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Abstract 
 
We consider a bivariate Poisson model that is based on the lognormal heterogeneity model.  Two 
recent applications have used this model. We suggest that the correlation estimated in their model 
frameworks is an ambiguous measure of the correlation of the variables of interest, and may 
substantially overstate it.  We conclude with a detailed application of the proposed method using 
the data employed in one of the two aforementioned bivariate Poisson studies. 
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1  Introduction 
 
Models for count data have been prominent in many branches of the recent applied literature, for 
example, in health economics (e.g., in numbers of visits to health facilities1) management (e.g., 
numbers of patents2) and industrial organization (e.g., numbers of entrants to markets3). The 
foundational building block in this modeling framework is the Poisson regression model.4  Two 
recent applications, Munkin and Trivedi (1999) and Riphahn et al. RWM (2003), have used a 
form of the bivariate Poisson/lognormal model in which the correlation is introduced through 
additive correlated latent variables in the conditional mean functions. This approach overstates 
the correlation coefficient estimated in their model frameworks.  What they have specified is 
correlation between the logs of the conditional mean functions.  This paper derives the implied 
correlation between the observed random variables and applies the results to the data set used in 
one of the studies mentioned. 

The study is organized as follows:  Section 2 will detail the basic modeling frameworks 
for count data, the Poisson and negative binomial (NB) models and will propose models for 
observed and unobserved heterogeneity in count data.  We propose the lognormal model as an 
alternative to the log gamma model that produces the NB specification.  Section 3 will detail the 
specification of the bivariate Poisson model.  The results derived for the model are applied to the 
RWM panel data on health care utilization in Section 4.  Some conclusions are drawn in Section 
5. 

 
2  Basic Functional Forms for Count Data Models 
 
The literature abounds with alternative models for counts – see, e.g., Cameron and Trivedi (CT) 
(1998) and Winkelmann (2003).  However, the Poisson and a few forms of the negative binomial 
model overwhelmingly dominate the received applications.  [See, as well, Hilbe (2007).]   
 
2.1  The Poisson Regression Model 
 
The canonical regression specification for a variable Y that is a count of events is the Poisson 
regression, 
 

(2-1)  
exp( )Prob[ | ] , exp( ), 0,1,..., 1,...,

(1 )
i i

i i i i i
i

iy
Y y y i N
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−λ λ ′= = λ = α + = =
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where xi is a vector of covariates and, i = 1,…,N, indexes the N observations in a random sample.  
For reasons that will emerge below, we explicitly assume that there is a constant term in the model.  
]The regression model is developed in detail in a vast number of standard references such as CT 
(1986, 1998, 2005), Winkelmann (2003) and Greene (2008a).]  The Poisson model has the 
convenient feature that 
 
(2-2)  E[yi|xi] = λi. 
 
It has the undesirable characteristic that 

                                                 
1 Contoyannis, Jones and Rice (2004), Munkin and Trivedi (1999), Riphahn, Wambach and Million 
  (RWM) (2003).  See, as well, Cameron and Trivedi (2005). 
2 Hausman, Hall and Griliches (HHG) (1984) and Wang, Cockburn and Puterman (1998). 
3 Asplund and Sandin (1999). 
4 HHG (1984), Cameron and Trivedi (1986, 1998), and Winkelmann (2003). 
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(2-3)  Var[yi|xi] = λi. 
 
This is the ‘equidispersion’ aspect of the model.  Since observed data will almost always display 
pronounced overdispersion, analysts typically seek alternatives to the Poisson model, such as the 
negative binomial model described below.   
 Estimates of the parameters of the model using a sample of N observations on (yi,xi), i = 
1,…,N, are obtained by maximizing the log likelihood function, 
 
(2-4)  lnL= [ ]1

( ) ln (1N
i i i ii

y y
=

′α + − λ − Γ + )∑ x β . 
 
2.2  The Negative Binomial and Poisson Lognormal Regression Models 
 
The Poisson model imposes the (usually) transparently restrictive assumption that the conditional 
variance equals the conditional mean.  The typical alternative is the negative binomial (NB) model.  
The model can be motivated as an attractive functional form simply in its own right that allows 
overdispersion.  However, it is useful for present purposes to obtain the specification through the 
introduction of unobserved heterogeneity in the Poisson regression model. We consider two 
possible cases, the conventional approach based on the log gamma distribution and, we will argue, a 
more flexible approach based on the lognormal distribution. 
 
2.2.1  The Negative Binomial Model 
 
To introduce latent heterogeneity into the count data model, we write 
 
(2-5)  E[yi|xi,εi] = exp(α+xi′β + εi) = hiλi, 
 
where hi = exp(εi) is assumed to have a one parameter gamma distribution, G(θ,θ) with mean 1 and 
variance 1/θ  = κ. That is 
 

(2-6)  f(hi) = 
1exp( ) , 0, 0

( )
i i

i
h h h

θ θ−θ −θ
≥ θ >

Γ θ
. 5 

 
The nonzero mean of εi will be absorbed in the constant term of the index function.  By integrating 
hi out of the conditional Poisson mixture mdoel, we obtain the (NB) model, 
 

(2-7)  Prob[Y = yi|xi] = 
( ) (1 ) , 0,1,..., 0,

(1 ) ( )

i
i i i

i
i

yy r r y
y
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 ri = θ/(θ+λi). 

 
[A full derivation of this result may be found in numerous references including Greene (2007b).]  
The conditional mean and variance of the NB random variable relate to the Poisson moments as 
follows: 
 
(2-8)    E[yi|xi]   = λi,  
 
(2-9)     Var[yi|xi]  =  λi [1 + (1/θ)λi] 

                                                 
5 This general approach is discussed at length by Gourieroux, Monfort and Trognon (1984), CT (1986, 
1998), Winkelmann (2003) and HHG (1984). 
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    =  λi [1 + κ λi] 

where    κ  = Var[hi]. 
 
Maximum likelihood estimation and inference about the parameters of the NB model (α,β,θ) is 
straightforward, as documented in, e.g., Greene (2007a), CT (1990, 1998, 2005) and Hilbe (2007). 
 
2.2.2  Poisson  Lognormal Mixture Model 
 
Consider, instead, introducing the heterogeneity in (2-5) as a normally distributed variable with 
mean zero and standard deviation σ, which we introduce into the model explicitly by standardizing 
εi.  Then, the conditional Poisson model is 
 

 (2-10)    P(yi|xi,εi) = 
exp( )( ) ,  exp( )

(1 )

y
i i i i
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The unconditional density would be 
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where here and in what follows, φ(εi) denotes the standard normal density.  The unconditional log 
likelihood function is 
 
 (2-12)  lnL  =  ln P(yi | xi) 1

N
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Maximum likelihood estimates of the model parameters are obtained by maximizing the 
unconditional log likelihood function with respect to the model parameters (α, β, σ).   
 The integrals in the log likelihood function do not exist in closed form.  The quadrature 
based approach suggested by Butler and Moffitt(1982) is a convenient method of approximating 
them. [See, e.g., Greene (2007a).]  Simulation is another effective approach to maximizing the 
log likelihood function.  [See Train (2003) and Greene (2008).] The  log likelihood function is  
 

(2-13)  lnL =  P(yi|xi,εi)] 1
lnN

i=∑
 

 

∞

−∞∫ ( )i idφ ε ε . 
 
The simulated log likelihood would be 
 

(2-14)  lnLS = 
1
lnN

i=∑ 1

1 M

mM =∑ P(yi|xi,σεim)] 

 
where εim is a set of M random draws from the standard normal population.  [We would propose 
to improve this part of the estimation by using Halton sequences, instead.  See Train (2003, pp. 
224-238) and Greene (2008a).]  Extensive discussion of maximum simulated likelihood estimation 
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appears in Gourieroux and Monfort (1996), Munkin and Trivedi (1999), Train (2003) and Greene 
(2008a).]6  
 The mean and variance of the lognormal variable are 
 
(2-15)  E[exp(σεi)]  = exp(σ2/2), 
 
  Var[exp(σεi)]  = E[exp(σεi)2] – {E[exp(σεi)]}2 

    = exp(σ2)[exp(σ2) – 1]. 

 
The conditional mean in the Poisson lognormal model is 
 
(2-16)  E[yi| xi,εi]  =  λi exp(σεi). 
 
It follows that 
 
  E[yi|xi]  =  Eε[E[yi|xi,εi]] 

(2-17)   =  λi exp(σ2/2) 

   =  exp[(α + σ2/2) + xi′β]. 
 
To obtain the unconditional variance, we use 
 
(2-18)  Var[yi|xi]  =  [Var[yi| xi,εi] + 

i
Eε i

Varε i[E[yi| xi,εi]]. 
 
Combining the results above, we find 
 
 (2-19)  Var[yi|xi]   =  λiexp(σ2/2){1 + λiexp(σ2/2)[exp(σ2)-1]} 

    =  E[yi| xi,εi]{1 + τ E[yi| xi,εi]}, τ = [exp(σ2)-1]. 
 
Thus, the variance in the lognormal model has the same quadratic form as that in the negative 
binomial model in (2-9). 
 One could argue that the lognormal model is a more natural specification. If the 
heterogeneity captures the aggregate of individually small influences, then an appeal to the central 
limit theorem would motivate the normal distribution more than the log gamma.   [See Winkelmann 
(2003).]  The attraction in this development is the ease with which the normal mixture model can be 
extended and adapted to new models and formulations, such as the two part models below.  The log 
gamma model that underlies the familiar negative binomial specification provides no means doing 
so.  [See, as well, RWM (1003, p. 395) and Million (1998).] 
 
2.3.  Models for Panel Data 
 
A random effects Poisson model can be formed by writing  
 
(2-20)  λit = exp(xit′β + ui) 

                                                 
6 One could preserve the log gamma specification by drawing him from a gamma(1,1) population and using 
the logs in the simulation, rather than using draws from N[0,1] for wim.  This approach, which obviates 
deriving the unconditional distribution analytically, was used in Munkin and Trivedi (1999). 
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where ui is independent of xit.  The Poisson RE model could also be specified with lognormal 
heterogeneity.  Analysis would follow precisely along the lines of Section 2.2.2.  The joint 
probability would be computed from 
 

(2-21) 

[ ] 1
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X
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This function and its derivatives can be approximated using either quadrature or simulation.   
 
3.  The Bivariate Poisson Model 
 
There have been a variety of proposals for a bivariate (or multivariate) count data model.  The 
earliest form is that of Kocherlakota and Kocherlakota (1992) which is based on the trivariate 
reduction method.  Let z1, z2 and u denote three Poisson distributed random variables.  Then, the 
observed random variables, 
 
  y1 = z1 + u 
(3-1)   and 
  y2 = z2 + u 
 
have a bivariate Poisson distribution with correlation 1 2/ ( )( )u u u

⎡ ⎤λ λ + λ λ + λ⎣ ⎦ .  This model does 

produce a pair of correlated Poisson variables, however the correlation must be positive, which 
severely limits the generality of this specification.  (For the outcomes examined in Section 4, doctor 
visits and hospital visits, a negative correlation would not be surprising.) 7  Munkin and Trivedi 
(1999) present a survey of other approaches.   
 Two recently developed approaches considered here [Munkin and Trivedi (1999) and 
RWM (2003)] build the bivariate model into latent heterogeneity structures, as employed in the 
various models proposed above.  These allow the sign of the correlation to vary.  However, they 
shift the impact of the bivariate distribution from the variables of interest, as in the trivariate model 
above, to the unobservables in the conditional mean function.  The bivariate count outcomes model 
is still preserved.  However, the estimated correlations in these models do not provide a clear picture 
of the implied correlations between the outcome variables that was the objective to begin with.  As 
a general proposition, the correlation between the observed counts will be less, potentially far less, 
than the estimated correlation between the underlying unobserved heterogeneity. 
 The bivariate probit model specified in Munkin and Trivedi (1999) and Riphahn, Rambach 
and Million (2003) is  
 
  exp(x1i′β1 + σ1ε1i)  =  λ1i exp(σ1ε1i) 

   exp(x2i′β2 + σ2ε2i) =  λ2i exp(σ2ε2i) 

(3-2)  (ε1i,ε2i) ~ N2[(0,0),(1,1),ρ] 

                                                 
7 The trivariate reduction method was employed e.g., by Jung and Winkelmann (1993), Karlis and 
Ntzoufras (2003) and King (1989).  
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Both studies build the empirical measurement of correlation of the two outcomes around the 
estimation of ρ.  However, as we now demonstrate, the correlation coefficient, ρ, provides a 
misleading description of this correlation.   Superficially, this is obvious from the construction.  The 
coefficient ρ is not the correlation between y1i and y2i; it is the correlation between lnE[y1i|x1i,ε1i] 
and lnE[y2i|x2i,ε2i].  How this relates to Corr[y1i,y2i|x1i,x2i] is less than clear.  To deduce this from 
the model specification, we proceed as follows: 
 

(3-3)  

1 2 1 2
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For convenience, let 
 
(3-4)  μji = λji exp(σj

2/2). 
 
The terms in the denominator were derived earlier.  The unconditional variance is 
 
  Var[yji|xji]   =  λjiexp(σj

2/2)[1 + λjiexp(σj
2/2)[exp(σj

2)-1]] 

(3-5)    = μji {1 + μji[exp(σj
2)-1]}, j = 1,2. 

 
For the terms in the numerator, the first is zero, since conditioned on ε1i and ε2i, y1i and y2i (given x1i 
and x2i) are independent.  Thus, what remains to derive is 
 

(3-6)      
1 1 1 2 2 2 1 1 1 2 2 2

1 2 1 1 2 2

1 2

{ [ | , ], [ | , ]} {[ exp( )],[ exp( )]}
                                    ( ) {[exp( )],[(exp( )]}
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The two conditional means are the means for the univariate lognormals, 
 
(3-7)  E[exp(σjεji)]  =  exp(σj

2/2). 
 
The remaining term is straightforward; 
 

(3-8)   1 1 2 2 1 1 2 2
2 2
1 2 1 2

[exp( )exp( )] [exp( )]

                                        = exp[( 2 ) / 2].
i i i iE Eσ ε σ ε = σ ε + σ ε

σ + σ + ρσ σ
 
Combining terms and manipulating the expression produces 
 

(5-9)  
[ ]

[ ]

2 2
1 2 1 2 1 1 2 2 1 2

1 2 1 2

[ , | , ] exp( / 2) exp( / 2) exp( ) 1

                                 exp( ) 1 .
i i i i i i

i i

Cov y y x x ⎡ ⎤ ⎡ ⎤= λ σ λ σ ρσ σ −⎣ ⎦ ⎣ ⎦
= μ μ ρσ σ −

 

Combining all terms and simplifying (slightly), we obtain the final result 

 7



(5-10)  [ ]1 2 1 2
1 2 1 2 2 2

1 1 2 2

exp( ) 1
( , | , )

1 [exp( ) 1] 1 [exp( ) 1]
i i

i i i i

i i

Corr y y
μ μ ρσ σ −

=
+ μ σ − + μ σ −

x x . 

 
How this relates to ρ is unclear.  It has the same sign, but the magnitudes are likely to be essentially 
unrelated.  We will examine it in the application below. 
 Finally, RWM (2003) extended this development to a panel data setting.  Their random 
effects model is 
 
  lnλit,1 = α1 + xit,1′β1 + ui,1 + εit,1  =  α1 + xit,1′β1 + vit,1, 

  lnλit,2 = α2 + xit,2′β2 + ui,2 + εit,2  =  α2 + xit,2′β2 + vit,2, 

(3-11)  (εit,1,εit,2) ~  N2[(0,0),(σ1,σ2),ρ], 

  (ui,1,ui,2)  ~  N2[(0,0),(ω1,ω2),0]. 
 
The correlation between εit,1 and εit,2 creates the bivariate model.  In the notation of our earlier 
formulation, the correlation of interest, between vit,1 and vit,2, is 
 

(3-12)  ρ12 = 1 2
2 2 2
1 1 2 2

ρσ σ

ω +σ ω +σ2

                                                

. 

 
And the counterparts to σ1 and σ2 are the two terms in the denominator.  The model also implies a 
T-variate Poisson-lognormal mixture model for each group for each of the two variables.  The 
implied correlation is ρts,j = ωj

2/(ωj
2 + σj

2), j = 1,2.  As they note and discuss, ρ is the correlation 
between the unique unobservable factors in the two equations.  One could, however, misinterpret 
the magnitude of the value as representative of the correlation between the composed heterogeneity 
or, worse yet, between the outcome variables, themselves.  For example, for their equation system 
applied to the males in their sample, they report ρ = 0.599, σ1 =0.996, σ2 =  1.244, ω1 = 0.795 and 
ω2 = 1.195.  The computation above produces ρ12 = 0.276.  The calculation is relevant because the 
unobservable propensities are difficult to partition neatly into time varying and time invariant parts.  
It is speculative to assume that ρ in isolation captures the full correlation of the unobservables apart 
from persistent, time invariant components (and leaves ui,j truly unexplained).  We will revisit the 
computation of the implied correlation between the two outcomes below. 
 
4.  Applications 
 
 In "Incentive Effects in the Demand for Health Care: A Bivariate Panel Count Data 
Estimation," Riphahn, Wambach and Million (2003) employed a part of the German 
Socioeconomic Panel (GSOEP) data set to analyze two count variables, DocVis, the number of 
doctor visits in the last three months and HospVis, the number of hospital visits in the last year.  
The authors employed a bivariate panel data (random effects) Poisson model to study these two 
outcome variables.  A central focus of the investigation was the role of the choice of private 
health insurance in the intensity of use of the health care system, i.e., whether the data contain 
evidence of moral hazard. We will use these data to illustrate the model extensions described 
above.8  The authors of this study presented estimates for the Poisson-lognormal model in Section 
2.2.2 and the bivariate Poisson model in (3-11).  We will analyze the single equation and two part 

 
8 The raw data are published and available for download on the Journal of Applied Econometrics data 
archive website, The URL is given below Table 1. 
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models in some detail, but only analyze the correlation structure developed for the bivariate 
Poisson model in Section 5.  (We have not proposed any extensions for this model; our analysis 
has only provided a more detailed interpretation of the existing model results.)  In order to keep 
the amount of reported results to a manageable size, we will also restrict attention to DocVis, the 
count of doctor visits.  Analysis of the count of hospital visits is left for further research. 
 
4.1  The Data 
 
The RWM data set is an unbalanced panel of 7,293 individual families observed from one to 
seven times. The number of observations varies from one to seven (1,525, 1,079, 825, 926, 1,051, 
1000, 887) with a total number of observations of 27,326.   
 The variables in the data file are listed in Table 1 with descriptive statistics for the full 
sample. They estimated separate equations for males and females and did not report any estimates 
based on the pooled data.  Table 2 reports descriptive statistics for the two subsamples.  The 
figures given all match those reported by RWM.  (See their Table II, page 393.)  The outcome 
variables of interest in the study were doctor visits in the last three months and number of hospital 
visits last year.  Histograms for these variables for the full data set are shown in Figures 2 and 3.  
(Figure 1 was truncated at 20 visits.  Figure 2 was truncated at 10.  These remove about 200 
observations from the sample used to form the figures.) 
 The base case count model used by the authors included the following variables in 
addition to the constant term: 
 
 xit =  (Age, Agesq, HSat, Handdum, Handper, Married, Educ, Hhninc, 
   Hhkids, Self, Civil, Bluec, Working, Public, AddOn) 
 
and a set of year effects, 
 
 t = (YEAR1985, YEAR1986, YEAR1987, YEAR1988, YEAR1991, YEAR1994). 
 
The same specification was used for both DocVis and HospVis.  We will use their specification in 
our count models.  The estimated year effects are omitted from the reported results in the paper.   
 
4.2  Functional Forms and Heterogeneity 
 
Table 3 presents estimates of the Poisson regression models for males and females.  The pooled 
(across genders and across time) results appear in the first column.  We tested for homogeneity of 
the coefficient vectors for males and females using a likelihood ratio test; the chi squared statistic 
is 
 
 λLR = 2[90097.4 – (42927.6+46275.1)]  =  1789.4. 
 
This is substantially larger than the critical chi squared with 16 degrees of freedom (26.30), so the 
hypothesis that the same model applies to males and females is rejected for the Poisson model.  
The Poisson specification is, itself, rejected in favor of a model with heterogeneity, so we 
repeated the homogeneity test with the log gamma (negative binomial) results.  The log 
likelihood for the pooled data is -58082.0 – the pooled NB results are not shown – so the LR 
statistic for the NB model is 678.60, with 17 degrees of freedom.   
 The immediate impression is that the presence of public insurance and private addon 
insurance in the pooled model both have a significant influence on usage of physician visits.  
However, when the models are fit separately for males and femalse, the latter effect is dissipated.  
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It appears that generally, the former effects disappears from the models that account for latent 
heterogeneity – of the four sets of results in Table 3, the effect of Addon remains significant only 
in the NB (log gamma) model for females. 
 The third column of the two groups of estimates present the lognormal model as an 
alternative specification to the log gamma (negative binomial).  These are the counterparts to 
RWM’s results in their Table IV.   Our estimates differ slightly; the difference appears small 
enough to be attributable to difference in the approximation methods.  We used a 48 point 
Hermite approximation.  RWM do not note what method they used for the heterogeneous Poisson 
model.  They used a modification of the Hermite quadrature for the bivariate Poisson model.  For 
example, for the log likelihood function, their reported value is -27411.4 vs. our -27408.6.  The 
counterparts for females are -30213.4 for RWM and -30214.7 for ours.  Based on the likelihoods, 
the lognormal model appears to be superior to the negative binomial model.  Since the models are 
not nested, a direct test based on these values is inappropriate.  The Vuong statistic suggested in 
Greene (2007b) equals 2.329 in favor of the lognormal model. 
 RWM note based on comparing the Poisson-lognormal to the bivariate model that the 
significance and, in some cases, the signs of the coefficients change with the specification.  We 
find generally, that this applies to the marginal variables, but that the pattern of significance of 
most of the variables in the equation is extremely stable.  The very important exception is the 
variables that were the focus of the study, the insurance variables.  What we find is that as the 
model is extended to account for latent heterogeneity, the importance of the private insurance 
variable diminishes consistently. 
 
4.3  The Bivariate Poisson Model 
 
Result (5-10) provides the implied correlation between yi1 and yi2 in the bivariate Poisson model in 
which 
  λi1  =  exp(xi1′β1 + σ1εi1) 
and 
  λi1  =  exp(xi2′β2 + σ2εi2) 
 
where  (εi1,εi2) ~ N2[(0,1),(1,1),ρ]. 
 
Munkin and Trivedi (1999) used this specification in a model for the joint determination of the 
counts of emergency room visits and hospital visits for a sample of 4,406 elderly Americans drawn 
from the National Medical Expenditure Survey from 1987 and 1988.  The authors report the 
estimates of β1 and β2 and, in addition, σ̂ 1 = 1.39, σ̂ 2 = 1.36 and ρ̂  = 0.92.  The last of these might 
lead one to suspect that emergency room visits and hospital visits were extremely highly correlated.  
However, as derived in Section 5, the 0.92 reflects only the correlation between the latent effects in 
the conditional means.  In order to evaluate the correlation between the two outcomes, we propose 
to evaluate (3-10) at the sample observations, and then average the outcomes.  However, without 
the Munkin and Trivedi data in hand, we resort to an approximation.  To a reasonable 
approximation, the sample average of λi evaluated at the individual data will equal the mean of the 
outcome variable.  (The result is exact in the base case Poisson model – this is the likelihood 
equation for the constant term.)  The authors report sample means of 1y = 0.26 and 2y = 0.92.  Thus, 
in (3-10), we use 
 
  μi1 ≈ 1y exp(.5×1.392) = 0.683162 
  μi2 ≈ 2y exp(.5×1.362) = 0.756409, 
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and complete the computation with a hand calculator.  The result is an estimated correlation of 
0.668929, which is substantially less than 0.92.  Munkin and Trivedi do not report the sample 
correlation of their two outcome variables, so we cannot measure the implied estimate against the 
sample statistic. 
 The RWM model is 
 
(4-1)  lnλit,1 = α1 + xit,1′β1 + ui,1 + εit,1  =  α1 + xit,1′β1 + vit,1, 

  lnλit,2 = α2 + xit,2′β2 + ui,2 + εit,2  =  α2 + xit,2′β2 + vit,2, 

  (εit,1,εit,2) ~  N2[(0,0),(σ1,σ2),ρ], 

  (ui,1,ui,2)  ~  N2[(0,0),(ω1,ω2),0]. 
 
for which we derived 

(4-2)  ρ12 = 1 2
2 2 2
1 1 2 2

ρσ σ

ω +σ ω +σ2
. 

 
The result in (3-10) can be used by using this expression for ρ and the two standard deviations, τ1 = 

2
1 1ω + σ2  and τ2 = 2

2ω + σ2
2  for σ1 and σ2 in (3-10).   The authors did not report the full set of 

estimated parameters (they omitted the coefficients on the year dummy variables).  Rather than 
reestimate the full bivariate Poisson model, we proceeded as follows.  Each of the equations in (4-1) 
can be consistently estimated in isolation.  Moreover, we note that the marginal distribution of each 
of the observations, (i,t), in the sample, has a marginal Poisson distribution with normally 
distributed heterogeneity with mean zero and standard deviation τj.  Thus, we estimated the four 
equations singly using the lognormal heterogeneity model discussed in Section 2.2.2.  This provides 
consistent, albeit inefficient estimators of the parameters of the four equations.  These are shown in 
Table 4.  (RWM’s counterparts are shown in Table 5 for comparison.).  The estimated variance, σ2, 
in each of these equations is an estimate of τ2 = σε

2 + ωu
2 in the RWM model.  This is also shown in 

Table 4.  Only an estimate of ρ is needed to complete the calculations in (3-4), (3-10) and (3-12).  
We used the estimate of ρ reported by RWM for males and females, which appears in the last row 
of Table 4.  For comparison purposes, we have decomposed the estimated variance from our 
estimates using the implied analysis of variance in RWM.  The computations appear at the bottom 
of Table 4.  The proportion denoted “p” in the table inferred from the RWM results is used to 
decompose the estimated variance from our model.  With these statistics in hand, and with the 
estimated coefficient vectors, we are able to compute the implied correlations for the two models 
(males and females).  Using (3-12), we obtain means of individual specific estimates of the 
correlations of the outcome variables of 0.06938 for males and 0.05795 for females.  These are an 
order of magnitude less than the estimate of ρ reported in the paper, and moreover, only about half 
of the actual correlation between the outcomes in the data. 
 
5.  Conclusions 
 
One of the recent applications of the methods developed in this paper is in a type of bivariate count 
model.  We found that in these models, the introduction of a “correlation coefficient” into the model 
within the conditional means provides only a partial indication of the degree of correlation between 
the outcome variables. We derived the relationship between the structural parameters and the 
reduced form correlation between the outcome variables in the bivariate Poisson model.  In the 
application carried out in this paper, we find that the estimated correlation coefficient is far higher 
than the actual correlation of the variables in the model.  Moreover, the implied correlation 
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coefficient based on the model estimates, which is a function of the data and thus varies by 
observation, does a strikingly poor job of reproducing the actual, simple correlation of the outcome 
variables and, moreover, appears, on average in these data, to be a full order of magnitude less than 
the simple reported correlation coefficient.  This calls into question the precise interpretation of this 
part of the model and whether this form of correlation is an effective approach to modeling the 
correlation across related count data outcome variables. 
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Table 1.  Variables in German Health Care Data File 
Variable Measurement Mean Standard 

Deviation 
ID household identification, 1,...,7293   
YEAR calendar year of the observation 1987.82 3.17087 
YEAR1984 dummy variable for 1984 observation .141770 .348820 
YEAR1985 dummy variable for 1984 observation .138842 .345788 
YEAR1986 dummy variable for 1984 observation .138769 .345712 
YEAR1987 dummy variable for 1984 observation .134158 .340828 
YEAR1988 dummy variable for 1984 observation .164056 .370333 
YEAR1991 dummy variable for 1984 observation .158823 .365518 
YEAR1994 dummy variable for 1984 observation .123582 .329110 
AGE   age in years 43.5257 11.3302 
AGESQ*  * age saquared/1000 2.02286 1.00408 
FEMALE female = 1; male = 0 .478775 .499558 
MARRIED married = 1; else = 0 .758618 .427929 
HHKIDS children under age 16 in the household = 1; else = 0 .402730 .490456 
HHNINC*** household nominal monthly net income,  

German marks / 10000 
.352084 .176908 

EDUC years of schooling 11.3206 2.32489 
WORKING employed = 1; else = 0 .677048 .467613 
BLUEC blue collar employee = 1; else = 0 .243761 .429358 
WHITEC white collar employee = 1; else = 0 .299605 .458093 
SELF self employed = 1; else = 0 .0621752 .241478 
CIVIL civil servant = 1; else = 0 .0746908 .262897 
HAUPTS highest schooling degree is Hauptschul = 1; else = 0 .624277 .484318 
REALS highest schooling degree is Realschul = 1; else = 0 .196809 .397594 
FACHHS highest schooling degree is Polytechnical= 1; else = 0 .0408402 .197924 
ABITUR highest schooling degree is Abitur = 1; else = 0 .117031 .321464 
UNIV highest schooling degree is university = 1; else = 0 .0719461 .258403 
HSAT health satisfaction, 0 - 10 6.78543 2.29372 
NEWHSAT*,** health satisfaction, 0 - 10 6.78566 2.29373 
HANDDUM handicapped = 1; else = 0 .214015 .410028 
HANDPER degree of handicap in pct, 0 - 100 7.01229 19.2646 
DOCVIS number of doctor visits in last three months 3.18352 5.68969 
DOCTOR*  * 1 if DOCVIS > 0, 0 else 629108 .483052 
HOSPVIS number of hospital visits in last calendar year .138257 .884339 
HOSPITAL** 1 of HOSPVIS > 0, 0 else .0876455 .282784 
PUBLIC insured in public health insurance = 1; else = 0 .885713 .318165 
ADDON insured by add-on insurance = 1; else = 0 .0188099 .135856 
Data source: http://qed.econ.queensu.ca/jae/2003-v18.4/riphahn-wambach-million/.   
From Riphahn, R., A. Wambach and A. Million "Incentive Effects in the Demand for Health Care: A 
Bivariate Panel Count Data Estimation," Journal of Applied Econometrics, 18, 4, 2003, pp. 387-405. 
Notes: * NEWHSAT = HSAT; 40 observations on HSAT recorded between 6 and 7 were changed to 7. 
            ** Transformed variable not in raw data file. 
            *** Divided by 1,000 rather than 10,000 by RWM.  We used this scale to ease comparison of 
      coefficients. 
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 Table 2.  Descriptive Statistics by Gender 
Males Females  

Variable Mean Standard Dev. Mean Standard Dev. 
YEAR 1987.84 3.19003 1987.80 3.14985 
YEAR1984 .141613 .348665 .141940 .349002 
YEAR1985 .138875 .345828 .138806 .345757 
YEAR1986 .138173 .345094 .139418 .346395 
YEAR1987 .134171 .340848 .134144 .340820 
YEAR1988 .162396 .368826 .165864 .371973 
YEAR1991 .157551 .364332 .160208 .366813 
YEAR1994 .127220 .333231 .119621 .324530 
AGE   42.6526 11.2704 44.4760 11.3192 
AGESQ    1.94628 .987385 2.10623 1.01543 
FEMALE .000000 .000000 1.00000 .000000 
MARRIED .765148 .423921 .751510 .432154 
HHKIDS .412975 .492386 .391577 .488122 
HHNINC .359054 .173564 .344495 .180179 
EDUC 11.7287 2.43649 10.8764 2.10911 
WORKING .850312 .356777 .488420 .499885 
BLUEC .340237 .473805 .138730 .345677 
WHITEC .299937 .458246 .299243 .457944 
SELF .0856561 .279865 .0366124 .187815 
CIVIL .117812 .322397 .0277459 .164250 
HAUPTS .601137 .489682 .649469 .477155 
REALS .176086 .380907 .219369 .413835 
FACHHS .0536404 .225315 .0269051 .161812 
ABITUR .146949 .354068 .0844608 .278088 
UNIV .0961876 .294859 .0455553 .208527 
HSAT 6.92436 2.25148 6.63417 2.32951 
NEWHSAT 6.92459 2.25148 6.63441 2.32953 
HANDDUM .227295 .419007 .199559 .399538 
HANDPER 8.13371 20.3288 5.79143 17.9562 
DOCVIS 2.62571 5.21121 3.79080 6.11113 
DOCTOR .559503 .496464 .704884 .456112 
HOSPVIS .127782 .930209 .149660 .831416 
HOSPITAL .0779330 .268076 .0982191 .297622 
PUBLIC .861055 .345902 .912558 .282492 
ADDON .9175525 .131323 .0201789 .140617 
Sample Size 14,243 13,083 
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Table 3.  Poisson Models and Heterogeneity in Poisson (t ratios in parentheses) 
Males Females  

Variable Pooled 
Poisson Poisson Log 

gamma Lognormal Poisson Log 
gamma Lognormal 

Constant  2.639 
(39.46) 

2.771 
(28.85) 

3.1488 
(13.74) 

2.8079 
(11.26) 

2.546 
(28.54) 

3.0245 
(15.03) 

2.7556 
(12.47) 

AGE      -0.00732 
(-2.64) 

-0.02387
(-5.44) 

-0.03983
(-4.07) 

-0.05858 
(-5.51) 

-0.01320
(-3.64) 

-0.03119 
(-3.78) 

-0.04485 
(-4.90) 

AGESQ    0.1407   
(4.54) 

0.3693 
(7.45) 

0.5467 
(4.77) 

0.7853 
(6.45) 

0.1794 
(4.46) 

0.3727 
(4.02) 

0.5421 
(5.27) 

HSAT     -0.2149 
(-151.9) 

-0.2253 
(-104.1)

-0.2392 
(-42.44)

-0.2650 
(-50.93) 

-0.2034 
(-108.3)

-0.2080 
(-47.30) 

-0.2225 
(-46.54) 

HANDDUM 0.1011 
(8.71) 

0.06899 
(4.09) 

-0.02090
(-0.46) 

-0.01093 
(-0.23) 

0.1379 
(8.55) 

0.1133 
(2.79) 

0.1011 
(2.48) 

HANDPER 0.001992 
(10.73) 

0.002858
(10.04) 

0.006614
(8.05) 

0.007398 
(9.08) 

0.002414
(9.48) 

0.004359 
(5.92) 

0.004432 
(6.14) 

MARRIED 0.02058 
(2.32) 

0.05831 
(3.89) 

0.06582 
(2.18) 

0.1276 
(3.67) 

0.02718 
(2.39) 

0.02816 
(1.13) 

0.04590 
(1.63) 

EDUC     -0.01483 
(-7.96) 

-0.02348
(-8.43) 

-0.02623
(-4.59) 

-0.02297 
(-3.43) 

0.01473 
(5.65) 

0.007725 
(1.36) 

0.01318 
(2.09) 

HHNINC -0.1729 
(-7.27) 

-0.2220 
(-5.93) 

-0.1917 
(-2.48) 

-0.1257 
(-1.44) 

-0.2063 
(-6.53) 

-0.1624 
(-2.57) 

-0.1417 
(-1.92) 

HHKIDS   -0.1108 
(-12.86) 

-0.07598
(-5.75) 

-0.08440
(-3.32) 

-0.09013 
(-2.94) 

-0.1338 
(-11.63)

-0.1243 
(-4.91) 

-0.1360 
(-4.81) 

SELF     -0.2914 
(-16.18) 

-0.2110 
(-8.98) 

-0.2179 
(-5.02) 

-0.3590 
(-6.81) 

-0.2175 
(-7.47) 

-0.2424 
(-4.51) 

-0.2885 
(-4.55) 

CIVIL    -0.05026 
(-2.64) 

0.09144 
(3.78) 

0.08411 
(1.56) 

0.01916 
(0.32) 

-0.07113
(-1.91) 

-0.01982 
(-0.34) 

-0.03188 
(-0.39) 

BLUEC    -0.08920 
(-9.01) 

0.01779 
(1.24) 

.03706 
(1.20) 

-0.03137 
(-.93) 

-0.03543
(-2.38) 

-0.04010 
(-1.31) 

-0.09991 
(-2.81) 

WORKING -0.07478 
(-7.62) 

-0.05539
(-3.17) 

-0.01545
(-0.38) 

0.03119 
(0.78) 

0.01490 
(1.29) 

0.03046 
(1.23) 

0.03851 
(1.38) 

PUBLIC   0.1145 
(7.32) 

0.1001 
(4.27) 

.09340 
(1.83) 

0.05150 
(0.91) 

0.1312 
(6.22) 

0.09530 
(2.44) 

0.08076 
(1.72) 

ADDON    0.06084 
(2.39) 

0.06655 
(1.63) 

0.05506 
(0.50) 

0.1954 
(1.81) 

0.02071 
(0.63) 

0.03088 
(0.32) 

0.1175 
(1.25) 

θ   0.5707 
(59.96) 

  0.8289 
(64.44) 

 

κ     1.7522 
(59.96) 

    1.2064 
(64.44) 

  

σ(ε)     1.9874 
(72.19) 

1.2520 
(104.61) 

  1.4757 
(84.33) 

1.0608 
(114.80) 

σ(h)   1.3237 
(119.92)

4.2651 
(29.49) 

 1.1.0984 
(128.89) 

2.5325 
(41.13) 

ln L -89641.2 -42774.7 -27480.4 -27408.6 -45900.2 -30262.3 -30214.7 
n 27326 14243 13083 
Notes: Estimated coefficients for year dummy variables, excluding year 1984, are not reported. 
 θ = the estimated parameter for the log gamma (NB) model 
 κ = 1/θ = Var[h] for log gamma model.  
 σ(ε) = ( )′ψ θ  = Var(lnhi) for the log gamma model.  Estimated directly for the lognormal model. 

 σ(h) = κ  for the log gamma model, 2 2exp [exp 1]( ) ( )σ σ −  for the lognormal model.
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Table 4.  Single Equations Estimates of Bivariate Poisson Models 

Males Females Variable 
DocVis HospVis DocVis HospVis 

Constant 2.95829046 -.71769354 2.65970461 -.92395935 

AGE      -.06039694 -.01495334 -.03467601 -.04182897 

AGESQ     .81046943  .17526254  .40417087  .32800832 

HSAT     -.26979714 -.28467610 -.22492822 -.21283211 

HANDDUM -.10360835 -.15938867  .14118341  .04898526 

HANDPER  .00811821  .00687895  .00436759  .01053000 

MARRIED  .06801734 -.11266046  .09394893 -.03039990 

EDUC -.02141476 -.05611756  .00669951 -.02245035 

HHNINC     -.09317739  .28561716 -.10306991  .45290684 

HHKIDS   -.05833037  .06532961 -.18274059  .02830548 

SELF     -.27162867 -.07241379 -.27422854 -.12053254 

CIVIL     .03028441 -.15292197 -.00966680  .16538415 

BLUEC    -.05264588  .19299252 -.09417967 -.31982329 

WORKING  .00747418 -.29732586  .01608792  .01324764 

PUBLIC    .04537642 -.25102523  .08274879  .07493233 

ADDON     .15634672  .61629605  .11353610  .28858560 

YEAR1984  .00000000  .00000000  .00000000  .00000000 

YEAR1985  .01555697  .38790097 -.02109554  .18039499 

YEAR1986  .14371463 -.03957923  .11756445  .28653104 

YEAR1987  .16606851  .06845882 -.10021643  .12299139 

YEAR1988  .04018257 -.05038515 -.16888748  .43457292 

YEAR1991  .02525603 -.06140680 -.06445527  .44076348 

YEAR1994  .28195404  .07614490  .26471138  .13759322 

σ 1.23777937 1.78190925 1.04809696 1.47269236 

σ2 1.53209777 3.17228488 1.09850724 2.16882279 

σε  .96737031 1.28460990  .79772504 1.00736894 

ωu  .77219975 1.23371888  .67981026 1.07425817 

ρDW 0.276 0.201 

Average Correlation 0.06938 0.05795 

Sample Corr(Doc,Hosp) 0.1477 0.1255 
RWM Reported Results 

σ(εit)  0.996  1.244  0.822  1.053 

ω(ui)  0.795  1.195  0.701  1.123 

σ2(εit)  0.992  1.548  0.676  1.109 

ω2(ui)  0.632  1.428  0.491  1.261 

p=σ2(εit)/[ σ2(εit)+ ω2(ui)]  0.6108  0.5202  0.5793  0.4679 

τ=[σ2(εit)+ ω2(ui)]1/2  1.274  1.725  1.080  1.540 

ρDH 0.276 0.201 

ρ 0.490 0.386 
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Table 5.  RWM Estimated Bivariate Poisson Models 

Males Females Variable 
DocVis HospVis DocVis HospVis 

Constant  2.563 -0.206  2.423 -1.567 

AGE      -0.060 -0.077 -0.040 -0.032 

AGESQ     0.823  0.942  0.499  0.234 

HSAT     -0.237 -0.243 -0.191 -0.196 

HANDDUM -0.029 -0.086  0.063  0.039 

HANDPER  0.007  0.008  0.004  0.010 

MARRIED  0.085 -0.054  0.009 -0.044 

EDUC -0.022 -0.051  0.014 -0.015 

HHNINC     -0.090  0.375 -0.107  0.407 

HHKIDS   -0.059  0.103 -0.117  0.073 

SELF     -0.356 -0.196 -0.256 -0.117 

CIVIL    -0.011 -0.086 -0.069  0.281 

BLUEC    -0.029  0.173 -0.034 -0.320 

WORKING  0.041 -0.026  0.002 -0.014 

PUBLIC    0.075 -0.136  0.058  0.246 

ADDON     0.090  0.549  0.096  0.219 

σ  (εit)  0.996  1.244  0.822  1.053 

ω  (ui)  0.795  1.195  0.701  1.123 

ρ 0.490 0.386 
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Figure 1   Histograms for DocVis 

 
Figure 2   Histograms for HospVis 
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