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I. INTRODUCTION

To influence the size, quality and composition of an incoming freshman class a college
has control over two principal instruments: the decision to offer admission to a prospective
student who applies for admission and the decision how much financial aid to offer to that
student. While the decision to deny admission is typically used to restrict entry to only those
with adequate ability and promise, the financial aid decision is used to encourage a subset
of those admitted, especially those with the greatest academic ability, to enroll. The specific
admissions criteria and financial aid allocation mechanism chosen will reflect the college’s:
various goals, such as maintaining or increasing the college’s total enrollment, attracting
higher quality students and maintaining or improving ethnic diversity, while keeping the
total costs of achieving these goals within an acceptable financial aid budget?.

In determining the total amount of fincancial aid to offer as well as the size of individual
financial aid offers, the anticipated effect of an offer on a student’s decision to enroll in the
college plays a crucial role’. While a college’s past records of financial aid offers and student
enrollment decisions provide a valuable source of data and experience in this regard, the
actual evaluation of the effect of financial aid offers on student enrollment decisions remains
a complicated matter.

A student’s decision whether or not to enroll in a particular college, is influenced by a
number of different factofs, many of which are unobserved by college administrators. The
most important piece of information, that is typically missing, is information on a student’s
alternative options. These optioﬁs may include admissions and financial aid offers from
other colleges and the option to join the labor force directly after high school. While student

application and financial aid request forms often provide some information concerning other

2For examples of theoretical and empirical analyses of financial aid offer decisions, see Barnes and Neufeld
(1980), Miller (1981), Venti (1983) and Ehrenberg and Sherman (1984). Venti, using national data from the
NLS-72, found merit and affirmative action-based aid to constitute a larger part of discretionary college aid
than need-based aid.

3Depending on the magnitude of the aid effect and on a college’s objectives, it may, for example, be
optimal for a college to offer more aid to a weaker student if the probability of getting a better student is
very low and aid allocation is constrained by a fixed budget.



colleges and universities the student has applied to, it is not known whether these: colleges
will admit the student and what their financial aid offers will be*. In addition, typically little
or nothing is known about any employment options each applicant may have. This lack of
information does not only pertain to new applicants, but also to applicants in previous years.
Most colleges do not collect information about the destinations of applicants who chose not
to enroll. In particular, it is not known whether they decided to go to college at all, and if
so, in which other colleges these students chose to enroll.

This lack of information about alternative options makes it very difficult to distinguish
the effect of a college’s own offers of financial aid from the (unobserved) offers of other col-
leges as well as possible alternative opportunities in the labor market. In general we could
expect each college’s aid offer to depend (at least in part) on the same student characteris-
tics, such as available measures of academic ability, ethnicity and family income, typically
reported on federal and college aid application forms. Missing information about alternative
opportunities is therefore likely to cause an omitted variable bias in estimating the effect of
financial aid on enrollment.

The evaluation problem is further complicated by the fact that financial aid decisions can
rarely be described completely in terms of measured student characteristics. To some extent
the financial aid decision is a subjective one, depending on an admission officer’s assessment
of the student’s complete ‘package’, of which certain aspects, such as statements of purpose,
extracurricular activities, recommendation letters, are typically not kept in a computer data
base. It is possible that, even if the student’s outside opportunities were known, some of
these unobserved aspects may be correlated with the remaining error term in an enrollment
equation. For example, in choosing between two different colleges, students showing great
athletic talent may have a preference for the college with the highest reputation in sports,
even if this talent was equally rewarded in the financial aid offers from the two colleges. The

resulting dissimilarity in characteristics, observed by the financial aid officer but not by the

41t is in fact not legal for colleges to share this information.




econometrician, between individuals receiving different amounts of financial aid leads to a
second omitted variable or selection bias problem.

Because of both omitted variable problems, when evaluating the effect of financial aid
on enrollment the former can not be considered exogenous with respect to the enrollment
decision. For example, when comparing the enrollment rates of two groups of applicants
who differ in the amount of financial aid they were offered but are equal in all measured
characteristics, it is quite possible that the enrollment rate of the group who received more
was actually lower. This would be the case, if those who received more, had unmeasured
(but observed by college financial aid officers) characteristics, such as special awards, rec-
ommendation letters and extracurricular activities, which made them likely to have received
similar or possibly better aid offers from other, perhaps more attractive colleges.

In this paper I analyze the effect of financial aid offers on the enrollment decisions of
a large sample of individuals admitted to an east coast college, refered to as College. X,
during the period from 1989 to 1993. This data base has the usual shortcomings discussed
above, in that it lacks important information on each student’s choice alternatives as well as
some information (such as statements of purpose, reference letters and characteristics of the '
financial aid officer) that influenced the financial aid decision, but that was not included in
the data base. I will show, however, that it is possible to exploit idiosyncratic features of the
financial aid offer decision process to obtain credible estimates of the effect of fincancial aid
offers on enrollment. More precisely, a key component of the aid allocation decision is a simple
formula used to rank students into a few groups on the basis of several continuous measures of
academic ability. As a result, the assignment rule has features that make it similar to that of
a powerful, but relatively ignored® quasi-experimental design: the Regression-Discontinuity
design originally introduced by Campbell and Stanley (1963). It is shown that credible
estimates of the financial aid effect can be obtained without having to rely, as in usual

selection bias correction approaches (e.g. Heckman, 1979), on (often) arbitrary exclusion

5Civen the lack of attention it has received in applied economic studies, the design was only briefly
mentioned in Meyer (1995)’s excellent survey of the different evaluation approaches used by economists.



restrictions and functional form and distributional assumptions on errors®.

This study provides an illustration of how knowledge of (aspects of) the selection mech-
anism can aid in obtaining reliable program effect estimates. Moreover, it is argued that
similar features, which cha£a.cterize the so-called (fuzzy) Regression-Discontinuity design,
should be relatively easy to incorporate and are already likely to be found in the assign-
ment or selection rules of many other non-experimental program designs. In fact, it will be
shown that, without making explicit the connection to the design, recent studies by Angrist
and Krueger (1991), Imbens and van der Klaauw (1995), Black (1996) and Angrist and
Lavy (1996), all rely heavily on the RegressionQDiscontinuity design in identifying treatment
effects.

In the next section I discuss the standard program evaluation problem and describe the
Regression-Discontinuity design. Section 3 discusses the data set and the particular features
of the financial aid allocation process which will be exploited to obtain estimates of the
effect of financial aid on enrollment. Section 4 provides a simple model of student enrollment
decisions. Estimates and results from a sensitivity analysis are presented in section 5 and

section 6 provides a conclusion.

II. THE STANDARD EVALUATION PROBLEM AND REGRESSION-DISCONTINUITY DESIGN

Consider first the standard problem of evaluating the effect of treatment or participation
in a program on a particu‘lar outcome measure. For each individual 7, let ¥; represent the
outcome measure and 7T; the treatment indicator, equal to one if treatment was received
and zero otherwise, e.g., where Y; is the acceptance decision and T; is the decision to award
financial aid. Let Y;(1) be the outcome given treatment and ¥;(0) the outcome without
treatment. Only one of these is observed, i.e. what we observe is ¥; = T;Y;(1)+ (1 - T:)Y:(0).

Further, assume that Y; is related to a set of observed characteristics, represented by the

6For a survey of earlier studies of the effect of financial aid on college enrollment, see Leslie and Brinkman
(1988). Most of the existing studies have ignored the likely endogeneity of financial aid offers in their analyses,
while others have relied on conventional parametric selection bias correction procedures.



vector X;, such that F[Y;(0)|X;] = X!B and E[Y;(1)|X;] = X!B + a, where o represents the
treatment effect which is assumed to be constant across individuals. In terms of a regression

equation we have
Y= X8+ aT: + u; (1)

where the error term u is assumed to be uncorrelated with X. Random assignment to
treatment conditional on X would imply T to be independent of u given X so that T can be
considered éxogenous in the regression of Y on T and X”. OLS estimation of this regression
will provide an unbiased estimate of the program effect. Even though desirable, true random
assignment is in practice rare as randomization is often considered unethical and difficult to
adhere to at each stage of program implementation (for a discussion of such implementation
problems leading to evaluation biases, see Heckman and Smith, 1995).

When assignment or selection into the program or treatment is nonrandom or nonignor-
able, selection bias in the estimation of a can arise because of a dependence between T' and
, u. In this case E[u|T, X] # 0 and the endogeneity of T' will generally lead to an inconsistent
OLS estimate of the program effect a. This dependence between T’ and u arises when the
treatment status of an individual is related to some characteristic, not included in, X, that
itself is related to the program outcome. Depending on whether such a characteristic is ob-
servable or unobservable, the cause of this endogeneity has been referred to as ‘selection on
observables’ or ‘selection on unobservables’ (Heckman and Robb, 1985). This resulting de-
pendence between T and u is then incorrectly attributed to the causal effect of the program
treatment on the outcome.

To solve the selection bias problem, additional knowledge or assumptions about the se-
lection or assignment rule is required. Commonly, assumptions are made which take the
form of exclusion restrictions (variables which are assumed to influence treatment selec-

tion but not outcomes), and/or functional form and distributional assumptions about error

7Similarly, random assignment unconditional on X would imply that E[w|T: =0, Xi] = E[w|T; = 1, Xi]
(but not necessarily E[u|T, X] = 0) in which case T' can also be considered exogenous in the regression.



that point are placed in the treatment group (T; = 1) (or vice versa). Thus, assignment
occurs through a known and measured deterministic decision rule. The variable S itself may
well be directly related to the outcome Y. That would automatically make T be related to
Y as well, even if the treatment has no causal effect on Y. This is in sharp contrast with
pure randomization. While randomization guarantees that treatment and control groups
will be as similar as possible in characteristics other than the treatment itself, the RD design
does the opposite. The design also violates the ‘strong ignorability condition’ of Rosenbaum
and Rubin (1983), which, in addition to requiring Y(0) and Y(1) to be independent of T
conditional on S, requires 0 < Pr(T = 1|S) < 1 for all S while here Pr(T = 1|S) € {0, 1}*°.

To obtain an estimate of the treatment effect, notice that consideration of the sample
of individuals within a very small interval around the cutoff point would be very similar to
a randomized experiment at the cutoff point (i.e. a tie-breaking experiment)!!. That is,
individuals just below the cutoff score should on average be almost identical to individuals
just above the cutoff point'?. Comparing the average outcomes of the two groups should
therefore provide a good estimate of the treatment effect. Of course, in the case of varying
treatment effects, our estimate would only be valid for those individuals at the cutoff point.
Increasing the interval around the cutoff point would increase the bias of the effect estimate,
especially if the assignment variable was itself related to the outcome variable in absence
of a program effect. If an assumption is made about the relationship between the outcome
and the continuous measure, on the other hand, we can extrapolate from above and below
the cutoff point to what a tie-breaking random-assignment experiment would have shown.
By using all observations and by relying more on the functional form of the regression it
will also be possible to estimate interaction effects between T and S, which is not possible

if we only look at people at the cutoff point. This double extrapolation combined with

the exploitation of the randomized experiment around the cutoff point is the main idea of

101y the terminology of Heckman et al. (1995), there is no region of common support.

11To my knowledge, this aspect or interpretation of the design has not been discussed before.

12In particular, they will have almost identical values of S and, because T 1s independent of X conditional
on S, their average values of X will also be very similar.



Regression-Discontinuity analysis.

We can analyze the estimability of the treatment effect in the RD design more formally
by noting that this design is a special case of selection on observables (that is, where the
endogeneity of T is caused by an observed determinant correlated with u), where the assign-
ment rule is deterministic. A dependence between the assignment variable S; and u; would

generally lead to biased estimates of the equation:
Y = o+ oT; + u; (2)

where
T. =1 ifS$;>§

T; =0 otherwise
and S is the cutoff value of S. An unbiased estimate of the treatment effect can be obtained
by specifying the functional form of the conditional mean or ‘control function’ E[u;|T5, S| in
the outcome equation

E[Y/|T;, Si] = Bo + oT;i + Elui|T;, Si (3)

(see Heckman and Robb, 1985). In this case of selection on observables E[u;|T}, S;] = E[u;|Si]
because T; = T(S;) = 1{S; > S}. Since S is the only systematic determinant of treatment
status T, S will capture any correlation between T and u. As a result, by entering the
correct specification of the control function alongside T, the equation can be estimated to
yield a consistent estimate of the program effect, as it will free T' from the contamination
which leads to selection bias.

In the Regression-Discontinuity case where the assignment rule is a deterministic function
of S, when adopting a nonparametric specification of the control function K (S:) = E[wi|Si]
it will not be possible to identify  in E[Y;|S;, T3] = Bo+aT;+ K(S;). From the available data
on Y; and S; for the sample with 7; = 0 (the nonparticipants), we can obtain an estimate
of E[Y|S,T = 0] = K(S) for all values S < S, and from the sample with 7; = 1 (the
participants) we obtain an estimate of E[Y|S,T = 1] = K(S) + « for all values 5 2> S. If we

make the additional assumption that K(S) is continuous at the cutoff point, however,



then a will be identified and can be estimated by the difference between limg;5 E[Y|S, T = 1]
and limg 5 E[Y|S,T = 0].

Golberger (1972) and Cain (1975) assumed a constant treatment effect and adopted a
control function which was linear in S. Figure 1 illustrates the corresponding case of a
positive program effect where the program was assigned to those who scored at or above
the cutoff point S. The distance between the two regression lines at the cutoff point (which
equals the difference in the intercepts of the two lines) provides an unbiased estimate of the
treatment effect if the control function is correctly specified.

More generally, we may wish to allow for varying treatment effects
Y = fo+ a(S)Ti + wi (4)

in which case E[Yi|T;, Si] = Bo + a(S)T; + E[ui|S:]. By adopting a parametric specification
of the control function we can estimate the treatment effect function a(S)!3. If we leave
the control function unspecified, on the other hand, and only assume it to be continuous
at the cutoff point, then we will only be able to identify the treatment effect at the cutoff
point. Given an estimate of E[Y|S,T = 1] = K(S) + a(S) for all values 5 < S and
of E[Y|S,T = 1] = K(S) for all values greater than S, the difference limg, s E[Y|5,T =
1] — limg;5 E[Y|S,T = 0] will be an estimate of o(3). Note that for values greater than S
it will not be possible to separately identify K(S) and o(S) nonparametrically.

There are three commonly cited weaknesses of the RD design (see Trochim, 1984). First
- of all, the design requires strict assignment with respect to the cutoff point, which is rare
in practice. Of the few programs which fit the ‘sharp’ RD design, almost all have been
compensatory education programs (see the survey by Trochim, 1984). In practice, social

allocation decisions are rarely made on the basis of quantitative scores alone.

131dentification clearly becomes more fragile in this case and requires the parametric form to be reasonably
smooth so that all parameters of the control function can be estimated of the cases with values of S less
than S.

14A notable exception is the study by Berk and Rauma (1985) who exploited the fact that a crime control
program inadvertently conformed to a RD design.




A second weakness of the design, as with all regression-based analyses, is that it relies
heavily on functional form assumptions about the statistical relation between the outcome
and assignment variable. This criticism is however not completely justified. While it is true
that an incorrectly specified parametric form for the control function may lead to biased
estimates, we saw earlier that the treatment effect (at least for those at the cutoff point) is
identified under the much weaker assumption that the control function is continuous in §
at that point. To reduce the potential for misspecification, one could specify a very flexible
form for K(S) = E[u:|S;], such as a high order polynomial, or use local or nonparametric
regression around the cutoff point S. As long as the conditional expectation is reasonably
smooth and continuous in S, identification will be guaranteed because of the discontinuity
in the function T of S. Of course, it is true that in principle, any program effect can be
captured by a highly nonlinear curve. However, in most cases a smooth curve (or in the
extreme the two discontinuous regression segments themselves) that would eliminate the
treatment effect would be so extremely convoluted and far-fetched that it would be almost
impossible to imagine how in reality the two variables could be related to one another in the
fashion represented!®’'®. Especially if both segments are found to be very smooth, it will be
difficult to believe that the discontinuity is due to a nonlinear effect of S rather than to an
effect of T'.

To address the potential for misspecification of the regression function (ie. the control
function), Trochim (1984) proposed a curve-fitting strategy where one uses the lowest order
polynomial curve not statistically significantly demonstrated to be too simple. This approach

will lead to a parsimonious bias toward underfitting, while minimizing the loss of efficiency

15Note that if data were available from a setting in which no program was present, one would actually be
able to discover the functional form of the relationship between the outcome and score.

16 A related problem which emphasises the need to allow for a flexible (nonlinear) specification in S in the
regression is that even with no actual nonlinear effect of S on Y curvilinearity could be caused by so called
‘Aloor and ceiling’ effects. As pointed out by Campbell (1984) if the assignment variable is an imprecise
measure of a variable that actually affects the outcome, one will generally observe a flattening of the slope
of the regression of the outcome on the assignment variable at both extremes. This in turn, combined with
the assumption of a linear dependence of Y on S, may lead to a discontinuity at the cutoff point (a nonzero
treatment effect) even if the true effect is zero. Thus even if no actual nonlinear effect exist, it will be
appropriate to allow for a curvilinear fit.

10



caused by overfitting (that is, by using too high an order of the polynomial function).

A third, less important, weakness of the design is that even if the functional forms are
properly specified, treatment effect estimates will be less efficient than in the case of a
randomized experiment, that is, it will require a larger study popuiation to accomplish the
same statistical sensitivity to a treatment effect (Goldberger, 1972). Of course, one way to
improve the precision of the effect estimate is to add additional regressors.

These disadvantages not withstanding, it is important to recognize the attractiveness of
this quasi-experimental design. The main advantage of the RD design is that it is often easier
to justify than randomization. In particular, as pointed out by Trochim (1984), the design
is conceptually compatible with the political and social goal of allocating scarce resources
to those individuals that need or deserve them most. Randomization typically implies that
persons who might otherwise be eligible for a program be denied it. The RD design and its
ability to generate credible effect estimates exemplifies the fact that the crucial difference
for avoiding bias is not whether the assignments are random or nonrandom, but whether the

investigator has knowledge of, and can model, the selection process.

The fuzzy RD design

The assumption of sharp assignment is in practice difficult. to maintain. In case the
program is known or expected to be beneficial, program administrators may be more sensitive
to pressure by individuals wanting to join the program, and more willing to change their
assignment if that individual’s score was just below the cutoff. Alternatively, in addition to
the position of the individual’s score relative to the cut.oﬂ" value, assignment may be based
on additional variables observed by the administrator, but unobserved by the evaluator. In
this case, even in the event when there is no actual program effect, we may find a regression
discontinuity indicating a nonzero program effect. This would occur, for example, if in the
area around the cutoff point individuals with lower scores went into the treatment group
and those with higher scorers into the control group. If scores are positively correlated with

the outcome of interest, this would lead to a regression discontinuity indicating a negative
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program effect. The case of misassignment relative to the cutoff value, with some scores of
S near the cutoff appearing in both treatment and control group, has been referred to as
the ‘fuzzy RD design’ (Campbell, 1969). Compared to the sharp design, selection here is on
both observables and unobservables. Instead of having the step function Pr(T = 1|5) =0
for S < S and Pr(T =1|S) = L for S > S in the sharp RD design, the selection probability
will now be a smoother function P(S), such as the two shown in Figure 2.

While in general misassignment will lead to a selection bias, there is one case discussed -
by Cain (1975, page 309) where this does not occur. In his ‘mixed model’ assignment is

based on the selection variable and an independent assignment error e, which is independent

of S and u:
T, =1 ifS,'—S’-I-e,'ZO 5
T; =0 otherwise (5)

The selection process is now fully represented by a random assignment that is conditional
upon a known value for S. In this case of randomization combined with nonrandom selection,
the earlier defined regression model, with a correctly specified control function of S included
as independent variable, will as before produce an unbiased treatment effect estimate, but
with more precision than in the previous case of rigid S-based assignment. Moreover, we
need not rely on continuity of the control function near the cutoff point.

This is a case of selection of observables with a nondeterministic assignment rule. The
difference between E[Y|T = 0,5 < 5] and E[Y|T =1,5 < 5] and between E[Y|T = 0,5 >
3] and E[Y|T = 1,S > 5] can then be used to help identify the treatment effect. That
is, a would be nonparametrically identified, as conditional on S, the variation in T will be
uncorrelated with u (and ¥;(0) and Y;(1) will be independent of T} given S;). Similarly, in the
varying treatment effect case, we will now be able to nonparametrically identify the varying
treatment effect over the region of common support for =0 and T' = 1.

In general, however, as discussed by Barnow, Cain and Goldberger (1980), if the selection

process is not perfectly known and the unknown component e were not an independent

12



assignment error, then estimation of
Y; = fo + T + u;

will lead to biased estimates even if we included a control function E[u,|S;] to address the
correlation between S and T'. The bias will depend on the covariance of T and u conditional
on S and may be positive or negative. To solve the selection bias problem we could adopt
any of the existing approaches for the case of selection on unobservables. Each approach
uses or requires additional information about the selection process to obtain an unbiased
estimate of the treatment effect. As I mentioned earlier, almost all approaches rely on the
availability of an exogenous regressor in Z which is excluded from the outcome equation, ie.
an instrument. In the fuzzy RD design generally no such instrument exists. However, 1t may
still be feasible to exploit the discontinuity and/or highly nonlinear nature of the assignment
rule near the cutoff point. In addition to continuity of the control function near the cutoff
point, to identify a constant or varying treatment effect we may need to rely on additional
smoothness of the control functions E[u|T = 0,S] and E[u|T =1, 5].

In the fuzzy assignment case we can specify the selection or assignment equation in terms
of a general function of S and I(S > S) and an error term e;:

T, =1 ifg(Si, 1(Si>§)) + e >0

T; =0 otherwise (6)
where e; may be correlated with u; in the outcome equation and where I is the indicator
function. By including I(S > S) we allow for the possibility that the assignment function
may still contain some discontinuities caused by the existence of the cutoff value for S.
By specifying the functional form of ¢ and the distribution of e we could then proceed by
replacing T; in the outcome equation (augmented with the control function) by an estimate

of Pr(T; = 1) as in Maddala and Lee (1976). One possible specification for g may, for

example, be the piecewise polynomial function
g(S:, 1(Si> 8)) = (a0 + -~ +anST) - 1(5: < 5) + (bo+ - +8257) - 1(S > 8)  (T)

13



Alternatively we could adopt a nonparametric approach for estimating the propensity
score Pr(T; = 1) as a function of 5, such as those considered by Todd (1995).. In the evalu-
ation literature, a similar nonparametric procedure has been termed the relative assignment
variable approach (Spiegelman, 1979; Trochim and Spiegelman, 1980) where the relative
assignment variable is in fact equal to the propensity score. In their approach the nonlinear
relationship between treatment status and the selection variable S is estimated by a nearest
neighbor moving average method, which involves computing the moving average of the T
values for cases ordered by S. It can be expected that the nonparametric propensity score
estimates, while perhaps no longer discontinuous, will generally be a highly nonlinear func-
tion of S, going from 0 to 1, such as those in Figure 2. Therefore, similar to the sharp RD
design, identification will be based on the s-shaped nonlinearity and possible discontinuity
near the cutoff point.

A third, and least restrictive possibility is to adopt an IV procedure, using the discon-
tinuity (the indicator I(S; > §) with possible interactions with S;) as instrument for the
treatment indicator.

It is important to recognize at this point, that, what in a sense is identification on
functional form, is based on specific knowledge of characteristics of the selection mechanism
(the existence and values of the selection variable and cutoff points)!”. Moreover, without
making the connection to this quasi-experimental design, several other studies have similarly
relied on known or explained nonlinearities (or discontinuities) in the assignment rule as
source of identification. For example, Angrist and Krueger (1991) use quarter of birth as
instrument for years of schooling in an earnings equation. Quarter of birth is correlated
with educational attainment because of a mechanical interaction between compulsory school
attendance laws and age at school entry. To be able to identify the effect of education on

earnings, it is clear that an assumption has to be made about the form of direct age effects on

17In this regard, it is also important to note that the existence of multiple program or treatment levels
and cutoff points will further aid in identification. The financial aid assignment rule discussed later is an
example of this.

14



earnings'®. Angrist and Krueger add a quadratic function of age to the equation to control
for within-year-of-birth age effects on earnings and the schooling effect is therefore identified
through deviations from this quadratic trend®. Similarly, Imbens and van der Klaauw (1995)
use nonlinear policy-induced variation in aggregate military enrollment rates across birth
cohorts to evaluate the effect of military service on subsequent earnings in the Netherlands.
In that study the estimated earnings equation included a third order polynomial function in
age and the effect estimate was shown to be relatively insensitive to the inclusion of a fourth
and fifth order polynomial.

Black (1996) exploits the regression-discontinuity design in evaluating the effect of ele-
mentary school quality on local housing prices. In this study geographic location within a
school district with respect to school attendance district boundaries (which determine which
school a child attends within the school district), is used to isolate the school quality effect
from other neighborhood effects on housing prices. By assuming geographic location, and
thereby neighborhood effects, to directly affect housing prices in a smooth way, the effect is
essentially identified on the difference between those who live on different sides of the street
which forms a boundary (ie. the discontinuity), and for whom presumably only the assigned
elementary school differs.

The regression-discontinuity design is also exploited in a recent study by Angrist and
Lavy (1996). That study is the closest to the study here in that it makes explicit use
of a discontinuity in the assignment rule to identify a treatment effect, in this case the
effect of class size on student performance. This discontinuity is induced by a rule, called
Maimonides’ rule in reference to the Talmudic scholar, used in Israel to determine school
class size as a function of (beginning of the year) total school enrollment. By allowing total
school enrollment to directly affect student outcomes in a smooth fashion, the class size effect

is identified on the discontinuities in the actual student outcome-school enrollment relation

181f the effect of age was modelled as a step function of age in quarters identification of the education
effect would be impossible.

19Variation between states in school attendance laws (ie., the cutoff date) was also used to identify the
schooling effect.




caused by the class size assignment rule®.

Finally, I would like to emphasize the advantages and the wide appiicability of the fuzzy
RD design in program evaluation. Unlike randomization it allows the program to be pri-
marily geared to the subpopulation of focus and may be easier to implement and, unlike the
sharp RD design, it allows for somewhat greater flexibility in the assignment of treatment
(note that this design also represents the degraded version of the sharp RD design in which
the assignment strategy was incorrectly implemented). For example, eligibility criteria for
welfare programs may be based on need (income, assets and household composition) and
eligibility rules for training programs may limit entry only to those for whom the program
is likely to be most beneficial (e.g. on the basis of educational background). As will be
discussed later, many existing welfare programs, such as the Food Stamps and AFDC pro-
grams, have eligibility requirements that fit the RD design. In the next section I will show
that the assignment rule used by College X in determining individual financial aid offers

conforms to that of a fuzzy RD design.

III. THE DATA SET

Annual information about all students who apply and are admitted to College X is stored
in a large computer data base. This information is obtained from three different sources:
each student’s original application package, the student’s financial aid application forms and
a record kept by the college of the total financial aid package offered to the student and the
student’s subsequent enrollment decision.

The application package for college admission provides information on a wide range of
student characteristics, such as age, gender, race, place of residence, citizenship, as well as
information about each student’s high school record. The latter information is available in the

form of transcripts reporting individual course grades, the student’s high school grade point

20 A ccording to this rule no class size can be greater than 40. Thus, for example, if total enrollment equals
79, one class of 39 students and one other of 38 are formed, while a total enrollment of 81 would lead to
three classes of 27 students each.
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average (GPA), SAT scores, school or class rank as well as letters of recommendation and a
statement of purpose. For those eligible for federal or state aid, the financial aid application
form contains information on the income of the student’s parents, as well as their expected
financial contribution. The data base also includes for all students information about College
X’s offered aid package, consisting of the amounts of different types of financial aid that make
up the total aid package of a student - loan or grant, federal aid or College X sponsored aid.
In our empirical analysis we. will focus on the effect of local, college sponsored aid.

The information on each year’s pool of admitted applicants is stored in two different files.
One file includes only those applicants (referred to as FILERS) who did submit the FAFSA
(the Free Application for Federal Financial Aid) form to apply for federal aid jointly with
a NAD (Need Analysis Document) form to apply for aid from College X. The submission
of these forms makes the applicant eligible to receive federal and state funded financial aid
for college, which can be provided in the form of a federal or state grant and/or in the
form of a loan, where the laﬁter typically is the largest. On the basis of their academic
ability and parental income, an estimate of the total amount and types of state and federal
financial aid the student will receive is calculated using a set of given formulas, which is
then forwarded to College X. On the basis of this estimate the college then determines the
amount of discretionary aid to offer to the student. Finally, all forms of financial aid ar.e
included as part of the total aid package offered to the applicant. The NAD form contains
personal information not included in the student’s application form for college admission,
such as reported parental income and the expected parental contribution to schooling costs.

The other data file includes all those applicants who did not formally apply (did not
qualify) for federal financial aid (NONFILERS). This group includes individuals who do
not qualify for federal aid because of high parental icome as well as foreign citizens who
are not pérrnanent residents of the US and who are therefore ineligible to any federal é.id.
Unlike the data file on filers, the file on non-filers does not include information on parental

income and their expected contribution. These applicants who are not eligible for federal
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and state aid, are still considered for discretionary aid. As with the filers, the nonfilers are
sent a complete aid package, together with a notice of admission. Because of differences in
the financial aid allocation rule and in the available information, and because the student
enrollment decision is likely to differ for both groups, in our empirical analysis both groups
will be studied separately?’.

The actual decision rule the college adopts in determining each student’s financial aid offer
is fairly complex, involves both objective and subjective evaluations, and is therefore difficult
to characterize by a simple formula. While many relevant student characteristics, such as
different ability measures, minority status and (for some) parental income are included in
the data base, others, such as the student’s statement of purpose, extracurricular activities,
transcripts and recommendation letters, are not.

An important feature of the financial aid decision process of most universities, however,
is the existence of simple rules, the specifics of which are generally unknown to student
applicants, which are designed to make the allocation of aid more objective, regulated and
easier to implement. One of these features, adopted by College X, is the use of a simple
formula which converts a student’s SAT scores and high school GPA into an index which
is then used to rank students into a small number of categories. More precisely, during the

period studied here, the particular index formula used was
S = ¢o x (first three digits of total SAT score) + ¢; x GPA

where S represents the calculated index. Applicants were then divided into four groups on
the basis of the interval the calculated index fell into. These intervals were determined by
three cutoff points on the S scale. Let the three cutoff points in ascending order be denoted
by 5i, S» and S; respectively, then the highest rank or category would consist of students
with index scores above Ss.

Students of different rank are eligible to different amounts of aid. Within a rank, a base

amount is assigned which is subsequently adjusted on the basis of the student’s minority

21y differentiating between these two groups of applicants, I assume that all those eligible for federal aid
actually applied for it. -
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status, family income as well as more subjective and detailed evaluations of the student’s

complete application package. These adjustments are therefore both merit and need based.
It is likely that these adjustments will to some extent depend on the value of the individual’s
index in relation to the nearest cutoff point. That is, if an individual’s index score is just
below a cutoff point then it is likely that, if the financial aid officer is impressed with the
student’s total package, the adjustment will make the amount of financial aid offered more
similar to that offered to someone who scored just above the cutoff. Nevertheless the overall
aid offer is still likely to be less that that of an applicant who scored just above the cutoff
point.

Note that, because students do not know this aspect of the allocation rule and are unlikely
to be able to learn about the rule from observed offers??, we need not worry about a possible
effect of the rule on a student’s S score which would make S endogenous (students may
retake the SAT test if they knew their score was just below a cutoff value)?.

The financial aid offer rule therefore fits that of the fuzzy RD design, with multiple
cutoff points and multiple treatment (financial aid offer) levels. Denoting the total amount
of discretionary college aid by F, the financial aid allocation process just described can be

characterized as follows:
Fi= f(Si ,1(8: > 81),1(S: > 52),1(S: > 53)) +e; (8)

where the unobserved component e; captures all other relevant characteristics of the student

(and possibly of the financial aid officer) which influenced the financial aid decision.

22Both the weights ¢o and @1, as well as the three cutoff points did vary during the period studied.

23In general, knowledge of the assignment rule may lead to selection biases that may complicate the RD
evaluation problem. For example, in the Angrist and Krueger (1991) study, if some parents take the effect
of birth month on the child’s first school enrollment year into account in timing the birth of their child
(although perhaps unlikely), this could lead to a selection problem where children born to such parents can
no longer be assumed to be on average the same as those born to other parents. Similarly, knowledge of the
class size rule may affect the school choice or application decision of parents, which could complicate the
analysis in Angrist and Lavy (1996).
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IV. STUDENT ENROLLMENT DECISIONS

As outlined in Manski and Wise (1983, chapter 2), the complete admission process can
be treated as a series of decision stages, with each individual decision taken by a different
agent. The first stage represents the student’s college application decision. The second the
institution’s admission decision. The third is the institution’s financial aid offer decision,
conditional on an offer of admission, and the fourth is the student’s enrollment decision.
While the previous section discussed stage three of this process, in this section I provide a
simple model of stage four.

The student’s decision problem can be characterized, as having to make an optimal choice
from a discrete set of school and non-school characteristics. In our case where we model the
choice to enroll at College X, we can define a student’s options, given his prior college
application decisions and each college’s subsequent admission and financial aid decisions,
as (1) enroll at College X (and accept its financial aid offer) and (2) enroll at another
college?*. The enrollment decision can be thought of as involving a comparison between
the student’s utility associated with each choice alternative. The utility a student receives
from each decision will depend on the total costs and total benefits associated with each
choice. The costs include tuition and living expenses minus financial aid, while the benefits
include the consumption value of studying either at College X or at another college as well
as the student’s expected future earnings and job prospects after graduation from college.
With missing data on tuition cost, living expenses and post-graduation earnings for different
colleges, I will specify the difference in the utility associated with each choice alternative
simply as a function of the difference in financial aid offered and an unobserved component
capturing all other factors. Let F' represent the amount of discretionary aid offered by College
X and F* the financial aid offer made by the most preferred college other than College X.

Then, for an individual 7 the difference in utility associated with the choice to enroll or not

24 jgnore the additional option to join the labor market or military. Few of those admitted at College X
tend to choose this option.
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can be specified as

AU; = 5(F, - F:) — Y (9)

where the unobserved random component v; measures all other individual differences in the
utility associated with alternative choice options.

The decision to enroll (E = 1) or not (E = 0) therefore depends on the amount of
discretionary aid offered by College X, as well as the financial aid offers made by the most
preferred alternative college. The probability that the student will enroll at College X is
then given by:

Pr(E;=1) = Pr(AU: > 0) = Pr(8(F; — F7) —v; > 0)
PT‘(E,' = 0) = 1- PT(E,' = 1) (10)

Unfortunately it is not possible to directly estimate the enrollment equation (10) above,
because F* is unobserved. Generally one would expect financial aid offers from other colleges,
and thus that of the student’s most attractive alternative college option to depend on the
same observed student ability measures. Accordingly, I characterize the amount of ﬁnanciai

aid offered by the student’s most prefered alternative as
F? = h(GPA;, SAT;) + w; (11)

where w; captures all other relevant characteristics of the student. It is important to note
that there is no reason to also include the binary rank indicators (the I(S; > Si) terms)
as determinants of F*, as these indicators are idiosyncratic components of College X’s aid
allocation process and, conditional on GPA and SAT, should have no relevance in the offer
decisions of other colleges®.

After substituting the above equation into the expression for AU, we obtain

AU; = 6F, — §h(GPA;, SAT)) — u; . (12)

25Note that h represents the average (over individuals and schools) of the aid offer functions of all prefered
alternatives. While other colleges may similarly use some discontinuous aid allocation rule, we can therefore
assume h to be reasonably smooth. The specification of h will be discussed below.
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where u; = v; + dw;. Note that college aid F; will be correlated with the composite error u;,
when e; and w; (the errors in the two aid equations) are correlated and/or if e; and v; (the
error in the college aid equation and in the enrollment equation) are correlated.

Some of the specifications that I will estimate will also include a set of other individ-
wal characteristics, such as parental income and minority status, in both the financial aid
equation (8) and in the expression for AU to capture potential differences in preferences for

studying at college X.

Estimation Method

The evaluation problem as described by our model

Pr(Ei=1) = Pr[6F, - 6h(GPA;,SAT) —u; > 0] (13)

Fo o= f(S41(S:> 51),1(Si> 52),1(S: > 53)) + e (14)

conforms to that of the fuzzy RD design. The outcome measure (enrollment) is here discrete
and treatment status corresponds to the amount of financial aid offered and rather than
being binary is now continuous. But most importantly, assignment is based at least in part
on the basis of the relative magnitude of an observed continuous selection or a.ssigﬁmeht
index with respect to a few cutoff values.

As was the case for the fuzzy design with an independent assignment error, if the error
in the financial aid equation e; is uncorrelated with the error in the outcome (enrollment)
equation u;, unbiased estimates can be obtained of the financial aid effect § by specifying
and including a control function. Given that the selection variable 5 (the calculated index)
in this case essentially represents a weighted linear combination of two other variables, GPA
and SAT, both of which are already included in the enrollment equation derived from our
model, there is no need to include a control function because if h is correctly specified then
u; will be uncorrelated with S; by definition. To reduce the potential for misspecification of
h, 1 follow the curve-fitting strategy proposed by Trochim (1984) where we use the lowest

order polynomial curve in GPA and SAT not statistically rejected.
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However, our simple model implies that the assumption of uncorrelated errors is unac-
ceptable as the stochastic component in the financial aid equation, e; (a function of char-
acteristics of the applicant observed by the aid officer), is likely to be correlated with the
stochastic component of the aid offer of the best alternative, w;, and also may be correlated
with the error in the enrollment equation v;, both of which are components of the composite
error u; in the enrollment equation. Therefore, estimation of the enrollment equation would
lead to a biased effect estimate. Similar to the approach discussed earlier in section II, the
selection bias problem can be solved by specifying the functional form of f, estimating the
financial aid equation, and replacing F; in the outcome equation by its predicted value E
I will follow two different approaches to obtain predictions for F'. First, I specify f to be a

piecewise polynomial function of degree n in S as follows:

F, = I(stgl) 2’71153+I(S,> 51 Z’)‘z]S +IS >52 2’733

j=0 7=0

+1(8: > S3) - Y 14iS + e (15)

§=0

Second, I will estimate the financial aid equation as a nonparametric function of S, g(S),

using spline smoothing methods?. This estimated function ¢(S) minimizes the sum

S(Fi- g(S07 + 1 [((S)ds (16)

=1

over the class of all twice differentiable functions over the observed domain of S. A repre-
sents a smoothing parameter which determines the weight given to the roughness penalty
J(k"(S))*dS. The estimated curve k(S) has the property that it is a cubic polynomial be-
tween two successive S-values, which at each observation for S; is continuous, with continuous

first and second derivatives (see, Hardle, 1990, pg 56-57).

V. ESTIMATION RESULTS

Table 1 provides the enrollment rate and average financial aid offer for both filers and

non-filers for the academic year 1991-92%7. In the table SAT represents the sum of the verbal

26n both approaches I ignore a non-negativity constraint on F.
27Qbservations with missing values for the variables used in the analysis were deleted.
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and mathematical SAT test scores and GPA represents the student’s high school Grade Point
Average, on a 4-point scé.le. RANKIi is an indicator of the interval which corresponds to the
individual’s index score S, with RANK4 representing the interval with the lowest scores
and RANK1 the interval with the highest scores. The table shows that while financial aid
increases from RANK4 to RANKI, for both filers and nonfilers the enrollment rate varies in
a nonmonotonic fashion with RANK.

The.table also compares those who enrolled with those who did not in 1991. Filers who
enrolled were offered more financial aid, on average, then those who did not. We also find
that the percentage of students with rank less than 4 is a little lower amongst those who
enrolled. Similarly, those who enrolled have on average somewhat lower SAT scores than
those who did not enrol. In contrast, there is little difference between the two groups in the
average GPA. These patterns are also found when controlling for rank. Within each RANK,
there is little difference in average GPA, but the average SAT scores are lower for those who
enrol. It can be expected that those with higher scores, but equal rank, are less likely to
enroll at College X because, while they are offered similar amounts of aid from College X,
they will on average receive higher financial aid offers from other colleges.

Similar, but somewhat smaller differences in average SAT and GPA scores are found for
nonfilers. Different from filers, however, nonfilers who enrolled received on average lower
offers of local financial aid than nonfilers who did not enroll, which suggests a negative effect
of the amount of financial aid on enrollment.

Figure 3 presents a scatter diagram of financial aid offers against the calculated index S
for the sample of filers. Also shown in the graph is an estimated spline smooth. The spline
smooth clearly reveals the sharp increases in average financial aid at the three cutoff points
(represented by vertical lines). With less smoothing (lower values of the spline smoothing
parameter \) the sharpness of the increases became even more pronounced, but this also
made the rest of the curve less smooth. These increases are also clearly revealed by the data

themselves, where the values at which bunching occurs change at each cutoff point. The
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graph for nonfilers (Figure 4) shows very similar features.

As discussed earlier, two approaches were adopted to estimate the financial aid equation.
First, I adopted several piecewise polynomial function specifications. Estimates of the linear
and cubic piecewise polynomial specifications are shown in Table 2. Second, a nonparametric
spline smoothing method was adopted, resulting in the spline smooth estimates shown in
Figures 3 and 4. Figures 5 and 6 show the spline smooth estimates together with the

estimated piecewise linear and cubic regressions?®

. The sharp increases around the cutoff
values are clearly visible in all estimated functions.

Before presenting the estimated enrollment equation, it will be interesting to see whether
the increments seen in financial aid offers around the cutoff values can also be found in
the enrollment percentage. Figure 7 shows a spline smooth of the percentage enrolled as a
function of the index score S for filers. While the slope of the curve changes only little around
the second cutoff point, it changes considerably around the other two (with a smaller value
of the smoothing parameter X these changes again became somewhat more pronounced). A
similar pattern of slope changes near the cutoff points is found for nonfilers as shown in
Figure 8.

The discontinuities which characterize the RD design can be directly exploited to obtain
preliminary estimates of the program effect at each cutoff value S; by comparing the en-
rollment rate of those with index scores just the below cutoff, denoted by E. 3, and above
the cutoff, E>§J_. More precisely, a program effect estimate can be obtained by dividing
E, 3 — E. 3, by the corresponding difference in the average aid amounts between those just
below and above the cutoff point F>gj - F’<gj, for each value of j = 1,2,3. Comparing
those within 3 points below and above each cutoff results in effect estimates 0.010, 0.040 and

0.067 at cutoff points Si, S, and S, respectively. Similarly, for nonfilers the estimates are

0.519, 0.036 and -0.030%°. While the estimates for filers suggest that the effect estimate may

28The piecewise quadratic regression was not shown to improve visibility, but was found to be very close
to the piecewise cubic regression estimate. :

29Corresponding estimates based on the much smaller samples of individuals within 2 points of the cutoff
point, were 0.052, 0.075, 0.107 for filers and 0.076, 0.060 and -0.043 for nonfilers.
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increase with S, for nonfilers the estimate appears to be descreasing in S.

To obtain effect estimates based on the complete sample of student applicants, the en-
rollment equation was estimated both as a Linear Probability model and as a Probit model.
Defining Pr(E; = 1) = Pr[ 6F; — 6h(GPA;, SAT;) —u; > 0] = W[ §F; — 6h(GPA;, SAT;) ]
where W is the distribution function of u;, the Linear Probability model corresponds to
the case where W is linear, in which case E[E;|F;,GPA;,SAT)| = Pr(E; = 1) = §F; -
Sh(GPA;, SAT;) and the equation can be estimated by OLS. The second case corresponds
to the case where W is the normal distribution function, in which case the enrollment equa-
tion is estimated by maximum likelihood. The estimated elasticities and overall qualitative
results were found to be very similar for both specifications. In what follows I therefore
only present estimates corresponding to the linear probability model specification of the
enrollment equation®.

Two-stage least squares estimates of the enrollment equation are presented in Table 331
The predicted aid amount F was calculated using the estimated piecewise cubic specification
(the most flexible parametric specification considered) of the financial aid equation. The high
R? values and the significance of the discontinuous increments of the estimated financial aid
equation in Table 3 imply that we need not worry about estimation problems commonly
encountered when only weak instruments are available.

As discussed earlier, a forward, stepwise procedure was used of specifying a piecewise
linear, quadratic, cubic and, if necessary, higher degree polynomial function in GPA and
SAT. For filers a quadratic enrollment function in GPA and SAT was found to be sufficient
and the effect estimate for filers was found to be 0.052 which corresponds to an estimated
enrollment elasticity with respect to financial aid (in thousands) evaluated at the mean
of 0.87. Thus a 10% increase in financial aid is predicted to lead to a 8.7% increase in

the probability an individual will enroll. For nonfilers the stepwise speciﬁcation procedure

30Estimates corresponding the Probit specification are available on request from the author.

31The Linear Probability model has the drawback that it can generate predicted probability values outside
the unit interval. However, in the case of filers (nonfilers) this was found to occur only in 3 (1) of the 2225
(1150) cases.
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resulted in a linear enrollment equation specification and an effect estimate of 0.020 which
corresponds to an elasticity of 0.14. Given that those who did not qualify for federal financial
aid are likely to be less financially constrained, it is perhaps not suprising that filers were
found to be more sensitive to the offered aid amount. The 25LS standard errors presented
in the table for all parametric specifications take into account the two-stage nature of the
estimation process.

To explore the sensitivity to the functional forms of both equations, Table 4 provides
estimates of the aid effect § for several alternative specifications. The table shows that the
estimates are relatively insensitive to the specification of the financial aid equation. The
estimates found for the parametric specifications are further very similar to those for the
spline smooth estimates®®. On the other hand, the estimates are more sensitive to the
specification of the aid equation. For filers, the quadratic specification was found to be
required, while for nonfilers a linear specification was sufficient.

The table also presents estimates obtained when both the enrollment and financial aid
equation were augmented with a host of additional observed individual characteristics, in-

33 Overall the estimates fell slightly for filers and

cluding ethnicity and parental income
remained the same for nonfilers. The overall implication of the table is that the effect esti-
mates are fairly robust to different specifications.

It is interesting to compare these estimates with those obtained when the actual value is
used instead of the predicted financial aid amount. When relating enrollment to a constant
and the actual aid amount, for filers an effect estimate of 0.030 (0.003) was found and for
nonfilers the effect estimate was -0.011 (0.006). Table 4 shows estimates obtained for other

specifications of the enrollment equation. The estimates show that ignoring the endogeneity

of the financial aid offer leads to only slightly lower effect estimates for filers, but much

32The standard errors presented for the nonparametric aid equation specification have not been adjusted
for the fact that the financial aid amount used in estimating the enrollment equation was predicted.

33For filers I included 15 variables, including age, gender, 2 measures of ethnicity, citizenship, 6 indicators
of the state of residence, a quadratic in parental income and a quadratic in transferable federal and state
aid. For nonfilers all variables except the parental income and federal/state aid variables were included.
Parameter estimates of these regressions are not shown for confidentiality reasons.
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smaller effect estimates for nonfilers. In addition, when using. actual aid amounts, the effect
estimate for filers appears much more sensitive to the inclusion of other explanatory variables.

Table 5 presents similar effect estimates for the years 1989 to 1992 separately and all years
combined. To make the estimates compa,rable all financial aid amounts were expressed in
1991 dollars. In the estimations using the pooled data sets, the enrollment equation included
separate (for each year) intercepts and slope terms for each variable except F, the amount of
financial aid offered. The effect estimates are relatively stable over time, and as in the case
of 1991, are much greater for filers than for nonfilers. The implied elasticities of enrollment
with respect to aid evaluated at the means are 0.70 for filers and 0.10 for nonfilers. Table
6 presents a sensitivity analysis similar to that in Table 4, but now for the pooled data set,

which similarly shows the effect estimates to be robust to alternative specifications.

V1. CONCLUSION

In this paper I provided an illustration of the applicability of a powerful, but often ignored,
program design: the (fuzzy) Regression-Discontinuity design. In this design the selection or
assignment rule for determining who participates in a program or who receives treatment,
contains discontinuities and/or nonlinearities in one or more observed continuous variables.
These variables may themselves affect the outcome variable of interest, even in absence of the
program. I show how this design, and in particular these discontinuities and nonlinearities
can be exploited to obtain credible program effect estimates, without the need to impose
arbitrary exclusion restrictions and functional form assumptions about error distributions to
solve the selection bias problem.

The allocation rule used by an east coast college in determining individual financial aid
offers was shown to resemble the selection or assignment rule in the fuzzy RD design. Esti-
mates of the effect of financial aid on college enrollment were obtained which were found to
be robust to alternative specifications of the enrollment and aid offer equation. Discretionary

college aid was found to have a strong impact on college enrollment. In the analysis the ef-
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fect of financial aid on enrollment was assumed to be constant. However, it is reasonably
straightforward to allow for nonlinear effects and to include interaction terms with other
explanatory variables, in which case the resulting aid effect estimates could be used to help
design more effective financial aid allocation rules.

An important implication of this study is that more detailed knowledge of the selection
mechanism can often aid in obtaining reliable program effect estimates. The features of
the assignment rule which characterize the fuzzy Regression-Discontinuity design, should be
relatively easy to incorporate and in fact are already likely to be found in the assignment
or selection rules of many other non-experimental program designs. Some recent evaluation
studies, such as those by Angrist and Krueger (1991), Blank (1996) and Angrist and Lavy
(1996) were shown to have relied on the design in obtaining effect estimates. Moreover, it is
likely tha,f features of existing eligibility requirements can potentially be exploited to evaluate
the impact of different welfare programs, such as the Food Stamps and AFDC programs.
Eligibility conditions to Food Stamps, for example, includes a maximum wealth or assets
test, while eligibility to AFDC requires the presence of child below 18 years of age. While the
former generates a discontinuous relation between Food Stamps receipt and assets, the latter
implies a discontinuous relation between AFDC receipt and the age of the child (if only one
such child is present)3*. The study and possible exploitation of such program characteristics
has been relatively ignored and represents an important area for future evaluation research

in economics.

34Given that this AFDC eligibility requirement is fairly well known, the presence of an age-eligible child
may become endogenous, complicating the evaluation problem.
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TABLE 1: SAMPLE MEANS

FILERS NONFILERS
Variable | Total Enrol Not Enrol % Enrol | Total Enrol Not Enrol % Enrol
GPA 3.40 3.34 3.43 3.26 3.19 3.28
SAT 1160 1133 1171 1179 11589 1182
F 5080 6018 4673 1012 777 1052
%F =0 0.12 0.07 0.14 0.73 0.77 0.72
RANK4 0.50 0.60 0.46 36.31 0.60 0.71 0.58 17.2
GPA 3.11  3.10 3.12 3.01 2.99 3.02
SAT 1093 1083 1099 1123 1119 1124
F 4016 5027 3439 126 50 141
%F =01 013 0.07 0.17 0.96 0.98 0.95
RANK3 0.20 0.17 0.21 26.31 0.15 0.08 0.17 7.3
GPA 3.52 3.55 3.51 3.47 3.47 3.47
SAT 1168 1147 1176 1198 1207 1197
F 4633 5845 4200 288 692 256
%F=0]| 0.14 0.13 0.15 0.91 0.85 0.91
RANK?2 0.19 0.13 0.22 20.9( 0.15 0.16 0.14 16.1
GPA 3.75 3.76 3.74 3.66 3.66 3.66
SAT 1220 1206 1224 1263 1250 1266
F 5944 7587 5511 2810 2783 2816
%F =0 011 0.00 0.14 0.07 0.04 0.07
RANK1 0.11 0.10 0.12 26.6 0.10 0.05 0.11 8.0
GPA 3.91 391 3.91 3.91 3.93 3.90
SAT 1336 1317 1343 1366 1342 1368
F 9085 10195 8683 _ 4942 4494 4981
%F =0 001 0.00 0.01 0.00 0.00 0.00
Obs 2225 674 1551 30.3| 1150 168 982 14.6

GPA and SAT represent the average high school grade point average and total SAT test
score. F' equals total discretionary aid offered by college X and RANKi represents the rank
or category an individual is assigned on the basis of the value of the index S, with RANKI1
representing the highest rank.




Table 2: Estimates Financial Aid Equations

FILERS NONFILERS
Variable pw linear | pw cubic | pw linear | pw cubic
I(S < 5) 3977.66  3961.39 | 52.47 44.19
(116.30) (133.42) | (34.84)  (39.99)
S-I(S < &) 2.57 10.94 5.65 4.57
(5.76)  (11.71) | (1.79) (3.59)
S52.I(S < &) -0.079 . 0.059
(0.307) (0.108)
S I(S < 85) -0.0078 -0.0000
(0.0119) (0.0042)
I(S > 1) 5234.08  5168.41 | 354.25  159.44
(238.59)  (409.22) | (107.97) (206.02)
S-1(S>5) | -85.09 6.63 -9.19 175.55
| (28.64)  (258.38) | (13.19)  (124.00)
S52-1(S > §) -19.255 -33.995
(43.182) (20.172)
S3.1(S > 8)) 0.9826 1.6443
(2.0050) (0.9302)
I(S > 5,) 6123.77  5643.35 | 2667.16  2652.06
(236.65) (388.18) | (98.35)  (162.20)
S-I1(§>58;) | -21.37  283.41 17.03 -21.30
(23.69) (199.21) | (9.86)  (87.81)
S52.1(S > 5,) -37.721 9.487
(26.852) (11.932)
S I(S > S) 1.2493 -0.4576
(0.9948) (0.4456)
I(S > S3) 9149.79  9124.45 | 4979.57  5033.85
(275.83) (485.79) | (125.29) (226.88)
S-I(S>8;) | -7.01 46.15 -3.21 -9.45
(23.79) (177.01) | (9.04)  (75.37)
52.1(S > S3) -8.126 -0.456
(16.611) (6.827)
S3.1(§ > Ss) 0.2604 0.0300
(0.4254) (0.1720)
Observations 2225 2225 1150 1150
Adj. R? 0.802 0.802 0.883 0.883

Standard errors in parentheses.




Table 3: Estimates Enrollment Equations

(Linear Probability Model)

Variable FILERS NONFILERS
constant 0.030 0.748
(1.092) (0.197)
GPA 0.410 -0.098
(0.335) (0.037)
SAT/100 0.090 -0.255
(1.210) (0.110)
GPA? 0.025
(0.032)
SAT?/10000 0.632
(0.412)
SAT x GPA/100 -0.667
(0.219)
£/1000 0.052 0.020
(0.013) (0.012)
Observations 2225 1150
Adj. R? 0.035 0.008

Estimates were obtained using the stepwise curve-fitting procedure described in section IV.

Two-stage LS standard errors in parentheses.



Table 4: Sensitivity Analysis - Effect Estimates 1991

Specification enrollment Equation

linear quadratic cubic cubic-extended
Piecewise Polynomial
Specification
Financial Aid Equation

FILERS (2225 observations)

linear 0.040 0.056 0.052 0.039
(0.010) (0.013) (0.015) (0.011)
quadratic 0.039 0.054 0.049 0.038
(0.010) (0.013) (0.015) (0.011)
cubic 0.037 0.052 0.046 0.037
(0.010) (0.013) (0.015) (0.010)
nonparametric 0.040 0.056 0.052

(0.011)  (0.013)  (0.016)

actual aid 0.047  0.049  0.049 0.013
(0.003)  (0.003)  (0.003) (0.003)

NONFILERS (1150 observations)

linear 0.020 0.030 0.034 0.034
(0.012) (0.016) (0.020) (0.020)
quadratic 0.019 0.029 0.034 0.031
(0.012) (0.016) (0.020) (0.020)
cubic 0.020 0.030 0.035 0.033
(0.012) (0.016) (0.020) (0.020)
nonparametric 0.019 0.030 0.036

(0.012)  (0.017)  (0.021)

actual aid 0.007 0.007 0.005 0.014
(0.009) (0.011) (0.012) (0.003)

Entries represent estimated coefficient on financial aid F' measured in thousands. Standard
errors in parentheses.




Table 5: Effect Estimates 1989 - 1992

1989

1990

1991

1992

1989-1992

FILERS

Estimate Obs

0.054 2182
(0.015)

0.042 2131
(0.020)

0.052 2225
(0.013)

0.040 2434
(0.012)

0.045 8972
(0.008)

NONFILERS
Estimate Obs

0.014 1147
(0.012)

0.035 1210
(0.013)

0.020 1150
(0.012)

0.019 1169
(0.007)

0.020 4676
(0.005)

Entries represent estimated coefficient on financial aid F' measured in thousands of 1991

dollars. Standard errors in parentheses.




Table 6: Sensitivity Analysis - Effect Estimates 1989 - 1992

Piecewise Polynomial
Specification
Financial Aid Equation

Specification enrollment Equation

linear quadratic cubic cubic-extended

linear
quadratic
cubic

nonparametric

linear
quadratic
cubic

nonparametric

FILERS 1989-1992 (8972 observations)

0.036  0.045  0.049 0.039
(0.005)  (0.007)  (0.008) (0.006)
0.035  0.043  0.045 0.036
(0.005)  (0.006)  (0.008) (0.006)
0.035  0.043  0.044 0.036

(0.005)  (0.006)  (0.008) (0.005)
0.038  0.046  0.049
(0.005)  (0.007)  (0.008)

NONFILERS 1989-1992 (4676 observations)

0.020  0.022  0.013 0.014
(0.005)  (0.006)  (0.007) (0.007)
0.020  0.022  0.013 0.014
(0.005)  (0.006)  (0.007) (0.007)
0.020  0.022  0.013 0.013

(0.005)  (0.006)  (0.007) (0.007)
0.020  0.022  0.012
(0.005)  (0.007)  (0.008)

Entries represent estimated coefficient on financial aid F' measured in thousands. Standard

errors in parentheses.



Fig. 1: The Regression— Discontinuity design

Fig. 2: Assignment in the fuzzy RD design
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Fig. 3: Financial aid offers — Filers
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Fig. 5: Estimated financial aid functions — Filers
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Fig. 7: Proportion enrolled — Filers
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