independent across buyers. In the current problem the vector of signals
is endogenously generated and it is the vector of actions chosen at t = 1: This di¤erence is
irrelevant for the result, as the issue of interest is whether the information disclosed by the
seller a¤ects the subsequently chosen revenue maximizing allocation. What is important
are the statistical properties on the vector of actions and these indeed coincide with the
assumptions in Skreta (2007).

To see this, note that since each buyer�s strategy is a mapping from his valuations
to actions at each period, si is correlated with buyer i0s valuation. Moreover, since each
buyer chooses his action at t = 1 independently from the other buyers as a function of his
valuation, and because we consider an independent private value environment, the choices
of actions across buyers are independent conditionally on the public history, which at that

20Full details can be found in Skreta (2007).
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point contains only the mechanism that the seller has proposed at t = 1: Therefore, the
signals si are statistically independent across buyers. Hence the vector of �rst period actions,
s; corresponds to the information that the seller has in Skreta (2007). We conclude that
Theorem 1 of Skreta (2007) applies for the problem stated in SRC(s; �): We restate this
result in the Proposition that follows and proceed to brie�y discuss what are the forces
behind it, as well its consequences for the problem that we have in mind here.

Proposition 2 Revenue maximizing mechanisms at t = 2 are independent from the disclo-
sure policy and coincide with the ones that are optimal when the vector of actions chosen
at t = 1; namely s; is common knowledge:

The proof of Proposition 2 can be found in Skreta (2007), which corresponds to Theorem
1 of that paper.

There are three main forces behind our results. First, disclosure policies, irrespective of
how sophisticated they are, essentially have no impact on a buyer�s information rents. The
reason for this is that a buyer can still �mimic�the behavior of the same set of valuations, as
in the case where all the information that the seller has were public. Moreover, the expected
payments that a seller can extract from �selling�to the buyers (agents), information about
their competitors are always equal to zero. This is because there is a common prior, which
implies that the side contracts written between the seller and a buyer that have positive
expected value for the seller have negative expected value for the buyer, so they are never
accepted. The second force is the fact that the seller is not penalized from having private
information. Formally, this tells us that the seller�s incentive constraints are not binding.
This happens because the seller�s information is non-exclusive: what the seller knows about
a buyer, is also known to that particular buyer himself. The third force is related to
how disclosure policies a¤ect the set of incentive compatible mechanisms. In the case of
independent private values disclosure policies do not enlarge the set of incentive compatible
mechanisms in any relevant way. The reason is that in the IPV case, even when beliefs are
part of buyers�types, an optimal Bayesian incentive compatible mechanism is also dominant
strategy incentive compatible. This is not true in general, however.

Proposition 2 allows us to conclude that it is without loss of generality to remove the
disclosure policies from our analysis. From now on, when we write �mechanism�we will
simply mean a game form, and we will be taking the vector of actions chosen at t = 1 to
be public information. Then, throughout the game the only piece of information that is
known to buyer i; but not known to the other buyers, is his valuation, and hence buyers�
types coincide with their valuations. Also, when s is observed by all players, the seller has
no private information, and it is without loss to have the seller simply choose game forms
where only the buyers�choose actions. With these considerations, given a mechanism at
t = 1; all histories at t = 2 are summarized by the vector of actions chosen by the buyers
at t = 1; namely s: For this reason we will, with some abuse of notation, be indexing the
t = 2 histories by s:
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The t = 2 allocation and payment rule chosen by the seller at t = 2 are denoted by
p2(s); x2(s) and we use P 2(s)i (vi) =

R
V�i
p
2(s)
i (v)f�i(v�i js�i )dv�i; X2(s)

i (vi) =
R
V�i
x
2(s)
i (v)f�i(v�i js�i )dv�i

to denote their corresponding expectations from i0s perspective.
Given that now we can take �rst period mechanisms to consist merely of game forms,

the previous program simpli�es to:

max
p;x

Z
V
�i2Ixi(v)dF (v) (10)

subject to:

ICi: Pi(vi)vi �Xi(vi) � Pi(v0i)vi �Xi(v0i); for all i 2 I; vi; v0i 2 Vi
PCi: Pi(vi)vi �Xi(vi) � 0; for all i 2 I; vi 2 Vi
RES : 0 � pi(vi; v�i) and p0(vi; v�i) = 1� �i2Ipi(vi; v�i); for all i 2 �I and

v 2 �i2IV;
SRC(s) for all s 2 S, such that q0(s) > 0;

max
p2(s);x2(s)

Z
V (s)

�i2Ix
2(s)
i (v)dF (vjs)

subject to:
ICi(s) : P

2(s)
i (vi)vi�X2(s)

i (vi) � P 2(s)i (v0i)vi�X
2(s)
i (v0i); for all vi; v

0
i 2

Vi(si)

PCi(s) : P
2(s)
i (vi)vi �X2(s)

i (vi) � 0; for all vi 2 Vi(si)
RES(s) : 0 � p

2(s)
i (vi; v�i) and p

2(s)
0 (vi; v�i) = 1 � �i2Ip2(s)i (vi; v�i);

for all i 2 �I and v 2 �i2IV (s);
Beliefs posterior beliefs are given by (7).

From now on, when we refer to Program A we refer to its simpli�ed version just stated.
Still Program A is quite complicated. The primary di¢ culties arise from the sequential

rationality constraints. However, because of the generality of the distributions that we allow,
(possibly zero and/or discontinuous densities, or even complete lack of densities), even the
solution of the problem without sequential rationality constraints is non-standard. We start
by solving �rst the problem ignoring the sequential rationality constraints. This solution,
serves two roles. First it serves as benchmark allowing us to evaluate the impact of the
sequential rationality constraints on the optimal mechanisms. Also, its solution is itself a
building block for the characterization of sequentially rational revenue maximizing auctions,
since when the seller chooses an auction procedure optimally in each period her problem at
the beginning of the last period of the game is isomorphic to an optimal auction problem
without sequential rationality constraints.21 We solve this problem in the subsection that
follows.
21This is the reason why we need our analysis to be valid for general distributions.
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4.3 Optimal Auctions without Sequential Rationality Constraints

In this section we describe revenue maximizing auctions ignoring the sequential rationality
constraints allowing for general distributions of the buyers� valuations. This problem is
addressed in Skreta (2007b), who generalizes Myerson�s (1981)22 results to distributions that
can be discrete, mixed, or continuous, but without necessarily strictly positive densities. We
now summarize �ndings of that paper, repeating some intermediate results that are also
useful in our later analysis.

The problem without sequential rationality constraints amounts to choosing an alloca-
tion rule p : �i2IVi ! [0; 1]I and a payment rule x : �i2IVi ! R that maximize (10) subject
to IC; PC and RES: One of the di¢ culties of this problem is that the spaces of valuations,
that is Vi and V = �i2IVi need not be convex. Proposition 1 in Skreta (2006) establishes
that it is without loss of generality to replace Vi and V with their corresponding convex
hulls, namely �Vi = [ai; bi] and �V = �i2I [ai; bi]: In particular, we show that the program of
interest cannot have a strictly higher value than the arti�cial program obtained by replac-
ing the space of valuations with its convex hull.23 This is despite the fact that the actual
program is less constrained, since IC and PC are imposed only on V and not on �V ; which
implies that value(actual) � value(convexified): The equality is established by contradic-
tion as follows. We suppose that value(actual) > value(convexified): Then we extend a
hypothetical solution of the actual program on �V and establish that the extension is feasible
for the extended program as well, implying that value(actual) = value(convexified).

This extension can be based on the observation that whenever there are gaps in Vi; say
there exist vLi ; v

H
i on the boundary of Vi; such that (v

L
i ; v

H
i )\Vi = f;g; then it must be the

case that at an optimal mechanism the incentive constraint for type vHi is binding. This is
established in the following Lemma:

Lemma 1 Suppose that there exist vLi ; v
H
i on the boundary of Vi; such that (vLi ; v

H
i )\Vi =

f;g: Then if p; x is a solution of Program A when we ignore the sequential rationality
constraints, it must hold that

Pi(v
H
i )v

H
i �Xi(vHi ) = Pi(vLi )vHi �Xi(vLi ): (11)

Proof. Suppose that p; x solves Program A when we ignore the sequential rationality
constraints. From the incentive compatibility of (p; x) on V it follows that

Pi(v
H
i )v

H
i �Xi(vHi ) � Pi(vLi )vHi �Xi(vLi ): (12)

We now demonstrate that the above inequality must hold with equality. To see this, we
argue by contradiction. Suppose that

22Myerson�s (1981) analysis assumes distributions that have strictly positive and continuous densities.
These conditions guarantee that distributions are invertible, which is employed for his �ironing�technique.
23This modi�cation leaves the objective function unchanged, and changes only the constraints.
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Pi(v
H
i )v

H
i �Xi(vHi ) > Pi(vLi )vHi �Xi(vLi ):

Then, let �Xi be such that

Pi(v
H
i )v

H
i �Xi(vHi )��Xi = Pi(vLi )vHi �Xi(vLi ): (13)

Now consider the following modi�cation of p; x: For types vi > vHi increase the payment of
buyer i by a constant �Xi; that is

x̂i(vi; v�i) = xi(vi; v�i) + �Xi; for all v�i 2 V�i:

Given this modi�cation, it is straightforward to see that the resulting mechanism satis�es
IC; PC and RES:Moreover, it generates strictly higher revenue for the seller, contradicting
the fact that p; x solves Program A: Hence (11) holds.

Then we can extend the mechanism for all vi 2 (vLi ; v
H
i ) by setting it equal to its

value at vLi for all v�i: The extension is performed as follows. Consider a vi 2 �VinVi
and de�ne vLi (vi) = maxfv0i 2 Vi : v

0
i � vig and vHi (vi) = minfv0i 2 Vi(si) : v

0
i � vig;

(these maxima and minima exist because without loss Vi can be taken to be closed).24 Let
vIndi (vi) 2 [vLi (vi); vHi (vi)] denote the type for which the following is true:

Pi(v
H
i )v

Ind
i (vi)�Xi(vHi ) = Pi(vLi )vIndi (vi)�Xi(vLi ): (14)

By Lemma 1 we have that vIndi (vi) = v
L
i (vi):

Consider the following extension of pi; xi, call it �pi; �xi on �V

�pi(vi; v�i) = pi(~vi(vi); ~v�i(v�i)) and �xi(vi; v�i) = xi(~vi(vi); ~v�i(v�i));

where ~vi(vi) =

(
vi if vi 2 Vi

vLi (vi) if vi 2 �VinVi
and where ~v�i(v�i) = (~v1(v1); :::; ~vi�1(vi�1); ~vi+1(vi+1); :::; ~vi(vi)):

Proposition 1 in Skreta (2006) shows that indeed this extension is feasible for the ar-
ti�cial program, allowing us to conclude that the actual and the extended program is the
same. This, in turn, allows us to conclude that a solution of the actual problem can be
obtained by solving the arti�cial one and by restricting its solution on the actual space.
For the arti�cial problem we have as usual a �revenue equivalence theorem� and we use
standard arguments to rewrite the objective function simply as a function of the allocation
rule, as follows:

max
p;x

Z
�V
�i2Ipi(vi; v�i) [vifi(vi)� (1� Fi(vi))] f�i(v�i)dv � �i2IUi(p; x; ai)

24 If Vi were not closed, we can very easily extent p; x on its closure by making it constant at the limiting
vectors that are not in Vi:
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subject to:

Pi(vi) increasing in vi

0 � pi(vi; v�i) � 1 and �i2Ipi(vi; v�i) � 1 v 2 �i2I [ai; bi]:

Notice that this writing is valid (with slight modi�cations) for measures that have atoms.
Skreta (2007b) shows how one can do so with the help of Dirac�s Delta function.

In the standard problem distributions have strictly positive densities, that is fi(vi) > 0;
for all vi; and we usually factor fi(:) out, by dividing by it. Then, each buyer�s virtual
valuation is weighted with the same number, namely f(v): Here fi(:) can be zero and so we
cannot divide by it.25 As is shown in Skreta (2007b), the way to proceed is to prioritize
buyers according to their extended virtual valuations Ji(vi); which are de�ned as follows:

Ji(vi) =

(
vi � (1�Fi(vi))

fi(vi)
for each vi 2 [ai; bi] s.t. fi(vi) > 0

~vi(vi)� (1�Fi(~vi(vi)))
fi(~vi(vi))

where ~vi(vi) = supfti 2 [ai; bi] s.t. ti � vi and fi(ti) > 0g:
(15)

If Ji(vi) is increasing for all vi 2 [ai; bi] and i 2 I; the problem is regular, meaning that the
�pointwise optimum,�(here we use quotations because the objective function we optimize,
is actually di¤erent from the actual objective function), is incentive compatible.26 If not,
we replace them with their �ironed�versions according to a procedure described in Skreta
(2007b).27 In what follows in order to avoid extra notation, when we write Ji; we will mean
its extended and ironed version. Once we replace virtual valuations with their extended and
ironed versions, the resulting problem has the same structure as the familiar problem in
Myerson (1981).

Its solution is as follows:

pi(vi; v�i) =

(
1

#I(v) if i 2 I(v)
0 otherwise

; (16)

where I(v) denotes the set of buyers that have maximal virtual valuations when the vector
of valuations is equal to v; and it is given by

I(v) � fi 2 I; s.t. i 2 argmax
i2I

Ji(vi); and Ji(vi) � 0g: (17)

Observe that ties can occur for regions of valuations that have strictly positive measure, and
for this reason ties have to be broken in a consistent way to avoid obtaining an allocation
25Moreover, as we explain in Skreta (2007b), it is NOT possible to prioritize buyers according to �weighted�

virtual valuations Ji(vi; v�i) = [vifi(vi)� (1� Fi(vi))] f�i(v�i), even though each buyer is assigned the
same weight in the objective function namely 1, and these quantities are well de�ned also for vectors of
valuations.
26For more details about the validity of this approach, see Skreta (2007b).
27The reason we need to modify Myerson�s (1981) ironing procedure, is because it requires distributions

to be invertible, which is not the case here.
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rule that violates incentive compatibility. A consistent way of breaking ties could be to
randomize with equal probability among all buyers who have the highest virtual valuation,28

or to assign the good to the buyer that has the lowest index, among the set of buyers who tie.
The way ties are broken is inconsequential, since the seller is indi¤erent between assigning
the good to any buyer in I(v):

As usual, the payment rule is constructed from the allocation rule as follows:

xi(vi; v�i) = pi(vi; v�i)vi �
Z vi

ai

pi(ti; v�i)dti: (18)

From the above considerations it follows that a revenue maximizing mechanism without
sequential rationality constraints is described by boundaries that characterize the areas
where a buyer or the seller is awarded the good with probability one (the areas of indi¤erence
can be thought of as �fat�boundaries). The boundary between two buyers is determined
by the equality Ji(vi) = Jj(vj) and the boundary between the seller and i is determined by
the equality

Ji(vi) = 0 (19)

and it is denoted by �i:
Before we move on to the problem with the sequential rationality constraints, we apply

this solution to describe an optimal mechanism at the beginning of the �nal period of game
(here t = 2); at a given information set of the seller, which as we have already argued it
can be summarized by the vector of actions chosen at t = 1 namely s:

An optimal auction p2(s); x2(s) is described by (16) and by (18), when we replace the
prior with the posterior extended virtual valuations (which we denote by Ji(vi jsi )) and it
is given by

for each s 2 S; p
2(s)
i (v) =

(
1

#I(vjs ) if i 2 I(v js)
0 otherwise

; (20)

where I(v js) � fi 2 I; s.t. i 2 argmax
i2I

Ji(vi jsi ); and Ji(vi jsi ) � 0g

and

x
2(s)
i (vi; v�i) = p

2(s)
i (vi; v�i)vi �

Z vi

ai

p
2(s)
i (ti; v�i)dti: (21)

The posterior virtual valuation of buyer i is obtained from (15) by replacing fi with fi(:jsi)
described in (7).

However, there is a di¤erence here compared to the case without sequential rationality
constraints. The di¤erence is that whenever indi¤erences arise at t = 2; the way that ties
are broken matters, in the sense that the seller�s revenue from the t = 1 perspective can
be strictly higher for a given tie-breaking rule, versus another. The reason for this is that
when ties occur at t = 2; the seller is indi¤erent from the t = 2 perspective, but she may
28This is the tie-breaking rule employed in the general case in Myerson (1981).
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not be indi¤erent from the t = 1 perspective. This is because it is possible that posterior
virtual valuations of a certain set of buyers are the same over a region of valuations, while
their corresponding prior virtual valuations are di¤erent over the exact same region. Later,
we will see that at a revenue maximizing PBE; ties are broken in the way that maximizes
revenue of the seller from the ex-ante perspective.

We now proceed to characterize revenue maximizing auctions when the seller and the
buyers behave sequentially rationally.

4.4 Optimal Auctions with Sequential Rationality Constraints when T = 2

In this section we characterize revenue maximizing auctions when the seller behaves sequen-
tially rationally. Sequential rationality constraints create distortions, because at t = 2 and
after each vector of actions s according to which no trade takes place at t = 1; the seller
ranks various alternatives, (that is whether to give away the object and, if yes, to which
buyer), according to the posterior virtual surpluses instead of the prior virtual surpluses,
which is what would have been ex-ante optimal. Here the analysis is lengthier and more
involved, so before we begin let us describe brie�y the four main blocks involved. First
we show (analogously as we did in the case where we ignored the sequential rationality
constraints) that it is without any loss to convexify the problem. We also discuss the main
sources of its intricacies. Then we obtain an arti�cial solution by ignoring some of those
intricacies. In the penultimate step, we establish that our �quasi solution�is in fact a real
solution of the program of interest. Finally, we show that the solution is indeed attainable
by a PBE (remember our maximization problem gives us an upper bound for what the
seller can achieve at a PBE) by constructing a strategy pro�le and a belief system that is
a PBE and implements the solution.

4.4.1 Convexifying the Problem and Intricacies of the Resulting Program

As we did in the case without the sequential rationality constraints, we �rst argue that it is
without any loss to replace the spaces of valuations with their corresponding convex hulls.
In particular, we show that it is without loss of generality to solve an arti�cial problem
which we call Program B, which is exactly the same as Program A, but with Vi and Vi(s)
replaced by their corresponding convex hulls, [ai; bi] and �Vi(s). This is established in the
Proposition 3.

Proposition 3 A solution of Program B restricted on V solves Program A.

We now sketch why Proposition 3 is true. This result is analogous to the result in Propo-
sition 1 in Skreta (2006), but now we have to take into account the sequential rationality
constraints. By applying that result, we know that we can obtain every solution of SRC(s)
by extending p2(s) and x2(s) on �V (s) = �i2I �Vi(s) and by imposing ICi(s) and PCi(s) on
�Vi(si): Therefore, essentially nothing changes on the set of constraints described in SRC(s):
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Then, using exactly the same arguments as in the proof of Proposition 1 in Skreta (2006),
one can show that the values of Programs A and B are the same by establishing that a solu-
tion p and x of Program A appropriately extended on �i2I [ai; bi] satis�es all the constraints
of Program B. Then Proposition 3 follows.

As before, using standard arguments, we can rewrite Program B more compactly as
follows:

max
fms;q(s)gs2S

Z
�V
�i2I�s2Sm

s(v)
�
qi(s) + q0(s)�p

2(s)
i (v)

�
[vifi(vi)� (1� Fi(vi))] f�i(v�i)dv

��i2IUi(p; x; ai) (22)

subject to:

Pi(vi) increasing in vi

0 � pi(vi; v�i) � 1 and �i2Ipi(vi; v�i) � 1 v 2 �i2I [ai; bi]

and where p2(s) is given by (20) for each vector of actions s that is chosen with
strictly positive probability.

From now on, when we write Program B we refer to its rewriting just stated. In what
follows we �rst lay out what are the speci�c intricacies of the problem at hand, as well as
an outline of the solution approach.

In order to understand the source of the main intricacies of Program B, it may be
worthwhile to go through a few preliminary steps. There are I+1 options that the seller can
do with the good, namely give it to one of the I buyers or keep it herself. Of course there are
also all possible randomizations among these options, and the incentive, the participation
and the sequential rationality constraints that one needs to worry about. First let us
examine how a solution of Program B would look like, if we assume that it is not an option
that the seller keeps the good.

Once it is not an option for the seller to keep the object, things become quite trivial
indeed. This is because the sequential rationality constraints are always (trivially) satis�ed
by all allocation rules that never assign positive weight to the seller keeping the object. Then
an optimal allocation rule can be obtained via pointwise maximization of (22) ignoring all
the constraints, and it assigns for each v probability one to the buyer with the highest
(ironed) virtual valuation. Using the usual arguments, one can show that this allocation
rule satis�es incentive, participation and resource constraints. From this observation, it
also immediately follows that even when the seller can be keep the object, if the highest
virtual valuation is always, (that is for all realizations of the buyers�valuations), greater
than the seller�s valuation for the good, then the allocation rule resulting from pointwise
maximization is also sequentially rational and thus satis�es all the complicated constraints
of Program B. However, if sometimes the highest virtual valuation falls short of the seller�s
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valuation, the proposed allocation rule violates sequential rationality constraints, because
for all these histories where the seller keeps the good at t = 1; she will propose another
mechanism at t = 2; which must be optimal given her posterior beliefs. Then, what is an
optimal allocation rule when we do take into account the sequential rationality constraints?

In order to �nd an optimal allocation rule p when the sequential rationality constraints
are present we have to identify what is the nature of period one mechanisms that achieve
the best in generating revenue at t = 1; but in the event that trade does not take place, they
simultaneously minimize the cost of sequential rationality constraints. In order to do so it
can be helpful to address questions of the following form. Is it better to have many di¤erent
vectors of actions s where the seller keeps the good with strictly positive probability at
t = 1? Would such a possibility lead to posteriors that support an expected second period
allocation rule that is better from the ex-ante point of view? It is also conceivable that
it turns out to be bene�cial for the seller to sacri�ce slightly �rst stage optimality (say,
by increasing the probability of trade with very low valuations from zero to "); in order
to induce posteriors that lead to second period mechanisms that perform better from the
ex-ant point of view. Is there a trade-o¤ between generating as much revenue as possible
at t = 1 versus guaranteeing the least costly posteriors for T = 2?

These questions are quite delicate to address given the complicated �xed point nature of
a solution. By this we mean the following. Fix a �rst stage menu. This consists of various
vectors of actions, the s0s; and each one of these di¤erent vector�s of actions determines
a �rst period menu, eg. fqi(s); zi(s)gi2�I ; fqi(ŝ); zi(ŝ)gi2�I etc. The regions of types that
choose, say, the vector of actions s has convex hull of the form �V (s): The mapping ms(v)

(together with the prior) determines the seller�s posterior beliefs, which are given by (8),
which in turn determine the t = 2 menu that satis�es SRC(s); (that is, the t = 2 menu
that is optimal for the seller after s is chosen), the fp2(s)i ; x

2(s)
i gi2�I . Additionally, the t = 1

and t = 2 menus together determine the feasible ms(v) = �i2Imsi(vi): The reason for this
is that in order for buyer i to be choosing action si with probability less than one, that is
msi(vi) < 1, it must be the case that i with valuation vi is indi¤erent between action si and
some other action, call it ŝi: Summing up, the problem is complicated because we have the
following interrelations:

fqi(s); zi(s)gi2�I ; and ms(v); s 2 S =) feasible p2(s); x2(s) for s 2 S
fqi(s); zi(s)gi2�I ; and p2(s); x2(s); s 2 S =) feasible ms(v); s 2 S:

These interrelations also make the problem non-linear.
In order to solve Program B we have to specify optimally

(i) The structure of S; (how many di¤erent vectors of actions are available
at t = 1):
(ii) The fqi(s); zi(s)gi2�I (how many di¤erent t = 1 menus are available)
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(iii) The way buyers randomize between di¤erent vectors of actions, that is
the ms(v)0s:

These steps are delicate, given all the above mentioned interdependencies. If we want
to consider the e¤ect of changing fqi(s); zi(s)gi2�I slightly; (while keeping fqi(~s); zi(~s)gi2�I ;
~s 2 Snfsg �xed), we have to take into account that the previously feasible ms0s may be
no longer feasible, which may have, a dramatic, and a hard to assess, e¤ect on the optimal
second period mechanisms. This kind of possible dramatic e¤ects of slight perturbations lie
at the heart of the intricacies of the problem. Another delicate issue, is that it is conceivable
that at a solution there are more than one vectors of actions associated with the same menu
fqi(s); zi(s)gi2�I ; that is qi(s) = ~qi(ŝ); and zi(s) = ~zi(ŝ) for all i 2 �I; and that the possible
randomizations lead to posteriors that induce period two mechanisms p2(s); x2(s) that create
less distortions than the period 2 mechanism that would have been optimal if there is only
one vector of actions that leads to the menu fqi(s); z(s)gi2�I :

The complications of this problem re�ect the simultaneous presence of counteracting
forces. All else equal, it is good for the seller at t = 2 to have more information: This
occurs at a strategy pro�le where many di¤erent vectors of actions are chosen at t = 1:

However, the ability to be able to condition on more information at t = 2 is costly at t = 1
because the seller has to compensate the buyers for the information that they are willing
to release through their actions at t = 1: Moreover, adding many di¤erent options at t = 1
means that there will be many di¤erent options where the probability of trade is less than
one. Such options are costly for the seller because they generate less expected surplus for
the buyers, which consequently implies that the seller can extract less payments. And as
already discussed the formal trade-o¤s and analysis can be even more delicate.

Despite the complicated nature of Program B, it turns out that it has a surprisingly
simple solution. In what follows we will establish that at a solution of Program B there is
only one vector of actions s for which the seller keeps the good at t = 1 with strictly positive
probability; that is, for which q0(s) > 0. In fact, we show that s is chosen with probability
one when v 2 �i2I [ai; �vi(�)]; that is, q0(s) = 1 and ms(v) = 1 for v 2 �i2I [ai; �vi(�)]:
This implies, that after the history where the seller observes s at t = 1; the posteriors are
truncations of the priors, and are given by

fi(vij�vi) =
(

fi(vi)
Fi(�vi)

; for vi 2 [ai; �vi]
0 otherwise

; for all i 2 I: (23)

This solution is derived in two-steps. First we derive a quasi-solution by ignoring the
indirect e¤ects of the �rst period menus on the set of ms0s that can be supported. Then we
show that even if we were to take these e¤ects into account the solution would not change,
establishing that our �quasi solution�is a real solution.

26



4.4.2 A Quasi-Solution

First, we solve the problem ignoring the indirect e¤ects that the �rst stage menus, namely
the fq(s)gs2S ; on the set of second period mechanisms. This signi�cantly simpli�es mat-
ters because ignoring the aforementioned e¤ects, we see that the seller�s objective function
becomes a linear function of the �rst period menus. This immediate observation is stated
in the following Lemma:

Lemma 2 The seller�s expected revenue is linear in the �rst period menus fqi(s)gi2�I for
all s 2 S:

Lemma 2 allows us to conclude that at a solution the optimal menu�s fqi(s)gi2�I are of
the form:

q0 =
1; 0; :::; 0| {z }
I + 1 components

; q1 =
0; 1; :::; 0| {z }
I + 1 components

; :::; qI =
0; 0; :::; 1| {z }
I + 1 components

;

where the �rst position of each one of these vectors stands for the probability that the seller
gets the good, the second component the probability that buyer 1 gets good, and so on,
until the I+1 position which stands for the probability that buyer I gets the good. We call
Q� the menus q0; :::; qI : In the next step we �nd the regions where each one of these vectors
is implemented and establish that the resulting allocation and payment rules are feasible
for Program B.

By the monotonicity of the buyers� (ironed) virtual valuations the region where the
seller gets to keep the good (if non-empty) consists of an area of valuations where all buyers
v0is lie below some cut-o¤, �vi: Without sequential rationality constraints the cut-o¤ for a
buyer i is a vi where his virtual valuation is equal to the seller�s value. With sequential
rationality constraints the cut-o¤ depends on the discount factor and is (weakly) larger
than the �static�cut-o¤. This is because the seller anticipates at t = 1 her temptation at
t = 2 to trade with some of those buyers with small and possibly negative (ex-ante) virtual
valuation. In other words, the seller at t = 2 �overassigns� the object compared to what
is revenue maximizing from the ex-ante perspective. The reason for this overassignment
is that at t = 2 the seller perceives i0s valuation to belong in [ai; �vi]; which implies that
compared to the ex-ante perspective i0s virtual valuation is overestimated by [1�Fi(�vi)]

fi(vi)
:29

In an equilibrium the buyers and the seller at t = 1 anticipate the seller�s behavior at
t = 2; and at the revenue maximizing equilibrium the seller adjusts the �rst period cut-o¤
upwards in anticipation of her behavior at t = 2: The optimal level of �vi depends on the
discount factor �, which also determines how large the cost of the sequential rationality
constraints is. For the cases of extreme discount factors, namely for � = 0 and for � = 1 the

29This is because the prior virtual valuation is vi � [1�Fi(vi)]
fi(vi)

; whereas the posterior virtual valuation is

equivalent to vi � [Fi(�vi)�Fi(vi)]
fi(vi)

:
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sequential rationality constraints are always non-binding and for these cases the optimal
vector of cuto¤s �v can be easily described for any set of prior distributions: when � = 0

the future does not matter at all, so the sequential rationality constraints disappear and
the optimal vector of cuto¤s is given by the vectors of valuations where all buyers�virtual
valuations are equal to zero (the seller�s valuation), namely �v(0) = (�1; :::; �I); where for
all i; �i satis�es (19). When � = 1; there is absolutely no cost to waiting, so the seller
can �wait�until the last period of the game and then o¤er an optimal mechanism without
sequential rationality constraints. This �waiting�can be achieved by selecting �v to be equal
to the vector of the highest possible valuations of all buyers, that is �v(1) = (b1; :::; bI): For
intermediate discount factors, an optimal vector of cuto¤s is somewhere between �v(0) and
�v(1); which means that that for all � > 0 the seller keeps the object at t = 1 for a larger
area of valuations compared to the case without sequential rationality constraints.

From these considerations it follows that for valuations in the region �i2I [ai; �vi] the
menu q0 is implemented at t = 1; which simply means that the seller keeps the good with
probability one at t = 1: Then, at t = 2 the seller�s posterior beliefs about the valuation of
buyer i, i 2 I; are given by (23) and she maximizes revenue by assigning probability one to
the buyer with the highest posterior virtual valuation provided that it is non-negative. We
use I(v j�v ) to denote the set of buyers that have maximal non-negative posterior virtual
valuations when the vector of valuations is equal to v; that is

I(v j�v ) � fi 2 I; s.t. i 2 argmax
i2I

Ji(vi j�vi ); and Ji(vi j�vi ) � 0g: (24)

For vectors of valuations where ties occur, the set I(v j�v ) contains more than one buyer.
From the t = 2 perspective the seller is just indi¤erent between assigning the good to any
of the buyers in I(v j�v ): However, as we have already discussed, the seller may not be
indi¤erent from the t = 1 perspective, in which case she can increase revenue from the t = 1
perspective by assigning the good to the subset of buyers in I(v j�v ) that have maximal prior
virtual valuations. We call this subset of buyers Iprior(v j�v ) and it is given by:

Iprior(v j�v ) = fi 2 I(v j�v ); s.t. i 2 arg max
i2I(vj�v )

Ji(vi)g: (25)

For the region of valuations �V n �i2I [ai; �vi] the best that the seller can achieve is to
assign the good to the buyer with the highest virtual valuation among the buyers that have
valuations above the cut-o¤ �vi: This is because in the region �V n �i2I [ai; �vi] the highest
virtual valuation is above the seller�s value. We use I1(v) to denote the set of buyers that
have valuations above the cut-o¤ �vi when the vector of realized valuations is v; that is
I1(v) = fi 2 I : vi 2 (�vi; bi]g: We also use I�(v) to denote the set of buyers that have
maximal virtual valuations among I1(v); that is

I�(v) = fi 2 I; s.t. i 2 arg max
i2I1(v)

Ji(vi)g: (26)
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If there are ties I�(v) contains more than one buyers. But here because the seller is indif-
ferent from the ex-ante point of view the way ties are broken is inconsequential. However,
some caution must be exercised in the way ties are broken in order to guarantee that the
resulting allocation rule is indeed incentive compatible. One way to do so is to always assign
the good to the buyer with the lowest index among all the buyers that tie, both in cases
where ties occur at t = 1 and at t = 2:

Summarizing, our �quasi solution� consists of a t = 1 menu where the seller keeps
the good with probability one for vectors of valuations in �i2I [ai; �vi]; and for the remaining
vectors of valuations the good is assigned with probability one to the buyer with the highest
virtual valuation. The overall allocation rule arising from this �rst period menu is given by:

for v 2 �V n �i2I [ai; �vi]; pi(vi; v�i) =
(
1 if i 2 I�(v); and i < j for all i; j 2 I�(v)

0 otherwise
(27)

for v 2 �i2I [ai; �vi]; pi(vi; v�i) = �p2i (v);

where

p2i (v) =

(
1 if i 2 I(v j�v ) and i < j for all i; j 2 Iprior(v j�v )

0 otherwise
; (28)

and where �vi 2 [ai; bi] for all i 2 I; I�(v) is given by (26), I(v j�v ) is given by (24) and
Iprior(v j�v ) is given by (25).

The allocation rule given by (27) will be a �solution�of Program B if it satis�es all the
constraints. This turns out to be true and we establish it in the Proposition that follows.

Proposition 4 The allocation rule in (27) is feasible for Program B:

Proof. First observe that p in (27), satis�es resource constraints. Moreover, p2 in (28), is
optimal given posterior (23); hence it satis�es SRC: In order to establish feasibility of p it
remains to establish that Pi is increasing in vi:

For vi 2 [ai; �vi] Pi(vi) = �P 2i (vi); and by standard arguments one can see that in fact
p2i (vi; v�i) is increasing in vi; which immediately implies that P

2
i (vi) is increasing in vi as

well: So for vi 2 [ai; �vi] Pi is increasing in vi: Along the region (�vi; bi] the monotonicity
of Pi follows using standard arguments: It remains to check that Pi does not drop at �vi:
Buyer i with valuation slightly below �vi can only obtain the object at t = 2:We reach t = 2
if v�i � �v�i; which happens with probability F�i(�v�i). Otherwise, the object is assigned
with probability one to some other buyer: So even if he gets the object with probability 1
at t = 2, from the ex-ante point of view it must hold Pi(�vi) � �F�i(�v�i): In other words,
the upper bound for Pi(�vi) is �F�i(�v�i): Now type �vi + " where " > 0 gets the object with
probability one, at least when v�i � �v�i. This occurs with probability F�i(�v�i): Hence it
holds that Pi(�vi + ") � F�i(�v�i); and because �F�i(�v�i) is an upper bound for Pi(�vi); we
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get that Pi(�vi + ") � Pi(�vi): Therefore Pi does not drop at �vi; and hence it is increasing in
vi on [ai; bi]:

Remark 2 Actually, one can show an even stronger version of monotonicity. It turns out
that pi(vi; v�i) is increasing in vi for all v�i: From our arguments it is easy to see that
pi(vi; v�i) is increasing in vi for all v�i and for vi 2 [ai; bi]nf�vig: Hence it remains to show
that it is increasing at �vi: When at least one vj > �vj we have that pi(�vi�"; v�i) = 0 whereas
pi(�vi + "; v�i) is either 0 or 1. In both cases it is increasing. Now when v�i < �v�i we
have that pi(�vi � "; v�i) is either equal to 0 or �; whereas pi(�vi + "; v�i) = 1; hence again
pi is increasing. From these observations we can conclude that our �solution� is dominant
strategy incentive compatible. This observation is employed later to establish the irrelevance
of disclosure policies when we examine situations where the game lasts longer than two
periods.

Proposition 4 establishes that (27) is feasible for Program B: Varying �v we get di¤erent
allocation rules all of whom satisfy (27). At a solution of Program B �v must be determined
optimally. Put di¤erently, after substituting (27) in the objective function, Program B

reduces to the problem of �nding �v = (�v1; :::; �vI); with �vi 2 [ai; bi]; that is:

max
�v2�i2I [ai;bi]

R(�v): (29)

This program is tremendously simpler than the one we set out to solve. Instead of
maximizing over an in�nite dimensional space, we are choosing the vector �v; which is a
�nite dimensional object, out of a compact set �i2I [ai; bi].

We now proceed to illustrate how to obtain a revenue maximizing vector �v in a simple
example.

Example 1 Suppose that there are 2 buyers, whose valuations are drawn both from the
uniform distribution on [0,1] and that the seller�s valuation for the good is zero. For this
example the commitment benchmark is

�vc1 = �v
c
2 = 0:5 and Revenue=0:416:

For a pair �v1 and �v2 we have that the posterior virtual valuations for 1 and 2 are respectively
given by J1(v1 j�v1 ) = 2v1��v1 and J2(v2 j�v2 ) = 2v2��v2. At a revenue maximizing mechanism
at t = 2 the following holds

if v1 � v2 �
(�v2 � �v1)

2
and v1 � 0:5�v1 1 obtains the object

if v2 > v1 �
(�v1 � �v2)

2
and v2 � 0:5�v2 2 obtains the object

otherwise the seller keeps the object.
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At t = 1 if v1 � v2 buyer 1 gets the object and buyer 2 gets it otherwise. Then the seller�s
expected revenue is given by:

R(�v1; �v2) =

Z 0:5�v2

0

�Z �v1

0:5�v1

�(2v1 � 1)dv1 +
Z 1

�v1

(2v1 � 1)dv1
�
dv2 +Z �v2

0:5�v2

"Z v2� (�v2��v1)
2

0
�(2v2 � 1)dv1 +

Z �v1

v2� (�v2��v1)
2

�(2v1 � 1)dv1 +
Z 1

�v1

(2v1 � 1)dv1

#
dv2 +Z 1

�v2

�Z v2

0
(2v2 � 1)dv1 +

Z 1

v2

(2v1 � 1)dv1
�
dv2;

which simpli�es to:

R(�v1; �v2) = 0:58333�v2��v
2
1 � 0: 75�v2��v1 � 1:0�v2�v21 + �v2�v1

+0:58333��v1�v
2
2 + 0:33333� 0:33333�v32:

Maximizing with respect to �v1 and to �v2 we obtain a solution, which turns out to be sym-
metric. We describe it in the following table:

� �v1 �v2 Revenue
0 0.500 0.500 0.416
0.1 0.506 0.506 0.412
0.3 0.525 0.525 0.404
0.5 0.555 0.555 0.397
0.7 0.612 0.612 0.392
0.9 0.764 0.764 0.396
1 1 1 0.416

Loss in Revenue in %
0
-0.96
-2.88
-4.57
-5.77
-4.80
0

The last column of the table describes the revenue loss that the seller incurs in the best
possible scenario due to her inability to commit. The loss varies non-monotonically with
the discount factor.

We now proceed to establish that this is a real solution of the problem of interest.

4.4.3 The Actual Solution

The critical feature of our �quasi-solution� is that there is a single vector of actions that
leads to no trade in period one; it actually leads to no trade with probability one, and
moreover it is chosen with probability one when all buyers�valuations lie below a cut-o¤.
Once the seller observes this vector of actions, the posteriors about the buyers�valuations
are simply truncations of the prior. The fact that the posteriors are truncations of the priors
is an almost immediate consequence of the fact that in deriving this �quasi-solution�we
ignored the indirect e¤ects of the �rst period menu�s on the second period mechanisms. In
order to establish that our quasi-solution is a real solution, we have to establish that taking
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into account these e¤ects, which essentially amounts to allowing for general msi
i (vi)

0s (as
opposed to ones that take the extreme values of 0 or 1); does not allow the seller to do
better. General msi

i (vi)
0s arise in cases when there is an interval of valuations where buyer

i is indi¤erent between si and some other action ŝi. Then, along the region where i is
indi¤erent, msi

i (vi) could a priori be any number between zero and one. Mixings and/or
gaps in the support of the posteriors may help because they sustain a much richer set of
posteriors, compared to just mere truncations.

In one case one can immediately conclude that complicated mixings/gaps cannot lead
to second period allocations that reduce the distortions introduced by sequential rationality
constraints compared to the distortions arising to truncations of the prior. When all buyers
are ex-ante symmetric the ex-ante optimal boundary between two buyers i and j is given
by the 45 degree line namely vi = vj :When posteriors are truncations with the same cuto¤
across buyers, then the buyers remain symmetric in the eyes of the seller also at t = 2; and
at that point too, the optimal boundary is vi = vj : Hence same truncations of the prior in
the symmetric case lead to no distortions of the boundary between two buyers, compared
to ex-ante optimal boundary.

Unfortunately this conclusion is much harder to obtain when it comes to comparing (i)
buyers i0s posterior virtual valuation with the seller�s value and (ii) two buyers�posterior
virtual valuations when they are not symmetric. In the longer working paper version of this
paper,30 one can �nd the complete proof to (i). However (ii) seems impossible to obtain
via direct comparisons. The reason for this is that the ex-ante optimal boundary across
buyers can be essentially anything, and not simply the 45 degree line as in the case of
symmetric buyers. Also, in contrast to the case of the boundary between a buyer and the
seller, where only the buyer�s posterior virtual valuation depends on the posterior, here
both the relevant quantities for comparisons (the posterior virtual valuations) depend on
the posteriors. Then, it is possible that when the posterior about i is a truncation, the
comparison of Ji(vi j�vi ) with Jj(vj jsj ) is closer to the ex-ante optimal one, than, say, the
comparison arising when the posterior about i is not a truncation; whereas in the case that
j chooses another action, say ~sj , the reverse is true: In short, when buyers are asymmetric
obtaining general conclusions about which posteriors minimize the distortions arising from
sequential rationality constraints seems quite challenging, if not impossible.

Given that such �direct� comparisons do not lead to any conclusions, another way to
proceed is to investigate whether the conditions necessary to support �complicated poste-
riors�which we describe in Proposition 5 in the working paper version, are indeed feasible
or not. As we discuss there, these requirements are quite demanding, and in many cases
impossible to satisfy. However, even though, complicated posteriors may be very hard to
sustain, establishing their impossibility for every distribution does not seem possible. For
these reasons we have to appeal to stronger, and maybe more generally applicable ideas, to

30Available at the author�s website.
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establish our result. We introduce such an idea next.

The Information Postponement Principle

The information postponement principle essentially states that it does not pay for the
seller (or the mechanism designer more generally) to distort the �rst period allocations for
the purpose of generating more information at t = 2: The reason for this is that the highest
overall payo¤ that the seller can achieve is obtained when the seller restricts as much as
possible the amount of information that she obtains in the future. This allows the seller
to support higher ex-ante revenue because it minimizes the set of future deviations that
the seller has. In short, less information available to the seller in the future translates to
a smaller set of deviations, which in turn translates to higher ex-ante revenue. This is
essentially the principle formulated by Myerson (1986) in his paper on multi-stage games
with communication. In that paper Myerson argues (Myerson (1986), page 324) that the
set of equilibria is largest when the communication devise sends to each player only the
recommended action at each stage and it does not release any additional information about
past or current actions for the other players; nor for future actions recommended to that
player himself. The reason is that any additional information makes the set of all possible
deviations available to a player larger, which makes the set of equilibria smaller. Our set-
up shares some similarities with the set-up in the multi-stage games with communication,
however there are clearly important di¤erences: for one, in this paper we are not looking for
correlated equilibria. Still, the same idea applies: more information increases the possible
deviations and results in a smaller number of equilibria, hence smaller achievable equilibrium
payo¤s.

With the help of these observations we establish that our quasi-solution is a real solution
next.

Proposition 5 Our quasi-solution is a real solution for the general case where buyers can
be asymmetric.31

Proof. In the problem under consideration, the seller has more information to condition
on at t = 2 the more vectors of actions that lead with positive probability to no trade are
chosen at t = 1 there are: By the �information postponement principle� then, the least
amount of information that the seller can condition on results when there is a unique vector
of actions that leads to no trade at t = 1:

Let s denote this unique vector of actions that is associated with strictly positive prob-
ability of no trade at t = 1; (q0(s) > 0): The monotonicity of the (ironed) virtual valuations
implies that this vector of actions must be chosen by the buyers when their valuations are

31A constructive (but lengthy) proof without resulting to the information postponement principle is pos-
sible for the case of symmetric buyers. See the long working paper version for details.
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below some cuto¤. In other words, si is chosen with probability one by buyer i when his val-
uation belongs in [ai; �vi]:Moreover, since we have argued that there should not be any other
vector of actions with q0(~s) > 0; it follows that for v0s in the region �V n �i2I [ai; �vi] buyers
choose vectors of actions with q0(~s) = 0; that is they choose vectors of actions according to
which trade takes place with probability one at t = 1:

Given our �ndings so far, the objective function of Program B can be rewritten asZ
�i2I [ai;�vi]

�i2I(qi(s) + �q0(s)p
2(s)
i (v))Ji(vi)f(v)dv

+

Z
�V n�i2I [ai;�vi]

�i2Ipi(v)Ji(vi)f(v)dv;

where q0(s) > 0 and p2(s) is optimal given beliefs (23). Notice now that this problem is
linear in the menu q(s); so at an optimum we can take q0(s) = 1 without loss: For the
region �V n �i2I [ai; �vi] we have that trade takes place with probability one at t = 1; and
the best that the seller can do is to use a �rst period mechanism where for each vector of
actions chosen by a v 2 �V n�i2I [ai; �vi] one of the buyers with the highest virtual valuation
is awarded the good with probability one. This is exactly the �quasi solution�we derived
earlier.

Summarizing, with the help of the �information postponement principle�we were able
to see that our quasi-solution is an actual solution of Program B even when buyers are
ex-ante asymmetric. We have also argued that in general more direct and contractive ways
are extremely messy.

So far we have obtained a solution of Program B: However, because the feasible set of
Program B consists of allocation and payment rules that simply satisfy necessary conditions
of being PBE implementable, we cannot be a priori sure that there exists a strategy pro�le
that is a PBE and that it implements the solution we have derived. Next we show that we
can actually achieve this upper bound by constructing a strategy pro�le that implements
the allocation and the payment rule that solve Program B:

4.4.4 Implementation of a Solution of Program B

A strategy pro�le that implements an allocation rule of the form (27), is as follows:
Seller�s Strategy: The seller at t = 1 proposes a �cut-o¤ mechanism,�where a buyer

can either choose �wait,�or to report a value above a cut-o¤. In particular, M = (S1; g1)

is de�ned as follows. The actions space for each i is

S1i = fwaitg [ [�vi; bi]; for �vi 2 [ai; bi]: (30)
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The outcome function g1 = (q1; z1); consists of an allocation rule q1 that is given by:

q1i (wait; s�i) = 0, for all s�i 2 S1�i (31)

q1i (vi; s�i) =

(
1 if i 2 I�(v); and i < j for all i; j 2 I�(v)

0 otherwise
;

where I�(v) = fi 2 I; s.t. i 2 argmaxi2I1(v) Ji(vi)g and I1(v) denotes the set of buyers
that choose actions di¤erent from �wait�at t = 1 when the vector of realized valuations is
v: This is the set of buyers that participate at t = 1:

In words, if buyer i chooses �wait,�at t = 1; he never gets the good at t = 1; otherwise,
he obtains the object with probability 1 if he has the lowest index among all buyers whose
virtual valuation is highest among all the buyers in I1(v): This is a mechanism that unless
all buyers choose to �wait�at t = 1; one of the buyers is awarded the good with probability
one at t = 1: The seller at t = 2 after the history where all buyers choose �wait�at t = 1
proposes a direct revelation mechanism with an allocation rule described in (28).32

Buyers�Strategies: At t = 1 a buyer who has valuation below �vi chooses �wait�and
a buyer with valuation above �vi reports the truth. At t = 2; buyer i reports the truth
when vi � �vi. For vi > �vi he reports any valuation, say for instance he reports �vi:33 More
formally, i0s strategy, for i 2 I; is given by:

t = 1 : s1i (vi) = wait for vi 2 [ai; �vi]; s1i (vi) = vi for vi 2 (�vi; bi] (32)

t = 2 : s2i (vi) = vi for vi 2 [ai; �vi]; s2i (vi) = �vi for vi 2 (�vi; bi]:

Beliefs: Given the buyer�s behavior speci�ed by (32), when trade does not occur at t = 1
the seller�s posterior beliefs are given by (23).

It is immediate to see that this strategy pro�le implements (27). Now we move to
establish that it satis�es all the requirements of being PBE�implementable.

Given the buyers�strategies, the seller�s strategy is a best response since it generates
the highest possible revenue (that is feasible), from the buyers that participate at t = 1 and
from the buyers that participate at t = 2 and, since �v is optimally chosen, the seller cannot
do any better by changing the regions where trade takes place at t = 1; versus t = 2:

Hence the only requirement that we still need to verify in order to establish that indeed
this strategy pro�le is a PBE; is that the buyers�strategies are best responses at each node.
However in order to do so, we need to know how payments are determined at t = 1 and
t = 2: With the help of

xi(vi; v�i) = pi(vi; v�i)vi �
Z vi

ai

pi(ti; v�i)dti; (33)

32We postpone the description of the payment rule for after we describe the buyers�strategies. It will be
constructed so that a buyer with a valuation above the cut-o¤ has an incentive to tell the truth.
33Note that this is o¤ the equilibrium path because we can only reach t = 2 when all buyers choose to

wait at t = 1; which occurs whenever all valuations are below the cut-o¤ �v:
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we will construct these payments in such a way so as the previously described strategies for
the buyers are best responses at each node. This is guaranteed by the incentive compatibility
of p which is established in Proposition 4.

In order to get a clearer view of how the payments can be split across periods, we will
rewrite (33) as:

xi(vi; v�i) =
�
qi(si(vi); s�i(v�i)) + �q0(si(vi); s�i(v�i))p

2(vi; v�i)
�
vi

�
Z vi

ai

�
qi(si(ti); s�i(v�i)) + �q0(si(ti); s�i(v�i))p

2(ti; v�i)
�
dti

= qi(si(vi); s�i(v�i))vi �
Z vi

ai

qi(si(ti); s�i(v�i))dti + (34)

�

�
q0(si(vi); s�i(v�i))p

2(vi; v�i)vi �
Z vi

ai

q0(si(ti); s�i(v�i))p
2(ti; v�i)dti

�
For the region v 2 �i2I [ai; �vi] where ALL buyers choose �wait�at period one, we know that
trade never occurs at t = 1, that is q0(si(vi); s�i(v�i)) = 1; which implies that the �rst two
terms of (34) are zero, and it reduces to

xi(vi; v�i) = p
2(vi; v�i)vi �

Z vi

ai

p2(vi; v�i)dti;

which is exactly the one given in (21), and by the incentive compatibility of (p2; x2) we can
immediately conclude that the buyers strategies are best responses at t = 2:

Now when buyers�valuations lie in V n�i2I [ai; �vi] at least one buyer is choosing an action
di¤erent from �wait.�However, matters are slightly more delicate than in the previous case,
because for certain regions of valuations all terms of (34) are important for determining
xi(vi; v�i): In particular, this is true for the region where only one buyer, say i, chooses
an action di¤erent from �wait,�whereas all other buyers choose to wait. Then for such a
vi 2 (�vi; bi] we have that

xi(vi; v�i) = qi(si(vi); s�i(v�i))vi�
Z vi

�vi

qi(si(ti); s�i(v�i))dti��
Z �vi

ai

p2(ti; v�i)dti for v�i 2 �j2I
j 6=i
[aj ; �vj ];

which depending on whether the v0�is are in a region where all of their posterior virtual
valuations are below the seller�s value or not, it becomes:

xi(vi; v�i) =

8>>>>>><>>>>>>:

qi(si(vi); s�i(v�i))vi �
R vi
�vi
qi(si(ti); s�i(v�i))dti � �

R �vi
�i(�vi)

p2(ti; v�i)dti

for v�i 2 �j2I
j 6=i
[aj ; �j(�vj)]

qi(si(vi); s�i(v�i))vi �
R vi
�vi
qi(si(ti); s�i(v�i))dti � �

R �vi
c2j (v�j)

p2(ti; v�i)dti

for v�i 2 �j2I
j 6=i
[aj ; �vj ]n �j2I

j 6=i
[aj ; �j(�vj)]

(35)
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where �i(�vi) is the optimal cut-o¤ at t = 2 given (23), and c
2
j (v�j) = inffvi 2 [ai; �vi] such

that p2i (v) = 1g:
With the help of (31), (35) can be simpli�ed to

xi(vi; v�i) =

8><>:
(1� �)�vi + ��i(�vi) for v�i 2 �j2I

j 6=i
[aj ; �j(�vj)]

(1� �)�vi + �c2i (v�i) for v�i 2 �j2I
j 6=i
[aj ; �vj ]n �j2I

j 6=i
[aj ; �j(�vj)]:

(36)

Notice that (36) varies with v�i: However because when v�i 2 �j2I
j 6=i
[aj ; �vj ]; all buyers j 2 I

with j 6= i; do not make any reports at t = 1, it is not possible to design any payment rule
that depends on v�i: Therefore it is not possible implement (36) as is. However, notice that
(36) has to hold only in the cases where buyer i faces no competition at t = 1; that is he
is the only one participating at t = 1: Precisely then the seller can use (36) to determine a
personalized reserve price for buyer i: The reserve price for buyer i, i 2 I; is denoted by Z1i
and it satis�es

Z1i F�i(�v�i) =

Z
�j2I
j 6=i

[aj ;�j(�vj)]
[(1� �)�vi + �i(�vi)] f�i(v�i)dv�i (37)

+

Z
�j2I
j 6=i

[aj ;�vj ]n�j2I
j 6=i

[aj ;�j(�vj)]

�
(1� �)�vi + �c2i (v�i)

�
f�i(v�i)dv�i:

Since buyer i does not know v�i; from his perspective he is indi¤erent between paying Z1i
wherever all other buyers choose �wait,�(which occurs with probability F�i(�v�i)); or incur-
ring payments according (36). Moreover, these two di¤erent payment methods are equiva-
lent from the seller�s perspective because they have the same expectation. This completes
the description of the payment rule of the �rst period mechanism for the circumstances
where only one buyer chooses an action di¤erent from �wait.�

We continue with the description of the payment rule where there is some competition
between buyers at t = 1: This happens when more than one buyer at t = 1 is choosing an
action di¤erent from �wait.�In that case, a buyer pays only when he wins, and his payment
is equal to lowest possible valuation that would still allow him to win, for the given vector of
valuations of the other buyers in I1(v); that is c1i (v�i) = inffvi 2 S1i such that q1i (v) = 1g:34
The winner, as well as the payment, are calculated based on the reports of the buyers that
participate that is the buyers in I1(v): We have therefore derived the following scheme for
the period-1 mechanism:

34The payment rule in this region is very similar to the one described by the optimal mechanism in Myerson
(1981). The di¤erence is that here, not all buyers participate at t = 1.
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z1i (vi; v�i) =

8>>><>>>:
c1i (v�i) if i 2 argmaxi2I1(v) Ji(vi) when v�i 2 �V�in �j2I

j 6=i
[aj ; �vj ]

Z1i when v�i 2 �j2I
j 6=i
[aj ; �vj ]

0 otherwise

. (38)

Putting all the pieces together, we have established the following Proposition:

Proposition 6 The allocation rule (27) can be implemented by a strategy pro�le and a
belief system that form a PBE of the game. One such strategy pro�le and belief system is
as follows. The seller at t = 1 proposes a mechanism described in (30),(31), (38). The only
history where trade does not take place at t = 1 is when all buyers choose �wait� at t = 1
and posterior beliefs are given by (23). After that history, at t = 2 the seller proposes the
direct revelation mechanism given by (28) and (21). Buyer i0s strategy is given by (32), for
i 2 I:

We are now ready to state and prove the main Theorem of our paper.

Theorem 1 Without commitment a revenue maximizing seller at t = 1 should employ a
mechanism where each buyer can either claim a value above a buyer speci�c cut-o¤, or
choose to �wait�. The object is awarded with probability one to the buyers with the highest
virtual valuation among all buyers who claimed a value above the cut-o¤. If no buyer claims
a value above the cuto¤ no trade takes place at t = 1 and we move on to t = 2 where the
seller employs a direct revelation mechanism that assigns the object to an optimally chosen
subset of the buyers with the highest posterior virtual valuation, if it is non-negative.

Proof. From Proposition 1 we know that the value of Program A is an upper bound for
how much the seller can achieve. Proposition 3, tell us that we can obtain a solution of
Program A by solving an arti�cial Program B: We described a �quasi� (myopic) solution
of Program B in (27). Then we showed in Proposition 5 that this �quasi� solution is a
real solution of Program B: Finally, in Proposition 6 we showed that this solution can be
implemented by an assessment that is a PBE: From all these results it follows that this
assessment is a revenue maximizing PBE.

At this assessment, the seller at t = 1 employs a mechanism where each buyer can either
claim a value above a buyer speci�c cut-o¤, or can choose to �wait�. The object is awarded
with probability one to the buyers with the highest (extended) virtual valuation among all
buyers who claimed a value above the cut-o¤. If all buyers wait, no trade takes place at
t = 1 and we move on to t = 2; where the seller employs a direct revelation mechanism that
assigns the object with probability one to a subset of the buyers with the highest posterior
(extended) virtual valuation if it is non-negative. This subset contains the buyer(s) whose
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prior virtual valuation is highest among the group of the buyers whose posterior virtual
valuation is highest.

We now show that in the case of ex-ante symmetric buyers our optimal auction without
commitment can be implemented by running a sequence of �rst price auctions, FPA; with
optimally chosen reserve prices in each period. The reserve prices decrease overtime. It can
be also implemented by a sequence of second price auctions, SPA; with optimally chosen
reservation prices.35

Corollary 1 Suppose that the buyers are ex-ante symmetric. Then the symmetric equi-
librium of the game where the seller runs a SPA or a FPA in each period with optimally
chosen reserve prices, generates maximal revenue for the seller.

Proof. If buyers are ex-ante symmetric, then it is easy to see that at a solution of Program
B we have that �vi = �vj for all i; j 2 I and i 6= j: The reason for this, is that when buyers are
ex-ante symmetric the ex-ante optimal boundaries are simply vi = vj : This ex-ante optimal
boundary can be also supported by a mechanism that is optimal at t = 2 when �vi = �vj ;

because then the buyers are still symmetric in the eyes of the seller at t = 2:
In this case the optimal allocation can be implemented by a symmetric equilibrium

of the game where the seller runs a SPA or a FPA in each period with optimally chosen
reserve prices. Consider the symmetric equilibrium of a sequence of SPA with a reservation
price in each period. At t = 1 a SPA with a reservation price assigns the object to the
buyer with the highest valuation, (which due to symmetry is the buyer with the highest
virtual valuation), among all buyers that submit a bid above the reservation price that the
seller has posted at t = 1: This follows from the fact that conditional on submitting a bid
above the reserve price, it is a dominant strategy for a buyer to submit a bid equal to his
true valuation. At a second price auction trade does not take place at t = 1 if no-one bids
above the reservation price. Given ex-ante symmetric buyers, at a symmetric equilibrium,
the buyers are symmetric in the eyes of the seller at the beginning of t = 2 as well. At t = 2
a SPA assigns the object to the buyer with the highest valuation, (who due to symmetry
is also the buyer with the highest posterior virtual valuation), if his valuation is above the
reservation price posted at t = 2: If ties occur, either in period one or in period two, the
lowest index buyer among the ones who tie is assigned the good with probability one.36

Similar arguments hold for a FPA:
Our result demonstrates that at an optimum whenever at t = 1 the probability of

trade with some buyer is positive, than it is equal to one. This is also a feature of the
�commitment� solution. Without commitment, however, there are additional reasons to
separate types early on, since it may allow higher surplus extraction at a subsequent date.

35For an example of optimally chosen reservation prices in SPA and FPA in a dynamic framework see
McAfee and Vincent (1997).
36This is just one of many possible ways of breaking ties.
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One can think that the seller by using a mechanism at t = 1 that consists of lotteries, may
on one hand, reduce the probability of trade at t = 1; but on the other hand, lead to such
posterior beliefs at t = 2 that will allow for higher surplus extraction in the future. That
is, the seller could use t = 1 as an experimentation stage, that would allow her to obtain
sharper information about the buyers�valuations that she could, in turn, use to obtain more
revenue at t = 2: Our results show that it is not worthwhile for the seller to do so. Trying
to separate out types is too costly.

5. Analysis of the Problem when 2 < T <1

The characterization of a revenue maximizing PBE for the case where 2 < T <1 proceeds
by induction. We start by looking at the case where T = 3: So far we know that if T = 2 the
seller maximizes expected revenue by employing a �Myerson�auction in each period. This
result was established for general distributions. Then, our T = 2 characterization can be
employed to obtain what mechanisms the seller would employ at every continuation game
that starts at t = 2 irrespective of the structure of the seller�s posterior beliefs.

However some caution has to exercised, because our T = 2 solution was derived assuming
that the seller and the buyers share a common prior. This will not necessarily hold at a
continuation game that starts at t = 2 if the seller is employing general disclosure policies
at t = 1: Fortunately, these di¢ culties turn out not be an issue, since as we now argue, the
same forces that make the disclosure policies irrelevant in the two-period version of the
game are also present in the case where the game lasts three periods.

This conclusion is, however, not immediate, since in the two-period version of the model,
the problem at the beginning of t = 2 is a static problem (the game ends afterwards) so we
can employ the revelation principle. When T = 3; the problem at t = 2 is more complicated
because we have to take into account the sequential rationality constraints. To see what is
going on we have to examine the e¤ect of disclosure policies on a problem described in (9)
if we add sequential rationality constraints.

First note that Proposition 2 in Skreta (2007), which is shown for the version of the
problem without SRC; still holds for the same reasons as before when we add the SRC:
Then in this case too, we can obtain a solution of the informed seller�s problem, by solving a
program analogous to Program S described on page 17 in Skreta (2007), with the modi�ca-
tion that we add the sequential rationality constraints. This �enriched�Program S has also
a solution that is dominant strategy incentive compatible. This follows from our Remark
2. Then, all the key forces necessary to prove Theorem 1 in Skreta (2007) are present and
using those steps we can establish an analog of Proposition 2. From this it follows that it
is without loss to assume that all buyers observe each others�actions at t = 1: This result
allows us to apply our characterization for the T = 2 case and to conclude that when T = 3
at every continuation game that starts at t = 2 the seller maximizes revenue by running a
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�Myerson�auction in each period.
With this result in hand, we can mimic the analysis of the T = 2 case. All we need to

do is to reinterpret p2(s); x2(s) as the allocation and the payment rules that are implemented
by a continuation game that starts at t = 2: In particular, the steps of deriving our �quasi-
solutions�are identical, with the only di¤erence that now p2; x2 is a solution of a two-period
problem without commitment. Then, in order to establish that our quasi solution is a real
solution we can again appeal to �information postponement principle�and proceed in an
completely analogous way as we did for the case that T = 2: Given the result for T = 3; we
can continue to get the result for T = 4 and so forth.

6. Robustness and Concluding Remarks

We now o¤er a few remarks on the generality of the solution. We have considered a multi
period situation where the seller cannot commit to the future sequence of auctions that
she employs. Our objective has been to characterize the PBE that guarantees the highest
expected revenue for the seller among all PBE0s: We have shown that at a revenue max-
imizing PBE the seller employs simple mechanisms. When buyers are ex-ante symmetric
our solution reduces to a sequence of �rst or second price auctions with optimally chosen
reservation prices.

The set of PBE0s of the game depends (i) on the generality of mechanisms that the seller
employs (ii) on the generality of the buyers�strategy (iii) on the length of the time horizon
and �nally (iv) what the seller observes during play. With respect to the generality of
de�nition of �mechanisms�we have been very general: we have assumed that a mechanism
consists of some abstract game form endowed by an information disclosure policy as a
way of capturing di¤erent scenaria of what buyers observe during the play of an auction.
This issue of transparency does not appear in single agent environments, but it is crucial
here, because what buyers observe during play a¤ects their perceptions (beliefs) about their
opponents, which determines how they behave subsequently. Regarding the generality of
the strategy that buyer i maybe employing, we have not imposed any restrictions: buyer i
may be employing mixed strategies and non-convex set of types maybe choosing the same
actions. Finally regarding what the seller observes during play, we have assumed that she
observes the vector of actions that buyers choose at each stage. This assumption makes
the non-commitment constraints quite strong and it is intentionally so. The point of our
analysis is what is the best that the seller can do given that she cannot commit. If we had
assumed that the seller observes nothing overtime, then trivially the commitment solution
is sequentially rational.

In some recent work Skreta (2007c) shows that when the seller cannot commit not to
propose another auction in the event that trade does not take place, but observes only
whether trade or no trade takes place in each period, then she can achieve strictly higher
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revenue than what she achieves at the optimal mechanisms we have derived here, where the
seller observes vectors of actions in each period. In that case too, optimal mechanisms have
a cuto¤ structure, however, the cuto¤ for a buyer depends on the other buyers�valuations.

The government in the United States and in other countries sells important assets, such
oil tracts, timber tracts, spectrum and treasury bills through auctions. Optimal design is
especially important for revenue generation when the number of buyers who participate in
the auction is very small and there is hence little competition. This is usually the case for
auctions of very valuable assets. This observation, together with the fact that a large fraction
of items that remain unsold are placed back in the market, makes the characterization
obtained in this paper a relevant extension of the optimal auction literature.

Moreover, this is the �rst paper that characterizes optimal mechanisms in a multi-agent
problem when the designer behaves sequentially rationally. A methodological contribu-
tion of the paper is to develop a procedure to characterize the optimal dynamic incentive
schemes under non-commitment in asymmetric information environments with multiple
agents, whose types are drawn from a continuum. The assumption of commitment, which
makes the characterization of the optimal incentive schemes a relatively straightforward
task, implies that the principal will behave in a time-inconsistent manner and it is not very
appealing for many applications. Designing multi-period incentives schemes under various
assumptions of commitment is an area of great importance, since most relationships are
multi-period and most parties renegotiate or change a contract if it becomes clear that
there exist other that dominate it. We hope that the procedure presented here will prove
useful for the characterization of the optimal dynamic incentive schemes under no or limited
commitment in other asymmetric information environments.
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