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The Savage-Bayesian Foundations of Economic Dynamics
Yaw Nyarko

Abstract

In this paper I provide a framework general enough to study economic dynamics in a multi-agent
model where each agent has imperfect information both on the "fundamentals” of the economy (or
"game") and also imperfect information on the actions or strategies being used by other agents.
This paper generalizes the work of Ambruster and Boge (1979), Boge and Eisele (1979), Mertens
and Zamir (1985), and others in the following ways: (i) First, the emphasis of this paper will be on
dynamic models. (i) Like Harsanyi (1968), this paper will "go behind the veil” and model an ex
ante period before agents are "born” and realize their individual characteristics. Agents will be
assumed to have ex ante subjective beliefs, which do nof necessarily obey the common prior
assumption. (iii) The study of a dynamic model leads naturally to a new concept of ("versions” or
equivalence classes of) belief hierarchies over a random variable at some future date n conditional
on data observed by that date. (iv) 1 consider the basic space of uncertainty to be both the
fundamentals and the strategies of the agents. This allows for a unification of the literature (where
different underlying spaces are used) and also allows for a precise definition of the various notions
of a "type" used in the literature.
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1. Introduction

1.1. In this paper I provide a framework general enough to study economic dynamics in a multi-

agent model where each agent has imperfect information both on the "fundamentals” of the economy
{or "game") and also imperfect information on the actions or strategies being used by other agents.
The framework will be "Savage-Bayesian” in the sense that agents’ preferences obey the axioms of
Savage (1954). In particular agents form probability beliefs over all items they are uncertain about
and maximize their subjective expected utility. Imperfect information in multi-agent models gives
rise to belief-hierarchies of agents (i.e., an agent’s belief about the other agents’ beliefs, an agent’s
belief about the beliefs other agents have about the beliefs of other agents, etc.). Modelling such
multi-agent economies or games has been studied by many authors (e.g., Ambruster and Boge
(1979), Boge and Eisele (1979), Mertens and Zamir (1985), Tan and Werlang (1988), Brandenberger
and Dekel (1993) and Heifetz (1990)).

A principal motivation for this paper is that here, unlike the earlier-mentioned papers, I will
provide a framework rich encugh to handle the recent work on "learning” and on "Bayesian
learning” in particular (as for example in Townsend (1978), Feldman (1988), Jordan (1991), Kalai
and Lehrer (1991) and Nyarko (1991b, 1992 and 1993)). In particular, this paper deals with the
following four issues which, to the best of my knowledge, have not been addressed in the literature:
(i) First, the emphasis of this paper will be on dyramic models where at each date actions are taken
and agents make observations. The introduction of dynamics requires careful attention to probability

zero issues and the regularity of conditional probabilities. (ii) Like Harsanyi (1968), this paper will

"go behind the veil” and model an ex ante period before agents are "born" and realize their

individual characteristics. Agents will be assumed to have ex ante subjective beliefs, It will be



shown that these ex ante beliefs are in many ways without loss of generality. Their use however
allows us to get around many technical problems. Unlike Harsanyi (1968) however, I do not use
the common prior assumption (which is used with a great loss of generality -see Nyarko (1991a))!
I replace this with mutual absolute continuity assumptions on the ex ante beliefs of agents. (jii) The
study of a dynamic model leads naturally to the question of belief hierarchies over a random

variable at some future date n conditional on data observed by that date. These are defined in this

paper. I show that it is necessary to talk about equivalence classes of these hierarchies (just as we
have equivalence classes, or versions, of conditional probabilities). (iv) Some papers in the
literature consider the basic space of uncertainty to be the space of "fundamentals” like utility
parameters (as e.g., in Mertens and Zamir (1985)) while others consider it to be the space of actions.
Following Boge and Eisele (1979), I consider the basic space of uncertainty to be both the
fundamentals and the strategies of the agents. In defining notions of a "type” no distinction is made
in the literature as to the underlying space of uncertainty. The work of this paper is continued in
a sequel, Nyarko (1993b) where the construction of this paper is used. In that paper I distinguish
between various notions of a fype. For example, a "Savage-Bayesian” type is a belief hierarchy over
the fundamentals and actions. This is the notion of a type required in multi-agent decision theory.
" A second notion of a type is the "Harsanyi" type. This is the induced belief hierarchy over only the
fundamentals. Harsanyi types are required in the definition of a Harsanyi Bayesian Nash
equilibrium. The framework of this paper allows for a discussion of these two (and other) notions
of a type.

Like Brandenberger and Dekel (1993) and Heifetz (1990) our underlying spaces will not be
assumed to be compact. Instead we suppose they are complete and separable metric spaces. This

paper will use standard arguments and constructions of probability theory.



1.2. A Motivating Example. The following model of competitive firms facing an unknown

demand curve is studied in much greater detail in Nyarko (1991b):  Suppose that there is a set of
agents indexed by the unit interval I=[0,1] and uniformly distributed along that interval. (For
technical reasons suppose also that there are finitely many classes of agents within that interval with
all agents of the same class identical in all respects.) Fix any date n. At that date agent i must
choose an output level y,.. The aggregate output is then y, = § 'sy,di. The price of that output
is determined via a linear demand curve p, = a-8y, +¢,, where o and § are fixed parameters, "the
fundamentals,” and e, is the date n shock to the demand curve - a zero mean unocbserved random
variable. We supposeé that the parameter 8 of the demand curve is "common knowledge” among the
agents. However there is imperfect information over the parameter o.  The cost to firm i of
choosing the output y;, is c(y,)=0.5y.2 The profit of firm i is then py,-0.5y.’. Let E,, denote
the date n "expectations operator" of agent i. The profit maximizing output of firm i is then
Vi =E.p.=E.c-8E.y,. Notice that to choose an optimal action agent i must form a belief over both
the fundamentals, ¢, and the (aggregate} actions of other agents, y,.

Given any "random variable" x let G,x denote the "average opinion” of x, i.e., the average
of the date n expectations of agents over 3{, Gx= | JN(E,x)di. If agents do not know the beliefs of
others then in general there will be uncertainty over expressions like E, G x, agent i’s expectation
of the average opinion of x, and G,x, the average bpinion of the average opinion of x. Inductively,
we may defined G,x to be the r-times average opinion of the average opinion ... of x. Maximizing

behayior of firms (which we write as (MB)) implies the following:

(MB) Vi =E.,o-BE.,y, so by integration over i, y,=G,o-8G,y,.



If there is respectively 1-level knowledge of (MB) (i.e., if agents know that other agents engage in
(MB)); or 2-level knowledge of (MB) (i.e.,. if agents know that other agents know that other agents

engage in (MB)) or R-levels of knowledge of (MB) we obtain:

(1-level knowledge of (MB)): Yu=E a-fE,G,a+5E, Gy,

(2-level knowledge of (MB)): yin=Eha-ﬁEmGna+ﬁ2EinGn2a-ﬁ.3EinGn2yn.

(R-level knowledge of (MB)): Yo =L, FT B EW(G, o) + (-8Y B Gy (where Gla= o).
We suppose that the above decision-problem occurs at each date n=1,2,... . The goal of this paper

is to provide a probabilistic framework general enough to formally model all of the above, including
the expectations which, recall, are conditional upon the information agents observe by the beginning

of date n.

2. Some Terminology and Mathematical Preliminaries

2.1. 1 is the finite set of economic agents. Nature is agent 0, and is not a member of I. Given

any collection of sets {X;},s, we define X=II;X; and X;=II,_.X; unless otherwise stated; (given
X, and {X};g, we shall sometimes state that X;=XxIL . X)). Given any collection of functions
f:X; = Y; for iel, £:X; - Y is defined by fy(xy) = IL.f(x). The cartesian product of metric
spaces will always be endowed with the product topology. Let X be any metric space. P(X) denotes

the set of probability measures on X (with X endowed with its Borel o-algebra, generated by the



open sets of X). The set P(X) will be endowed with the weak topology of measures; (see
Billingsley (1968) for more on this). The following fact will be used repeatedly: If X is a complete
and separable metric space then so is P(X). (See, e.g., Parthasarathy Theorems 11.6.2 and 11.6.5.)
For ease of exposition, wherever the intent is obvious we shall assume, without mentioning this, that
generic sets and functions are Borel-measurable and generic conditional probabilities are fixed regular

versions; (see appendix A for definitions).

2.2. A Marginal! ® A Conditional = A Joint Probability. Let X and W be two

complete and separable metric spaces. Suppose we are given a ("marginal”) distribution, ¥', over
X; i.e., ¥eP(X). Let G:X - P(W) be any function mapping X into the set of probability measures
on W. Let G(.;x) denote the value of G at x (so G(.;x)eP(W)). Then each x defines a probability
G(.;x) on W ("conditional" on x). We may therefore "integrate” the conditionals with respect to the
marginal to obtain a joint distribution, ¥, over XxW. This joint probability, ¥, will have a
marginal over X equal to ¥’ and a conditional over W given x equal to G(.;x). We shall use the
notation ¥'&G or ¥'&G(.;x) to denote this joint probability and refer to it as the "product” of ¥’
and G(.;x). (For this "product” operation we will require the measurability of G(.;x) in x; in the
appendix this is shown to be equivalent to the requirement that G{.;x) be a regular conditional
probability.) In the lemma below we formalize this discussion and show that the "product” operation

is well-defined. The proof of this and all other results appear in the appendix.

Lemma 2.3. Let W, X, ¥’ and G be as above. For each (Borel-measurable) subset § € XxW,
define S, = {weW:(x,w)eS} and ¥(S)= § x G(S,;x)d¥’. Then

i. ¥ is a well-defined a probability measure over XxW;



ii. the marginal of ¥ on X is ¥'; i.e., for all (measurable) D' € X, ¥({xeD’'}) = ¥'(D’); and
ii. G(.:x) is a version of the conditional probability of ¥ given x; i.e., for all (measurable)
SCSXxW, if ¥(S | x) is any version of the conditional probability of S conditional on x then

¥(S | x)=G(S;x) for ¥’ almost every X.

3. Hierarchies of Beliefs and the Space B,(Y)

3.1. Recall that I is the set of agents and nature is referred to as agent 0 (not a member of I).

Suppose we are given a collection of complete and separable metric spaces Y, and {Y;};;. We shall
consider Y; to be the set pertaining to agent i; this will have the meaning that i "knows" its own
value of y,eY;. We consider Y, to be the parameters of "nature.” We proceed to construct the space
of hierarchies of beliefs over the spéce Y=YxIL,Y;. Construct the sets {B;}*._, inductively as

follows:

B! = P(Y) where Y, =YxIL,;Y;; (3.2)

and given {B/},, for some r=1, define

B! = P(B xY). 3.3

An element b,'eB;! represents agent i’s belief about y,; €Y; and shall be referred to as agent i’s first
order belief. An element b;%eB;? specifies agent i’s belief about the first order beliefs of others and
shall be referred to as agent i’s second order belief. An element beB is i’s r-th order belief and
it specifies agent i’s belief about the (r-1)-th order beliefs of other agents.

It should be clear that higher order beliefs of an agent should be related to the lower order



beliefs of the same agent by some kind of projection operation. For example, if b;! and b? are the

first and second order beliefs of the same agent then b;' should be the marginal distribution of b? on
Y. To express this relation we define the functions ¢;:B;*! - B; inductively as follows: For any
subset D & Y,

¢ (D) = b ({B'.xD}) for all bleB?; 3.4

i.e., ¢! is the operator that yields the marginal distribution on Y, from any joint distribution on

B,'xY; and given {¢;"'},, define ¢; by setting for any b/*' ¢ B/*! and any D < B;'xY,,

¢ D) = by DeBIXY 2 (6,7(b.7)y.) € D). 3.5)

The set of all possible belief hierarchies of agent i is then defined to be the set

B, = {(b.,b2,..)ell”,_B: bf= ¢;(bs*") for all r=1}. | 3.6)

We must stress that the set B, is defined by the underlying space of uncertainty Y. The property

in (3.6) that b= ¢;7(b;*") for all r =1 shall be called the probabilistic coherence property of belief

hierarchies. This requires that lower order beliefs be a "projection” of the higher order beliefs.

3.7. Remark. The construction above differs in one respect from that of Mertens and Zamir

(1985). An agent’s belief of any order is a belief about other agents and does not include a belief
about the agent herself. For example B'=P(Y_) as opposed to P(Y) and B2?=P(B,'xY ) as opposed

to say P(B'xY). In this regard the construction is the same as Myerson (1985).  This difference
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will be important later when we will need to specify beliefs of agents before they choose their own
strategies. We do not want to have the beliefs specifying strategies that have not yet been chosen!

One may be curious why we did not construct the types sets by defining B*'=P(B") as
opposed to P(B"xY_). The reason is that we seek to allow the i-th agent to have beliefs under which
various orders of beliefs of other agents are correlated. For example the i-th agent may think that
if y=y then other agents have first order beliefs E_i‘ while if y={ then the other agents have first
order beliefs b;!. The above construction allows for these correlations. One may also wonder
why we did not construct the r-th order belief to be the joint probability over all lower order beliefs.
In particular, one may ask why we did not define B/*'= P(Y,xB,' xB*x...xB.f). This is because
the r-th order belief determines all lower order beliefs via a relation similar to the equality in (3.6);

hence the inclusion of lower order beliefs is a redundancy.

3.8. An Interpretation of the Probabilistic Coherence property. We proceed to

show that a role of the probabilistic coherence property is the following: It ensures that for each
agent i, any given set D (of lower order beliefs of others) is assigned the same probability by any
two higher order beliefs of that agent. (This is very similar to the role played by the Kolmogorov
consistency conditions in defining an infinite dimensional probability from its finite dimensional
distributions.) So fix any two integers r and r’ with r<r'. Let ¢ be as in (3.5). For all iel, define
$.*:BF B/ to be the "projection” from the higher dimensional set B;" to the lower dimensional set

B/ as follows:

B/ 7(b7) = ${(GIH (SO, (3.9)

If b, =(b;',b?,...)ell*,_ B obeys the probabilistic coherence property then of course bf=&;""'(b;").



When r’=r+1 then & *=¢/. Fix any subset DEB;'xY ;. For p=0,1,2,.., define D** to be the

set D “uplifted by p coordinates” onto B;~'**xY ;; i.e., define

D** = {(b**,y)eB," **xY such that (&1 r1te(p M)y JeD} (3.10)

and D*®=D. Fix any b;=(b,!,b2,...) ¢ B;and DEB_'xY,. Then b;(D) is the probability assigned
by bf to the set D; and by(D*¢?) is the probability assigned by b;” to the set D after it has been
"uplifted” by r’-r coordinates onto B, 'xY; (so that it is on the appropriate domain). b;(D) and
br(D**9) are two ways of measuring the probability of the set D. If b and b;" are to represent
the beliefs of the same agent, these two ways of measuring the set D should be equal. The lemma

below shows if b,eB; (so that the probabilistic coherence property holds) then this is indeed the case.

Lemma 3.11. Fix any b;=(b;,b?,...) € B, any integers r=1 and p=1, and any DSB_“'xY...

Let D** be as in (3.10). Then b/(D)=b,/"*(D*").

4. The Mapping P;: B, - P(BxY)

4.1. Fix any element b,=(b,!,b?,...) €B,, We will now construct an "associated” probability Py(b,)
e P(B,xY.,) with the property that for each integer r, the marginal of Py(b) on B XY is equal to
b*!. Recall that by definition B is a subset of the infinite cartesian product II* _, B . Define
PROJ; .. B.xY,;— B/XY, to be the projection of the space B.xY; onto B;’xY ;. The inverse of the
projection mapping, (PROJ, )" D", is the "upliftment” of the subset D* & B XY to the infinite

cartesian product B xY ;. Fix any integer r and define the class A* of rcylinder subsets of B;xY

10



to be those which are "upliftments” of some subset of B;’xY ;; i.e.,

A'={DSB xY,;: D=(PROJI; )’ D’ for some (measurable) D'SB'xY_}.. (4.2)

For any such cylinder set DeA’ and any b,={b;',b?,...}¢B, define

P(b)(D) = b/*'((PROJ, , D}). @.3)

From the probabilistic coherence condition implicit in the definition of B;, and in particular from the
" *projection” result of Lemma 3.11 it is easy to check that for each beB;, Pi(b) in (4.3) is "well-
defined" over |J*,.-,A" in the following sense: if a set D lies in both A" and A" for any integers r
and r’ then the definition of P(b)(D) in (4.3) results in the same answer. The relation (4.3) defines
for each b,eB; a probability measure Pi(b)) on the set of cylinder sets, |J*,-;A", of BxY,. The
“well-definedness” property just mentioned (together with the probabilistic coherence condition)
implies what is referred to in standard probability texts as the "consistency condition". We may
thererfore apply a standard probability extension argument to show that the probability Pi(b,) extends
to a unique probability measure over all Borel subsets of B;xY ;. (See for example Parthasarathy
(1967), Theorem 4.2., p. 143).) Since cylinder sets are "convergence determining” it is easy to

check that the mapping P;:B~P(B_xY.) is confinuous.

4.4. Remark. Brandenberger and Dekel (1993) also construct the function Py(b) in a similar

manner to that above. Our formulation differs slightly from theirs in many of the ways discussed

in (3.7). For this reason and because this construction is so fundamental to our analysis we have

11



repeated parts of the argument here. Brandenberger and Dekel (1993) go on to show that the spaces
B, and P(B_xY ;) are homomorphic and discuss some common knowledge questions associated with

the construction.

5. The Economic Model

5.1. Time is discrete and has dates n=1,2,3,... . At each date n agent i chooses an action a,, in

an action space A;. Let z, e Z; denote the vector of all observations of agent i during the course of
date n. We assume that agents observe their own actions, so z; is a vector which includes a
specification of a;,. If all agents observe the same information then of course z,, = z;, for all i and
jin I. Since each z, itself may be a very large vector this formulation allows agents to observe
some common signals (e.g., market prices) as well as private signals. Just before choosing the date
n action a,eA,, agent i would have information on the date n partial history zM = {z,,...,204} €
ZN1. (z? is the null or empty history.) We suppose Z, and A, are complete and separable metric

spaces for all iel. Define

FiN = {fiN:ZiN-l - A.l Wll‘h fiN BorEI‘measurable}, F]' EHwN=1FiN and F EﬂidFi. (5.2)

A behavior strategy for agent i is any fieF,. We now require the following:

5.3. Assumption: For all i and N, the space of date N behavior strategies, Fyy, is endowed with

a metric which makes it a complete and separable metric space.

12



5.4. Remark. When working with "macro-economic” types of models like that of example 1.2,

one may show (and hence assume) that the optimal actions of agents lie in some pre-specified
compact set and are continuous functions of the history. In this case we may assume Fy is the
space of continuous functions endowed with the sup norm. In repeated games problems we may
assume the action space is finite in which case we may endow Fy with the topology of pointwise
convergence. In either case Fy will be a complete and separable metric space. We stress that
precise nature of the metric is unimportant. It is the fact that it is a metric space which is important.
At this stage all we need is enough structure to be able to talk about probability measures. Since
we will be performing integration exercises, and in particular the "integration” in (2.2), we require

the metric space to be complete and separable.

5.5. Attribute Vectors. We let 6 =0xI1, 0, denote the space of "fundamentals” or attribute

vectors of agents. 0,0, will denote nature’s attribute vector; this parameter will determine any
underlying randomness of the economy. 0,6, denotes the utility parameter or attribute vector of
agenti. Agenti’s utility or payoff function is some function ui:GoﬁeixFixF_i*R which depends upon
nature’s attribute vector, 6,, agent i’s attribute vector, 8, agent i’s strategy vector, f;, and the strategy
vector of the other agents, f;. It will be assumed that the functicnal forms of the utility functions
are common knowledge; however agents will have imperfect information over the attribute vectors
and the behavior strategies of other agents. ©; and O, for each iel are assumed to be complete and

separable metric spaces.

5.6. The Measure P_ (or the "laws of economics") Define I'=6,xF, the cartesian

product of nature’s attribute vector and the behavior strategies of agents, F=IL F,, We shall

13



suppose that sequence of observations and actions of the economy, {z.}"n=1 € Z™ has a probability
distribution P, which depends upon the true date O vector y=(0,{f;};0el'. We may without loss
of generality suppose that this probability distribution as a function of v is "common knowledge™
among the agents in the economy. Indeed, once we have specified ¥ we have specified all the
elements which could possibly affect the evolution of the economy over time: The vector of Nature’s
attributes 6, determines all exogenous uncertainty and random variables while f; determines the
behavior of agent i. Hence P, should be considered to be the "definition" of . If P, is not
"common knowledge” then we have not specified either the fundamentals or the strategies vectors
of agents appropriately. Although P, is common knowledge as a function of vy, the value of vy itself
will in general be unknown to agents within the economy. One may think of P, as the laws of
economics " since it is really the exogenously determined law of evolution of actions and observations
in the economy as a function of the date O value of veO,xF. We shall assume that P, is a regular
conditional probability on Z*. (Of course, by assuming that 6, includes a specification of the utility
parameters of gll agents, we may model the situation where agent i’s utility function and P, are
functions of agent j’s attribute vector (for some or all jeI), as in some formulations of adverse

selection models in economics).

6. The Beliefs of Agents

6.1. Savage-Bayesian Types. At date O there is imperfect information over space of attribute

vectors or "fundamentals,” ©=0xIL,0;, and over the space of behavior strategies, F=IIF;.
Agent i has imperfect information over the set O, xF; (where ©,=6,xIL.;0,). Let Q;” be agent

i’s space of belief hierarchies over ©OxF defined and constructed as in section 3.1. (In that

14



construction set Y,=0, and Y;=0O;xF; for all jel; what we refer to here as Q,” is the same as what
was referred to in that construction as B,.) Any q;”=(g;',q?,...)eQ; is a possible belief hierarchy
for agent i over OxF. At date 0 each agent i will be characterized by some attribute vector, 8,c0;,
and some belief hierarchy ¢,*eQ,”. We refer to the tuple q;=(6;,q,™) as agent i’s Savage-Bayesian
type and we define Q;=0xQ;” and Q=IL;Q;. An agent’s Savage-Bayesian type, q;=00,,9"),
contains all the information for that agent to engage in decision;making: preferences are specified

by 6; and beliefs specified by g;*.

6.2. Behavior Strategy Choice Rules and Expected Utility Maximization. We

L

define a behavior strategy choice rule to be any (measurable) function »," :Q~»P(F,;) which determines
agent i’s (possibly randomized) behavior strategy as a function of that agent’s Savage-Bayesian type,
q. Define Ufq,f) to be the expected utility function of agent i of Savage-Bayesian type
4,=(6;,9;',97,9°,...) obtained by integrating out the coordinates ©, and F; from the utility function

u; of (5.5) with respect to the measure g;':

Ul(qufn) = 5 GUXF_- ]-]‘i(eoyoisfisf-i)dqil- (6.3)

Conditional on any q; an expected utility maximizer will choose a behavior strategy f;* to maximize
the expression in (6.3). If there is more than one solution to this maximization problem the agent
could in general randomize over the set of maximizers. Expected utility maximization will therefore

under fairly general conditions result in a behavior strategy choice rule.

6.4. The State Space {). We define the state space to be the set =QxOxFxZ>. Any

15



0=({q}ia,00,{f.}i0,27)eQ specifies the Savage-Bayesian types of agents, {g;}ia, nature’s attribute
vector, 6,, the vector of agents’ behavior strategies, {f},;, and the sample path of actions and

observations, z¥eZ"™.

6.5. Agent i’s belief p;(.;q;) over ). We now assume the existence of a regular conditional

probability p,"(.;q) € P(F) which determines the (perhaps randomized) behavior strategy of agent
i conditional on any qeQ,. This could come from expected utility maximization as in (6.3).

Alternatively, it could be the resuit of some rule of thumb, for example. We however stress now
that in modelling our agent, we do not require expected utility maximization; we merely require the

existence of some behavior strategy choice rule u"(.;qy).

We proceed to model the belief of agent i with Savage-Bayesian type q;. Recall from section
4 that any hierarchy of beliefs, q,¢Q,”, induces a probability measure P,(q;*) over belief hierarchies
of others. In particular, P,(q,™) is a probability over the space Q,;*xO_xF;. Since Q;=06xQ;” and
0 =0,xI1;6;, the space Q,;”xOxF; is the same as Q;xOxF,, so we may consider Pi(q") a
probability over the latter space. Let 1;(g) be the probability measure over Q; which assigns
probability one to the given vector g;; consider this to be a "marginal” on Q;. #;"(.;4) is the strategy
choice rule of agent i; consider this to be a "conditional” over F; given any §,cQ;. The product (as
in (2.2)) of the marginal and the conditional, 1,(q)®u,”, is a joint probability over QxF,, We
suppose agent i knows her own Savage-Bayesian type and her behavior strategy choice rule, so this
joint probability represents that agent’s belief over QxF;. Now consider this probability as a
"marginal” probability over QxF,; and take the product (as in (2.2)) of this first with P,(.) (which,
recall, is the "conditional® probability function equal to P,(q;”), an element of (Q xO,xF.), for any

?q“i=(5i,aj°°)) and then with P, (which, recall, is an element of P(Z*) for any y={0,,f)). This results

16



in the following joint distribution over Q = QxOxFxZ™:
w30 = [[1(q)Ou"1OP,()IXP,. (6.6

The measure p(.;q) is the belief over the state space Q1 of the agent i with Savage-Bayesian type q;

that chooses behavior strategies according to the rule p;"(.;q). We now record the following:

Lemma 6.7. The mapping from Q, to P(Q) defined by (6.6) is Borel-measurable; or, equivalently,

p:(.;q) is a regular conditional probability.

7. "Behind the Veil" or the Ex Ante

7.1. In (6.6) we defined the belief, p.(.;q,) over Q of the agent i characterized by the vector g;.

Notice that this probability, although a function of q;, is not a conditional probability in the usual
sense (since we have not defined a joint probability with respect to which the conditioning takes
place). On the contrary p(.;q,) is a probability on @ which happens to assign probability one to the

given ¢; of Q. Hence we use the semi-colon, ";" , as opposed to the bar,

" | ", when writing
p(-;q). At this stage we may consider the primitives of the model to be made up of the economic
primitives of section 5, <I,A,Z*,0,P,> (from which Q, is constructed) and the behavior strategy
choice rules {§1,"(. | @)},q- Notice from (6.6) that the measure u(.;q;) is constructed from, and is
uniguely defined by, these primitives.

We now go "behind the veil” to an "ex ante” period. We think of this as the period before

any agent i "observes” her Savage-Bayesian type q;. We shall posit the existence of some ex ante

17



belief in this "behind the veil” period. The interpretation will be that at date 0 agents will be "born”
and will observe their Savage-Bayesian type, q;. Agent i’s ex post belief, after realization of ¢;, will
be her ex ante probability conditional upon that realization. The ex post beliefs will be required to
respect the fact that g uniquely defines agent i’s belief over Q as constructed in (6.6). Formally, we

have the following:

7.2. An Ex Ante Subjective Belief, p;(.), for agent i is any g, e P() such that

pl. | @) = pl;q)  for prae. g, ' (7.3)
where the left-hand-side of (7.3) is (any version of) the probability u; conditional on g; and the right-
hand-side is the measure defined in (6.6). A probability u € P(Q) is a common prior for the agents
if for all icl, u is an ex ante subjective belief for agent i. By abuse of notation we shall often say
the common prior assumption (CPA) holds when we really mean to say that we have a common prior

i for the agents.

7.4. Example.

QG =(0" Q) Q"= (8" .T5 )
qA*=(0A*,qA*Q) 1/3, 0.4 2/3, 0.4
qA**= (GA**'qA**n) 1/4, 0.6 3/4, 0.6

There are two agents A and B. Agent A (resp. B) can have utility parameter 6,* or 8,** (resp. 6’
or 63"). Agent A’s belief about B depends upon A’s realized utility parameter: When A has utility

parameter 8,* (resp. 8,**), A assigns probabilities 1/3 and 2/3 (resp. 1/4 and 3/4) to the event that
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B’s utility parameter is ;' or 8”. Regardless of B’s utility parameter, B has the same belief about
A: Agent B assigns probability 0.4 (resp. 0.6) to agent A having utility parameter 6,* (resp. 8,%%).
Suppose that the belief of each agent given her utility parameter is common knowledge. Suppose
also that there are no parameters of nature and no strategies to choose (or alternatively that there is
only one possible value of these items and that value is "common knowledge”). The only relevant
orders of beliefs are therefore the first order beliefs of A and B about each other’s utility parameters.
(All higher order beliefs will be obtained from the common knowledge assumptions we just made.)
Let g,”* and g,”** be agent A’s belief hierarchy when A has utility parameter 6,* and 8,**,
respectively; hence A has two possible Savage-Bayesian types q,*=(0,%,9,"**) and
Qu*¥* =(0,**,9,”**). Regardless of Agent B’s utility parameter, B’s belief hierarchy will be the
same, and we denote this by qz=; hence, Agent B has two possible Savage-Bayesian types,
g’ =(05',g5™) and " =(6z",qz™). There are therefore only four possible states of the world
represented by Q={w,,um,w,0,} where w,=(q*,q5"), ®:=(q.*,qs"), ws=(q**,qz") and
ws=(q4**,45").

Let M .e(0,1) (respectively Ape(0,1)) denote the ex ante probability that agent A’s (resp. B’s)

Savage-Bayesian type is q,* (resp. qg'). Then the ex ante beliefs over the state space, u, and ug

resp., will be given by the matrices below:

A’s ex ante belief B’s ex ante Belief

g’ ag" g’ ag”
qA* )\A/B 2)\A/3 qA* 0.4)&B 0.4 (1—)\B)
qA** (1—)\A)/4 3(1-)\A)/4 qA** O.GP\B 0.6(1—)\3)

In particular the probabilities assigned to the states {,,w,,w;,w,} by agents A and B are respectively

{AA/3,20,73,(1-0)/4,3(1-A)/4} and §0.4)5,0.4(1-)5),0.6A5,0.6(1-Ap)} .
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7.5. An Ex Ante Belief for i is not necessarily an Ex Ante Belief for j=i. To

see this consider the previous example. Fix any Aze(0,1) and let py denote the ex ante belief for
agent B in that example. Then the conditional probabilities of ug given any realization of agent A’s
Savage-Bayesian type will be given by pp({gs'} | aa®)=2z and px({qz'} | 9a**)=As. However
agent A conditional on her Savage-Bayesian type assigns the event {qz=qy’} the probability 1/3 or
1/4 according to as her Savage-Bayesian type q,* or q,** respectively; i.e., using the notation of
(6.6), pa{r=0aa'};:0a*)=1/3 and p ({Ge=0s'};04**)=1/4.  So for p; to be an ex ante subjective
belief for agent A we must have Az;=1/3 and N\;=1/4, which is impossible. Hence pjy is not an ex

ante subjective belief for agent A.

7.6. Common Priors with given Support Need Not Exist. Consider again example

7.4. If p is a common prior with support equal to the set @ of that example then g must be an ex
ante subjective belief for B so must equal the probability up constructed in that example for some
Ape(0,1). However we showed in (7.5) that any such py is rof an ex ante subjective belief for A.

Hence there does not exist a common prior with support equal to the set  of example 7.4!

7.7. Ex Ante Subjective Beliefs are Without Loss of Generality. There is a sense

in which going to the ex ante is without loss of generality. Agent i, when making decisions will

already have knowledge of her Savage-Bayesian type, q;. All decisions she makes will be conditional
on this information. Whatever is her ex ante belief, this conditional will be the same by assumption,
and in particular will be given by (7.3). Further, agent i’s belief about j i is specified by q;; after

realizing her Savage-Bayesian type q;, agent i therefore does not really "care” what ex ante belief
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agent j is using.

Ex ante subjective beliefs with any given support on the set Q, of Savage-Bayesian types of
agent i will always exist. Indeed, fix any measure u(.) over Q.. Let u(.;q) be agent i’s ex post
belief as in (6.6). Then we may define g; to be the measure over © with marginal over Q, equal
to u; and with conditional given g; equal to pi(.;qi). (Formally, define for each q,eQ;, uy(.;q) to be
the marginal of the measure p(.;q;) of (6.6) over the elements of the state space excluding Q;; i.e.,
over QxOxFxZ*. From lemma 6.7 this is measurable in q; use (2.2) aﬁd define uy.)=
#(.)®u(.;q). This measure p; will have support over Q, equal to that of z,.) Hence we see that in
choosing an ex ante belief for agent i we, the "modeler,” have a large number of choices!

One may ask: if going to the ex ante is without much loss of generality, why do we go to
the ex ante? There are two reasons. First, by going to the ex ante we have a way of comparing the
beliefs of one agent with those of another. For example, the common prior assumption sets the ex
ante beliefs of the agents equal to each other. In the next section we shall pursue a weaker version
of the common prior assumption (which we will refer to as condition (GH)). Such conditions give
us a language within which to say that some properties are true "almost always” when they may not
be true "always.” For economists the "almost always" statement may be good enough. The very
simple example below makes this (perhaps very trivial point) clear. The second reason we use the
ex ante beliefs is that it spares us a lot of potential technical problems relating to "measurability" of

certain operations and "versions” of conditional probabilities, as for example in section 9 below.

7.8. Example: "For All" versus "For Almost All". There are two agents A and B.

Agent B’s utility parameter 6; is an element of O =[0,1] which is chosen uniformly from that set.

A coin is tossed independently infinitely many times with the probability of HEADS or TAILS equal
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to 6 or 1-0; respectively. Agent A’s utility parameter, 8,, is the outcome of the infinite coin toss.
Agent A does not observe 3. If we suppose that the above facts are common knowledge (and
further that there are no types of nature or strategies to worry about) then an agent’s Savage-
Bayesian type may be identified with that agent’s utility parameter. We may then construct a fairly
trivial state space (essentially equal to 2= eAxeB), and we will obtain a common ex ante belief over
{1 for the agents which we denote by u.

Suppose we are interested in the following “guestion” for some reason: "Can agent A infer
B’s utility parameter from A’s realized utility parameter?” Well, agent A will estimate 63 by
computing the long-run average occurrence of HEADS in her realized utility parameter 6,. From
the strong law of large numbers this long-run average will equal #; with p-probability one. There
are of course many (actually uncountably many) sequences of HEADS and TAILS for which this is
not the case. Hence we may answer our "question” in the affirmative with u-probability one and not

for all values of the utility or Savage-Bayesian types of the agents.

8. The Outside Observer and Condition (GH)

8.1. We shall say that the collection of subjective ex ante beliefs of agents, {u};;, obeys condition

{GH) if y; and y; are mutually absolutely continuous vi,jel; i.e., if vi,jel and v measurable DESQ,
#i(D)>0 if and only if u;(D)>0. Condition (GH) requires that agents agree ex ante about the
events which have zero probability. Condition (GH) does nrot require the ex post probabilities,
#(. | q) and p(. | g;), to be mutually absolutely continuous. It should be clear that if p;=p for all
i so that p is a common prior then condition (GH) holds. Condition (GH) is therefore weaker than

the common prior assumption. We therefore name this "condition (GH)" for "Generalized
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Harsanyi" common prior condition.

As a convenience in stating results and theorems it is often useful to posit the existence of
an "outside observer” with an ex ante belief u* over {1. The measure u* may be interpreted to be
the "true” ex ante distribution of the economy if (i) we interpret its marginal on Qx0, to be the
"true” ex ante distribution of the types of agents and nature (whatever that means); if (i) u* is
obtained from knowledge of the behavior strategy choice rules of agents, {u™(. | q)};q and if (iii)
p* is obtained from knowledge of the measure P, of (5.6) which determines the distribution over Z*
as a function of y=(8,,)eO,xF. Alternatively, this same measure could be the ex ante belief of an
outside observer (say the economist) whose belief about the vector of Savage-Bayesian types is equal
to the marginal of p* over Qx0, and who knows the items (ii) and (iii) above. When condition (GH)
holds it is natural to insist that x* be a measure which is mutually absolutely to each of the ex ante

subjective beliefs of agents,

9. Date n Belief hierarchies over a Variable, £

9.1. Fix any random variable §={£,,{}.,} on @ taking values in some complete and separable

metric space E=ExIL,Z;. We shall think of E; as the space of those coordinates of & pertaining
to agent i. In particular we shall think of agent i as having perfect knowledge of the value of £, at
each w. (If there is no such variable for agent i merely set &; equal to a singleton, and assume it
is common knowledge.) Now, for the given space E and the set of agents I, the space of
hierarchies of beliefs over Z can be constructed as in section 3. In particular, if we set Y; and Y,
in section 3 equal to £, and &, of this section, we obtain hierarchies of beliefs which was referred

to in section 3 as {B/}*,_, and B;. We shall for reasons of exposition denote the space of date n
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hierarchies of beliefs of agent i over & as {B,'}™,., and B,; (we should really write this as
{B."(E)}*.-, and B, (%) to emphasize the dependence on E)!

Fix any date n. We shall use the terminology "at (w,n)" to mean "at the beginning of date
n in the state of the world weQ". We proceed to identify for each agent i the hierarchy of beliefs
b, (w) € By, over the random variable £ at (w,n). This hierarchy of beliefs will specify agent i’s belief
about £ at (w,n); agent i’s belief at (w,n) about the beliefs of others about £ at (w,n); agent i’s belief
at (w,n) about the beliefs at (w,n) about beliefs over £ at (w,n); etc. In the example of section 1.2
observe that at each date n agent i chooses an action y,, which is a function of that agent’s date n
belief hierarchy over a, the intercept of the demand curve (which is nature’s attribute vector).

Define

$o=0({q}) and S,=0({q;,z™"}) for n=1, 9.2)

the g-algebras on  induced by the indicated variables. At the beginning of any date n=0,1,2,...
agent i would have observed the vector of variables defining &,,. In (9.2) we define z° to be the
chosen behavior strategy, f;, of agent i. Since we allow agent i to randomize over her choice of
behavior strategies we allow the agent to observe the outcome of that randomization at the beginning
of date 1.

Suppose we wanted to construct belief hierarchies over £: how might we proceed? Well, fix
any collection of ex ante subjective beliefs {u;}.s. Let pi(. | ) denote any fixed regular version
of the conditional probability of p; given 3, and let u(. | $,)(w) denote its value at w. Let b, '(w)
€ P(Z) denote the distribution of £ ; induced by the conditional probability (. | $w)(w); in particular
by, '(w) is defined by

bu' (@YD) = pi{£.eD} | $)(w) for any (measurable) DEE.,. 9.3
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Eq. (9.3) defines a random variable b, :0-+B,'. We may wish to consider b, '(w) to be the first
order belief of agent i at (w,n) over the parameter £e. Let us proceed by induction. Suppose that
for all jel we have defined the r-th order belief of each agent j, b,":0— P(B.,"'xE.) at each wefl.

Define b;,"*'(w) to be the probability distribution over the random variables (b,,",£.) induced by the

conditional probability p(. | $,)(w); in particular b,"*'(w) is defined by setting for each DEB X%,

b (@D)=p(D' | ¥uX@) where D’ ={w'eQ:(b.,,'(w"), {(w"))eD}. 9.4)

By induction we obtain at a sequence b;(w) = {b,,"(w)}~,_,, for each iel at each we?. We would like
to refer to b, (w) as agent i’s belief hierarchy over ¢ at (w,n).

However there are two problems with the construction in (9.3) and (9.4). First, implicit in
its definition is the assumption that the ex ante subjective beliefs {u;};, are "common knowledge. "
For example in (9.4) the r+1 th order belief of agent i assumes knowledge of the random variable
b;" which was constructed using the ex ante belief »;. Since ex ante beliefs are arbitrary there is no
reason to impose such an assumption. There is a second problem with the definition. The

definitions are determined by the versions of the conditional probabilities used. The construction

therefore also assumes that these versions are "common knowledge. " Again, since the versions are
arbitrary there is no reason to assume they are common knowledge. We will now define
“equivalence classes” of the beliefs over £ to overcome these problems.

Fix any measure p* ¢P(Q). We proceed to construct a p*-equivalence class of hierarchies
of beliefs over £. In particular in all of the following definitions we consider p* as fixed: Define
Ci(4*) to be the set of ex ante subjective beliefs of agent i which are mutually absolutely continuous

with respect to u*. Then define
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B ={byu":0-B,' | (i) b,'is ¥,-measurable and (ii) for some fixed regular version u{. | ¥ of

some ex ante subjective belief for agent i, ueC{u*), b,'(w) is as defined in (9.3) for p*-a.e. w}.

Any b, 'e3,! will be referred to as a regular version of the date n first order belief over ¢ of agent
i.  We proceed inductively. Suppose that for some r =1 we have defined the p*-equivalence class

Sjn of r-th order beliefs for each jel. Let 3 ,=IL_;3." Then we define

Bt ={b,": =B, | ()b, is §,-measurable and (ii) for some fixed regular version (. | $;)
of some ex ante subjective belief for agent i, u,eCi(u*), and for some b.;ell;; 3., by, " '(w) is as

defined in (9.4) for p*-a.e. w}.

Finally, we define 3, =II",_,3,", the p*-equivalence class of date n hierarchies of beliefs over ¢ of
agent i. If we assume that the measure p* is mutually absolutely continuous with respect to some
ex ante beliefs {u*},; of agents, then by using these measures (and any fixed versions of the
conditionals given ;) in (9.3) and (9.4) we see that the equivalence classes {3,%>,-, will all be

non-empty in that case. We now have:

Lemma 9.5. (Uniqueness). If b, and b, are any two elements of 3, then b, =b. u*-a.c.

Lemma 9.6. (Coherence) Fix any b,e3,. Then for u*-a.e. , b (w) €B,, where, recall,

B;, is the set of belief hierarchies over Z for agent i which obey the probabilistic coherence property

of (3.6).
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9.7. Another kind of Coherence. There is another sense in which "coherence” may be

desired. Fix any b,e8,. There are two ways to compute agent i’s belief at w about the belief
hierarchies of other agents. First, agent i’s belief hierarchy at w, by(w), induces a probability
distribution over the belief hierarchies of others via the measure Py(b,(w)) of section 4.
Alternatively, since agent i knows the (equivalence class of) belief hierarchies of other agents, b (w),
as a function of tﬁe state w, agent i’s belief over the belief hierarchies of others may be obtained by
"integrating” b_(w) over o with respect to i’s ex ante subjective belief ui(.A | $,) conditional on $,:
in particular, the probability agent i assigns to the belief hierarchies of others lying in some set D
is p({w'eQd such that b (w")eD} | $,). (From lemma 9.5 this latter operation is with u*-probability
one, independent of the ex ante probability u; and the version of b €3,.) We may require that
these two methods of obtaining agent i’s beliefs about the belief hierarchies of other be the same.
Well the two methods are indeed the same! From the definition in (4.3), the marginal of P(b, («))
on B;xZ; is b, '(w). By the definition in (9.4) this is the same as the distribution induced by
(. | Sy over the random variable (b,,(w),£ (w)). Since probability measures are determined by

their values on their (finite-dimensional) coordinates, we obtain the required equivalence.

9.8. The Role of the Ex Ante Subjective Beliefs and Condition (GH). The critical

role of the ex ante beliefs and condition (GH) in the above constructions should be obvious. Without
the ex ante subjective beliefs it is difficult to even state condition (GH). Attempting to define

conditional probabilities without the ex ante subjective beliefs (e.g., via conditioning with respect

to the measure p(.;q;) of (6.5)) would result in serious "measurability” headaches.
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10. Concluding Remarks

I have provided a framework for studying multi-agent models where there is imperfect information
over both the characteristics and the strategies of other agenfs. In particular, this framework can
handle the example of section 1.2. This framework provides a formal mathematical formulation for
the original model of incomplete information of Harsanyi (1968).

In the formulation of this paper, modelling the decision-making of agents is stressed. The
environment is very "Savage-Bayesian." Hence in many ways this paper is a formalization of
Aumann (1987). The work of this paper is continued in a sequel. In Nyarko (1993b) the framework
of this paper is used. Various notions of a "type" are introduced there, which are then used to
discuss the concept of a Bayesian Nash equilibrium . The sequel also discusses the issues raised

in Aumann (1987) on correlated equilibria, using the framework of this paper.

11. Appendix A: Regular Conditional Probabilities

11.1. Let X and W be complete and separable metric spaces. Let G:X - P(W) be any function

mapping X into the set of probability measures on W. Let G(.;x)éP(W) denote the value of G at
x. We shall say that G is a regular conditional probability if for all measurable subsets D & W,
G(D;x) is a measurable (real-valued) function of x. (We refer to this as a conditional probability
because we may consider G(.;x)eP(W) to be the probability distribution on W "given" or
"conditional” on x.) Notice that the measurability in the definition of regularity here is that of the
real-valued function G(D;x) which maps X into [0,1]. We often will seek the measurability of the
function G:X - P(W); this by definition will require that for each Borel subset C of P(W),

G(C) = {xeX:G(.;x)eC} is a Borel-measurable subset of X. We now show the following:
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Lemma 11.2. Let X, W, G be as above. G is a regular conditional probability if and only if

the function G:X - P(W) is Borel-measurable.
Proof of Lemma 11.2: Let D be any closed subset of W. Fix any v* in P(W) and fix any real

number €>0. Define N(D,e)(v*)={v in P(W): v(D)<v*(D)+e¢}. A neighborhood for v* in the
weak topology is a set of the form N*,_ N(D,,e )*) where {D,}¥,_, is a finite collection of closed
subsets of W and ¢, >0 for all k=1,..., K. (See e.g., Billingsley (1968, p. 236).) Since P(W) is
separable, the Borel subsets of P(W) are generated by sets of the form N¥__,N(D,,¢)(v*) but for
a countable number of v* in (W). It should be clear that if G'(C_) is a measurable subset of X
for a countable class of sets C,SP(W), then G(N,C,) is also a measurable subset of X. Hence
for G:X—-P(W) to be measurable it sufficient (and obviously also necessary) that G(C) is a
Borel-measurable subset of X for each subset CSP(W) of the form N(D,e)(v*) defined above for
fixed D, € and v*. However, G'(N(D,e)(v*))={x in X: G(D;x) <\ where A=v¥*(D)+¢}. For any
number A, the regularity of G is a necessary and sufficient condition for the set {x in X:G(D;x) <A}
to be measurable in X.  Hence a necessary and sufficient condition for G:X - P(W) to be

measurable is that G be regular. J

11.3. Remark. In the above it should be clear that we could instead endow X with any sub-g-

algebra, 3', of its Borel o-algebra. In particular, by trivial modifications of the above proof we
may show the following for such §&’: G is §’'-regular (i.e., G(D;x) is &'-measurable in x for all

measurable D S W) if and only if G:X—P(W) is 3’-measurable.

11.4. Remark. Let G:X-P(W) be as above, and in particular suppose it is Borel-measurable.
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Let h:W-=R be any uniformly bounded measurable real-valued function. Then from lemma 11.2 it
should be easy to verify that by approximating h by simple functions the integral, § h(w)G(dw;x),

of h with respect to G(.;x) is Borel-measurable in x.

11.5. Fix any collection of metric spaces {W,}¥,_, and let W =1II¥,_,W, be the Cartesian product,
with K< co, Let § be any class of subsets of W. The class € is said to be a d-system (or Dynkin
system) if 4)) @ is closed under complementation (i.e., D ¢ @ implies W - D € §);

(Il D,,D, e @ and D, =D, implies that D, - D, ¢ §; and

am  {D*}*,_; & € and D*=D™*! for all m implies that | J*,..D™ ¢ G.
Given any class € of subsets of W, let (@) denote the smallest g-algebra that contains €, and let

d(€) denote the smallest d-system that contains §. Define

R = {SSW: S=II¥_,S, for some Borel-measurable subsets §, W, vk}. (11.6)

R is the class of measurable rectangles of the product space W. The Borel g-algebra on W is equal

to o(!R). We now have the following:

Lemma 11.7. Let £ be a class of Borel subsets of W. Suppose also that &£ is a d-system that

contains all the measurable rectangles (i.e., RS X£). Then ¥ is equal to the class of Borel subsets
on W.

Proof of Lemma 11.7. By assumption &£ a class of Borel subsets so £S o(R). A w-system
of subsets of W is one which is closed under the formation of finite intersections. It should be clear
that | is a w-system. It is well-known that if 3 is a x-system then o(8)=d(R); (this is sometimes
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called the m-A theorem - see e.g., Cohn (1980), Theorem 1.6.1). Hence o(R)=d(R). By
assumption W< £, so d(R)<d(£). Further, since & is by assumption a d-system, d(£)=2£. In
summary we have shown that £ < o(R)=d(R)=d(£)=2F£. This implies that £=0(R), so proves

the claim. ||

11.8. Let X, W, and W, be any complete and separable metric spaces. Let G:X-P(W,),
G":W~»P(W,) be any two Borel-measurable mappings on the indicated spaces. Let G(.;x) and
G'(.;wy) denote the values taken by G and G’ at any xeX and w,eW, respectively.  Define
G": X-P(W,xW,) as follows: at each xeX the value of G” at x is G"(.;x) =G'(.;x)®G(.;w,), the
probability measure over W xW, with a marginal over W, equal to G’(.;x) and with a distribution
over W, conditional on any w;eW, equal to G'(.;w;). (Lemma 2.3 discusses this @ operation and

uses 11.7 above to show that this is indeed well-defined.) We have the following:

Lemma 11.9. G”:X->P(W,xW.,) is Borel-measurable.

Proof of lemma 11.9: From Lemma 11.2 it suffices to show that for each measurable subset

D<=W;xW,, G"(D;x) is a Borel-measurable function of x. Define £ = {measurable D< W xW, |
G"(D;x) is a Borel-measurable function of x}. Suppose that D=D,xD, for some measurable subsets
D, =W, and D,€W,. Then

G"(D;x)= I{wleDl}G'(Dz;wl)dG(-;X) (11.10)

where the integration above is over W, with respect to the measure G(.;x). Now, G'(D;w,) is by
assumption measurable in w;. Hence from remark 11.4 the integral in (11.10) will be measurable

in x. Hence we see that £ contains all measurable rectangles of the form D=D,xD,. From lemma
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11.7 it therefore remains only to show that & is d-system. However this is easily verified. |

12. Appendix B: The Proofs

Proof of Lemma 2.3: Let W, X, G, S and S, be as in Lemma 2.3, We begin with:

Claim 2.3.1. (a) For all xeX, S, is a measurabie subset of W; and (b) the function h:X—[0,1]
defined by h(x)=G.(S)) is Borel-measurable.

Proof of Claim 2.3.1: (a) Fix any xeX and define v:W—-XxW by v(w)=(x,w)}. The function v is
clearly continuous hence is measurable, Since S,=v'(S), S, is therefore measurable subset of W.
(b} Define £ = {measurable SSXxW: G,(S,) is a measurable function of x}. It is very easy to
check that £ is a d-system. Hence from lemma 11.7 it suffices to show that & contains all
measurable rectangles in XxW. Fix such a measurable rectangle S=AxB, with ASX and BEW.
Let 1., denote the indicator function which is equal to one if xeA and equal to 0 otherwise.
Then G,(S,) =1(y.4;.G,(B). Both 1.y and G,(B) are measurabie real-valued functions of x. Hence

50 is G(S,). Hence Se. |}

Proof of Lemma 2.3 (Cont’d): Part (a) of claim 2.3.1 above implies that for each xeX,

G,(S,) is well-defined. Part (b) of the claim implies that the integral, { G(S)d¥’ is well-defined.
It is easy to check that ¥(S)= { G.(S,)d¥’ is a probability measure over (Borel-measurable) subsets
S of XxW. This proves part (i) of the lemma. Parts (ii) and (iii) of the lemma follow almost

immediately from the definition ¥(S)= § G,(S)d¥’. |
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Proof of Lemma 3.11: Letr, p and D be as in the lemma. Under the probabilistic coherence

property, we may re-write the conclusion of the lemma as

& (b ) (D) =b+*(D*?). (3.117

We will prove (3.11') by induction on p. When p=1, [ -=¢5 (3.11") is then the definition
¢, Next suppose that (3.11’) holds for some p=1,2,... . Then from the definition of &7 7*+!
we have & 1B PHIND)=@, ** (¢S (b1 ))(D); this latter term is, from the probabilistic
coherence property, equal to ;7 **(b;+*)(D); from the induction hypothesis (i.e., (3.11") for p), this
is equal to b/*”(D*); from the probabilistic coherence property this is, in turn, equal to
¢ (b }(D*#); which, from the definition of ¢;**, can be shown to be equal to b,/ ***{D*¢+D)_
Combining all our arguments results in &;- " **i(b s+ (D)=b**+(D*¢*V), This is (3.11') for

po+1. Hence (3.11") is true for all p=1,2,... |}

Proof of Lemma 6.7.: This follows immediately from repeated use of lemma 11.9. Indeed,

suppose that in lemma 11.9 we set X=Q;, W,=Q,, W,=F,, and also set G(.;x) equal to the measure
which assigns probability one to the indicated x and set G'(.;w,) equal to g;"(.;q;) for w,=q;. Then
we may conclude that the measure g,'(.;q) =[1,(q)®y,"] over QxF, is Borel-measurable in q;. Next,
set X=Q;, W,=QxF;, W,=QxO,xF.;, G(.;x)=p,'(.;q) for x=q; and G'(.;w,) equal to Py(§;™) for
any w,;=(0,§™),}). Then we may conclude that the measure p(.;q)=p(.;q)®P(.)
=[[1(q)®u;"1®P,(.)] over QxB,xF is Borel-measurable in g;. One more use of lemma 11.9 (with

G’ defined via P,) proves the lemma. ]
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Proof of Lemma 9.5. It suffices to show that for each r and for any b,* and b,* in 3.7,

b, =b,’ p*-a.e. This can be proved by induction on r from the definitions of the sets S and the
claim below:

Claim 9.5.1. Let g and j, be any two ex ante subjective beliefs of agent i and suppose that they
are mutually absolutely continuous with respect to some measure p*eP(2). Let u(. | §,) and
af. | ¥n) denote any fixed regular versions of the conditionals of y; and ji; given &,. Let x and
X be any two random variables on { taking values in some complete and separable metric space X,
and suppose that x=% u*-a.e. Then () p,(. | ¥ = & | ) #*-a.e., and (i) the distribution over
x induced by p(. | F)(w) is equal to the distribution over % induced by fi(. | FHw) for p*-a.e. w;
(i.e., for p*-a.e. @, p({xeD} | FHw)=A({ReD} | $)(w) for all measurable DEX).

Proof of Claim 9.5.1. (i) From the definition (see (7.2)) of an ex ante subjective belief the
conditionals of u; and j; given q; will be equal, p*-a.e. It is easily verified that this in turn implies
that (. | {quz™'D=p(. | {q;.2"'}) p*-a.e. Since §,=0({q;,z>'}), this proves part (i) the claim.

(i) This follows immediately from part (). [

Proof of Lemma 9.6: Fix any iel. Let b,={b,}*,_,e3.. We seek to show that for all r=1
and for all b,"" €3, and by'e3,", ¢ (b, '(0))=b,"(«2) for u*-a.e. . We shall prove this by
induction on r. Fix any b;,,’e3,” and b;'e3,'. From the definition of the equivalence class 3.2,
b;,’(w) is the distribution of the random variables (b';,,£.) for some b' ,e3'.. induced by some version
i{. | $)(w) of the conditional probability of some f,C(u*). Hence from the definition of ¢, in
(3.4), ¢;(by’(w)) is the distribution of £, induced by (. | 3 w). By definition of 3!, b, '(w) is
also a distribution of £,, but is the distribution induced by some version of the conditional

probability, (. | $4), of some possibly different p,eCy(p*). Claim 9.5.1(i) therefore implies that
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&' (b {w)=b,'(w) u*-a.e.  Next, suppose that we have shown for some r =2 that Vjel, vb,'e3,
and vb, €3,

8 (0 (@) =b,," () p*-a.e. ©.6.1)

By definition of 3!, b,""!(w) is the distribution of the random variables (6,,,£ ) for some b* e3" .
induced by some version j(. | $,)(w) of the conditional probability of some fi,eC{u*). Hence, from
the definition of the operator ¢, ¢ (b, '(w)) is the distribution of the random variables
(qb_i"l(ﬁ'_in),é_i) induced by j(. | $)(w). On the other hand, by definition of ., b, (w) is the
distribution of the pair of (E,-,,"HE_D for some 5_,-,1"163_;‘ induced by some version p(. | $) of the
conditional probability of some u,eC,(u*). From the induction hypothesis ¢_i"1(5'_h)=l;_,-n"1 n*-a.e,

Hence claim 9.5.1(b) implies that ¢;"(b,""(w))=b,(w) p*-a.e. This is the induction step (9.6.1)

for r+1. By induction this is true for all r=1. |
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