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Abstract

We build a benchmark framework to study optimal land use, encompassing

land use activities and environmental degradation. We focus on the spatial ex-

ternalities of land use as drivers of spatial patterns: even if land is immobile by

nature, location’s actions affect the whole space through pollution, which flows

across locations resulting in both local and global damages. In contrast to the

previous literature on spatial dynamics, we prove that the social optimum prob-

lem is well-posed, i.e., the solution exists and is unique. Taking advantage of this

result, we illustrate the richness of our model by means of a numerical analysis.

Considering a global dynamic algorithm, we find that our model reproduces a

great variety of spatial patterns related to the interaction between land use activ-

ities and the environment. In particular, we identify the central role of abatement

technology as pollution stabilizer, allowing the economy to achieve stable steady

states that are spatially heterogeneous.
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1 Introduction

Land use activities are usually defined as the transformation of natural landscapes for

human use or the change of management practices on human-dominated lands (Foley

et al., 2005). It is widely accepted that these activities have greatly transformed the

planet’s surface, encompassing the existence and evolution of spatial patterns (see, for

instance, Plantinga, 1996; Kalnay and Cai, 2003; and Chakir and Madignier, 2006). In

this regard, Spatial Economics analyses the allocation of resources over space as well

as the location of economic activity and, thus, the formation of spatial patterns. In

particular, great effort has been devoted to understanding firms’ location, transport

costs, trade, and regional and urban development (Duranton, 2007). However, the

spatial drivers behind the interaction between land use and the environment are still

far for being understood. In this paper we contribute to the theoretical foundations of

land use change and the environment by considering the interaction between land use

activities and pollution. To this end we will develop a theoretical model that focuses on

the spatial externalities of land use as drivers of spatial patterns.

There is an abundant literature on the interaction between land use and pollution. In

particular, agricultural research has devoted great attention to the effects of pollution on

agricultural land use. For instance, Heck et al. (1984), USEPA (1984) and Adams et al.

(1986) have considered the adverse effects of air pollution on vegetation, including crops.

From a climate change perspective, overall a slight benefit to agricultural activities been

predicted (see, among others, Adams, 1989; Deschênes and Greenstone, 2007; and Haim

et al., 2011, for the US; and Olesen and Bindi, 2002, for Europe). However, Olesen

and Bindi (2002), and Deschênes and Greenstone (2007) point out that there will be

considerable spatial heterogeneity across states and countries in this regard. Moreover,

these studies also recognize the necessity to consider other effects of climate change,

such as human health damages, sea level rise, soil degradation, biodiversity, etc. About

the environmental effects of land use Kalnay and Cail (2003) conclude that changes in

land use due to urbanization and agriculture may explain the general increase in the

minimum and slight decrease in the maximum surface temperature. Houghton et al.

(1999), Houghton and Hackler (2001), Matson et al. (1997), and Tilman et al. (2001)

have also identified significant environmental impacts of land use. Moreover, Foley et

al. (2005) point out that the effects of environmental degradation due to land use are

global but also regional/local.

Although this literature has been very fruitful, the dominant approach has been

1

 

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2012.12 (Version révisée)

ha
ls

hs
-0

06
74

02
0,

 v
er

si
on

 2
 - 

26
 A

pr
 2

01
2



empirical. Therefore, there is a general agreement about the lack of explicit modelling of

the spatial drivers behind the interaction between land use and pollution. Closely related

to the integrated assessment approach, bottom-up models of agricultural economics (for

instance, de Cara and Rozakis, 2004; de Cara et al., 2005; and Havĺık et al., 2011)

have contributed to the understanding of the spatial drivers of land use. However, these

models focus on partial equilibrium (mainly the supply side) and do not completely

consider the intertemporal dimension of the problem. In this paper we use an alternative

approach based on the Dynamic Spatial Theory (see Desmet and Rossi-Hansberg, 2010,

for a survey). Even if this approach was only recently developed, it is based on an

old and central question in economic theory: the optimal and market allocation of the

economic activity across space (see the seminal works of Hotelling, 1929; and Salop,

1979).

Within this theory, one can identify three distinct sets of models. The natural spatial

generalization of the Ramsey model is presented in Brito (2004) and Boucekkine et al.

(2009). Both include a policy maker who decides the trajectory for consumption at each

location. The main feature of these models is the spatial dynamics of capital, which flows

in space to meet optimal decisions according to a partial differential equation. Although

these sophisticated models are promising, they are ill-posed in the sense of Hadamard

(1923): one cannot ensure either existence or uniqueness of solutions. To date, there

have been two pragmatic approaches. First, one can consider myopic agents. This is the

approach followed by Desmet and Rossi-Hansberg (2009 and 2010). While each location

solves a static problem, their model is dynamic in time. Indeed, each location decides the

optimal amount to consume, how much to invest in R&D, and how much to save, taking

land revenues, prices and salaries as given. Finally, all savings are coordinated by a

cooperative that invests along the space. Second, one can abstract from physical capital

mobility but allow for spatial externalities. In Brock and Xepapadeas (2008b) there

is technological diffusion since aggregated neighbouring capital affects the location’s

production. Although they overlook ill-posedness, they show that diffusion-induced

instability may create spatial patterns in infinite horizon optimal control problems.

Moreover, they also provide a framework and useful tools to study local stability in a

continuum of spatial sites.1

In contrast to the aforementioned literature, we use the new theory on spatial dy-

1Brock and Xepapadeas (2008a and 2010) and Xepapadeas (2010) extend the concept of diffusion

in an environmental context, focusing on resources that diffuse over the space, such as fisheries and

biomass in general.

2
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namics in order to understand the spatial drivers behind land use and the environment.

To the best of our knowledge, our paper provides a first analytically tractable general

equilibrium framework of land use that encompasses (i) spatial and time dimensions

which are presented in a continuous manner, (ii) spatial externalities due to pollution

and abatement activities, and (iii) environmental degradation. Our starting point is the

Spatial Ramsey model in Boucekkine et al. (2009). We propose a benchmark framework

in continuous time and space to study optimal land use. Each location is endowed with

a fixed amount of land, which is allocated among production, pollution abatement, and

housing.2 Although the unique production input (land) is spatially immobile by nature,

this is a model of spatial growth where locations’ actions affect the entire space through

pollution. Indeed, we assume that the production generates local pollution, which flows

across locations.3 In this regard, we illustrate the diffusion mechanism by means of

the well-known Gaussian Plume equation (see Sutton, 1947a and 1947b). Finally, we

consider that local pollution damages production due to its negative effect on, for in-

stance, individuals’ health (among others, Elo and Preston, 1992; Pope, 2000; Pope et

al., 2004; and Evans and Smith, 2005) and land productivity. Moreover, we assume that

pollution as a whole (global pollution) may also reduce production. This indirect effect

of pollution can, for instance, be linked to the negative effect of anthropogenic GHGs

on climate change.4

In contrast to Boucekkine et al. (2009), Brock and Xepapadeas (2008a,b and 2010),

and Xepapadeas (2010), we prove the existence and unicity of social optimum, i.e., our

problem is well-posed. In a nutshell, we improve the spatial structure of the social plan-

ner problem and this allows us to overcome the ill-posedness of the existent literature.

As a consequence, the Pontryagin conditions turn out to be necessary and sufficient.

To illustrate the richness of our model, we also undertake numerical simulations. To

this end we adapt an algorithm first developed in Camacho et al. (2008) to the current

problem, where well-posedness guarantees the uniqueness of the simulated trajectories.

With this numerical tool in hand, we study the different drivers of spatial heterogeneity.

2In this simplified set-up, the land devoted to abatement may be interpreted as pollution removal

due to, for instance, prairies and forests (see de Cara and Rozakis, 2004; de Cara et al., 2005; Nowak et

al., 2006; and Ragot and Schubert, 2008). In general, one can also consider that abatement activities

require physical space, i.e., land.
3For instance, tropospheric ozone, methane and CO (Akimoto, 2003).
4Akimoto (2003) points out methane and CO as examples of contaminants with both local and

global effects. Moreover, CO affects the oxidizing capacity of the atmosphere, raising the lifetime of

GHGs.

3
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In particular, we find that the abatement technology stands out as a fundamental ele-

ment to achieve steady state solutions, which are compatible with the emergence of long

run spatial patterns. Finally, as an alternative to the linear quadratic approximation

of Brock and Xepapadeas (2008a,b and 2010) and Xepapadeas (2010), we would like

to underline that our numerical analysis is global: we obtain a simulation of the entire

trajectory of the states, controls, and co-states from their initial distributions until they

eventually reach (or not) a steady state.

The paper is organized as follows. In section 2 we explain the Gaussian Plume

equation that describes the pollution dynamics in our set-up. We present the economic

model in section 3. Section 4 provides the Pontryagin conditions as well as the results

of existence and unicity of social optimum. In section 5 we consider the numerical

exercises. Finally, section 6 concludes.

2 The Gaussian plume

We describe the dynamics of pollution by means of a well-known model in physics called

the Gaussian plume. The Gaussian plume is a standard set-up of atmospheric dispersion

that introduces a mathematical description of the transport of airborne contaminants.

Roberts (1924) and Sutton (1932) were the first to study the atmospheric dispersion

problem. Since then great effort has been devoted to provide analytical solutions to the

problem (see, for instance, Arya, 1999, Caputo et al., 2003, and Stockie, 2011). The

simplest of these solutions is the Gaussian plume, which has been mainly applied to air

pollutants. However, it can be also used to study the dispersion of pollutants in aquifers

and porous soils and rocks (Freeze and Cherry, 1979, and French et al., 2000), as well

as nuclear contaminants (Jeong et al., 2005, and Settles, 2006).

Let us introduce the main equations of a Gaussian plume by means of considering

the example of a pollutant emitted by a single source located at x ∈ R3. According to

this model, the dynamics of the pollution at location x in time t, p(x, t), is given by the

following second-order partial differential equation (PDE) of parabolic type:

pt(x, t) +∇ · J(x, t) = E(x, t), (1)

where pt(x, t) denotes ∂p(x, t)/∂t, E(x, t) are the emissions of the single source in time

t ≥ 0, ∇ is the gradient, and J(x, t) represents the flux of contaminant. This flux usually

comprises the effect of diffusion and/or advection. Diffusion describes the spread of a

4
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pollutant through regions of high concentration to regions of low concentration. In

this regard, one can assume that the diffusive flux is proportional to the pollution

gradient (Fick’s law), i.e., JD = −D∇p, where D is a parameter that represents the

diffusion coefficient of the physical environment (air, water, soils, rock, etc.). The second

component of the flux is the advection due to wind, which is usually represented by

JA = pv, where v is the wind velocity. Therefore, J = JA + JD = pv −D∇p.

As pointed in the introduction, our model is based on the Spatial Ramsey model

introduced by Boucekkine et al. (2009). Our set-up requires a slightly modified Gaussian

plume. In particular, the former plume in (1) considers a single pollution source, where

emissions are usually assumed to be exogenous and constant in time. Moreover, these

plumes are often studied just at the steady state. In contrast to that, our model assumes

a continuum of immobile sources, where emissions may change with time and are part of

the policy maker’s decisions. Moreover, our analysis studies both the dynamic transition

and the steady state.

For the sake of analytical tractability we also consider several simplifications. First,

our paper focuses mainly on the case x ∈ R, i.e., space is unidimensional. Second,

we assume that advection is implicitly included in the diffusion effect.5 Finally, it is

assumed D = 1 in order to illustrate the problem. Therefore, the dynamics of pollution

at location x is described by the following Gaussian plume:

pt(x, t)− pxx(x, t) = E(x, t), (2)

where pxx denotes ∂2p/∂x2.

3 The model

We assume that space is the real line R so that there exists a continuum of locations.

Each location has a unit of land, which can be devoted to three different activities:

production, housing and pollution abatement. For simplicity, we shall assume that the

space required for housing at each location is equal to its population density. There

5For Gaussian plumes that include advection see, for instance, Arya (1999) and Stockie (2011). Our

model does not explicitly consider advection because it would require further physical assumptions

that are beyond the scope of this paper (e.g., wind velocity and direction, and its spatial and time

variability). Moreover, the time horizon usually considered in this kind of problems minimizes this

effect. Besides that, the effect of advection is negligible in cases of pollution transportation in soils,

rocks, etc.

5
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exists a unique consumption good the production of which only requires land and which

we denote by F (l). Finally, the remainder of the land is used to abate pollution G(1−
l − f(x)).

Pollution has two dimensions in the model we present. The local dimension p(t, x)

(local pollution) comes directly from the production of the consumption good. It dam-

ages production due to the negative effect on, for instance, individuals’ health and land

productivity. Moreover, even if land is spatially immobile, location’s decisions affect

the whole space since the pollutant travels across space following the Gaussian plume

equation described in (2). Additionally, pollution may also harm production as a global

pollutant (e.g., anthropogenic GHGs). We then allow for the distinction between local

and global pollution, where global pollution is naturally defined as:6

P (t) =

∫
R
p(x, t)dx.

We introduce pollution damages in production using a damage function Ω(p, P, x), which

represents the share of foregone production due to local and global pollution. If we

denote by A(x, t) total factor productivity at location x at time t, we have that this

location produces Ω(p, P, x)A(x, t)F (l) units of final good when it devotes an amount

l of land to production. For simplicity reasons we shall assume that the abatement

technology is not affected by pollution. In the remaining of the paper we make the

following assumptions regarding the production functions:

(A1) Functions F and G are positive, increasing, concave, and their first and second

derivatives exist and are positive, that is:

F (·) ∈ C2, F (0) = 0, F ′(·) > 0, F ′′(·) ≤ 0, lim
s→0

F ′(s) =∞, lim
s→∞

F ′(s) = 0,

G(·) ∈ C2, G(0) = 0, G′(·) > 0, G′′(·) ≤ 0, lim
s→0

G′(s) =∞, lim
s→∞

G′(s) = 0.

(A2) Ω(p, P, x) ∈ C2,2, i.e., it is twice differentiable with respect to p and P , decreasing

in each factor Ω1(p, P, x) < 0, Ω2(p, P, x) < 0. Function Ω(p, P, x) is defined on

R+ × R+ and takes values in [0, 1].

We assume that the policy maker collects all production and re-allocates it across

locations at no cost: ∫
R
c(x, t)f(x)dx =

∫
R

Ω(p, P, x)A(x, t)F (l)dx, (3)

6Well-known pollutants (see, among others, Nordhaus, 1977; and Akimoto, 2003) with mostly global

effects are CO2 and stratosphere ozone. Air contaminants in general (including tropospheric ozone,

NOx, and CO2 plumes) are examples of local pollutants that flow among locations.

6
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where c(x, t) denotes consumption per capita at location x and time t. As we have

pointed out in the introduction, this assumption improves the spatial structure of the

social optimum problem in Boucekkine et al. (2009). This literature indeed assumes

that each location produces its own consumption in the social optimum. However, social

welfare may still increase under the possibility of spatial reallocation of production. We

therefore enlarge the set of feasible abatement and production decisions by allowing for

consumption “imports”.

The policy maker chooses consumption per capita and the use of land at each loca-

tion, which maximize the discounted welfare of the entire population. As in Boucekkine

et al. (2009), we introduce two discount functions. The spatial discount represents the

weight that the policy maker gives to each location. We identify it as the population den-

sity function f(x) in order to avoid any subjective spatial preferences. Moreover, as in

the standard Ramsey model, we consider the usual temporal discount g(t) = exp(−ρt).
The policy maker maximizes the lifetime discounted utility

max
{c,l}

∫ ∞
0

∫
R
u(c(x, t))f(x)g(t)dxdt (4)

subject to

P



pt(x, t)− pxx(x, t) = Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x)),∫
R c(x, t)f(x)dx =

∫
R Ω(p, P, x)A(x, t)F (l)dx,

P (t) =
∫
R p(x, t)dx,

p(x, 0) = p0(x) ≥ 0,

limx→{±∞} px(x, t) = 0,

(5)

where (x, t) ∈ R× [0,∞). As in the previous literature, the last expression in (5) is

the spatial boundary condition. It considers that the flow of pollution through the very

far ends of the space is zero.7

7Let us point out that this boundary condition is the most general and less constraining possibility.

As in Brock and Xepapadeas (2008a) and Boucekkine et al. (2010), when the space is finite, it can be

replaced by considering that pollution in both ends of the space is the same at each moment in time,

i.e., a circular space. However, this alternative can be eventually rewritten as ours with a finite linear

space.

7
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4 Pontryagin conditions, existence and uniqueness

results

In this section we present the theoretical contributions of our paper. First, we prove

the existence of at least one solution to the dynamical system P . This result is not a

straightforward application of existing results (Camacho et al., 2008) because of some

special features of P . In particular, the present model includes a global variable P ,

defined as the spatial integral of p. Moreover, in contrast to the previous articles, we

consider that the policy maker gathers all production to distribute it later, adding the

afore mentioned additional integral constraint on consumption. Therefore, we have

to transform the integral constraints into partial differential equations in the proof of

proposition 1. We then apply theorem 12.1 in chapter 8 in Pao (1992) to close the proof.

Proposition 1 Under assumption (1), system P has at least a solution.

Proof : See appendix A.

We use the method of variations in Raymond and Zidani (1998 and 2000) to obtain

the Pontryagin conditions of problem (4)-(5). We write the associated value function V

as a function of c, l, p and P as follows:

V (c, l, p, P ) =
∫
R+

∫
R u (c(x, t)) f(x)g(t)dxdt−

−
∫
R+

∫
R q(x, t)g(t) [pt(x, t)− pxx(x, t)− Ω(p, P, x)A(x, t)F (l(x, t)) +G(1− l − f(x))] dxdt−

−
∫
R+ m(t)g(t)

(
P (t)−

∫
R p(x, t)dx

)
dt−

−
∫
R+ n(t)g(t)

(∫
R c(x, t)f(x)dx−

∫
R Ω(p, P, x)A(x, t)F (l(x, t))dx

)
dt.

(6)

Functions q, m and n are auxiliary functions. If there exists an optimal solution

(c∗, l∗, p∗, P ∗), then any other solution to problem (4)-(5) can be written as a deviation

from the optimal solution as

c(x, t) = c∗(x, t) + εκ(x, t),

l(x, t) = l∗(x, t) + εL(x, t),

p(x, t) = p∗(x, t) + επ(x, t),

P (t) = P ∗(t) + εΠ(t).

(7)

To obtain the Pontryagin conditions, we take the first order derivative of V with

respect to ε, in the spirit of minimizing the distance to the optimal solution. As a

8
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result, we obtain a reverse time parabolic PDE, which describes the dynamics of the

shadow price of pollution, together with a static equation associated with optimal land

allocation at each (x, t). Finally, the set of first order conditions also contains spatial

boundary conditions on q and a terminal condition on pq:

Proposition 2 The Pontryagin conditions of problem (4)-(5) are:

pt(x, t)− pxx(x, t) = Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x)),

qt(x, t) + qxx(x, t) =
(

Ω1(p, P, x) + 1
f(x)Ω2(p, P, x)

)
A(x, t)F (l)

[
u′
(

Ω(p,P,x)A(x,t)F (l)
f(x)

)
+ q(x, t)

]
,

[u′ (c(x, t)) + q(x, t)] Ω(p, P, x)A(x, t)F ′(l) + q(x, t)G′(1− l − f(x)) = 0,∫
R c(x, t)f(x)dx =

∫
R Ω(p, P, x)A(x, t)F (l)dx,

P (t) =
∫
R p(x, t)dx,

p(x, 0) = p0(x) ≥ 0,

limx→{±∞} px(x, t) = 0, limx→{±∞} qx(x, t) = 0,

limt→∞ p(x, t)q(x, t) = 0,

(8)

for (x, t) ∈ R× [0,∞).

Proof : See appendix B.

The following corollary shows that consumption per capita is identical across loca-

tions. Indeed, this spatial homogeneity is an expected result since the policy maker does

not have any location preference and can spatially reallocate production.

Corollary 1 Consumption per capita is spatially homogeneous, i.e. c(x, t) = c(t).

Proof : See appendix C.

The next step is to prove that our problem is well-posed, in stark contrast to the

previous literature on spatial economics in continuous time and space. In these papers

the problem was that of a policy maker maximizing the welfare of a region in a period

of time, where the state variable is always physical capital, k, and there is no other

production factor and no externality. In the end, the set of Pontryagin conditions was

made of the parabolic PDE for k, a reverse parabolic PDE for its shadow price, q,

plus transversality conditions in space for kx, qx and a terminal condition on pq for all

x ∈ R. As noted in Boucekkine et al. (2009), the resulting system is ill-posed. Indeed,

9
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in classical growth models without space there exists a unique relationship between the

initial condition and the terminal state of the co-state variable. Hence the terminal

condition helps to recover the unique initial condition for the co-state which makes q

satisfy the terminal condition. When we deal with spatial models, the solution for q

at (x, t) depends on its initial distribution q0 through an integral plus an integral form

dependant on the values of k and q:

q(x, t) =

∫
R
q0(x)dx+

∫
R

∫
R+

Q(q, k, c)dxdt.

Consequently, there exist infinite possibilities for q0 that make pq satisfy the terminal

condition.

However, this important drawback does not exist in our framework. One can indeed

pick a unique initial distribution for q since we have improved the spatial structure

of the social optimum problem. In a similar direction, Desmet and Hansberg-Rossi

(2010) also overcome ill-posedness in a spatial set-up. On the one hand, their agents

are myopic solving a static problem at each moment in time. On the other, they impose

more structure to their problem by means of considering a cooperative that manages

the aggregated savings.8 In our setup the reallocation of production, together with the

spatial immobility of the production factor, allows us to show that the solution is unique:

Proposition 3 The problem (4)-(5) is well posed: its solution exists and is unique.

Proof: We prove that although the initial distribution for q, q0(x) = q(x, 0), is not

provided by the first order conditions, it is however unique. We begin by exploiting the

first order condition obtained in the proof of corollary 1, u′(c) = n(t). From the proof

of proposition 2 in appendix B, we know that

m(t) =
1

f(x)
Ω2AF (l) (q + n) . (9)

Equation (9) implies that 1
f(x)

Ω2AF (l) (q + n) is independent of x, so that

∂

∂x

(
1

f(x)
Ω2AF (l) (q + u′(c))

)
= 0.

If A(x) 6= 0,∀x ∈ R and q + u′(c) 6= 0 for all (x, t) then

Ω2AF (q + u′(c))

(
−f ′

f
+

Ω2,3

Ω2

+
Ω2,1

Ω2

px +
Ax
A

+
F ′

F
lx +

qx
q + u′(c)

)
= 0.

8Also notice that Desmet and Hansberg-Rossi (2010) does not consider the social optimum problem.
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Hence,
−f ′

f
+

Ω2,3

Ω2

+
Ω2,1

Ω2

px +
Ax
A

+
F ′

F
lx +

qx
q + u′(c)

= 0.

If q+u′(c) = 0, using that q (ΩAF ′ +G′)+u′(c) (ΩAF ′) = 0 (see proof of proposition

2 in the appendix B), we find that qG′ = 0. Given assumption (A1), this last equality

implies that q = 0, which leads to a corner solution. Let us focus then on the interior

solutions and assume that q + u′(c) 6= 0.

Our next step is to consider the following couple of equations evaluated at t = 0:
−f ′
f

+ Ω2,3

Ω2
+ Ω2,1

Ω2
px + Ax

A
+ F ′

F
lx + qx

q+u′(c)
= 0,

q (ΩAF ′ +G′) + u′(c) (ΩAF ′) = 0,
(10)

where u′(c) = u′
(∫

R Ω(p, P, x)A(x, t)F (l)dx
)
. Notice that for any initial distribution

for p given, p0(x) = {p(x, 0) : x ∈ R}, (10) is a two dimensional system of ordinary

differential equations with 2 boundary conditions, limx→{±∞} qx = 0, which has a unique

solution in (l, q) under the model assumptions �

Finally, let us observe that the existence of a unique solution actually guarantees

that the Pontryagin conditions are not only necessary but also sufficient.

5 Numerical exercises

Due to the complexity of the Pontryagin conditions (8), we illustrate the richness of our

model by means of a numerical analysis. Moreover, as observed in the introduction, the

uniqueness of the simulated trajectories is ensured since our social optimum problem is

well-posed. Appendix D provides a description of the computational setting, together

with our global dynamics algorithm to solve (8).

We will focus on the emergence of spatial patterns and the drivers behind this kind of

heterogeneity. Even if the main objective of the paper is to provide a benchmark set-up,

we will show that our simplified model already reproduces an ample variety of spatial

heterogeneity scenarios related to the interaction between land-use and the environment.

In particular, we will analyse the persistence in time of spatial heterogeneity. In this

regard, we will study if spatial disparities are equally persistent and if they vanish

with time. Moreover, we will see if spatial differences may arise in an initially equally

endowed world. Finally, we will point out that the abatement technology stands out as

11
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a fundamental ingredient to achieve steady state solutions, which are compatible with

the formation of long run spatial patterns.

Our numerical exercise is divided in two parts: sections (5.1)-(5.3) consider that

population is uniformly distributed, while section (5.4) assumes a Gaussian distribution

in order to study the effect of population agglomeration. The parameter values are pro-

vided in Table 1. For illustration purposes we consider that locations’ land endowment,

L, is equal to 300, and that total population is equal to 110.9 We would like to underline

that the values provided in this table aim at illustrating our model, and they do not

correspond to any specific situation since we shall focus on the qualitative properties of

our set-up.

B Minimum productivity 0.5

A Max. productivity increase 10

D Abatement efficiency 0.1

ρ Time discount rate 0.05

γ1 P damage 0.005

γ2 p damage 0.005

α Cobb-Douglas parameter 0.75

L Locations’ land endowment 300

p0 Initial pollution at x 100

Total Population 110

Table 1: Parameter values for the numerical exercises.

We assume that the space is a line of length 5 divided into 500 locations. The

time horizon varies from 10 to 40 depending on the convergence speed of the vari-

ables. Agents preferences are given by a logarithmic utility function. We have a

Cobb-Douglas production function, where the net productivity is B +AΩ(p, P, x) with

Ω(p, P, x) = e−γ2p−γ1Ps(x). Following Weitzman (2009), Ω is an exponential damage

function, taking values in the interval [0, 1]. We consider that local and global pollu-

tion harm productivity, where γ1 and γ2 are constants: for given a (p, P ), the fraction

1 − Ω(p, P, x) represents the foregone productivity at location x. For the sake of sim-

plicity we assume that A and B are both constant in space and time. Moreover, s(x)

9Notice that the time horizon and space are both finite in numerical exercises. This implies that

total population does not need to be equal to 1 since the convergence of the integral in the objective

function is ensured. Therefore, taking advantage of this property, we increase both total population

and land endowment in order to enlighten our numerical results.

12
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stands for the sensitivity of location x to global pollution. Assuming a linear abatement

technology, we have G(l) = Dl.

We consider in all scenarios that initial pollution is uniformly distributed. We believe

of no particular interest the case when the only spatial feature is the initial distribution

of pollution. Obviously, any difference in the initial endowment of pollution vanishes

with time if all other variables are spatially homogeneous.

5.1 The benchmark scenario

We begin our analysis with the benchmark scenario in which population is evenly dis-

tributed on space. It is the objective of this benchmark illustration to underline the

trade-off between production and abatement. Accordingly, we have reduced the amount

of land devoted to housing by means of considering a uniform distribution of population

that gives 0.22 people per location. This implies that each location needs 0.22 units of

land for housing, which is not critical when total land endowment is 300.10 We further

assume that spatial sensitivity to pollution is constant in space, i.e., s(x) = 1 for all x.

Figure 1 shows the results.

Figure 1: Benchmark scenario.

10We will consider the effect of population agglomeration and the subsequent accrued need for housing

in section 5.4.
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Given that there are no spatial disparities, it is not surprising that the optimal tra-

jectories are uniform in space. The allocation of land to production starts at its highest

possible level (a corner solution) and it remains at this level until the environmental

damage is large enough. At this point, land to production is optimally reduced, thus

devoting part of the land endowment to abatement. Consumption observes a decreasing

trajectory, due to the pollution damage to production and the replacement of land to

production by abatement. It eventually reaches a steady state, while pollution grows

steadily.

The optimal land trajectory attains its steady state after 5 periods. Despite of using

2/3 of land to production, the economy cannot keep the initial level of consumption in

the long-run due to the damage caused at the beginning. Indeed, both types of pollution

cause everlasting and increasing damage that current abatement cannot make disappear

completely. Let us study in the next sections the emergency of spatial patterns and the

role of the different ingredients of our model in this regard.

5.2 Role of abatement technology

We consider now a simple case of heterogeneous abatement technology, in which there

exist two regions of equal size.11 The efficiency of abatement technology in the first

region is equal to 0.2, that is to say, twice the abatement efficiency in the second region:

D(x) =

{
0.2, if x ∈ [0, 2.5],

0.1, if x ∈ [2.5, 5].

The results are displayed in figure 2.

We can observe that the heterogeneity in abatement induces heterogeneity in land

allocation from the beginning. Indeed, at time zero land to production is a step function,

in which the less advanced region in abatement fully specialises in production (reaching

a corner solution). At the same time, the most advanced region devotes around half

its endowment to production and half to abatement activities. With time, the spatial

heterogeneity intensifies. Indeed, the most advanced region gets more specialised in

abatement due to the increasing levels of pollution. Moreover, one should also notice that

within the advanced region, spatial differences arise even if all its locations possess the

same abatement technology. Indeed, locations close to the border with the less advanced

11For empirical evidence of differences in abatement technology see, for instance, de Cara et al. (2005)

and Nowak et al. (2006).
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Figure 2: Role of abatement technology.

region need to devote more land to abatement in order to alleviate the pollution inflow

coming through the frontier. Obviously, these spatial differences would be magnified if

the pollutant under study moved slower.

As a consequence of the allocation of land, local pollution is heterogenous in space.

All locations in the less advanced region emit the same. However, the closer the location

is to the advanced region the lower their level of local pollution. Indeed, the level of local

pollution within the advanced region is also heterogenous due to the inflow of pollution

from the less advanced region. Therefore, even if the most advanced locations at the

border devote the largest share of land to abatement, they end up with the highest

pollution level of their region.

Finally, one should observe that all variables reach a steady state. This is in con-

trast to the previous scenario, where neither local nor global pollution attained a stable

trajectory. Hence, this result points out the role of abatement as a pollution stabilizer.

Moreover, since the steady state equilibrium is spatially heterogenous, we can also con-

clude that permanent differences in abatement technology induce lasting heterogeneity

in land allocation and local pollution.

15
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• Local and global damage

In the previous scenarios, we have considered that both local and global pollution causes

the same damage per unit (i.e., γ1 = γ2). However, our model also allows to study the

case of contaminants with only local or global effects.12

Figure 3: Damage function only depends on local pollution (γ1 = 0).

When the damage is only local, γ1 = 0 in Ω. Since in this case damage does not

depend on global pollution, which is the largest pollutant by definition, the total damage

of pollution is lower than in the previous scenario. As a consequence, one can see in

figure 3 that locations do not abate at first. Nevertheless, the most advanced regions

in abatement start abating when local pollution gets to a high enough level. At the

end, the economy reaches a steady state, which is qualitatively identical to the previous

case. However, the levels of local (and global) pollution are higher because of the lower

damage of pollution. Moreover, one can also observe that the rise of spatial heterogeneity

is postponed. We therefore conclude that the absence of global damage can delay the

emergence of spatial patterns, due to a lower damage of pollution.

12The results of these scenarios are qualitatively equivalent to the case of pollutants with mainly local

(γ2 > γ1) or global (γ2 < γ1) effect. Obviously, if γ1 = γ2 = 0 no land will be devoted to abatement

since pollution does not damage our economy. Therefore, consumption will stay at its maximum steady

state level (after taking housing into consideration, the remaining land will be completely assigned to

production), where both local and global pollution increase steadily.

16
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Finally, let us consider the situation where the damage is only global (γ2 = 0 in Ω).

Due to the greater pollution damage, the abatement specialisation of the most advanced

region is faster than in the case of a pollutant with only local damage. Additionally, we

also observe a lower level of both local and global pollution. The qualitative behaviour

of the optimal trajectories is indeed similar to figure 3.

5.3 Spatially heterogeneous damage

Let us study the situation where some areas of the space are more sensitive to pollution

than others. This is the case of, for instance, the negative impact of global warming

on coastal zones due to the sea level rise and, in particular, the soil quality degradation

(see, among others, Nicholls and Cazenave, 2010; and Nicholls et al., 2011). Another

well-known example, also related to global warming, is the desertification of drylands

(for instance, Geist, 2005; Reynolds et al., 2007; and Barnett et al., 2008). In both cases,

global warming is usually associated with the increase of global pollutants such as the

anthropogenic GHGs. Therefore, in our simplified set-up we illustrate this situation by

means of assuming that the sensitivity to global pollution s(x) is spatially heterogenous

in the damage function Ω. We specifically consider the case in which s(x) is a step

function so that

s(x) =

{
1, if x ∈ [0, 2.5],

5, if x ∈ [2.5, 5],

where the locations in the interval [2.5, 5] represent the most sensitive region to pollution.

The numerical results are presented in Figure 4.

One can observe that, at the beginning, production is larger in the less sensitive

region. However, soon afterwards, this region reduces the land devoted to production,

and the space becomes heterogeneous at the steady-state. This result goes against the

à priori belief that most sensitive regions would produce less than the others (and

“import” most of their consumption) in order to preserve their environmental quality.

The explanation is the following. Since pollution flows over space, even the regions

with non-existent or little production will experience positive levels of local pollution.

Moreover, the pollution as a whole (global pollution) damages production too. Then,

the less sensitive locations optimally reduce their production and devote some land to

abatement. Moreover, if the most sensitive locations had been endowed with better

abatement technology, then they would have devoted more land to abatement relatively

to the less sensitive locations.
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Figure 4: Spatially heterogeneous damage.

Let us finally point out that, in contrast to the previous scenarios, this case provides

an additional spatial dynamics feature. Indeed, one can clearly see that our example

also illustrates the situation of an initial spatial heterogeneity (in land to production)

that vanishes in the long run.

5.4 The effect of population agglomeration

Let us study now the effect of population agglomeration and the resulting housing re-

quirement. We consider that population is distributed according to a Gaussian function

over the interval [0, 5], that is, population agglomerates around the center of the space,

x = 2.5. In order to underline the effect of population agglomeration, we increase total

population to 10,500. Population in x = 2.5 is indeed almost 130. Moreover, although

locations’ land endowment is still equal to 300, the part of L devoted to housing in the

central area is much larger than in the previous scenarios due to accrued population.13

Finally, in the areas far away from the center, the weight of population is similar to that

in the benchmark scenario.

13Although the increase in total population is sizable, a homogenous distribution of 10,500 people

over 500 locations would imply 21 individuals per location. In our simplified model, 21 individuals

would need 21 units of land for housing, which is a small figure with respect to the location’s land

endowment.
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In this section we present two exercises. Let us first compare the optimal trajectories

under this population distribution with the benchmark scenario. Figure 5 shows that,

due to the concentration of population, locations in the central area cannot devote as

much land to production as locations at the far ends. This means that agglomerations

optimally “import” most of their consumption from the neighbouring areas, which are

more specialised in production.

Figure 5: The role of population agglomeration (Gaussian distribution).

One could think then that agglomerations would be less polluted locally because

most of their consumption comes from the periphery and housing does not pollute in

our simplified framework. However, by the same token, agglomerations also devote less

land to abatement than the rest of locations. Consequently, we observe an heterogeneous

distribution not only of land, but also of local pollution. Even if local pollution tends to

be homogeneous in space with time, slight spatial disparities persist since agglomerations

cannot abate pollution coming from neighbouring regions.14

Our last point above, regarding the spatial mobility of local pollution, is indeed

reinforced in figure 6. In this second exercise we have increased abatement efficiency

(D) from 0.1 to 0.2 in all locations. In effect, driven by this improvement, all locations

14Considering pollution due to housing and/or transportation would amplify this effect. These ad-

ditional sources of pollution may have interesting implications, in particular if labour is a spatially

mobile production factor. However, this is beyond the objectives of the paper and we leave it for future

research.

19

 

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2012.12 (Version révisée)

ha
ls

hs
-0

06
74

02
0,

 v
er

si
on

 2
 - 

26
 A

pr
 2

01
2



Figure 6: Population agglomeration with abatement efficiency doubling.

devote some land to abatement from the beginning. Consequently, both local and global

pollution decrease in levels, allowing for a greater consumption per capita in the long-

term. However, spatial disparities are amplified since the central area cannot abate as

much because of the housing constraint.

Finally, in contrast to the first exercise, one should observe that all variables reach

a steady state, which is characterized by lasting spatial heterogeneity in both land

allocation and local pollution. Again, as in section 5.2, this result points out the role of

abatement as pollution stabilizer. Abatement efficiency indeed enhances consumption

and enables the economy to reach a stable steady state, which is spatially heterogenous.

6 Concluding remarks

The main objective of this paper is to propose a benchmark framework to study optimal

land use, encompassing land use activities and pollution. Although land is immobile by

nature, location’s actions affect the whole space through pollution, which flows across

locations resulting in both local and global damages. An important contribution of

this paper is that, in contrast to the previous literature, we prove the existence and

unicity of social optimum. Well-posedness is indeed ensured by means of improving

the spatial structure of the social planner problem, allowing for the spatial reallocation

20
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of production. Therefore, this alternative turns out to be a very promising strategy

to overcome ill-posedness. We additionally undertake a numerical analysis. Taking

advantage of the well-posedness result, which ensures the uniqueness of the simulated

trajectories, we adapt the algorithm developed in Camacho et al. (2008). We find

that our benchmark model reproduces a great variety of spatial patterns related to the

interaction between land use activities and the environment. In particular, we identify

the central role of abatement technology as pollution stabilizer, allowing the economy

to achieve stable steady states, which can be spatially heterogeneous.

Several remarks can be made with regard to our setup. First, this paper assumes

that population is exogenously distributed. However, Papageorgiou and Smith (1983)

show that spatial externalities can induce population agglomerations. Therefore, an

interesting extension of our framework would consider that population is endogenously

distributed. This is the case of, for instance, migration flows induced by environmental

degradation (Marchiori and Schumacher, 2011). Second, we do not explicitly model

climate change in our paper. However, it is well-known that the damage of global

pollutants such as anthropogenic GHGs is closely related to climate change and, in par-

ticular, global warming. One could then improve our framework by means of considering

a comprehensive statement of this interaction. This would allow us to examine, among

other things, the significance of non-monotonicities in the environmental degradation as

drivers of spatial heterogeneity (Deschênes and Greenstone, 2007). Let us finally ob-

serve that the decentralisation of the social optimum has not been explored yet in this

kind of literature. In this regard, a challenging extension could study the possibility of

optimal tax/subsidy schemes that will evolve with time but also across the space. This

spatial dependence is indeed consistent with numerous papers where optimal corrective

policies take spatial information into account (e.g., Tietenberg, 1974; Hochman et al.,

1977; Henderson, 1977; and Hochman and Ofek, 1979).
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Appendices

A Proposition 1 proof

We shall proof that the system of partial differential equations constraining the policy

maker’s objective function has a unique solution for every choice of feasible functions

(c, l). This proves the existence of at least a solution to the policy maker’s problem.

In this regard, we shall begin with converting the set of constraints into a system of

parabolic differential equations.

First, notice that we can take the derivative of P with respect to t and we use the

law of motion for p in P to obtain:

Pt(t) =

∫
R
pt(x, t)dx =

∫
R

(pxx(x, t) + Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x))) dx,

which implies that

Pt(t) = px(x, t)|x→∞ − px(x, t)|x→−∞ +

∫
R

[Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x))] dx.

Since limx→±∞ px(x, t) = 0, we have that

Pt(t) =

∫
R

[Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x))] dx. (A.1)

Our initial set of constraints can be written as a system of parabolic equations. Indeed,

we can interpret (A.1) as a partial differential equation, with the second order operator

equal to zero. We would need to artifitially transform P into a two dimensional function,
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P (x, t) ≡ P (t),∀x ∈ R. Then:

(P’)



pt(x, t)− pxx(x, t) = Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x)),

Pt(x, t) =
∫
R+ [Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x))] dx,

p(x, 0) = p0(x) ≥ 0,

limx→±∞ px(x, t) = 0,

P (x, 0) =
∫
R p0(x)dx,

limx→±∞ Px(x, t) = 0,

(A.2)

for all (x, t) ∈ R× R+. As in Camacho et al. (2008) and Boucekkine et al. (2009), we

make use of Pao (1992) to prove the existence of a solution to this kind of equations

for any (x, t) ∈ R × (0, T ], with T < ∞, after transforming the integral term in each

dynamic equation. We proceed to the following change of variable Π(x, t) = e−γtP (x, t)

and we obtain:

Π(x, t)t + γΠ(x, t) = e−γt
∫
R

[
Ω(p, eγtΠ, x)A(x, t)F (l(x, t))−G(1− l − f(x))

]
dx.

Then, we define function π(t) as

π(t) = e−γt
∫
R

[
Ω(p, eγtΠ, x)A(x, t)F (l(x, t))−G(1− l − f(x))

]
dx.

Notice that since the integrand is globally Lipschitz continuous, so it is function π. We

have to study now the existence of solution of the following system of equations:

pt(x, t)− pxx(x, t) = Ω(p, P, x)A(x, t)F (l(x, t))−G(1− l − f(x)),

Πt(x, t) + γΠ(x, t) = π(t),

p(x, 0) = p0(x) ≥ 0, limx→±∞
∂p(x,t)
∂x

= 0,

Π(x, 0) =
∫
R p0(x)dx,

limx→±∞Πx(x, t) = 0.

(A.3)

We can then apply theorem 12.1 in chapter 8 in Pao (1992) to ensure the existence of a

unique solution to the system of parabolic equations for every choice of the couple (l, c).

B Proposition 2 proof

We can take the first order derivative of the value function V with respect to ε, the

size of the deviation. There is a main difference with the literature in spatial growth

28

 

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2012.12 (Version révisée)

ha
ls

hs
-0

06
74

02
0,

 v
er

si
on

 2
 - 

26
 A

pr
 2

01
2



in continuous space which emanates from the diffusion factor. Indeed, in the present

model we have that:∫
R+

∫
R q(x, t)pxx(x, t)dxdt =

∫
R+ q(x, t)px(x, t)|R0 dt−

∫
R+ qx(x, t)p(x, t)|∞−∞dt+

+
∫
R+

∫
R qxx(x, t)p(x, t)dxdt,

(A.4)

and as usual:∫
R+

∫
R
q(x, t)pt(x, t)dxdt =

∫
R
p(x, t)q(x, t)|∞0 −

∫
R

∫
R
p(x, t)qt(x, t)dxdt.

We then obtain:

∂V (c,l,p,P )
∂ε =

=
∫
R+

∫
R u
′(c(x, t))f(x)g(t)κ(x, t)dxdt−

∫
R+

∫
R g(t)π(x, t) [qt(x, t) + qxx(x, t)] +

+
∫
R+

∫
R g(t)q(x, t)Ω1(p, P, x)A(x, t)F (l(x, t))π(x, t)dxdt+

+
∫
R+

∫
R g(t)q(x, t) [Ω2(p, P, x)A(x, t)F (l(x, t))Π(t) + Ω(p, P, x)A(x, t)F ′(l(x, t))L(x, t)] dxdt+

+
∫
R+

∫
R g(t)q(x, t)G′(1− l − f(x))L(x, t)dxdt−

−
∫
R+ m(t)g(t)

(
Π(t)−

∫
R π(x, t)dx

)
dt−

−
∫
R+ n(t)g(t)

(∫
R κ(t)f(x)dx

)
dt+

+
∫
R+ n(t)g(t)

(∫
R [Ω1(p, P, x)AF (l)π(x, t) + Ω2(p, P, x)AF (l)Π(t) + Ω(p, P, x)AF ′(l)L(x, t)] dx

)
dt.

To get the necessary conditions, we can group the elements multiplying κ, π, L and

P , and equate them to zero. If all factors multiplying deviations from optimal values for

c, p, P and l are equal to zero, we obtain that the deviation ε is optimal, i.e., ∂V
∂ε

= 0.

We would need then:
κ : u′(c) = n(t),

π : qt + qx,x = (q + n) Ω1AF (l) +m,

Π : m(t) = 1
f(x)

Ω2AF (l) (q + n) ,

L : q (ΩAF ′ +G′) + n(t) (ΩAF ′) = 0.

(A.5)

To these conditions, we need to add the following transversality conditions:{
limx→±∞ qx = 0,

limt→∞ pq = 0.

We obtain the final version of the first order conditions substitutingm(t) byRΩ2AF (l) (q + n)

into the dynamic equation for q.
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C Corollary 1 proof

We can read in the first equation of the system (A.5) in the previous proof that

u′(c(x, t)) = n(t),∀(x, t). Hence, neither u′(c(x, t)) nor c(x, t) depend on space.

D Computational setting

Since the time horizon is finite, we can reverse time in the equation describing the

dynamic behaviour of q in time and space in (A.3). Calling h(x, t) := q(x, T − t), we

obtain the following system of parabolic differential equations where we have removed

the independent variables (x, t) for simplicity reasons, writing (x, T−t) when necessary:

pt − pxx = Ω(p, P, x)AF (l)−G(1− l − f),

ht − hxx =

= − [Ω1(p(x, T − t), P (x, T − t), x) +RΩ2(p(x, T − t), P (x, T − t), x)]×

×AF (l) [u′(c(T − t)) + h] ,

[u′(c) + h(x, T − t)] Ω(p, P, x)AF ′(l) + h(x, T − t)G′(1− l − f) = 0,

c(t) =
∫ T
0

∫
R Ω(p,P,x)AF (l)dsdt∫

R f(s)ds
,

P (t) =
∫
R pdx,

p(x, 0) = p0(x) ≥ 0,

limx→{0,R} px(x, t) = 0,

limx→{0,R} hx(x, t) = 0,

limt→T p(x, t)h(x, T − t) = 0,

(A.6)

for (x, t) ∈ [0, S] × [0, T ]. We simulate the system above using a finite difference

approximation. The idea of this method is to replace the second derivative with respect

to space with a central difference quotient in x, and replace the derivative with respect

to time with a forward difference in time. In order to implement this approximation we

need to set up a grid in our space [0, R] × [0, T ]. The points in this grid are couples

(j∆x, n∆t) for j = 0, 1, ..., J and n = 1, 2, ..., N , where J∆x = R and N∆t = T . Then,

if v is a function defined on the grid, we write v(j∆x, n∆t) = vnj .

Let us provide an example. If we want to use a finite difference approximation for

the parabolic differential equation ∂v
∂t

= ∂2v
∂x2

, we write:15

15This method is called the implicit finite difference approximation. Other approximation schemes
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vn+1
j − vnj

∆t
=

1

∆x2

(
vn+1
j+1 − 2vn+1

j + vn+1
j−1

)
. (A.7)

We can write (A.6) as

pn+1
j − pnj

∆t
− 1

∆x2

(
pn+1
j+1 − 2pn+1

j + pn+1
j−1

)
= Ω(pnj , P

n
j , j)AF (lnj )−G(1− lnj − fnj ), (A.8)

hn+1
j − hnj

∆t
− 1

∆x2

(
hn+1
j+1 − 2hn+1

j + hn+1
j−1

)
= (A.9)

= −
(
Ω1(pT−nj , P T−n

j , j) +RΩ2(pT−nj , P T−n
j , j)

)
AF (lT−nj )

[
u′(cT−n) + h(x, t)

]
, (A.10)

[
u′(cn) + hT−nj

]
Ω(pnj , P

n
j , j)AF

′(lnj ) + hT−nj G′(1− l − fnj ) = 0, (A.11)

with P n =
∑J

j=0 p
n
j and cn =

∑J
j=0(Ω(pnj ,P

n
j ,j)AF (lnj ))∑J

j=0 f(j)
.

To these equations, we add the border conditions pnJ−1 = pnJ and hnJ−1 = hnJ , ∀n =

1, 2, ..., N and the definition of P .

D.1 The algorithm

We adapt the algorithm developed in Camacho et al. (2008) to problem (A.6). There

are still some differences: we need an initial guess for matrix {hnj }n=1...N
j=1...J . Depending

on this guess, we obtain a land distribution {lnj }n=1...N
j=1...J and then a first approximation

to consumption. To improve the convergence speed we run an intermediate loop to

improve the initial guess for c and l.

In order to reduce the computational load, we compute P n =
∑J

j=0 p
n−1
j . Although

this is just an approximation, we underline that the distance between P (t) and P (t−∆t)

is infinitesimal since P is a continuous function. In the same manner, we compute

cn =
∑J

j=0(Ω(pn−1
j ,Pn

j ,j)AF (lnj ))∑J
j=0 f(j)

.

exist but the implicit one is unconditionally stable, meaning that it is stable without restrictions on the

relative size of ∆t and ∆x. It also allows us to use a larger time step and to save this way computational

time.
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Step 1: Initialization

We choose an initial distribution for air pollution p0 = {p0,j}, land allocation l0 =

{l0,j} and three stopping parameters εi for i = 1, 2, 3. We compute P 0 =
∑J

j=0 p
0
j .

We assume an initial guess for {h′nj }n=1...N
j=1...J .

Step 2: Iteration

We repeat the following scheme until the euclidean distance between two consec-

utive matrices q is smaller than ε1 or until the number of iterations equals a fixed

number K.

For every n = 1, ..., N and given pn−1, ln−1, Pn−1, we compute

cn =

∑J
j=0

(
Ω(pn−1

j , P n
j , j)AF (ln−1

j )
)∑J

j=0 f(j)
.

Step 2.1: Improvement of the first guess

With cn and the guess {h′nj }{j=1,...,J}, using (A.11), we obtain a guess for {lnj }.
We recompute cn with {lnj } instead of {ln−1

j }. We iterate the process until

the euclidean distance between two consecutive outcomes for cn is smaller

than ε2.

Step 2.2: Upwind

At every n we compute pjn for j = 1, ..., J with the resulting cn and {lnj }, using

the upwind algorithm applied to equation (A.10). Then, using (A.10) we

compute a new guess for {hnj }n=1...N
j=1...J and compute its distance to {h′nj }n=1...N

j=1...J .

If the distance is smaller than ε3, then STOP. If not, we repeat Step 2.
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