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ABSTRACT

Backward Induction Is Not Robust: The Parity Problem and the
Uncertainty Probiem

A cornerstone of game theory is backward induction, whereby players
reason backward from the end of a game in extensive form to the beginning
In order to determine what choices are rational at each stage of play. Truels,

or three-person duels, are used to illustrate how the outcome can depend on
(1) the evenness/oddness of the number of rounds (the parity problem) and
(2) uncertainty about the endpoint of the game (the uncertainty problem).
Since there is no known endpoint in the latter case, an extension of the idea
of backward induction is used to determine the possible outcomes.

The parity problem highlights the lack of robustness of backward
induction, but it poses no conflict between two foundational principles and,
hence, does not seem paradoxical. On the other hand, two conflicting views
of the future underlie the uncertainty problem, depending on whether the
number of rounds is bounded or unbounded. While in the bounded case the
players invariably shoot from the start, in the unbounded case they may all
cooperate and never shoot, despite the fact that the truel will end with near
certainty—and therefore be effectively bounded—by the end of several
rounds. Some real-life examples, in which destructive behavior sometimes

occurred and sometimes did not, are used to illustrate these differences.

JEL Classification: C73. Keywords: Backward induction; bounded

rationality; continuation probability; infinite horizon; uncertainty.



Backward Induction Is Not Robust: The Parity
Problem and the Uncertainty Problem:

A cornerstone of game theory is backward induction, whereby players
reason backward from the end of a game in extensive form to the beginning
in order to determine what choices are rational at each stage of play.2
Although backward induction seems, on occasion, to make heroic demands
of players, it produces logically compelling, if not always plausible, results
(e.g., “never cooperate” in finitely repeated Prisoners’ Dilemma).

Seemingly more plausible results can be obtained not only for repeated
Prisoners’ Dilemma but also for the chain-store paradox (Selten, 1978)—a
repeated game in which continued cooperation by the large player seems
implausible—by introducing some chance that information about
preferences is incomplete (Kreps and Wilson, 1982; Milgrom and Roberts,
1982), that the players will act irrationally (Kreps et al., 1982), or that there
is no common knowledge of rationality (Aumann, 1992; Bicchieri, 1993:
Stuart, 1993). It turns out that these and other bounded-rationality

assumptions can lead to an equilibrium outcome better for the large player in

1We gratefully acknowledge the valuable comments of Jordan Howard Sobel and
Stephen J. Willson on an earlier version of this paper. Steven J. Brams is pleased to
acknowledge the support of the C. V. Starr Center for Applied Economics at New York
University, and D. Marc Kilgour the support of the Social Science and Humanities
Research Council of Canada.

2Aumann (1995, p. 6) points out that backward induction is “the oldest idea in game
theory” and that it has “maintained its centrality to this day.” In perfect-information
games of the kind we shall analyze in section 2, he shows that common knowledge of
rationality implies backward induction. Although the uncertainty we introduce in section
3 about when a game ends creates problems for the straightforward application of
backward induction, we can still use it to study what rational players, looking ahead,
would do—and then trace these consequences back to the beginning of play.



the chain-store game, and for both players in Prisoners’ Dilemma, than the
backward-induction outcome in the unbounded-rationality case.3

In the games we shall analyze, play is not repeated, so there is no
accumulation of payoffs from a constituent or stage game, played over and
over again. True, several of our games may go many “rounds,” but the
completion of a round does not yield the players payoffs unless the game
ends on that round.

The choices that backward induction prescribes in these games cast
two kinds of doubt on the robustness of backward induction. The first doubt
is caused by a “parity problem,” whereby which one of two possible
outcomes that can occur depends on whether the number of rounds is even
or odd. Thus, if the number of rounds of play is, say, 64, we get a
completely different outcome than if this number were either 63 or 65.
Surprisingly, whatever the number, rational play never goes beyond either
one or two rounds before the game ends.

The even-odd difference poses no conflict between any foundational
principles of rational choice of which we are aware. Nor do we know of any
alternative solution that is intuitively more reasonable. Thus, there do not
seem grounds to label the even-odd fluctuations in the backward-induction
solution paradoxical.

The second kind of doubt is caused by an “uncertainty problem,”
whereby uncertainty about when a game will end affects the outcome. This

sensitivity also arises in repeated play of Prisoners’ Dilemma when there is

3For more on bounded-rationality and related solutions to repeated games, see Radner
(1986), Pettit and Sugden (1989), and Sobel (1994, pp. 345-365). Our analysis, by
contrast, presumes that players are filly rational, though their choices may be constrained
by uncertainty about when the game will end.



an “infinite horizon,” wherein not knowing when play will cease may create
incentives for the players to cooperate.

In repeated Prisoners’ Dilemma, cooperation can occur if the number
of repetitions of the stage game is uncertain, whereas in our games it can
occur when the number of rounds is uncertain. (We shall say precisely what
we mean by a “round” later.) In either case, the uncertainty means that the
game has no clear endpoint, at which one can start the backward-induction
process.

In the case of an uncertain number of rounds, we show that there is a
natural way of extending the idea of backward induction. However, it may
give completely different results from what is obtained by applying
backward induction to each of the individual games that the uncertain case
subsumes. In addition, we show that the nature of the uncertainty—in
particular, the probability that the game will continue to a next round, and
the boundedness or unboundedness of the number of rounds—also matters,
which again tends to undermine the robustness of backward induction.

Underlying this lack of robustness are two conflicting views of the
future: (1) every process must end by some definite point; and (2) the future
is unpredictable, so the endpoint of a process cannot be predicted. While
these views are not necessarily irreconcilable, they can give rise to
backward-induction arguments that yield very different outcomes in the
games we analyze. The second view, we suggest, offers a more sanguine
outlook on the future than does the first, but both views are plausible and,
therefore, render the uncertainty problem paradoxical.

We illustrate the parity and uncertainty problems with truels, or three-

person duels, in which each of three players can fire or not fire at another



player. These attrition games are, admittedly, based on rather artificial rules
of play that one would not expect ever to encounter.

Our purpose, however, is not to construct real-world models but to
exhibit the frailties of backward induction. Insofar as these frailties carry
over to more realistic settings, which we briefly discuss, the uncertainty
problem is genuinely paradoxical. Hence, one should be circumspect about
making backward induction a basis, let alone the defining characteristic, of

rational play in games.

2. The Parity Problem

Assume that the three players in a truel are A, B, and C, and think of
them as standing at the vertices of an equilateral triangle. Assume that they
fire, one at a time, in a fixed, repeating sequence, such as A, B, C| A, B, C |
. . .» where each A-B-C sequence—separated by a vertical line from the
preceding one—is a round. Each player, hoping to survive itself, has the
choice of shooting or not shooting one of its opponents, situated at one of the
two other vertices.

More formally, an outcome of a truel is a subset of {A, B,C}. Inthe
sequential truel we postulate, there is always at least one survivor (i.e., the
subset is nonempty), because only one player fires at a time and the last one
to do so will necessarily survive. The players, we assume, order all possible

outcomes lexicographically, according to the following three goals:*

1. Primary goal: each player prefers an outcome at which it survives

to one at which it does not survive.

4That is, a player prefers one outcome to another if, on the highest-ranked goal that
distinguishes the two outcomes, the first outcome gives a better result than the second
outcome.



2. Secondary goal: each player prefers an outcome at which fewer of
its opponents survive.

3. Tertiary goal: each player, when exactly one of its opponents
survives, prefers an outcome at which the surviving opponent is not

its antagonist (whether the player survives or not).

Every player, we assume, dislikes one opponent, called its antagonist, more
than the other. If the antagonist of A is B, we say Ant(A) = B.

As soon as Ant(A), Ant(B), and Ant(C) have been specified, the
preference rankings of all three players can be strictly ordered. For example,

if Ant(A) = B, then A’s preference ranking in descending order is
{A}, {A,C}, (A, B}, {A,B,C}, G, {C}, {B}, {B, C},

where @ is the empty set (no survivors). As noted earlier, & cannot occur in
a sequential truel, but it can occur in a truel in which all players fire
simultaneously (Kilgour, 1972; Brams, 1994, pp. 8-10; Brams and Kilgour,
1996).

Suppose that each player is a perfect shot and has one bullet. Assume
that the firing order is A, B, C1 A, B, C|. . ., and each player can either fire
at another player or not fire. Then truels of finite length can be analyzed

using the game trees shown in Figure 1.

Figure 1 about here

The game tree at the top of Figure 1 describes the set of choices
available to each player when its turn comes up in the first round (i.e., in a
game of length 1). Thus, A begins by choosing among three options: shoot

B (—B), shoot C (—Q), or not fire (~). Whenever one player shoots
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Figure 1: A Sequential Truel with Different Numbers of Rounds

{B,C} {A,C} {A B,C}

Length 1
Outcome = {A, B}

Length 2
Outcome = {C}

Length 3
Outcome = {A}

Length 4
Outcome = {C}

Length 4 Start >



another, the outcome of the truel is determined, based on our earlier ranking
assumptions, and is shown in Figure 1. For instance, if A shoots B, C will
then shoot A, making {C} the outcome, as shown in Figure 1. Likewise, if
A shoots C, the outcome will be {B}.

The game goes to a second stage in round 1 if A does not fire, giving B
the three options shown. Thus, if B shoots C, then the survivors will be A
and B, making the outcome {A, B}, as shown in Figure 1.

Finally, the game goes to a third stage if B does not fire after A does
not, leaving C the final choice. C can either shoot one of its two opponents,
leaving two survivors, or not fire, which would enable all three players to
survive. All the choices of A, B, and C are shown in Figure 1, beginning at
“length 1 start” and proceeding upward.

Suppose that the antagonists of the three players are the following:
Ant(A) = B, Ant(B) = C, and Ant(C) = A, or, for short, Ant(A, B, C) =
(B, C, A). We next apply backward induction to games of length 1 (one
round), and then games of greater length (more than one round), as shown in

Figure 1.

One Round. To determine rational choices in a length 1 game, we
work backward from C’s final choices in the third stage. If C should survive
until this stage, it would prefer to shoot its antagonist, A, yielding the
outcome {B, C}, rather than choose one of its other two options, so we
thicken the branch —A to indicate that this branch would be chosen.

Working backward to the second stage, B can anticipate that its choice
of branch ~ would result in {B, C}, which it compares with the outcomes of

choosing branch —»C (i.e., {A, B}) and of choosing branch —»A (i.e., {C},



because C would then shoot B). Preferring the outcome {A, B} to either
{B, C} or {C}, it would choose —C, given that B survives the first stage.

Working backward to the first stage, A can anticipate that its choice of
branch ~ would result in outcome {A, B}, which it compares with the other
two outcomes it can effect, {C} and {B}. Preferring { A, B} to these, it
would choose branch ~, and B would in turn choose branch —C, making the
backward-induction outcome of the game {A, B}.

Having worked backward from the top of the game tree (third decision
point) to the bottom (first decision point) to determine the players’ rational
choices (darkened branches) at each stage, we reverse this process to
determine what choices the players would actually make. Starting from the
bottom of the tree and following the darkened branches upward, we see that
play will never reach the third decision point, when it is C’s turn to choose,
because after A chooses ~, B will choose —C, eliminating C from play and
yielding the outcome {A, B} in the one-round game.

We next describe the general solution to the truel for games of any
finite length greater than 1. It turns out that there is always only one

survivor, not the two (A and B) we just found in a length 1 game.

More than one round. What we have just done for a length 1 game
we can do for games of length 2, 3, 4, . . ., which add successive rounds of
play to the game of length 1. (A round here comprises three decisions—one
for each player.) Their analysis simply takes the rational outcome of a
length k game and substitutes it as the outcome of the first round of a length
k + 1 game when nobody shoots anybody in the first round (these

substitutions in Figure 1 are indicated by the dashed lines).



For example, we know from the foregoing analysis of a length 1 game
that if nobody shoots in the first round of the length 2 game, the rational
outcome will be {A, B} in the second round, because the remaining game is
alength 1 game. Consequently, in the first round of the length 2 game, the
outcome of branch ~ for C in the third stage is {A, B} (the outcome of the
length 1 game) rather than { A, B, C} (the outcome, if nobody shoots, of the
length 1 game). Backward induction in the length 2 game shows that the
rational outcome is {C}, as indicated in Figure 1.

Substituting {C} as the outcome of branch ~ in the third stage of the
length 3 game yields { A} as the outcome of this game. Substituting {A} as
the outcome of branch ~ in the third stage of the length 4 game yields {C} as
the outcome of this game. In summary, games of length I, 2, 3, and 4 have
as outcomes {A, B}, {C}, {A]}, {C}, respectively; the {C} - {A} alternation
continues to repeat for longer-length games, with {C} as the outcome of all
even-length games and {A} as the outcome of all odd-length games longer
than one round.

Not only does this truel have three different outcomes ({A, B}, {C},
and {A}), depending on how many rounds are played, but it also does not
“settle down,” as play continues indefinitely, because of the even-odd
alternation.5 Technically, this truel has no outcome, in the limit, as the
number of rounds approaches infinity. |

By contrast, for all other possible antagonisms of the three players
(each of the three players can have one of two antagonists, so there are 23 =

8 possible antagonisms, as shown in Table 1), the outcome of the truel does

5The sensitivity of outcomes to parity considerations was first noted, as far as we know,
by Kilgour (1984), who showed this sensitivity to occur in two-person games.



Table 1 about here

not depend on its length, once past the first round. Observe that for the six
antagonisms in which there is one player who is nobody’s antagonist, that
person is the invariably the only long-run survivor, underscoring the value of
not having enemies.6

The sequential truel for Ant(A, B, C) = (B, C, A) has another curious
feature besides its even-odd alternation: whatever its length, all shooting
occurs in either the first round, or in the first two rounds. If the truel is of
length 1, A does not fire and then B shoots C. If the truel is of length 2 (or
any other even length), A shoots B and then C shoots A in the first round. If
the truel is of length 3 (or any other odd length except length 1), A does not
fire and B shoots C in the first round; then A shoots B in the second round.

While shooting never happens in rounds 3, 4, . . ., it is the anticipation
of these subsequent rounds—in particular, whether the total number of
rounds to be played is even or odd—that completely determines whether the
outcome is {C} (even) or {A} (odd). Since every finite truel in which there
is more than one round of play must end in an even or an odd number of
rounds, the rational outcome of every multiple-round truel must be either
{C} or {A}.

5George Bush and Bill Clinton were each other’s antagonists in the 1992 U.S.
presidential election, putting Ross Perot in the role of the nonantagonist. This is perhaps
a partial explanation—another being Perot’s massive campaign spending—of why Perot
received a larger percentage of the popular vote (19%) than any third-party candidate
since Theodore Roosevelt, who received 27% in 1912 (Roosevelt had previously been
president).



9a

{v} {0} {0} {v} {q} {0} {q} {v} § = Yiuay
{v} {a} {0} {v} {q} {0} {a} {0} b = Psua
{v} {a} {0} {v} {a} {0} {a} {v} € = P3ud]
{v} {a} {0} {v} {a} {0} {a} {0} 7 = Yiua]
{avi | {a'v} | {av} | {a'V} {a} {0} {a°v | {a°v} I = pduar]
@DV | VO [@VD[E@OIOD]|[VVI[WVYVD][@VI]VOD =0 ‘g Vmy

spEnIY, fenuanbag ur swsuosejuy pue YSud uo sawodn() Jo Ruapuwadaq 1 TIAVL



3. The Uncertainty Problem

We begin with an informal argument of why no player would want to
shoot another in a sequential truel of uncertain length. At the start of play,
and looking ahead to future rounds, each player knows that if it shoots either
of its opponents, the other opponent will shoot it at the first opportunity—
either in the same round or the next round (assuming there is one)}—so
shooting in the first round will not satisfy its primary goal. Because this
logic carries through to all subsequent rounds, nobody will shoot an
opponent. Consequently, the players will all survive the truel.

We now proceed to describe a procedure for solving sequential truels
of finite but uncertain length in order to ascertain when the preceding
informal argument holds rigorously. In our formal model, we postulate that
a truel will continue to the next round with a known probability, called a
continuation probability.” Also, we assume that each player has von
Neumann-Morgenstern utilities for the outcomes, consistent with its goals
(as given in section 2), and that these utilities are common knowledge.
Thus, the players can make expected-utility calculations and choose
strategies that maximize their expected utilities.®

The game tree shown in Figure 2a duplicates the length 1 tree in Figure

Such probabilities are used in recent Prisoners’ Dilemma repeated-game models (Jones,
1995a, 1995b), but in these models the continuation is to a new stage game rather than a
new round of play.

8However, if there is genuine uncertainty—in the sense of Knight (Dow and Werlang,
1994)—about which round a game will end on, no expected-utility calculations, based on
a risk model, are possible because the probabilities are not known.

10
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Figure 2 about here

1. Taking x; to be the outcome of this one-round game, we can substitute
x = xj into the game shown in Figure 2b to find the outcome, x2 = fx1), of
the two-round game. In general, the outcome of the n-round game is x,,
defined recursively by x, = flx,.1). The tree in Figure 26 presumes that the
game will continue at least one more round.

Assume the antagonisms are Ant(A, B, C) = (C, A, B), which yields
x1={A,B}andx; =x3=...= {B} (see Table 1).? Unlike the antagonisms
we assumed in section 2, there is no even-odd alternation and hence no
parity problem.

To model a sequential truel of indefinite length, suppose that, at the
end of round i, a random event occurs that determines whether the truel
continues at least one more round (with probability p;), or whether it ends
immediately (with probability 1 - p;). Thus, the probability that a truel ends
after exactly k rounds is p1p2 - - - pr1(1 - pr). The truel is bounded iff p;=0
for some i.

It is possible for a truel to have both a positive probability of
terminating and a positive probability of going on forever. For instance, take
pi=2@ In this case, the probability that the truel does not terminate in

any of the first k rounds is

2@ | @h _g@le 2k 5e1-2%

which is a decreasing function of k that approaches 2! = 1/2 as k—> oo,

Thus, there is a positive probability that this truel ends after each round, but,

%In terms of our notation given in the previous paragraph, {{A, B}) = A{B}) = {B}.
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Figure 2: Sequential Truels that Continue

{B,.C} {AC} {AB,C}

a. Final Round
of Truel

b. One Round of Truel
that Continues

{B} {B,C} {A} {A,C} x {A B,C}

c. One Round of Truel that
~B Continues with Probability p
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for any finite k, the probability that it ends at or before the end of round k is
strictly less than 1/2. |

To analyze a sequential truel of indefinite length, we use the game tree
in Figure 2¢, which provides a snapshot of the game in one round, before
which nobody has fired. In this tree, x is the outcome at the upper right that
occurs if A, B, and C do not fire and, with continuation probability p, the

game continues to the next round.

C’s Decision. For our postulated truel in which Ant(A, B, C) =
(C, A, B), C’s preference order is

{C}, (A, C}, {B,C}, {A,B,C}, O, {A}, {B}, {A, B}.

Suppose that, in a round with continuation probability p, C fires at A. Then

the outcome is a lottery, which we write as

p{B} +(-p){B, C},

because C will survive only if the game ends immediately with probability

1 - p. On the other hand, if C fires at B, then the outcome is

p{A}+(1-p){A,C}.

Because C prefers {A} to {B} and {A, C} to {B, C}, C prefers the latter
lottery.

Consider a truel that cannot exceed two rounds in length (i.e., one in
which p; = 0). Then if round 2 is played, it matches the game in Figure 2a,
and its outcome is {A, B}. Setx = {A, B} in the game in Figure 2¢, and

note that if C chooses branch ~, the result is a lottery,

p{A’ B} + (1 - p){A’ B, C}a
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where p = p1. Because C prefers {A} to {A, B} and {A, C) to {A, B, C},C

will fire at B and receive the lottery
p{A}+(1-p){A, CL
With this information, we next consider B’s prior decision.
B’s Decision. B’s preference order is
{B}, {B,C), {A,B}, {A,B,C}, 9, {C}, {A}, {A, C}.
If B chooses branch ~, the lottery
p{A} +(1-p){A,C}

results. If B fires at A, the result is {C} for certain. Because B prefers {C})
both to {A} and to {A, C}, B will fire at A rather than choose ~.
Finally, if B fires at C, the lottery

p{A} +(1-p){A, B}

results. Because B prefers this lottery to
p{A} +(1-p){A,C},

B will fire at C rather than choose ~.

In summary, B’s best choice may be either to fire at A, yielding {C},
or to fire at C, yielding the lottery

p{A} + (1 -p){A, B},

because {A, B} is better than {C}, but {C} is better than {A}. Clearly, {C}

is preferable when p is large, and the lottery is preferable when p is small.



Denoting player j’s utility for outcome E by u;(E)}—so that, for example, B’s
utility for {A, B} is ug(A, B)—it is easy to verify that the threshold
probability g at which B would be indifferent between {C}, and the lottery
comprising {A} and {A, B}, is

= 4s(A, B) - up(C)
up(A, B) - ug(A)

A’s Decision. To complete the analysis, notice that A’s preference

order is
{A}L {A, B}, {A,C}, {A, B, CL, 4, {B}, {C}, {B,C}.

The possible outcomes are {C} if A fires at B and {B} if A firesat C. If A

chooses ~, the outcome will be the lottery,

p{A} +( -p){A, B},

if p is small and {C} if p is large, based on the preceding analysis of B’s
decision. Itis not difficult to verify that if p exceeds g, A’s best choice is to
fire at C, yielding {B}, whereas if p falls below g, A will not fire, resulting

in the aforementioned lottery.

General Case: Bounded Truel. Now consider a truel that is certain
to end in some finite number of rounds, k, because p; = 0. What we have
just analyzed is the players’ behavior in the preceding round, k - 1, with the
possibility of continuation to round k, assuming that no shots were fired
prior to round k - 1. To analyze what will happen in round k - 2, consider the

two possible results, x = {B} and

x=pea{A} + (- pr){A, B},

14



15

that can occur if nobody has fired until round & - 1 in Figure 2c.

It is now possible to proceed by backward induction. Because C

prefers
pr2{A} + (- pe2){A, C}
to either {B} or

pei{A} + A -p){A, B},

it follows that C will always fire at B.1© Now all the previous analysis (i.e.,
beginning with C’s decision and going back to B’s and A’s decisions)
applies, and the game repeats all the way back to round 1.

In summary, if the truel is bounded, then the outcome is determined by
the value of p;. If p; exceeds g, the outcome is {B}; if p; falls below g, the

outcome is
pi{A} + - p){A, B}.

Thus, if the continuation probability of going to a second round in a
bounded truel is “high,” A will shoot C, and B in turn will shoot A, in round
1, yielding {B} as the outcome. If the continuation probability is “low,” A
will not fire and B will shoot C (who is not B’s antagonist; if B shot its
antagonist, A, C in turn would shoot B), giving {A, B} as the outcome. But
in the likely event that the game continues to round 2, A would shoot B,

making {A} the outcome.

10For the latter preference to be strict, the assumption py.; < 1 is required. But this is
innocuous, because pg.; must fall below the previous threshold for the lottery,
Pii{A} + (1 - pr.{A, B}, to be available.



General Case: Unbounded Truel. Now consider a truel of
unbounded length—that is, for which p; > 0 for all i. Each player’s strategy
is now an infinite sequence of actions that, because of the assumption that
players are perfect shots, may be a function of the history of the game—in
particular, of the opponent’s previous choices (e.g., a player cannot fire if he
or she was previously eliminated).

Suppose that, in every round after round & - 2, the players plan to act
just as they would have if the truel were of bounded length. Then if no

player fired in round & - 2 (or earlier), the outcome will be either
x={B}orx=pr1{A} + (1 - pr.){A, B},

as we showed earlier in the case of the bounded truel. In fact, all choices in
round k - 2 follow from backward induction in Figure 2c, just as in the

bounded case. To wit,

* A fires at C if py.5 > g and does not fire if pgy < g;
» if A does not fire, B fires at C;
* if both A and B do not fire, C fires at B.

If no player fired before round & - 2, the outcome, therefore, will be either
{B} (if A fires at C) or pr2{A} + (1 - pr2){A, B} (if A does not fire),
depending on whether pi.; does or does not exceed g.

This argument applies to any round; as in the bounded truel, we can
carry backward induction to round 1. It follows that, in the unbounded truel,
there always exists what we call a bounded equilibrium, in which the players
act exactly as they would in the bounded truel. At this equilibrium, the
outcome is either {B} or p1{A} + (1 - p1){A, B}, according to whether the

round 1 continuation probability, p;, does or does not exceed gq.

16
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However, an entirely different equilibrium can emerge in the
unbounded truel, coexisting with the bounded equilibrium. A cooperative
equilibrium occurs when no player ever fires in any round i, yielding
{A, B, C} as the outcome. C prefers this outcome to firing at B, and

receiving the lottery
pi{A} +(1-p){AC}
if, in every round i,
uc(A, B, C) 2 piuc(A) + (1 - ppuc(A, C),

which is true if

pi2 up(A, B) - up(A, B, C) =7
up(A, C) - up(A)

By a similar analysis, if B anticipates that not firing will result in (A, B, C},

then B will not fire in round i provided that
ug(A, B, C) 2 pup(A) + (1 - pJus(A, B),

which is true if

un(A,B) - us(A,B,C) _
up(A, B) - ug(A) '

pi2

For A, there is no similar condition: A can achieve {C} by firing at B
and can achieve {B} by firing at C. Because A prefers {A, B, C} to either of
these outcomes, A will unconditionally accept the cooperative equilibrium

and not fire.
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In summary, the cooperative equilibrium can occur whenever every
continuation probability p; exceeds both thresholds, rg and r¢, making it

rational for the players always to continue to the next round.!! In symbols,

pi2max{rg, rcl=r.

Numerical Example. To get some feel for the threshold g in the
bounded equilibrium, and the threshold r in the cooperative equilibrium
when player is unbounded, suppose that B and C both attach utilities of 7, 6,
.. .» 1, 0 to the eight possible outcomes, giving their most preferred
outcomes utilities of 7 and their least preferred outcomes utilities of 0. At
the bounded equilibrium, g = 3/4, so the probability that play goes into the

second round must be relatively high (p; > 3/4) to induce

* A to shoot C, and B in turn to shoot A, making {B} the outcome.

By comparison, if p; < 3/4,

* A will refrain from firing, B will shoot C, and there will be a positive
probability (p;) that {A, B} will be the outcome (if there is no second
round) and a complementary positive probability (1 - py) that {A} will
be the outcome (if there is a second round, it will begin with A’s

shooting B).

The cooperative equilibrium threshold is r = 1/2. Hence, if the
continuation probability, p;, on every round is at least 1/2, the cooperative

equilibrium, in which nobody ever shoots, can be sustained. Indeed, A will

1Note that because we do not know the last round when the truel is unbounded, this
calculation of the expected utility of continuing replaces that of using backward induction
when the last round is known.
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prefer it if p; > 3/4, because otherwise A will shoot C and B will shoot A in
the first round, producing {B}, which is less preferred by A than {A, B, C}.
But the reasonableness of {A, B, C} as the outcome is very sensitive to
one’s thinking about the continuation of the game. For example, if p;= .51
for every i, the truel will almost certainly (i.e., with probability .9999986)
not continue past the twentieth round. Now if this near certainty were seen
to be a certainty, we would have only the bounded equilibrium, yielding {A}
as the outcome with probability .51 and { A, B} as the outcome with
probability .49. This equilibrium is a drastically different from the
cooperative equilibrium { A, B, C}; it is caused by only a .0000014 change
(slightly more than one in a million) in the probability that the game ends by

round 20.12

4. Is There a Paradox?
We have shown that backward induction may yield radically different
outcomes when the number of rounds that a sequential truel is played
switches from being even to being odd, or when the endpoint changes from

being certain to being uncertain. But while the parity and the uncertainty

12Recall that a truel is bounded iff p; = 0 for some round i; because p; = . 51 for all i, this
truel is, technically, unbounded. But, realistically speaking, is it? In the unlikely event
that it continues beyond the twentieth round, the prospective situation is exactly at it was
before: the expected length of the truel at the beginning of any round is 2.04, and the
probability that it continues 20 more rounds is again 0.0000014. For all practical
purposes, the truel will have ended by round 20 (or round 40, if it should reach round 20,
etc.), making it appear bounded, which would seem to reinforce the bounded
equilibrium. On the other hand, because in our example it is not rational for A to fire
initially in either the bounded or the cooperative equilibrium, it is B who “selects” the
equilibrium by firing or not firing. Since p; = .51 > r = .50, the condition for the
cooperative equilibrium is met, so neither B nor C should fire if the truel is viewed as
unbounded. Hence, we have something of a paradox in this numerical example,
depending on whether the players think of the truel as bounded or not. Beyond this
example, we shall later explore two conflicting views of the future that give rise to the
different equilibria.



20

problems afflict the robustness of backward induction, is there a more
fundamental problem—something paradoxical-—with backward induction?

We have mixed views on this question. With respect to the parity
problem, we consider such fluctuating behavior not genuinely paradoxical in
the sense of there being a clash of different logical principles. Neither is it
paradoxical that the choices of the players reverberate to the beginning of the
game, when all shots are fired. On the other hand, we would be hard pressed
to say that there is a significant difference, in any conceivable game that we
think real players might play (a truel or anything else), between its running
63 or 64 rounds. Thus, this sensitivity of backward induction to the number
of rounds is highly unlikely to model what real people would think and do.

The uncertainty problem seems to us of a different nature. First, recall
that the truel we analyzed in section 3, when the number of rounds was
certain, gave {A, B} as an outcome in one round—the same as in our first
truel analyzed in section 2—but a steady stream of {B}’s in all finite games
that run more than one round. Not only is there is no parity problem, but
there seems to us nothing inconsistent with what happens when the endpoint
is made uncertain, as long as the number of rounds has an upper bound:
{A, B} is the outcome when the truel is “likely” to terminate after one round
(i.e., when the continuation probébi]ity in the first round is less than some
threshold probability, g)—except in the “unlikely” case that it does not
terminate (in which case { A} becomes the outcome)—whereas {B} is the
outcome when the truel is “likely” to continue.

The former mixed result is little more than a probabilistic refinement of
the certain case that always yielded {A, B} in a one-round truel. Now,
however, it is qualified by the uncertainty surrounding whether the truel

continues past the first round (in which case A shoots B, making {A} the
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outcome). By contrast, the constant {B} result in the uncertain case simply
duplicates the { B} result in the certain case.

The story is strikingly different when the number of rounds is finite but
unbounded. If the continuation probability is sufficiently high on each round
i (i.e., greater than some threshold probability, r, which in our numerical
example equals .50), then nobody will ever fire and the outcome will be
{A, B, C}. This is true despite the fact that the truel must end in a finite
number of rounds, which in the certain case means that the outcome is either
{A, B} or {B}.

In the boundedly uncertain case, we pick up {A} as an additional
possible outcome. But none of these three possible outcomes ({A}, {B}, or
{A, B}) occurs in the unboundedly uncertain case when the continuation
probability is sufficiently high for the cooperative equilibrium and its
associated outcome, {A, B, C}. Thus, a qualitatively different result can
occur when the truel might continue indefinitely (but is still finite).13

In the finite case, of course, the truel must end; moreover, it will do so
with a higher and higher probability as the number of rounds increases. But
because this looming endpoint, and its associated boundedness equilibrium,
are inconsistent with unbounded play and the cooperative equilibrium, we

have an apparent paradox.

5. A Conlflict of Two Futures
In section 3 we highlighted this difference with an example in which, if
the probability of termination increased minutely from .9999986 to 1 after

13We do not consider here the possibility that truels might be infinite, or sometimes finite
and sometimes infinite, as illustrated in section 3. Our main purpose is to draw
comparisons among finite truels in three cases—one in which the number of rounds is
certain, and two in which this number is uncertain (with and without an upper bound).



twenty rounds of play, {A, B, C} would be undermined, because now

uncertain play would be bounded. Clearly, there is an obvious lack of

robustness between the boundedly and the unboundedly uncertain cases.
Beyond this robustness problem, there may be a conflict between two

possible futures that are, seemingly, logically inconsistent:

1. Every process must end by some definite point (e.g., every person’s
life now seems to have an upper bound of about 120 years);

2. The precise future is unpredictable, so the exact endpoint of a
process cannot be predicted (it may be highly unlikely that a person

will ever live to be 120, but it is not impossible).

Future 1 suggests that it is proper to assume that all games are bounded,
whereas future 2 suggests that unboundedness is a more appropriate
assumption. |

In fact, future 2 has been argued to be essential in sustaining
cooperation in games like finitely repeated Prisoners’ Dilemma. If the
endpoint is known for certain, then backward induction can be applied,
resulting in noncooperative behavior. But both intuition and experimental
results in repeated Prisoners’ Dilemma—as well as games more akin to the
truel (e.g., the Centipede Game, which can go several rounds)—demonstrate
that even knowing their maximum length, cooperation occurs frequently in
these games (Binmore, 1990, discusses reasons for this). Furthermore,
cooperation may be rational even in one-shot Prisoners’ Dilemma and other

games, such as Chicken, if the rules of play allow for “farsighted thinking.”!4

14See Brams (1994) and references cited therein. More recently, Ecchia and Mariotti
(1995) and Willson (1996) also allow for farsighted thinking under different rules.
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In our truel, the optimistic {A, B, C} outcome, in which nobody fires,
is consistent with future 2, whereas the pessimistic {A}, {B}, or {A, B}
outcomes are consistent with either future 1 or future 2. It seems that some
real-world players have adhered more to the thinking reflected by the
cooperative equilibrium of future 2, such as the United States, Russia, and
China: although each possesses nuclear weapons, all have refrained from
using them against each other in anything resembling a truel.

The same self-restraint manifested itself with the nonuse of poison gas
in World War I, partly in response to revulsion with its use in World War I
and partly in fear of reprisal. By contrast, Bosnian Serbs, Bosnian Muslims,
and Croats engaged in a very destructive truel in the former Yugoslavia in
the early and mid-1990s, mirroring the boundedness thinking of future 1 and
the bounded equilibrium of future 2.

Truels in recent films give diametrically opposed results. The
climactic scenes in Quentin Tarantino’s two films, Reservoir Dogs (1992)
and Pulp Fiction (1995), are truels, but the outcomes are very different in
each. Arguably, the truelists in Reservoir Dogs, in which several people die,
were more bounded in their thinking than those in Pulp Fiction, in which
nobody is killed in the truel.

Everybody would be better off, we believe, if players did not think they
were so clever as to be able to reason backward, from some endpoint, in
plotting each other’s destruction. Indeed, our results suggest that players
would be less aggressive if the future were seen as somewhat murky, which
would render predictions about how many rounds a game will go, or even an
upper bound on this number, hazardous.

The absence of a fixed order of play in most real-world three-person

conflicts—as opposed to the sequentiality we postulated in our examples—



probably tends to discourage shooting. After all, if any of A, B, or C
contemplates shooting first, even in a one-round nonsequential truel, then it

would ensure its own death when the remaining survivor takes aim.

6. Conclusions

The main argument of this paper is that backward induction may be
extremely sensitive to seemingly innocuous changes in the rules, such as the
number of rounds a game is played or the nature of the uncertainty about the
endpoint of a game. In the case of the latter, two possible views of the future
seem to underlie bounded and unbounded play.

The unbounded view is probably more hopeful—if not always more
realistic—in truel-like games. It is important to recognize, however, that the
bounded view is certainly justified in certain situations, like elections, in
which campaigns end on election day. Of late, elections have suffered from
a good deal of negative campaigning, perhaps because, like truels, there is a
cascade effect: one player’s “shot” sets off others.

Yet many of the most important decisions we make in life, especially
of an existential nature, are not substantially constrained by law, custom, or
time.!15 To the degree that the future seems to stretch out indefinitely, people
probably act more responsibly toward each other, knowing that tomorrow
they may pay the price for their untoward behavior today.1¢ Not only do

individuals try to develop reputations that will sustain them in the long run,

13In the absence of law, i particular, people often are able to work out their differences,
suggesting that amicable settlements may be facilitated when deadlines are not fixed and
procedures are somewhat inchoate (Ellickson, 1991).

160f course, if one believes that one’s ultimate reward comes in some afterlife, then a
violent act like a suicide bombing, which propels one immediately into that afterlife, can
be justified. Fortunately, most people do not prize martyrdom of this kind.
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but some, by acting morally, seek an inner peace, which Frank (1988)
persuasively argues can be eminently rational.

At a theoretical level, characterizing multiple-round games in which
unbounded play can lead to a cooperative equilibrium but bounded play does
not will probably not be easy. Insofar as unbounded play is effectively
bounded (as in our numerical example), this equilibrium may not be unique
or particularly sturdy. This lack of robustness is especially likely in games
in which the probability of continuation past a few rounds becomes
vanishingly small, rendering backward-induction calculations more sensible.

Unfortunately, in such games players may well be able to rationalize
shooting from the start. An important intellectual task, we believe, is to try
to devise institutions that render such behavior unprofitable. But how one
makes the future seem to run on smoothly, and instill confidence that the
social fabric will not suddenly unravel, is not so clear.

Perhaps the best antidote to people’s fears of the future is a past record
of institutions’ responding well to potentially disruptive events. Democratic
institutions usually get high marks in this regard, primarily because they
provide an escape valve that tends to prevent explosions. The mechanism by

which they do this, however, we leave for future work.
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