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ECONCOMIC AND FINANCIAL DATA AS NON-LINEAR PROCESSES.

INTRODUCTION

The last decade has witnessed a resurgence of interest in nonlinearity as
applied to a wide variety of disciplines including economics. This renewed
interest has been occasioned by the development of new research tools and the
growing disenchantment, in economics at least, with the forecasts that our
linear models have produced. We have now come to the realization that models
of money demand and supply, of the stock market, of national aggregates, such
as, G.N.P., investment in plant and equipment, consumption, and savings,
provide reasonable forecasts only in those cases where the models are not
really needed; that is, where the next period is simply last period plus an
approximately constant growth factor, or plus a random change with zero mean.

Efforts to forecast the effects of significant changes in the
institutions of an economy, such as the creation of a futures market, the
development of new financial instruments, or a change in tax policy; or to
forecast the response to a substantial shift in industrial organization, such
as the effective creation of O.P.E.C., all have failed to meet reasonable
requirements of forecasting usefulness. Notwithstanding our elaborate
econometric sophistication and clever modelling, our predictions, even when
right in qualitative terms, are seldom more informative than intuition guided

by "first principles”.



What is even more embarrassing is the discovery that many economic
variables are easily transformed into "uncorrelated noise" by such simple
procedures as taking log first differences. Alternatively and nearly as
damaging, is the fact that log first differences may produce a simple low
order AR, or MA, model, but seemingly with no further structure, except for
some evidence of time varying variances.

Apparently this result indicates that the only information in economic
time series is contained in the first two moments and those have been milked
to little effect. A major question is whether or not analysis directed to non-
linear relationships can detect anything that is not revealed by the current
procedures.

The situation on the face of it is depressing. Economic forces do not
seem to be much in evidence in economic or financial time series. Market
fundamentals do not seem to matter as the Black-Scholes model would indicate.
Once common drift has been eliminated from economic or financial time series,
the only possibility seemingly left for economic interaction is in the time
variation of the variances of the series. Noise dominates.

As I will discuss in the body of the paper, economic data are different
from the data that are analyzed in biology, or chemistry, or physics, or pure
statistical time series generated by simulation with linear models. We may not
yet know what they are, but we can say what they are not. Economic data are
not simple ARIMA processes, they are not describable by simple linear
structural models, they are not simple white noise, they are not random walks,
and finally there is no evidence that there are any low dimensional

attractors.



The time has come to re-evaluate the analysis of economic data and more
importantly to reconsider our basic modelling procedures. A key question is
what type of modelling is most relevant and productive for economic data. For
some of us the search is on to discover how economic data might be modelled in
generic terms,

The next section of this paper introduces some concepts of nonlinearity
and tries to indicate what the potential advantages of a non-linear approach
might be. In this section it is claimed that, while there may be no evidence
of chaos in real economic data, the ideas and concepts in the "new" literature
on qualitative dynamics is nonetheless very useful in providing insights. As a
part of this discussion, system modelling is contrasted to the analysis of
"igolated" time series in the following section.

The next short section identifies the economic and financial data series
that have been examined as examples of the general conclusions to be drawn
from this paper.

The following section discusses some of the statistical tools that can
be used to address some issues of nonlinearity and their possible occurrence
in economic and financial data, Some empirical examples are worked up as
illustrative exercises.

The final section is important in that it contains the conclusions and
speculations about the empirical results. Particular attention is paid to the
problem of forecasting and some ideas are presented about what can be expected
for forecast improvement from the use of non-linear analysis. The key
implication in this context is that the main benefits from a non-linear
analysis is in the timing of reactions teo an intervention as well as the

ability to detect subtle possibilities for instabilities.



I

WHY NON-LINEAR DYNAMIC ANALYSIS?

In fact, non-linear dynamic models have a long and venerable history in
Economic analysis, both theoretical and empirical. The empirical literature
begins with the early work on cycles with which study the name of Wesley
Mitchell(1913) is justifiably linked, even if not the first. The theoretical
literature begins with the early articles of Frisch(1933), Samuelson(1939),
Kalecki(1943), Hicks(1950), Goodwin(1951), Phillips(1954), and finally
Goodwin(1972) to mention just a few of the classic works in the field of those
that were interested in more than equilibrium or balanced growth. An amusing,
iconoclastic, yet insightful, review of this literature is contained in
Blatt(1983). An article of interest in this connection is Baumol and
Benhabib(1988).

But the analysis of non-linear dynamic models cannot be said to have
dominated center stage; they have remained exceptions to the main stream of
the literature, albeit often brilliant exceptions. This is surprising as the
effectiveness of policy in a possibly non-linear world depends so heavily on
getting the timing of policy decisions correct, not to mentiom the important
issue of the stability of even profitable speculation, see for example,
Baumol(1957,1961).

Perhaps the best way to illustrate the role of non-linear dynamics is to
consider some examples. I will develop a simple model of market reaction to
excess demand that is made more realistic step by step. None of the models is

meant to be a serious candidate for the dynamical description of actual



markets, but the discussion should be enlightening as to the potential role to
be played by non-linear systems.

The objective at this time is not to present models of immediate
applicability, but to stress the inherent properties of a dynamical system.
Some form of oscillatory behavior is at the root of all but the most trivial
of dynamical systems. Thus, the equations that we will discuss below should bhe
regarded as fundamental prototypes that have provided, not only useful
insights, but practical predictions in an incredible array of disciplines. As
simple prototypes, the equations te follow should be taken seriously; they are
not just yet another ecomomist’s idea of a micro-relation.

We do know that excess demand creates economic forces that, usually, tend
to offset the excess demand. If that is so then the initialization of that
reaction must be through the acceleration of the change in excess demand. This
is the basic key to understanding the main idea underlying the discussion to
follow. The idea goes back at least to Samuelson, Goodwin, Kalecki, and

Phillips.

Some Simple Alternative Dynamical Models of Market Adjustment

The first simple model will do some violence to the known strong
interdependencies between markets and will not stress the role played by
prices in equilibrating market forces. However, its very simplicity will
enhance the ideas to be illustrated.

The symbeol "X" designates for some market the amount of excess demand for

a given commodity at a given point in time t. The commodity could as easily be




shares of some stock as a specific real commodity such as wheat or cookies. X
is assumed to be a continuously differential function of time t.
X designates the time derivative of X.

The total stock, or size of the market, i1s designated by §5; S is assumed
fixed for the purposes of this analysis as it determines the scale within
which the effect of excess demand, denoted by X, operates.

% is the acceleration in the change in excess demand; X is a
continuously differential function of time t. Economists are not accustomed to
think in terms of acceleration with respect to changes in excess demand, but
the idea is intuitively plausible; rather the idea is fundamental to the
notion of dynamics as both Samuelson and Goodwin realized so many years ago.

If economic forces are to react to an exogenous shock to restore
equilibrium, then to go from a zero velocity of excess demand to some non-zero
velocity, the acceleration must have been non-negative to achieve this result.
What changes "first" is the acceleration in the excess demand and if the
system has a first necessary condition for stability, then the direction of
the accelerated reaction is to oppose the displacement.

Price is an indicator function that translates demand and supply
relationships into an excess demand function. Price is implicit in the

formulation of this model, but we can conclude from this formulation that:

1.1y P = kX;

And therefore that:

I.2) P =k, + kKX,



where k and k; are arbitrary constants. A more realistic model would
recognize the lags that will exist between the occurrence of a non-negative
excess demand and a change in P and between the change in P and the
acceleration of the "restoring force".

If there has been a displacement in equilibrium by an amount X, the
restoring force is:

-oX,
where ¢ is the "coefficient of stiffness" in the restoring force; the
greater the value of o, the greater the economic force to restore the original

equilibrium. We can now write our "equations of motion" for our economic

market, namely;

1.3) X = -0(%X/8),
or,
s¥ +oX =0,

which can in turn be rewritten as:

1.4 ¥ + (sep)%x = 0.

The idea of equation (I.3) is that the restoring force accelerates the
total stock against the displacement; alternatively stated the equation shows
that the direction and magnitude of change is proportional to the relative

size of the excess demand, relative, that is, to the size of the total market.



Equation (1.4) anticipates results later in the paper and indicates that
/S can be re-expressed in terms of p, the frequency of oscillation of the
response; that is, n is:
I.5) n = 1/(2n)(a/S)"2.

The constant x in this simple case is 2x. Equation (I.5) shows that the
frequency of response decreases in §, but increases in ¢. This is as would be
expected. The larger S, the larger the inertia of the system to a given size
of displacement, X. The larger the value of ¢, the larger the restoring force,
and so the greater the impact on the acceleration of change. As X approaches
the value of zero, the acceleration slows as shown by equation (I.3).

It is easy to show that one expression for the general solution of the

differential equation (I.3) is:

I.6) X = aSin(wt + ¢); w = (kn);

where a is the amplitude of the oscillation, w is the natural frequency
of oscillation and ¢ is the phase; a and ¢ are determined by the initial
conditions.

That equation (I.6) is a solution to equation (I.3) is easy to

demonstrate by taking its derivative with respect to time twice:

I1.7) X = awcos(wt + ¢)

1.8) X= -awzsin(wt + ¢) = -0’X.



These last two equations are interesting notwithstanding the extreme
simplicity of our defining differential equation. We see immediately that the
first time derivative of excess demand, that is, the flow of excess demand,
leads the state of excess demand, X, and the acceleration, ¥, by n/2 radians
or 90°; lack of phase matching is not generally given much attention by
economists. While the amplitude of the excess demand oscillation is "a", that
of the velocity is "aw", where w is defined in terms of radians modulo 2«:
more precisely the velocity has an amplitude of "a(a/S)”z“ and the amplitude
of oscillation of the acceleration is "a(o/S)". Thus, for a given amount of
excess demand, the larger the size of the total market, the smaller the
amplitude of the velocity of change. This is not surprising.

The current model is too simple even for physical applications, much
less, economic ones. As our first step towards approaching reality, let us
modify equation (I.3) to allow for "friction" in, or damping of, the system;
that is, let us assume that the acceleration in response to the restoring

force is reduced in proportion to the velocity of change. We now have:
1.9) SX = -oX -BX;
where -gX represents the effect of "friction" in the system.
Before continuing, it is useful to note that an alternative expression
for the general solution teo equation (I.3) is:

1.10) aEXP{i(wt + ¢)), i=/-1,

where the constants have the same interpretation as bhefore,
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The general solution of equation (I.9) is of the type X = CEXP{at), where
C is a constant to be determined by initial conditions. If we substitute this

suggestion into equation (I.9) we obtain:

I.11) CEXP{at}(Sa® + fa + o) = 0,

and solving this equation yields the result that:

1.12) a = -8/(25) * (#%/48% - o782,

There are, as is well known, three types of results depending on the sign
of the term in curly brackets in equation (I.12). If the term in {} is
positive, that is, the damping effect outweighs the restoring effect, it can
be shown that the general solution is expressible in terms of hyperbolic sines
and cosines. The solution path of excess demand, X, is increasing at first
then decreases to produce a single humped curve as a function of time; there
are no oscillations.

The case where the term in {} is zero is not of great interest in this
case, being merely a boundary situation between the one just discussed and
that to follow.

The last situation is one in which there are complex conjugate roots for

the solution of a. The solution can be written as:

1.13) X = AEXP((-8/25)t)sin(w’'t + ¢),

where w' is given by:
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1.14) ' = (o/S - p2/48%)Y2,

Clearly, this solution path is a damped oscillatory one where the damping
effect depends on the damping coefficient and the size of the total market or
the total volume of the stock of the commodity being traded. The rate at which
the oscillations decay to zero is given by 8/28. It is also useful to note
that the natural frequency of oscillation of thi¢ damped system differs from
the undamped system. From equation (I.14), it is clear that the frequency of
the damped system is less by B%/48* and that the larger the market the lower
the frequency of oscillation. The undamped system’s frequency decreases
according to /S, but while the damped system’s frequency also decreases
according to /S, the difference between the two frequencies itself decreases
for larger S; that is, for very large markets, the difference in frequency of
oscillation between damped and undamped systems is small.

So far we have concentrated on linear versions of the market reaction to
a single impulse shock. We might consider the effect of a series of random
shocks on the solution path, but a more informative alternative to begin with
is to consider a sinusoidal path of shocks to the market system. We can define

the effect of the "forcing function" by:

1.15) SX + BX + oX = §Cos(yt),

where ¥ is the frequency of the "forcing equation" and § is an

appropriate constant. The idea is that excess demand in our market of interest

is stimulated by activities elsewhere, for example, excess demand in some
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other competitive or complementary market, or an oscillation in the exogenous
factors determining demand or supply that are not included in the formulation
of our basic differential equation (I.3).

There are two components to the solution, the first is the solution to
the homogeneous portion of equation (I.15), but that solution is the same as
the solution to equation (I.9). This part of the solution is the transient
part of the solution. Our more important concern is for the long term dynamics
and that solution is given by a soclution to the non-homogeneous equation.

The real part of the solution is:

I.16) X = (§/(¥2))sin(yt - ¢),
I1.17) X = (§/Z)cos(pt - ¢),
where:

Z = [8%+ (¥S - asp)?H*

The quantity of excess demand and its velocity differ in phase by #/2 as
before, but more importantly velocity and the forcing term also differ in

phase by ¢, where:

1.18) Tan(¢) = (¥5 - o/¥)/B.

The importance of this result is that if ¢ is zero then, but only then,
are the forcing term and the velocity in phase; only when ¥ satisfies the

equation:

¥S - o/p = 0.
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Otherwise, we see that for low frequencies X leads the forcing term and
for high frequencies X lags the forcing term. This seemingly innocuous
statement is potentially important for empirical research for it points up
clearly that the timing relationship between exogenous shocks and the response
in velocity may vary from leading to lagging and only in rare circumstances
will the two be in phase; parenthetically we might note that economists do not
often, if ever, consider the possibility that X will lead the forcing term.

Before leaving these simple linear models, we should consider one last
possibility, that of the damping factor being close to zero. In this case, if
the natural frequency of the harmonic oscillation, w, in equation (I.6) is
incommensurate with i, the frequency of the forcing term, that is, w/¥ is not
a rational, then the oscillations of the forced system, are said to be quasi-
periodic. A quasi-periodic oscillation is one that returns to any meighborhood
of a given point infinitely often, but never repeats its path exactly; at
least in one respect we have at last achieved a result that is a
characteristic of economic data.

The introduction of nonlinearity'into these models can be achieved in
either of two, but non-exclusive, ways. We can allow the "stiffness
coefficient" to be a non-linear function of X, the quantity of excess demand,
or we can recognize the importance of modifying the damping factor,

A very simple model to illustrate anharmonic oscillators is to return to
the undamped model with a forcing term. The main change in the model is that
now we allow the "stiffness coefficient” to be a function of X and not a
constant. Let us retain the symmetry of the reaction in terms of the sign of X

by setting:
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1.19) o(X) = -( 0, X + 0,X),

where the basic "equation of motion” is:

I.20) SX + o(X) = Scos(pt).

As in the previous equations, the first order response might naturally be
thought to be positive, i.e., ¢,>0. But now we have a choice for the sign of
g,y. If o, is positive, the non-linear term reinforces the linear part, or that
the reaction to a displacement is even greater than in the linear case. But if
o, is negative, then the restoring force is less.

The other way in which we can obtain a non-linear model is to modify the
damping term. Our basie linear differential equation that described damped
harmonic motion in equation (I.9) is only an approximation for small
amplitudes. The equation indicates that if g is negative, then the energy of
the system would increase indefinitely. This result is not at all plausible,
even if it might be for very small displacements. A simple and well known
procedure to overcome this problem is to make g, the friction coefficient, a
non-linear function of X, the displacement. Let us allow for the friction
coefficient to be negative for very small displacements, X, and to be positive
for large displacements; that is, the system generates energy for small values

of X and dissipates it for large values. Let S(X) be defined by:

1.21) B(X) = -Bo[1-(X/)%], B,<0;
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so that for small X g is negative and for large X g is positive; X, is a
parameter of the system that determines what constitutes large or small. If
this definition for 8 is substituted into equation (I.9), the resulting

expression is called the Van der Pol equation. Our full equation is:

1.22) 8% + B(X)X + oX = 0.

The economic interpretation is that for relatively small amounts of
excess demand the restoring force is offset by the velocity term, but that if
the excess demand gets to be too large, then the usual process applies.
Intuitive examples might be the demand for the equity stock of some firm, or
the demand for a "popular" restaurant, where "popular” is defined by positive
excess demand. In this formulation, the equation holds even when the excess
demand is negative, that is, there is excess supply in which case the
intuition may be less appealing. In both cases, small changes from equilibrium
have destabilizing components.

As is perhaps well known, the solution of this equation is a limit cycle;
small deviations from the unstable equilibrium, the center in fact, diverge
out to the limit cycle, but large displacements converge to the limit cycle.
By choosing the unit of time to be one period, i.e., 1/(0/8)”2, and by a
suitable choice of units for the amplitude, we can simplify equation (I.22)

to read:

1.22') % -(e - X¥HX +X =0,
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where € is 8,/w, w? = o/S. For small values of ¢, the limit cycle is
nearly sinusoidal and the oscillations are nearly symmetric, but as ¢ gets
bigger, the limit cycle ceases to be symmetric and the amplitude has a "saw
tooth" shape.

This is the first time that we have had a need for a "phase diagram".In
the previous examples the phase diagrams were trivial. A phase diagram is a
diagram of the phase space; in our last example this is shown by a plot of the
pairs (X,X) that satisfy the equations of motion defined by equation (I.22).
Phase space is the space of all possible states of the system. In our examples
above, the phase space would be the space of pairs (X, X) that were consistent
with the flow, or solution, to the differential equations defining the
dynamic system. When ¢ is small the phase diagram for equation (I1.22'} is
nearly a ecircle, but when ¢ is large then the phase diagram is approximately
the shape of a tilted rectangle.

As an aside this last class of models that we have been examining can be
used to illustrate the concepts of both supercritical and subecritical
bifurcations; that is, qualitative shifts in behavior as one of the parameters
passes a critical value; see for example, Berge, Pomeau, and Vidal (1984), or
Guckenheimer and Holmes(1983). In addition, this model can also illustrate the
idea of hysteresis, Berge, Pomeau, and Vidal(1984, pg.42) that will be
discussed later. Hysteresis is generated by non-uniqueness in the response
function so that as the unstable portion of the response function is reached
the response "jumps" across the unstable portion; the point at which this
occurs differs depending on the direction from which the unstable portion is

reached.
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Finally, we can combine our various experiments into one general, but
still very simple, statement. The fellowing equation is known as Duffing’'s

equation; by now its constituent parts are familiar;

1.23) X + 6% -BX + X3 = ycos(wt).

Equation (I.23) has been expressed in the simplest possible manner,
instead of in terms of economically meaningful coefficients in order to
shorten an already lengthy discussion.

ycos(wt) is the forcing term. 8X is the damping factor, assumed once
again to be linear, but positive. The term -gX + %® is the non-linear version
of the "stiffness coefficient" first defined in equation (I1.19). But in this
version there is an important difference. The sign of the coefficient for the
X term is negative in equation (I.23), while that of X} is positive; the
opposite of the situation shown in equation (I1.19). The dynamical effect is
that for small changes in excess demand the market reacts in an unstable
mannetr in that the excess demand is reinforced by the reactive force, but as
the excess demand builds, the final effect is strongly in the opposite,
stabilizing, direction,

Simple though this equation is, the potentially observable results are
dramatically different. So far all our models have generated recognizably
deterministic solution paths, even if the time paths of the solutions
apparently involve discontinuous jumps. Qur solution paths have all involved
fixed points, periodic solutions, or the discontinuous hysteresis effects

alluded to just above. The Duffing model in contrast can produce time paths of
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solutions that appear to be the realizations of random variables, certainly
the paths are not periodic, see, for example, Kawakami(1984).

The first of the two keys to this dramatic shift in the properties of
the solution path is that one requires solution paths that are characterized
by exponential divergence of nearby paths; the so called "sensitivity to
initial conditions". The second key is that the limit set of the long term
solution path must be compact. The mathematically inevitable result is that
the set of solution points is mixed and the time paths are recurrent, but the
exact same path is never followed twice.

These verbal comments are illustrated in Figures 1 to 5. In Figure 1 we
see the time path of the solution of equation (I.23) and Figure 2 shows the
corresponding phase diagram. The parameter values chosen for this solutien
were § = .3, 8= -1, y= .3, and w = 1. By changing é§ to .05, setting § to O,
and raising vy to 7.5, the more chaotic data shown in Figures 3 to 5 were
produced.

The generation of "statistical complexity” that we have observed in this
last version of our excess demand model can easily be supplemented by adding
to the model specification the presence of lags, or "delays", in the reaction
mechanism. As is by now well known, the addition of delays in a differential
equation, essentially introduces an "infinite number of degrees of freedom"
into the system, so that very complex solutions are possible. However, it is
remarkable that many times the increase in degrees of freedom is quite low;
see, for example, the analysis of the Mackey-Glass(1977) equation, Delays are
an obvious extension to economic models as has already been mentioned. One
would expect a delay between the occurrence of excess demand and the onset of

the reaction, in part because the reaction must usually work through prices
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and one would expect a delay between the occurrence of excess demand and a
consequent change in price.

So as not to elaborate endlessly, let me merely indicate some further
behavioral alternatives that non-linear relationships can generate without
necessarily tying them to the models discussed above. Some of the concepts
that should be mentioned are amplitude-frequency dependence, frequency
entrainment, and time reversibility.

Amplitude-frequency dependence is ostensibly quite a common observation
in economic data. U.S. foreign exchange data certainly has the appearance of
this in that the exchange rate with respect to most major currencies has the
characteristic of high frequency, low amplitude, oscillations interspersed
with low frequency, high amplitude, oscillations. Stock market data has a
similar appearance, but not as pronounced.

Frequency entrainment, or frequency locking, is a very common phenomenon
in the physical sciences; it is plausible that the idea may also have
relevance in economics in so far as there exist economic phenomena that
exhibit sinusoidal behavior, even if buried in neoise. Imagine a non-linear
market system oscillating with a frequency, w,, and that we now consider the
effect of a complementary market that has an oscillation with a frequency of
s,. The frequency of the combined market has a frequency of w; - w, called the
"beat frequency" which will decrease linearly as w; increases towards w;.
However, as w, approaches w, the beat frequency suddenly drops to zero until
the frequency w, has risen substantially above the frequency w,, at which
point the beat frequency reappears and then will increase linearly as w;
diverges from w,. The same phenomenon occurs for w, approaching w, from above.

One interesting speculation in this regard is that if related economic markets
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differ in frequency by small amounts, then the frequency of the resultant
joint market will not be perceptible, whereas disaggregation and separation of
the markets would eventually reveal the nature of the oscillation.

The last example is the concept of "time reversibility”. Time

reversibility can be defined statistically by:

1.28) F(Xy1, Figs Xegr- oK) = F(Xp1s Xogg Xopzs - - X))

that is, if the joint probability distribution function is characterized
by the statement in equation (I.24), the time series, {x,), is said to be
"time reversible" and if not, then the series is said to be "time
irreversible"; the essential idea is that the "picture show does not run
backwards". This idea would be unremarkable if it were not the case that
virtually all economic models implicitly assume that economic time series are
time reversible. One hint that one is dealing with a time irreversible process
is that the time series exhibits asymmetries in the "slopes" of the upward
portion of the series as compared to the downward portion of the series. By
this criterion one should immediately suspect that G.N.P. statistics may be
time irreversible. Further discussion of this important topic is contained in

Tong(1983) and in Ramsey and Rothman(1988).

1I
SYSTEM MODELLING OR THE ANALYSTS OF AN "ISOLATED TIME SERIES"
The traditional approach to economic modelling for some considerable time
now has been one of analyzing contemporaneously at least a complete market, if

not an entire economy. The known strong interdependencies between markets, the
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problem of identification of a singly specified equation, seemed to
necessitate the use of multiple equations and many variables. Let me label
this approach the system modelling approach. It is the basis for almost all of
the literature since the beginning of the 'fifties until the introduction of
the vector auto-regressive models and what might be labelled the "Sims’
methodology”. One advantage of the chaos literature is to add a third
alternative.

The key to the modelling approach in the new qualitative dynamics
literature is the "reconstruction of phase space”; for an excellent
introduction to the language of dynamical systems, see Arnold(1985), or for
some very brief comments see the Appendix.

Phase space is the space of all possible states of the system. In our
examples above, the phase space would be the space of pairs (X, X) that were
consistent with the flow, or solution, to the differential equations defining
the dynamic system. The graph of the flow is related to the phase space by
tracing in phase space the time dependent path created by linking time
successive points in phase space. The phase space summarizes the long term
dynamics of the system, when the points that are due to transients created by
specific initial conditions, are deleted. The set of points in phase space
towards which the actual dynamical path is converging is called the (forward)
limit set. The limit set might be a fixed point, a limit cycle, or a chaotic
attractor, or a strange attractor.

An analysis of phase space and its changes to variations in the
parameters of the dynamical system can reveal a wealth of qualitative
information about the system; the presence of fixed points, of cycles, the

stability of fixed points or of cycles, the existence of singularities in the
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system, and so on. This is why physicists pay so much attention to phase
space, especially when the phase space can be portrayed graphically.

The natural coordinates to use are often those of the state of the
system; its "position", its "velocity", and so on., But, the phase space of a
dynamical system can also be represented in terms of the dynamical path of
just one of the natural coordinates of the system, or even in terms of some
monotonic, but non-constant, transformation of a natural coordinate. If the
dimension, that is, "the number of essential variables, or coordinates, of the
system", is «x, then the vector representation of the system in terms of one of
the original coordinates must be in terms of a x dimensional vector. For
example, one might consider a sequence of « dimensional points {x, D(x),
DZ(X), Da(x),....D“(x)}t, t indicating a sequence of observations through time
in order to represent the phase space of the original system. An altermnative
and often equally useful, but simpler, procedure is to use (Xx,, Xy,

X } for some suitable choice of r. This last procedure has become

t2r - D -
the standard procedure in most of the chaotic dynamics literature.

The formal justification for this approach to representing phase space is
due to Ruelle and Takens(1971), but the mathematical antecedents are due to
Whitney’s Embedding theorem, Whitney(1944). While the theorem was proven only
when the limit set of the dynamical system is a smooth manifeld, it is a
remarkable fact that in very many actual examples phase space reconstruction
has worked for a wide variety of non-smooth, "fragmented" limit sets.

Why phase space reconstruction works is perhaps intuitively clear. The
flow, or solution path, of the differential equation system is unique, so that

the parametric equations of the flow, {x,, y,, z,, w,} say, can, under suitable

regularity conditions, be mapped bijectively onto the parametric equations
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{x,, D(x,), Dz(xt), Da(xt)] which in turn can be mapped bijectively onto ({x,,

X

Rprrr Xpsgrr Xeasel -

This is the justification for examining, at least to begin with, a single
time series in the chaotic literature., The phase space reconstruction from
observations on a single variable can provide the same qualitative information
as observations on the path of the complete set of natural coordinates.

Of course, this approach to modelling implies that if one were to do two
reconstructions of phase space from two coordinates of a dynamical system, say

x, and w,, then up to scale transformations and inessential rotations of axes,

t
the reconstructions should be the same; although there is a difficulty in the
appropriate choice of the delay "r" to be chosen in each case that we are
skirting for now. In terms of our previous examples, it will not matter
whether we use excess demand, X, or price, P, to reconstruct the phase diagram
and both reconstructions should be qualitatively the same.

This approach provides a strong test for the presence of underlying
systematic variation in economic or financial data; make two phase space
reconstructions and compare them. The difficulty in implementing this research
strategy is that while these comments appear to be relevant to specific
individual markets, the implication for aggregates is not so clear. This is
especially true if there are small, but detectable, differences in the phases
of the constituent time series, or if the series being considered have close,
but distinct frequencies, and what we observe is the beat frequency of the
combination.

Before leaving this section, these notions can be tied inte the concept

of identification. The conditions for the identification of a sub-system can

be restated as requiring two sets of conditions. The first is that the
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transformation from the exogenous variables of the system to the observed
endogenous variables of the system be unique up to inessential scale
transformations. The second requirement, not usually emphasized in
econometrics, is that the implicit dynamical system represented by the time
path of the exogenocus variables be the flow of a corresponding differential
equation system that describes the equations of motion of the market, or
economic system.

The condition in econometrics is usually stated in terms of the ramk of
the matrix of exogenous variables, but my previous statement emphasizes the
dynamical nature of the data. Identification is in fact achieved by requiring
the path of the exogenous variables to be the flow of some dynamical system.

The conditions for the identification of the equation of a single
endogenous variable are less stringent, but similar in spirit to the ideas
just discussed. That is, if the "identifying omitted variables" do not produce
a unique path, then their omission is irrelevant to the identifiability of the
equation.

The conclusion of this sub-section is that as a first step at least and
as a device to learn about the qualitative properties of the dynamical system,
the analysis of a single representative "variable", or coordinate, is a useful
approach. Clearly, having established the nature of the dynamical system,
further work would require the determination of the structural links between
the various economic variables of theoretical interest. But such an
examination would now be cast within the context of known properties of the

dynamical system,

I11
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THE DATA USED FOR ILLUSTRATIVE EXAMPLES.

The data to be used for an extensive, but preliminary analysis, in order
to explore these ideas to some empirical extent are described in this section.
The data series include post World War II observations on the money supply, M1
and M2, weekly observations on the stock market obtained from the CRSP data,
and by contrast data on monthly pigiron production since 1877.

The money supply data are the figures produced by the Federal Reserve
Board, not Barnett’s Divisia indices that some researchers, including myself,
have used previously. The money supply observations are monthly figures from
January, 1959 to November, 1987 on M1 and M2. The source is the Federal
Research Report, H.6, entitled Money stock Measures and Liquid Assets,

Scheinkman and Le Baron used the Center for Research in Security Prices
(CRSP) data. These data are value weighted‘daily stock returns, with a sample
size of 5200 daily returns. Weekly returns were obtained by the simple
compounding of the daily returns; the details are contained in Scheinkman and
Le Baron(l1986). There are 1227 weekly averaged observations that begin in
July, 1962 and end in August, 1985.

For a contrast, I have also included economic data; in this case the
production of pigiron since 1877 on a monthly basis to 1964. The data series
are in two parts; the first part goes from 1877 to 1941 and the second series
from 1941 to 1964. The first series were collected by R.F, Macaulay and are
stored on the National Bureau of Economic Research (N.B.E.R.) data tapes. The
second set were obtained through the N.B.E.R., but the data originated from
the American Iron and Steel Institute. The two series overlap for 12 months in

1941. The series were spliced by the simple expedient of averaging the
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difference in the overlap values and adding the difference to the second

series.

Further details can be obtained from the N.B.E.R., New York.

Iv

AN EMPIRICAL DESCRIPTION OF SOME ECONOMIC AND FINANGCIAL DATA.

The intent of this section is not meant to be in the least definitive,
but is meant to indicate some of the tools that are available and to give some
idea of the evidence in favor of non-linear models in economic and financial
data. An essential element in understanding this analysis is that widely
differing non-linear models may have the same auto-correlation function and as
a special case may have an auto-correlation function that is identically zero.
Consequently, the description of data by auto-correlation functions is
irrelevant to the analysis of the non-linear structure.

However, an issue of some importance is the stationarity of the data. The
usual non-linear analysis of physical or biological data starts with the
assumption that the data are, or have been transformed into, stationarity;
further the most common models of nonlinearity yield steady states that can be
described statistically by stationarity. Economic and financial data are mnot
by any means stationary. Economists have become used to transformations to
induce first order stationarity, but until recently at least, have tended to
stick to transformations that induced only first order stationarity; for
example, taking log first differences. It is now common knowledge that both
economic and financial data are not even second order stationary; see for

example, Bollerslev and Engle with associated references in the Bibliography.
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The data may be non-stationary to an even higher degree, but that is an
unexplored issue at the moment.

As a consequence of this discussion, the pigiron production data were
transformed to be at least second order stationary. The procedure used, in the
absence of any theoretical information as to the form of the non-stationarity,
was to deflate the first order stationary data by a local approximation of the
standard deviation. The approximation to the local standard deviation is
obtained by calculating a moving average variance of the first order
stationary data and then deflating each observation by the square root of the
approximate variance so found. This procedure adds to the degree of auto-
correlation in the data. But in any event, the observed auto-correlation in
the transformed data is allowed for in the analysis to follow.

There are two statistical tools to be discussed in the remainder of the
paper. The first is the concept of "dimension", or rather, the various
concepts of dimension. The second is the notion of time jirreversibility and a

new procedure to test for its presence.

Dimensional Analvsis in Economic and Financial Data.

At this point in time some of the concepts of dimension have become
familiar to economists, even if some of them are not well understood. The
correlation dimension, a measure of the relative rate of scaling of the
density of points within a given space, permits a researcher to obtain
topological information about the underlying system generating the observed
data without requiring a prior commitment to a given structural model. If the

time series is a realization of a random variable, the correlation dimension
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estimate should increase monotonically with the dimensionality of the space
within which the points are contained. By contrast, if a low correlation
dimension is obtained, this provides an indication that additional structure
exists in the time series; structure that may be useful for forecasting
purposes. In this way, the correlation dimension estimates may prove useful to
economists wishing to scrutinize uncorrelated time series or the residuals
from fitted linear time series models for information on possible non-linear
structure,

The Appendix contains a brief, but intuitive, discussion of the various
concepts of dimension that are appearing in the literature in the physical
sciences as well as in economics. The basic idea of calculating dimension from
a single time series of a dynamical system is that it is, in a fundamental
sense, the first piece of qualitative information about the system that is
needed; namely, how many essential variables are needed to model the system,
or to discover what in fact is the order of the underlying differential
equations defining the dynamical system. The concept of "fractal dimension”
has tended to confuse the perception of the basic idea and has added a
complexity that, while important in its own right, inhibits a clear
understanding of the basic notion of "dimension". Dimension, by indicating the
order of the defining differential equation, when there is one, indicates the
number of variables that are involved in the system. A similar result holds
for maps.

The calculation of dimension, if ever it became effective for economic or
financial data, would be of inestimable value in econometrics. A major
difficulty in any attempt to model a market or even an economy is the fact

that we have no theory to limit the number of variables and equations that
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must be included in any empirical analysis; current theory leaves us with an
unmanageable host of variables to consider so that the decision is made ad hoc
and is always treated as an empirical issue.

Whether, or not, the data have a fractal dimension is in light of this
discussion irrelevant; the first step is to limit the set of possible
variables. Unfortunately, in economics no one has yet been successful in
isolating any low dimensional systems.

This may be due in part to the fact that economic and financial data
require a different modelling approach than is true for physical or bioclogical
data. Randomness in its many forms is an obvious hazard to any formal attempts
at modelling. Economic systems are very open relative even to biological
systems, are subject to constant tinkering by economic agents, and whenever
those agents learn more about the operation of the system, they alter their
behavior and as an consequence alter the structure of the observed dynamical
system. None the less, it still seems to be reasonable to assume that the
system is not completely random and that once a suitable modelling approach
has been acquired, that further insight can be obtained.

By this time, a substantial number of economists have attempted
to discover "low dimensional attractors" in economic or financial data, Frank
and Stengos(1987a,1987b), Brock and Sayers(1988), Barnett and Chen(1988),
Hsieh(1987), Scheinkman and Le Baron(1986), and even this author in some
unpublished earlier work. The data series that have been examined by these
researchers include gold and silver prices, G.N.P., stock returns, various
definitions of the money supply, work stoppages, and numerous foreign exchange

rates. The list is not complete, but is illustrative.
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The outcome of all this research is that as yet there is little evidence
for the presence of "low dimensional attractors" in economic and financial
data, This somewhat depressing claim is substantiated in Ramsey, Sayers, and
Rothman{1988). Part of the difficulty is that economic and financial data
contain much more noise than physical data and that the length of the data
runs is minuscule by the standards in physics. Consequently, the procedures
are not really adopted to the economic and financial environment. However, the
results do indicate that there is some evidence of nonlinearity. The reader iz
referred to Ramsey and Yuan(1988) as well as Ramsey, Sayers, and Rothman(1988)
for further details. Besides, the case for nonlinearity in economic and
financial data has been made most ably by a remarkable series of papers by
Patterson and Hinich, see the Bibliography under these two names,

There exists yet another set of problems that are particularly severe in
a non-experimental discipline like economics. These problems involve the
extended "maintained hypothesis"™ that is needed in economic analysis. In the
problems examined to date in physics and chemistry, the simple dichotomy of:
"either an attractor, or the data are merely (high dimensional) noise" has
been considered to be appropriate. But this is not the case in economics. The
extended maintained hypothesis must include as alternatives the options that
the data come from ARIMA or non-linear stochastic processes.

Even more damaging to a simplistic version of dimension calculation is
the realization that often researchers mistakenly perform dimensional analysis
on data that are highly auto-correlated; this procedure vitiates any
conclusions that might possibly be made. This is because dimension is a
topological concept and at certain scales of magnification of some stochastic

processes, the dimension is in fact quite low; for example, the dimension of a
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geometric random walk, is at intermediate scales, about 1.1: a geometric
random walk can be regarded at such scales as a highly convoluted line, giving
it a topological structure that is of dimension slightly higher than that of
a line. What is worse is that if the data are generated by a simple ARMA
process with long auteo-correlation lag, that is, a long period before the
auto-correlations die to zero, then dimension calculations with such data will
produce, over a range of scaling valueg, low dimensional results.

The problem for all experimental data, even if there were a perfectly
well defined and recoverable attractor, is that at small enough scales the
dimension is that of noise. Thus, the practical problem of trying to
distinguish between attractors, auto-correlated processes, and non-linear
stochastic processes is a real one.

The conclusion is that, while the concept of dimension is of potentially
great interest to econometricians, the current approach has not yet discovered
how to disentangle low dimensional results from the inevitable noise and large
scale aperiodic shocks that seem to beset all economic and financial data.

Indeed, the actual situation is much more of a puzzle. If the current
econometric wisdom is correct, then the seemingly universal absence of
economic and financial theory to relate this vast array of low order AR or MA
processes, and sometimes just random walks, is the real challenge. If economic

theory is to be resuscitated in terms of economic and financial time series,

it will only be by pursuing alternative lines of enquiry.

Tests for Time Irreversibility in Econgmic and Financial Data.
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The concept of time irreversibility is discussed in some detail in Ramsey
and Rothman(1988). The definition of time reversibility was given above. The
procedure used in Ramsey and Rothman to characterize and to test for the
presence of time irreversibility is as follows. The statistics ij are
defined by:

.1y ¥ = TOSIXX), - XiXeal,

can be used both to characterize and to test for the presence of time
irreversibilities. Under the null hypothesis that the series is time
reversible, the expectation of ij is zero for all (i,j,k}. In practice,
Ramsey and Rothman have found that i = 2 and j = 1 are sufficient for
discovering time irreversibility in a wide assortment of data. As discussed in
Ramsey and Rothman(1988), the statistic GZ expressed as a function of k can
be regarded in a similar light to an auto-correlation function. How large k
can be allowed to be depends on the statistical properties of the time series
and on sample size. The larger k the larger the corresponding standard errors,
Standard errors are also increased when the data are highly correlated. As
discussed in Ramsey and Rothman(1988), the shape of the plot of GEJ as a
function of k is indicative of the type of time irreversibility that is
exhibited in the data. For example, if the time series are characterized by

"cycles" that are slow up and fast down, then the general shape of the plot of

Gﬁj is also a cycle of the same period, but different phase. The distinction
is that for a cycle that is characterized by slow up and fast down, as opposed
to the opposite situation, the Ggl values tend to be negative and the

opposite is true for the reverse cycle.



-33-

Figure 6 shows the time series of the Ml definition of the money supply
and Figure 7 shows the log first differences of that series; the period of
maximum amplitude is in the middle of the "Volker experiment" during 1979 to
1981. M1l is definitely non-linear and time irreversible. From Figure 8, one
sees that after an initial negative effect, the presence of time
irreversibility does not reveal itself until about 62 months and the effect
lasts up to 80 months; that is, the main non-linear effects for Ml seem to be
concentrated in a time period of between five and six and one half years.

The confidence intervals are estimated 95% intervals based in part on the
theory underlying the distribution of the ij, supplemented by Monte Carlo
simulations to determine the effect of an auto-regressive structure on the
standard errors of the estimates. The procedure is described more fully in
Ramsey and Rothman(1988)

While the raw time series plot for M2 is very similar, the plot of the
log first differences is quite different, see Figures 9 and 10. However, due
in part to the much stronger AR effects that seem to hold for M2 as compared
to that for Ml. The standard errors for the estimation of Ggl are very large
and seem to increase at a fast rate; there does not seem to be any strong
evidence for time irreversibility in M2 data. Certainly, the presence of
strong nonlinearity over a time period of 60 to 80 months is missing.

Figure 12 shows the raw time series for the Scheinkman Le Baron stock
return data. The evidence for any type of ARMA process in these data is very
weak, so that the nonlinearity test for time irreversibility was applied
directly to these data. Figure 13 shows clearly strong evidence of time
irreversibility; in this case the effect is concentrated in the first 20

weeks.,
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The claim is often made that financial data are different from economic
data. However, both types of data evidence in their raw state exponential
growth in the series. This statement is substantiated by the plot of monthly
pigiron production from 1877. Within year variations of the data series had to
be smoothed before any other analysis could be usefully performed. The data
were subsequently differenced in the logs; the remaining steady increase in
the amplitude of the oscillations is still apparent. Figure 16 shows the plot
of the Gtz function for these series from which we see that time
irreversibility is clearly present. But in this case, the effect is a sharp
positive peak at a lag of about 26 months,

A related, but different approach to the analysis of economic time series
is discussed in detail in Ramsey and Montenegro(1988). This idea can be used
whenever the time series can be represented as an MA process; but the
extension to a general ARMA process has not yet been completed. The basic idea
is that corresponding to any MA(q) process there exist 29 different models
with the same auto-correlation function; that is, all 2? models belong to an
equivalence class that is defined by the auto-correlation function. The
alternative members of this equivalence class are defined by the set of roots
{Afl], where (X;, i =1,2,..q} are the roots of any one of the alternative
models, say, the invertible one. The invertible model is the only one of the
set of alternative models that can be estimated by the usual procedures of
either least squares or maximum likelihood. The invertible model is the one
that can be expressed as a convergent sum of past values of the observed time
series,

In Ramsey and Montenegro(1988) it is shown that, provided the innovations

in the MA(q) process are not Normally distributed, the true model can be
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distinguished from the other members of the equivalence class. The approach
uses the higher order cumulants, which are identically zero for the Normal
digtribution. Given that the actual model’s coefficients can be identified, it
is possible also to estimate the innovations generating the observed process.

The minimum mean square error type of forecast is not enhanced by the use
of non-invertible models, although the appropriate confidence interval is
modified by this approach. The real gain is in evaluating the timing of the
effects of shocks and that the effects of a deliberate, non-random,
intervention can be correctly assessed.

In Ramsey and Montenegro(l988) several time series were examined. Of
those that were found to be low order MA, two series in particular gave clear
evidence of being generated by a non-invertible process; the prime rate and
expenditures on plant and equipment. Following Mehra(1986) the prime rate was
included in a demand for money equation that has well recognized antecedents;
the objective was to compare the effects of using the prime rate itself in the
demand for money equation, the usual estimates of the innovations, and those
innovations generated from the chosen mon-invertible model. The results are
most encouraging. While further work is needed to verify the conclusions
reached so far, the clear implication is that the innovations from the non-
invertible model are the preferred "explanatory" variable in the cited demand

for money equation.

Iv

CONCLUSIORS AND SFECULATIONS.
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The main conclusion is easily stated. Economic systems are clearly
nonlinear. The evidence is not only from the research cited above, but also
from the extensive work of Hinich and Patterson. Even in the case of stock
market returns data at low levels of time aggregation for which the case for a
random walk model is strongest, the presence of nonlinearities is clear in the
work of both groups of researchers,

However, the work above also indicates that the appearance of that
nonlinearity may not be apparent until after a considerable lag that is
measured in years. The implications for policy are serious if this result is
even only partially true, because under these conditions the implementation of
policy based on linear models will inevitably be in ignorance of the nonlinear
effects. Worse is the fact that these circumstances will inhibit the discovery
of the nonlinearity, the policy will seemingly work for awhile and then,
apparently at random, break down. Imagine a myopic dog trailing a random walk
rat. He will always think that he is hot on the trail and that next time he
will at last catch the rat. But the next time never comes unless someone tells
the dog what the underlying nonlinear mechanism is so that he can anticipate
the rat's next move and the rat's reaction to his own moves.

Linear policy in a nonlinear world with delays is destabilizing; at least
some of the time and probably most of the time,

A question that Professor Brock has often raised with me concerns the
forecasting benefits of nonlinear models. For if nonlinear models can do no
better than that which we now have, then there is ne point in adding useless
nonlinear burdens. The answer depends on the criterion for success and the

objective.
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If we retain the usual minimum mean square error criterion(mmse) and wish
merely to observe the future, then nonlinear models will do little for us. The
only source of improvement is a more accurate estimate of the confidence
interval that we will place on our forecasts. For example, even in the case of
the non-invertible MA(g) models knowledge of the correct model does not
improve our mmse forecast, except in improving the accuracy of the statement
of the standard errors; one might as well use the tried and true invertible
version.

Further, even if there were a chaotic model underlying economic data, the
forecast improvement potential is strictly limited to the very short run.
Indeed, the real gain here is to know that no matter how much data one has,
there are very strict limits on the forecasting period for a given level of
accuracy. If in addition we add noise, as is likely to be the case, then the
benefit of nonlinear models becomes problematic at best.

These highly negative comments are conditional on the choice of a mmse
criterion and the objective that we wish merely to observe. If we relax either
of these restrictions, the situation is changed dramatically. In order to
focus attention on the essentials, let us imagine that we have a nonlinear
model, or alternatively a non-invertible MA(gq) model, that has the exact same
auto-correlation function as an invertible MA(q) model; as a very special
case, the invertible model might be simply uncorrelated random variation.

Let us change our objective. We no longer wish merely to observe, but
also to implement policy. The implementation of policy in terms of our model
is to assume that we will modify the path of our variable of interest, say the
money supply, by imposing our own impulse onto the system in addition to

whatever "random" variation occurs simultaneously. Now knowledge of the "true
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model" is vital if we wish to evaluate the likely effect of our policy. In
effect our policy action has changed the model. Next period’s output will not
be the result of the same mechanism as before; we have modified it to include
our own impulse to the system. The average effect will be what we would have

obtained in the absence of our impulse, plus the "true model’s" processing of
our non-random impulse. Evaluating the policy action on the basis of the
"incorrect model” will be misleading.

Let us now also change our criterion from the "averaging of squared
errors™ to consider the time path of the reaction of the system to any
specific impulse. Knowledge of the correct model is crucial to meeting this
expanded criterion function. For example, the non-invertible MA(q) model will
give very different results to those predicted by the corresponding invertible
model with the same auto-correlation function, indicating, perhaps, that the
main response will be delayed beyond the initial period. While the dissipative
systems with random shocks that economists traditionally assume may have the
same expectational properties as a chaotic attractor, for example, the
dynamical paths differ substantially.

Finally, if we add to our set of criteria a concern for the stability of
the system and a recognition that stability may be state dependent, then once
again the nonlinear model is needed and the linear approximation is no longer
a useful tool. Indeed, questions of stability can only be posed in the context
of nonlinear models.

Moving into the realm of speculation, the analysis above seems to lead
to the following ideas about an appropriate modelling structure. Some modest,
but encouraging, attempts have already been made along the lines to be

suggested. The economic system must be modelled as a dynamic one, we need to
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begin to discover the appropriate "equations of motion". But economic systems
also contain noise that is embedded in the dynamic itself, that is, the noise
term enters the solution of the underlying differential equation system. There
may also be observational noise as well.

What is worse is that economic systems are subject to episodic shocks
that re-initialize the system. By "episodic" I mean shocks that occur every so
often, but with no detectable underlying probability distribution.

It is also likely that over time the parameters of the system are
changing with technology and population, but with a little bit of undeserved
luck these changes can usefully be assumed to be changing slowly.

Finally, as economists well know, but tend to forget, increased
understanding of the system will inevitably change the system, because we are
dealing with the actions of rational optimizing agents; no matter how bounded

that rationality may be.
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APPENDIX

The idea of this Appendix is to provide a quick intuitive introduction to
some of the language used in the chaos and qualitative dynamics literature;
the various references that are cited can be pursued to good effect.

Three terms that are frequently used in this literature are "attractor",
"embedding dimension", and "orbit" and should be at least intuitively defined
in this paper. An "attractor" in the context of dynamical analysis is that
sub-set of points towards which any dynamical path will converge; that is,
the dynamical path is "attracted" to a subspace of the space containing the
paths of the dynamical system from any initial condition. "Embedding
dimension™ is the topological dimension of the space in which the attractor is
situated; loosely stated the embedding dimension is the number of axes needed
to portray the attractor. Topelogical dimension specializes in vector spaces
to the usual notion of Euclidian dimension. "Orbit" 1is essentially a synonym
for the dynamical path, but also implies the notion that the dynamical path
revisits any given part of the attractor infinitely often.

A dynamical system may be characterized as either a map, or a flow. Maps
are discrete, flows are continuous., In either case, an orbit, or path, of the
dynamical system is defined by the solution of the system to yield the

sequence.

{x(t)), for flows.
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An attractor is a compact set, A, such that the limit set of the orbit,
{x,}, or {x(t)}, as n, or t, -= is A for almost all initial conditions within
a neighborhood of A,

An attractor is the set of points of the path that represents the long
term behavior of the dynamical system. Attractors can be very simple sets such
as single points that represent equilibria, or limit cycles, such as the Cob-
web cycle. But attractors can be much more complex. An attractor can be quasi-
periodic, chaotic, or strange. All but the last can be defined on a manifold.

An example of a quasi-periodic attractor is an orbit on a torus, (a
doughnut shape), generated by the cosines of a pair of incommensurate
frequencies. A chaotic attractor is characterized by exponential divergence
away from any point within the attractor. Because the attractor is compact,
the exponential divergence means that the path is constantly folded over onto
the attractor. Strange attractors have a fractal component, that is, at least
along one axis of the attractor, the set is like a Cantor set. An attractor
can be both chaotic and strange. Indeed, most of the examples with which
economists are by now familiar are both strange and chaotic.

Dynamical orbits have dynamical properties and attractors have
topological properties. For strange attractors we can define also measure
theoretic properties. Dimension is mainly a topological concept, but some
concepts of dimension have measure theoretic components.

Dimension concepts indicate:

the amount of information needed to specify the position
of a point on an attractor,

the lower bound on the number of essential variables that
are needed to model the attractor, or rather, the dynamical

system when within the attractor;
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the relative density of the points on the attractor.

The natural probability measure of an attractor is the relative frequency
with which the different regions of an attractor is visited by the orbit,

There are many definitions of dimension used in the literature on
nonlinear dynamics. The reader should be warned that sometimes "dimension" is
used in its purely topological sense, that is, dimension is merely a
generalization of the Euclidian netion with which all economists are very
familiar. In this sense the dimension is always an integer and represents the
"number of degrees of freedom", or "the number of axes needed to represent the
attractor".

The other definitions of dimension can be put into three classes of
concepts; those that are purely "metric", those based on the natural
probability measure of the attractor, and those based on the dynamical
properties of the orbit within the attractor., Our discussion will be
restricted to the first two classes of concepts.

The purely metric concepts include the notion of capacity, d , and
Hausdorff dimension, d,.

The capacity measure is formally defined by:

d, = lim _In N(e) ,
e+0 1In{l/e¢)

where N{e¢)is the minimum number of ¢ diameter cubes needed to cover the
attractor. d, is then nothing more than a measure of the relative rate of
increase in the number of coverings of an attractor to the number of coverings
needed te cover the unit interval. For a fixed point, an equilibrium point, d,

= 0; for a simple cycle d, = 1; but for strange attractors d, can be non-
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integer to represent the fractal structure of strange attractors. For example,
the capacity measure of the Cantor set created by deleting middle thirds is
(In2)/In3 = 0.63.

Hausdorff dimension is defined with respect to the concept of Hausdorff
measure, which in turn is a generalization of Lebesgue measure. Hausdorff
measure enables one to assign a non-negative number to many non-empty sets
that under Lebesgue would have zerc measure,

The Hausdorff a measure of a set A is:

HM, - lim (inf) Z8(a,)% , ACUA,
-0 {A))

where the A, are covering sets. If a set has a non-zero Lebesgue measure,

then the Hausdorff measure is the same when the choice of @ is the same as the

topological dimension of the set.

Hausdorff dimension is given by ¢,, where ¢, is defined by:

ay = inf{a:HM_ (A) = O}

@, is merely that scale variable such that the sum of "volumes" to cover
the attractor is finite and non-zero.Ilf o>y, then HM = 0, and if a<a,, then
HM o, If the attractor is not strange, say, for example, that it is a simple
cycle, then a; will be an integer. Whenever Lebesgue measure is positive,
Hausdorff dimension will be an integer; Hausdorff dimensien will be non-
integer when the attractor is strange and has Cantor set characteristics.

The problem with these purely metric concepts is that they treat all
parts of the attractor equally, no matter how infrequently some part of the
attractor is visited by the orbit. Such measures are enormously data

extensive. Two measures that incorporate the relative frequency of visit by
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the orbit are information dimension, d;, and pointwise dimension, dP. We will
assume in the sequel that there exists a natural probability measure in that
any probability measure defined on the attractor is invariant to the initial

conditions.

Information dimension, d;, is defined by:

d; = lim I(e) ,
e~0 In(1l/¢)

where I(e¢) is Shanncn's Information measure and is formally defined by:
I(e) = -=LP,1In(p,).

N(¢) is the same measure of the number of coverings of the attractor as
occurred in the definition of capacity. If all coverings are equally likely,
that is, P, = N(¢) !, then d; = d,; in general, d; is not greater than d_.

To define pointwise dimension, d,, we have to defime u(B,) as the natural
probability measure of a "ball" of radius e. Pointwise dimension is then:

dp(x) = 1lim 1ln pu(Be(x))
>0 In(e)



-45-

If dp(x) is independent of x for almost all x on the attractor, then the
common value of d.10 is the pointwise dimension of the attractor. Pointwise
dimension is that concept of dimension that the Grassberger-Procaccia
procedure measures. Pointwise dimension measures the relative rate of scaling
of the probability measure of a ball of diameter of radius ¢ as the diameter
approaches zero; compare this measure with that of capacity.

Reviews of the correlation dimension procedures that are written with the
economist in mind include Brock{1986), Brock, Dechert, and Scheinkman(1987),
Brock and Sayers(1988), Barnett and Chen(1988a, 1988b), and a more detailed
evaluation of the details with a guide to the relevant physics literature is
Ramsey and Yuan(l1988a). The basic idea underlying the calculation of dimension
is relatively easily stated.

Any sequence of points, {x%,}, generated by some mechanism, whether
random, chaotic, or otherwise, can be transformed into a sequence of d-tuples,
(X¢11Xppr o -+ +Xeq) - These d-tuples, regarded as points in a d-dimensional
Euclidian space, can be "plotted" and properties of the cloud of points so
created examined. The choice of the value of "d" is the choice of "embedding
dimension™; it is the size of the Euclidian space into which the original
sequence is being fitted. If the generated points are from observations on a
random variable, then as d, the embedding dimension, is increased without
bound and assuming an unlimited sample size, the size of the space into which
the d-tuples will fit is d for all values of d; that is, random variables are
space filling. But if the points are generated by a mechanism that is
deterministic, or at least one that produces a shape that requires only "k

dimensions, then as the embedding dimension is increased without limit, the
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dimension of the points will not increase beyond "k". Imagine, for example, an
ellipse, which is an object of dimension 1, that requires at least Euclidian
dimension 2 to be observed, but no more; consider embedding an ellipse in a 3
or 4 dimensional space; the dimension of the ellipse is still 1.

Unfortunately, the objects of interest to us involve more complicated
structures. The simplest intuitive example is to imagine a mechanism that
produces points that are best described as the Cartesian product of the unit
interval and a Cantor set; a Cantor set is obtained by deleting middle thirds
from the remainder of the unit interval obtained by deleting middle thirds at
a previous iteration. This idea can be extended to any number of Cartesian
products.

The Grassberger-Procaccia (1983 a,b,c) algorithm will be utilized
throughout this paper. Let the ordered sequence (X,}, t =1,...,N, represent
the observed time series. Then, for a given embedding dimension d, create a
sequence of d-histories,

(R Xpypave o Fypggonye) 1
Here, 7 stands for the time delay parameter. The sample correlation

integral is given by,

N -
C; = N2 Y, 8(r-1X-X,),

>0, X, = (X, %4100~ »xi+(d—1)r) .

f(.) is the Heaviside step function which maps positive arguments into one,
and non-positive arguments into zero. Thus, 4(.) counts the number of points
which are within distance r from each other. "r" is the scaling parameter. The

. N .
calculation of C_ is useful because:
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Nlim ¢y + C,,
—>00
0"

and dlnC /dlnr = D,,

whenever the derivative is defined, Guckenheimer(1984) ; D, is a member of a

general class of dimensions D, q = {0,1,2,...}, defined by:
Dq = -lim Kq(r)/ln(r)
r—+0
-1 N{r)
K, = (1-@) 1o 2 [P (r)°

where P,(r) is the probability of a point of the attractor being within r
of the ith point, N(r} is the number of such boxes needed to cover the
attractor, and Kq is the Kolmogorov-Sinai (metric) entropy; details are in
Badii and Politi, for example. In the rest of the paper, D, will be
designated dec to stand for correlation dimension. The dec is a measure of
pointwise dimension, dp. Pointwise dimension , see for example, Farmer, Ott,
and Yorke(1983), measures the relative rate of change in the number of points
on the attractor as the diameter of the covering sets is decreased. Pointwise
dimension and related concepts differ from capacity and Hausdorff concepts in
that they reflect the probability structure of the attractors; purely metric
concepts, such as capacity, count all coverings equally, no matter how low the
relative frequency of visitation by the orbits.

A first problem in determining the appropriate "d"-dimensional vectors to

analyze is the choice of the 7, the delay parameter. Where there are, in fact,



-48-

attractors, the choice is fairly simple; choose r such that the auto-
correlations are zero, or more sophisticatedly, so that the mutual information
is minimized, Fraser(1986). In either case, the basic idea is the same, one
seeks on average an approximate orthogonal set of basis vectors so as to
provide the clearest representation of the attractor. When the data are from
an ARMA process, the achievement of "zero-autocorrelation" between the d-
tuples is even more important in that, if correlated vectors are used, false
conclusions about the presence of low dimensional attractors can be drawn.
Correlation dimension is usually estimated from experimental data by a
linear regression of the observed values of 1In Cz on ln r over a suitably
chosen sub-interval of the range of r, (0,1). The estimated slope coefficient
of this regression, designated hereafter as de, is the usual estimator of
correlation dimension cited in the literature and is the basic variable used
in this paper.
However, there are a number of important qualifications to this seemingly
simple procedure. First, an important practical issue involves the appropriate
choice of the scaling region r actually used to calculate dec. While the
theory discusses the properties of C, as r=0, the reality is that the range
of r wused is far from zero and inevitably increases away from zero as
embedding dimension is increased. Smaller values for r require substantial
increases in sample size at any given embedding dimension in order to be able
to determine a logarithmic linear relationship between C_, and r. In fact,
the relationship between 1InC, and Inr 1is only approximately linear over a
relatively narrow range of values for r. For large values of r, C,
saturates at unity so that the regression of InC, on Inr 1is zero.

Further, as the value of r declines towards zero even with very large data
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sets, two complications arise; one is due to the limited precision of the
data series and the other is due to the inevitable presence of noise. The
former problem sets a practical lower bound on r before C, collapses to
zero and the latter difficulty offsets the decline in values of C_ when r
reaches the level of the noise scales. Gonsequently, the negative slope of
InC. on 1lnr starts at zero, increases first at an increasing rate, then

r

may remain constant for a short range, before increasing again, and then falls

very sharply.
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Figure 9

Monthly M2 Data
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