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1 Introduction

A standard assumption in the economic modelling of human behavior is that people have
independent preferences. Given a choice between two income distributions, they will prefer
that in which their own income is higher, regardless of their rank or relative standing in
the two distributions. Changes in the incomes of others, provided that their own material
circumstances remain unchanged, leave them neither better nor worse off, and they are
consequently unwilling to sacrifice any portion of their own material well-being in order to
enhance or to diminish the well being of others.

The standard methodological defence of independent preferences is made on evolutionary
grounds: units which maximize their own payoffs will prosper and thrive, while those that
do not will be outperformed and driven to eventual extinction (Friedman, 1953). This
evolutionary argument is compelling in the context of perfectly competitive environments, in
which individual units are powerless to affect the payoffs of other units. However, in strategic
settings in which a finite group of individuals interact, the evolutionary argument is by no
means self-evident. It is at least conceivable that in some strategic environments, individuals
who care about their relative standing as well as their absolute payoff (that is, agents with
interdependent preferences) will have an advantage over those who are concerned exclusively
with their own payoff. This advantage can then translate, somewhat paradoxically, into
higher equilibrium absolute payoffs for those who are not absolute payoff maximizers. Qur
purpose in the present paper is to identify environments of economic importance that give
rise to this phenomenon. We find that in a variety of commonly studied settings including
common pool resource extraction and public good games, payoff maximizers earn strictly
lower equilibrium payoffs than do players with interdependent preferences. We argue that
this disparity in equilibrium payoffs has far-reaching implications for the theory of preference
formation.

There are two quite distinct strands in the existing literature on endogenous preferences.
The evolutionary approach views preference formation as the unplanned outcome of genetic
and/or cultural transmission mechanisms. Transmission may be ‘vertical’, as when children
inherit their preferences directly from their parents, or ‘oblique’, as when they inherit their
preferences through the emulation and imitation of other individuals to whom they are
exposed (Cavalli-Sforza and Feldman, 1981, Boyd and Richerson, 1985).! Alternatively,
the rational socialization approach to preference formation is based on the postulate that
altruistic and forward looking parents deliberately inculcate preferences in their children with

1This approach has been applied to explain the evolution of time preference, risk-aversion, non-
opportunistic behavior, systematic errors in expectations, and a variety of other tastes and behavioral traits
(Rubin and Paul, 1979, Hirshleifer, 1987, Frank, 1987, Hansson and Stuart, 1990, Giith and Yaari, 1992,
Rogers, 1994, Waldman, 1994, and Robson 1996.)




a view to enhancing what they, as parents, perceive to be the children’s future well-being.
Along these lines, Rubin and Somanathan (1996) have recently considered the inculcation
of honesty, and Bisin and Verdier (1996) the emergence of preferences for social status.

It is typically assumed in the evolutionary approach that the selection dynamics are pay-
off monotonic, i.e., higher material payoffs to a heritable trait typically lead to more rapid
replication of that trait over time. Consequently, our finding that in a variety of strategic
settings of economic importance, the material rewards to those with interdependent pref-
erences strictly exceed the rewards to those with independent preferences leads directly to
the implication that evolution will favor the emergence of interdependent preferences. If the
population is initially heterogeneous, our results imply that at least in environments that
are well represented by common property and public good games, any payoff monotonic
evolutionary selection dynamics will lead in the long run to a population that consists ex-
clusively of individuals with interdependent preferences. These results are obtained when
each member of the population interacts simultaneously with each other member, which is
the usual assumption in common property and public goods contexts. We also consider the
case in which members of the population interact on the basis of pairwise random matching
to play an arbitrary 2 x 2 game. Somewhat milder results are obtained in this context,
with a heterogeneous population composition typically prevailing in the long run. Except in
relatively uninteresting cases where cooperative behavior is strictly dominant for all players,
in none of the strategic settings studied in this paper does the evolutionary approach entail
a monomorphic population composed only of agents with independent preferences.

When preferences are acquired as a result of deliberate socialization efforts by altruistic,
forward looking parents, the implications of the strategic advantage held by those with
interdependent preferences is less obvious. Even if it is true that at any given population
composition those with interdependent preferences obtain strictly higher material payofls,
it may not be in the interest of a forward-looking parent with independent preferences to
inculcate interdependent preferences in her child. The reason is that such an act would alter
the population composition and induce a different equilibrium in the subsequent generation,
and although the child at this equilibrium would do better than those with independent
preferences, this payoff may be less in absolute terms than that which could have been
earned had the child been inculcated with independent preferences. Intuitively, there are
efficiency losses associated with the inculcation of interdependent preferences, and if these
are sufficiently large, such inculcation may lead to a decline in absolute payoffs despite the
increase in relative standing in the society. In spite of this complication, we show that in
some common pool resource extraction and public good games, socialization by forward-
looking parents also leads in the long run to a uniform population in which all individuals
have interdependent preferences.



The general problem of preference formation can, of course, be studied within the context
of any strategic environment. Our focus on the common pool resource extraction and public
good games is motivated by the fact that these environments have been a perennial feature
of human societies from the earliest times. Traditional societies even in the present day rely
heavily on commonly owned fisheries, grazing lands, and forest areas for their subsistence.
Similarly, throughout human history, a large number of essential activities have required
collective action of one kind or another, ranging from the hunting of large animals and
the construction of housing to the provision of irrigation, harvesting, and defence against
encroachment or attack by competing groups. If such environments favor the emergence
of interdependent preferences, then the standard assumption of independent preferences in
economic models should be made with considerably greater caution and circumspection.?

The organization of the paper is as follows. Section 2 develops the analytical framework
which is used, in Section 3, to examine a variety of games in strategic form, including the
common pool resource extraction and public good games. For these two cases, it is shown that
regardless of the population composition in any given generation, those with interdependent
preferences earn strictly greater payoffs than do those with independent preferences. We
also provide in Section 3 an exhaustive analysis of symmetric 2 x 2 games, showing that all
such games have at least one equilibrium in which the payoffs to the player with independent
preferences is no greater than that to the player with interdependent preferences. In Section
4, the implications of these results for the long-run population composition are investigated
under the assumption that the population composition evolves under pressure of differential
payoffs. In Section 5, the potential effects of deliberate socialization by parents are examined.
Section 6 concludes with a brief look at various directions in which the present work might
be extended.

2 An Analytical Framework

Consider an overlapping generations economy in which each person lives for two periods,
and has some finite (possibly zero) number of children in the second period of her life. Let

2The importance and plausibility of interdependent preferences has, of course, been noted in the liter-
ature (Duesenberry, 1949, Easterlin, 1974, Frank, 1985, and Cole, Mailath and Postlewaite, 1992), and is
supported by ample empirical and experimental evidence (see Tomes, 1985, Clark and Oswald, 1996, Saijo
and Nakamura, 1995, Levine, 1996, and references cited therein). It is also well known that the introduction
of interdependent preferences into economic models has non-trivial implications in that many conventional
results have been either overturned or significantly modified (see, among others, Boskin and Sheshinski, 1978,
Oswald, 1983, Abel, 1990, Frank, 1984, Akerlof and Yellen, 1990, and Ito, Saijo and Une, 1995). However,
to the best of our knowledge, the existing literature falls short of providing an analysis of the evolution of
interdependent preferences.




N; denote the size of the adult population in period ¢. In the first period of their lives,
preferences are acquired in a manner that is left unspecified for the moment. In the second
period of life, the adult members of the population interact with one another in a manner
that we represent by a symmetric strategic form game with complete information.®? Each
adult ¢ selects an action x; from a given set of available actions A. The resulting action
profile z = (z1, x3, ..., zn) then determines the (absolute) payoffs m;(z) > 0 obtained by each
adult. The adult population in any given generation consists of two distinct groups, which
are heterogeneous with respect to their preferences over payoff distributions. A number
k. € {1,2,..., N, — 1} of individuals are payoff maximizers in the standard sense. They
always prefer payoff distributions in which their own payoff is higher, and are left unaffected
by changes in the payoffs of others. The remainder of the population consists of individuals
who are concerned not only with the absolute value of their own payoff but also with their
payoff relative to the average payoff in the population. We say that these individuals have
(negatively) interdependent preferences which are represented by an objective function

pi(z) = mi(z)® (7;"((;)) , ie{ke+1,.., N}, (1)
where ® is an arbitrary positive and strictly increasing function and 7 (z) is the mean payoff
at the outcome z in the population at large. This particular representation of (negatively)
interdependent preferences has recently been proposed and axiomatically characterized by
Ok and Kockesen (1997). It can be interpreted as a compromise between the standard case
where the individual is assumed to care only about her absolute payoff m;, and the extreme
case where she is concerned exclusively with her relative standing in the game, i.e., with 7, /7
(the latter case corresponds to Duesenberry’s relative income hypothesis.) The analysis of
the present paper is conducted in terms of arbitrary ® functions. This constitutes a rather
rich class of interdependent preferences which subsumes many earlier specifications as special
cases.*

Given the formulation above, the actual strategic interactions of the individuals in period
t are modelled by the normal form game where the ¢th player’s action space is A and her
objective function is either m; (if ¢ € {1,...,k;}) or p; (if i € {k; + 1, ..., N;}). Let us denote

3The symmetry postulate is very common in evolutionary approaches to economics and, as will become
apparent shortly, it is particularly reasonable in our context. The assumption of complete information is, on
the other hand, much more problematic, and will be relaxed in future work.

4One interesting special case of our specification is the objective function p; = =;(m;/7)? where 8 > 0
can be interpreted as the degree of interdependence; see Ok and Kogkesen (1997) for a detailed discussion
of individual preferences that can be represented by objective functions of form (1). Moreover, we note that
the entirety of our findings would remain intact under an even more general class of functional forms where
p; = 7;®;(m; /%) with ®; not necessarily equal to ®;, i # j.



a generic game of this sort by G(k;, N;).> An equilibrium of this game is an action profile
at which, given their preferences, no player has an incentive to deviate. Formally, at any
equilibrium action profile £ in period t,

mi(2) > mi(y, £—5) forall ¢ € {1, ...,k } (2)

and
pz(i) Zp,(y,:i‘_,) for all ¢ € {kt+1,,N} (3)

for all y € A, where Z_; represents the actions of all players other than player ¢ at action
profile Z. Given a game G(k, N;), let the set of equilibrium action profiles (i.e. outcomes) be
denoted by NE(k;, N;). The first question of interest is the following: are there economically
important classes of games for which, at any population composition and size (k;, N;), and
any equilibrium action profile & € NE(k;, N;), the payoff to each player with interdependent
preferences exceeds the payoff to any player with independent preferences? We shall give
an affirmative answer to this question in Section 3 where we demonstrate that two widely
studied models, the common pool resource and public good games, yield this inequality
strictly under very general conditions. In other words, at any equilibrium of these games,
the worst performing player with interdependent preferences (who obviously do not target
the maximization of absolute payoffs) obtains an absolute payoff that is strictly higher than
that of the best performing player with independent preferences.

The significance of this observation for the theory of preference formation depends on the
process by which preferences are transmitted from one generation to the next. Consider first
the case in which preferences are acquired by children directly from their parents, either by
imitation and emulation within the home, or by genetic transmission. In this case the popu-
lation composition will evolve on the basis of differences in the number of surviving children
across the two groups of individuals; which in turn are likely to depend on material payoffs
in a systematic way. If the dynamics of the population composition are payoff monotonic,
as is commonly assumed, the finding that agents with interdependent preferences obtain
higher material payoffs than do independent players in a variety of economic environments
will imply a long run population composition in which some, if not all, individuals have
interdependent preferences. These implications are derived and discussed in Section 4.

Alternatively, preference acquisition may be a result of conscious socialization efforts on
the part of parents. In this case, children may have preferences that differ from those of their
parents, if parents consider it best for the child to be inculcated with preferences other than
their own. Parents may socialize their children on the basis of the payoffs received in the

50f course, even when k;, N; and ;s are specified, the game is not completely determined due to its
parametric dependence on the function ®. For simplicity, however, we do not use notation that makes this

dependence explicit.



current generation, or they may be forward-looking, taking full account of the effects of their
own actions on the population composition in the subsequent generation. This specification
may result in population dynamics that differ from those that obtain under evolutionl The
implications of parental socialization are discussed in Section 5, where it is shown that at least
for some common pool resource and public goods environments, all parents will inculcate
interdependent preferences in their children.

We now turn to examining the nature of equilibria in a number of strategic environments

(of the sort described above) for a given population composition and size.

3 Strategic Environments

3.1 Common Pool Resource Extraction

The following model of common pool resource extraction has been in widespread use for some
time (Dasgupta and Heal, 1979, Ostrom, Walker and Gardner, 1992, Chichilnisky, 1994, Sethi
and Somanathan, 1996). Consider a population consisting of N individuals, each of whom
has access to a common pool resource. Let z; > 0 denote the extraction effort chosen by
individual ¢, while X = )" z; denotes the aggregate extraction effort. Total product is given
by a differentiable real function f such that f > 0 and f” < 0. It is natural to assume that
f(0) = 0, so without extractive effort there is no product. There is an opportunity cost
w > 0 per unit of extractive effort and each member of the population receives a share of
the total product that is proportional to her share of aggregate extractive effort. The value,
to the individual, of a unit of the resulting product is given by a nonnegative function P, of
the total output, on R, with P’ < 0. The payoff to player ¢ is thus given by

mi(w) = SP(F(X)F(X) = zw = 2: (R(X) — w) (4)

where R(X) = P(f(X))f(X)/X denotes the average value of the extraction effort and
z € RY is the vector of extraction efforts.® To guarantee an interior solution, we shall assume
throughout that f is bounded from above (otherwise equilibrium extractive effort would be
unbounded), and that P(0)f'(0) > w (otherwise no extraction would occur in equilibrium).

6The above formulation, which closely follows Cornes, Mason and Sandler (1986), is general enough to
encompass a variety of institutional settings. For instance, if the output is for agents’ own use and a labor
market does not exist (as in pre-market societies) one would interpret w as the opportunity cost of the
extraction effort in terms of other useful activities and P as the intrinsic value of the good for the individual.
If, on the other hand, the good is exchanged or sold in a market and a labor market exists (as in contemporary
societies), w can be interpreted as the foregone outside wage and P as the price of the product. In the latter
case, if the output market is perfectly competitive P is a constant function, whereas if it is imperfectly
competitive P represents a downward sloping inverse demand function.

7



As is well known, if all players are payoff maximizers with independent preferences, then the
equilibrium vector of extraction effort is unique, interior, symmetric, and inefficient.

Rather than assuming that all agents who have access to the common pool resource are
concerned only with the maximization of their individual payoffs, we consider the following
scenario. Of the N members of the population, £ € {1,...,N — 1} are standard payoff
maximizers with independent preferences. The remainder have interdependent preferences,
and are concerned with their relative as well as absolute payoffs. Specifically, members of
the latter group seek to maximize a function of type (1) for some bounded and differentiable
® such that ® > 0 and &' > 0. Henceforth, we shall refer to the resulting strategic form
game as a common pool resource game. An equilibrium of the modified game is an action
profile z which satisfies, for any y € R, the conditions (2) and (3).

The following question then arises. In a given equilibrium of a common pool resource
game, which of the two groups has a higher average payoft? The following result provides an
unambiguous answer to this question.”

Proposition 1 In any equilibrium of any common pool resource game, (absolute) payoff
mazrimizing individuals obtain strictly lower absolute payoffs than do individuals who maxi-

mize their interdependent payoffs.

To illustrate the intuition behind this proposition, we plot in Figure 1 the reaction curves for
independent and interdependent players in a two player commons game with the absolute and
interdependent payoff functions given by m;(z) = z;(1 — X) and p; = 7?2/ _ m;, respectively.’
If both of the players had independent preferences, the unique equilibrium of the game
(represented by point b in Figure 1) would be symmetric where both players choose the
action 0.33. However, player 2’s reaction curve when she has interdependent preferences
is everywhere above the one she would have, had she possessed independent preferences.
Consequently, she chooses a higher action and hence obtains a higher payoff than does the
first player at the new equilibrium (point a in Figure 1).

The main driving force behind this result appears to be the potential value of commitment
in strategic environments. In this particular case, the commitment by the interdependent
player arises out of her concern about the share of the aggregate payoft she obtains. Con-
sequently, she is willing (or is committed) to extract more of the common resource at every
choice of extraction level by the independent player (player 1), even if that means a reduc-
tion in the absolute payoff she would receive. The best response of player 1 who knows the

" All proofs which do not appear in the main text may be found in the appendix.

8We thus choose w = 1, ®(z) = z,and P(z) =1 for all z > 0, and f(X) = 2X — X? for X € [0,1] and
f(X) =1 for X > 1. (The violation of the assumption that f’ > 0 everywhere is readily observed to be
inconsequential.)
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Figure 1: A Two Player Common Pool Resource Game

behavioral disposition of the interdependent player leads us to an asymmetric equilibrium
at which she chooses a strictly lower extraction effort than that of player 2. This, of course,
leads to a higher payoff for interdependent player than for independent player.

3.2 Private Provision of Public Goods

In this section, we shall study the formation of interdependent preferences within the context
of the private provision of a public good (cf. Bergstrom, Blume and Varian, 1986, and Cornes
and Sandler, 1996). This model is widely used in studying the infamous “free rider” problem,
and is one of the major workhorses in the field of public economics.

Consider an N-person economy in which there is one public good the quantity of which
is denoted by X, and one private good which is interpreted as a Hicksian composite good.
For the purposes of symmetry, we assume that each individual is endowed with an identical
level of private good denoted by w > 0. The preferences of individuals are represented by
a twice differentiable utility function U on Ri such that U; > 0, Uy > 0, Up; < 0, and
Up > 0.7

9Gince the present study is concerned with material payoffs, we interpret U as a money metric utility
function in what follows. All of the assumed regularity conditions are standard (with the possible exception
of U2 > 0). Among the examples of commonly used functional forms for U that satisfy these postulates
are U(c, X) = ¢*XP?, U(e,X) = ¢V(X) and U(c,X) = ¢+ V(X) where 0 < a < 1,3 >0,and Visa
differentiable real function on R such that V' > 0.



Let X = ) x; represent the sum of the individual contributions, where z; € [0, w] stands
for the contribution of individual ¢. It is commonplace to postulate that the quantity of
public good is defined as the sum of (voluntary) contributions of individuals which are paid
out of their endowments. However, this production technology is not sufficiently general to
cover the wide variety of collective choice problems with which societies have historically
been confronted. For instance, as noted by a number of authors, if X stands for the protec-
tion of a military front, it seems more reasonable that the technology should be modelled
as X = min{z,, ...,zn} (the so-called weakest-link technology, cf. Hirshleifer, 1983).19 Since
we wish to incorporate here a sufficiently general public good provision model that would
include examples like the provision of irrigation and national defence (which are all signifi-
cant collective action problems that may well have contributed to the shaping of individual
preferences through evolution), we consider a broader class of technologies than the usual
summation technology. Following Cornes (1993), therefore, we postulate that the public
good in question is produced by a quasi-concave CES production function of the form

N 1/p
X = (fo) for some p < 1.

i=1
This specification incorporates all public goods which can be produced by a technology that

falls between the weakest-link and the summation technologies (since lim,, o (3 = )1/ P =

min{zi, ..., ZN}).

If she contributes z; to the production of the public good, individual 7 would clearly be
left with an amount ¢; = w — z; of the private good. We may, therefore, write the payoff of
person ¢ as a function of the profile of the contributions as follows:

mi(x) = Ulw — i, (2 + X_;)1/?) (5)

where z € [0,w]V and X_; =}, zf.

As in the previous subsection, we shall assume in what follows that only a certain number
k € {1,..,N — 1} of the individuals recognize m; as their objective function. The rest
of the society targets the maximization of an objective function of the type (1) for some
differentiable ® such that ® > 0 and & > 0. (Clearly ; is defined by (5) for these people,
and # = % Y U(w — z;, X).) In what follows, we shall refer to the resulting class of strategic
form games as public good games.

Defining the notion of equilibrium via (2) and (3), we now ask the same question we
asked in the previous section, this time for public good games. How do the absolute payoffs

10As noted by Cornes and Sandler (1996, p. 55), “the Allied defenses in 1940 were only as strong as
their weakest point, the Maginot line.” For other interesting collective action problems which necessitate
a different public good production technology than that which is usually assumed, we refer the reader to
Hirshleifer (1983), Harrison and Hirshleifer (1989), Cornes (1993), and Cornes and Sandler (1996).

10




of the individuals, as defined by (5), compare in the equilibrium? The answer is once again

a curious one:

Proposition 2 In any interior equilibrium of any public good game, (absolute) payoff maz-
imizing indiwviduals obtain strictly lower absolute payoffs than do individuals who mazimize
their interdependent payoffs. In any boundary equilibrium of any public good game, all inde-
pendent agents obtain lower payoffs than all interdependent agents, and iflimx_,o Uy(w, X) >
Ui (w,0), then at least one independent agent obtains strictly lower payoff than all interde-
pendent agents.

The intuition behind this result is similar to that discussed in the common pool resource
game. Here, a concern about one’s relative payoff shifts the reaction curve inward and
leads to a lower equilibrium contribution for the interdependent player as compared to the
contribution of the independent player. Although the mechanisms through which the in-
terdependent player obtains a higher payoff than does the independent player are different
in the two games, both are the result of the strategic advantage the interdependent player
derives from her particular behavioral disposition.

3.3 Other Strategic Environments

In Sections 3.1 and 3.2 we have considered games in which strategic interaction of the agents
takes place at the population-wide level: each member of the population interacts simul-
taneously with each other member and is thereby ‘playing the field.” An alternative and
very commonly used specification is that of ‘pairwise contests,” in which members of the
population are randomly matched in pairs to play a 2 x 2 game. As a prelude to the evo-
lutionary analysis of such environments, we provide an exhaustive analysis in this section of
all symmetric 2 X 2 games in which one of the players has independent preferences while the
other has interdependent preferences.!!

Take any symmetric 2 x 2 game where the action space of both individuals is {H, D}.
The payoff bimatrix of such a game must necessarily be of the form portrayed in Table 1.

Player 2

Player 1 H D
H (a,a) | (b,c)
D (¢,b) | (d,d)

Table 1

1 Giith and Yaari (1992), whose focus is on the evolution of reciprocity, conduct a similar analysis for a
particular class of 2 x 2 games.
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Since the game at hand is a two-person game, the only non-degenerate case of interest
is when one of the agents, say player 1, is independent, and the other (i.e. player 2) is
interdependent. Consequently, by (1), the game that is actually played between the agents
is the one reported in Table 2, where ® is any strictly increasing and positive function. Once
again, the question we ask is: how do the absolute payoffs of the players (reported in Table
1) fare given that they are in fact playing the game depicted in Table 27?

Player 2
Player 1 H D

" (a,a®(1)) (b’ c® (bi—cc>>
T (&) o

Table 2

To address this question, we shall use the following well-known classification of symmetric
2 x 2 games (Weibull, 1995, pp. 28-30).

Category I: (a < cand b < d) or (a > c and b > d)
Category II: a > c and b < d

Category III: a < cand b > d

These categories exhaust all generic examples of symmetric 2 x 2 games. For instance, the
Prisoner’s Dilemma, coordination games (e.g. Stag Hunt), and the Hawk-Dove game belong
to categories I, IT and III, respectively. In what follows, by a game of type i, we mean a
game represented by the payoff bimatrix of Table 2 (for some strictly increasing and positive
®), provided that the corresponding game of the form given in Table 1 belongs to category
i, 1 =1, II, TIL.

The set of all games of type I, IT and III is quite rich, and contains games with remarkably
different inherent structures. Consequently, it is not surprising that one cannot obtain exact
analogues of Propositions 1 and 2 for the class of all such games. Nevertheless, it is possible
to show that interdependent agents still hold the upper hand against independent agents
in the majority of such games. Indeed, it turns out that in any game of type I, II or III,
there exists an equilibrium (defined by (2) and (3)) at which the interdependent player
obtains at least as much absolute payoff as the independent agent. Moreover, if there exists
a unique asymmetric equilibrium in any such game, then at that equilibrium the level of
absolute payoff of player 2 must strictly exceed that of player 1. More precisely, we have the

following:




Proposition 3 (a) In any game of type I, either (D, D) (or (H,H)) is the unique equilib-
rium, or there exists another unique equilibrium at which the interdependent agent obtains a
strictly higher payoff than the independent agent.

(b) Any game of type II is degenerate in the sense that at any equilibrium of any such
game the payoffs of the interdependent and independent agent are the same.'?

(c) In any game of type III; either (H, D) and (D, H) are both equilibrium outcomes, or
the equilibrium is unique and the interdependent agent obtains strictly higher payoff than the

independent agent in this equilibrium.

Proof To see part (a), take any game of type I in which a < ¢ and b < d, and assume that
(D, D) is not an equilibrium of this game. Since b < d, we must thus have d®(1) < b® (&)
which implies that ¢ < b since @ is strictly increasing. But given that a < ¢ < b, it is
immediately observed that (D, H) is the only pure strategy Nash equilibrium of the game
at hand, and we have 7o(D,H) = b > ¢ = m(D, H). (The case where a > cand b > d is
analyzed analogously.) .

To see part (b), take any game of type II, and assume that (H, H) is not an equilibrium.
Since @ > ¢ in this case, we must then have 1 < 2¢/(b + ¢). But then 1 > 2b/(b + ¢), and
hence (D, D) must be an equilibrium.

Finally, to prove part (c), take any game of type III, and assume that either (H, D) or
(D, H) is not an equilibrium. W.Lo.g., let us assume that (H, D) is not an equilibrium. But
then we readily obtain that 2¢/(b+ ¢) < 1 so that b > ¢. This, in turn, guarantees that

(D, H) is the unique equilibrium, and we are done. ~QED

The potential value of commitment once again appears to be the driving force behind
Proposition 3. This is particularly clear for Proposition 3¢ which covers the Hawk-Dove
game (in which a < ¢ < d < b); if the difference between payoffs to playing hawk against
dove and dove against hawk (i.e. between b and c¢ in Table 1) is large enough, playing H
becomes a dominant strategy for the interdependent player so that she credibly commits to
hawkish behavior. The best that the independent player can do in response is then to retreat
to dove-like behavior.!3

This completes our static analysis of the potential strategic advantages of interdependent
preferences. The implications of our results for the dynamics of the population composition

2Interestingly, if we consider the mixed strategy extension of games of type II, this category too ceases to
be degenerate. Indeed, one can show that if an interior mixed strategy Nash equilibrium of a game of type
IT exists, at this equilibrium the expected absolute payoff of player 2 is strictly higher than that of player
1. Since we focus on pure strategies in this paper, we omit the proof of this assertion which is of course

available from the authors upon request.
BBFor a detailed discussion of the motivation for and properties of the Hawk-Dove game, see Maynard

Smith (1982).
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are explored in the sections to follow.

4 Preference Evolution

We consider in this section a model of preference evolution based on vertical transmission:
children inherit the preferences of their parents and the population composition evolves in
accordance with a payoff monotonic evolutionary selection dynamic.

4.1 Playing the Field

First consider the case in which the preferences of children are identical to those of their
parents. This could occur either because preferences are transmitted genetically or, more
plausibly, through ‘vertical’ cultural transmission as children observe and emulate their par-
ents. Under this mechanism, it is assumed that any conscious efforts on the part of parents
to inculcate preferences in their children are motivated only by a desire to raise their children
to be like themselves, and not with a view to engineering their children’s preferences in order
to enhance their prospective well-being in the subsequent period.

The principal ingredient of analysis is the assumption that the number of surviving
children that each parent leaves behind is an increasing function of the material payoffs that
they earn in their adult life. This is a common assumption in evolutionary models in general.
Waldman (1994, p. 489) for instance, cites substantial evidence indicating that “for much of
humans’ recent evolutionary history the amount of wealth accumulated by each male was an
important determinant of that individual’s number of surviving offspring ... both because
males with more wealth had more wives and because more wealth increased the probability
that a child would survive to adulthood.” The assumption that increasing wealth has been
associated with greater numbers of surviving children throughout most of human history is
a central component of the evolutionary theory of behavior towards risk (Rubin and Paul,
1979, Robson, 1996). The classical theory of wages developed by Adam Smith, Malthus and
Ricardo was based on the postulate, considered self-evident only a century and a half ago,
that increases in incomes would, by lowering infant mortality rates, give rise to an increase
in population growth and eventually in labor supply.

We begin by assuming that, during any period ¢, the population composition and size
(ki, Ny) is historically determined, and denote the corresponding set of equilibrium action
profiles NE(k;, N;). Suppose that the adult members of the population locate an equilibrium

14«Pgverty, though it does not prevent the generation, is extremely unfavorable to the rearing of children.
The tender plant is produced, but in so cold a soil, and so severe a climate, soon withers and dies. It is
not uncommon, I have been frequently told, in the Higlands of Scotland for a mother who has borne twenty
children not to have two alive.” (Smith, 1776, p. 88) ‘
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action profile Z; € NE(k;, N;) and receive their corresponding payoffs. Propositions 1 and 2
imply that for any common property and public good games, regardless of which equilibrium
is played, and regardless of the population composition and size in period ¢, we have 7i(&) >
(>) mi(2,) for all (some) i € {1, ...,k } and all j € {k;+1, ..., N;}. That is, in such games, any
individual with interdependent preferences earns a greater material payoff than at least one
independent player, and no less than any of them. If the number of surviving children of each
adult is a strictly increasing function of material payoffs, then the population composition
in the subsequent generation must satisfy the following recursive inequality:

k1 < Nit1— ke
k; N, —k;

Let s; = k;/N; denote the population share in period ¢ of those adults having independent
preferences. The above inequality then implies that

St+1 [ Nega < 1— 8441 (Nepa
St Nt 1-— S¢ Nt

which in turn yields s;41 < s;. Hence, as long as k; > 0, the population share of those

with independent preferences will decline monotonically. If, in addition, there is some upper
bound which the total population cannot exceed, then we can say more:

Proposition 4 Consider any common pool resource or public good game, and suppose that
there is an upper bound which the total population cannot exceed in any generation. For
any given initial population composition and size (ko, No) such that ko € {0, ..., No — 1}, any
payoff monotonic dynamics with vertical transmission entails that the population consists
exclusively of interdependent agents after finitely many generations.

The above result hinges on the assumption that the number of surviving offspring increases
with material well-being. This assumption appears less innocuous in view of the demo-
graphic changes that have taken place over the past century. Significant improvements in
public health and widespread immunizations have lead to a decline in death rates among
the poor, while the spread of contraceptive practices among the more affluent has allowed
their birth rates to fall. Nevertheless, it is unlikely that so short a period of time would
have significantly altered the distribution of preferences in the population as it existed prior
to these demographic changes. Furthermore, as we shall see in Section 5.1, taking into
account the possibility of (myopic) parental socialization allows us to make a case for the
emergence and persistence of interdependent preferences that does not rely on differential
rates of population growth.

15



4.2 Pairwise Contests

We now turn to the analysis of symmetric 2 x 2 games within the confines of payoff monotonic
dynamics with vertical cultural transmission. Since there are quite a number of distinct
games in this class, here we shall focus only on one particularly interesting subclass of
symmetric 2 X 2 games, namely on games of Hawk-Dove type. The corresponding results for
other sorts of symmetric 2 x 2 games will only be mentioned briefly.

The evolutionary scenario that we describe in this subsection is that of “pairwise contests”
wherein we assume that population is finite but large, and that each individual is randomly
matched with another member of this society in order to play a certain game. Three types of
possible pairings are possible: both players independent, both interdependent, and one player
of each type. Given the population composition and size (k;, NV;) in period ¢, the probabilities
of being matched with an independent or interdependent type are determined for each player.
Furthermore, corresponding to each of the three types of pairings is a set of equilibria; we
assume that players are able to coordinate on one of these. The manner in which players
solve the equilibrium selection problem is not addressed, and the results that we report do
not depend on the choice of any particular equilibrium. Given the choice of equilibria, the
expected (absolute) payoff to each type of agent, and the mean expected (absolute) payoff in
the population at large are determined as functions of the population composition s; = k:/N;.
Let Tindep(St) and Tiyer(s:) denote the expected average (absolute) payoff of independent
and interdependent agents respectively. The dynamics of the population composition may
be represented by a difference equation

St41 =g (St) ) (6)

where g : [0, 1] — [0, 1] is continuous, and g (s;) = s; if s; € {0, 1} (a homogeneous population
remains homogeneous.) It is assumed, as before, that the dynamics are payoff monotonic,
so for s; € (0,1), we have

Tindep(5t) = Tinter(s¢) if and only if g (ss) 2 se.

Finally, we make the unrestrictive assumption that if s; € (0,1), then g (s;) € (0,1). This
states simply that the population composition cannot jump in a single generation from an
interior to a boundary point, though of course it can converge asymptotically to one of the
boundaries. Note that in order for an interior state s € (0,1) to be a rest point of the above
dynamics, the expected payoffs of the two player types must be equal.

Given this evolutionary setting, we wish to study games of Hawk-Dove variety, that is,
those 2 x 2 games represented in Table 1 with a < ¢ < b < d. Recall that when both players
are independent, this game has two pure strategy equilibria {(H, D), (D, H)}. If both these
profiles remain equilibria when one or both the players is interdependent, there is nothing
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we can say about the long run population composition without addressing explicitly the
issue of equilibrium selection. Although it is unambiguously clear that in pairwise contests
involving only independent or only interdependent agents, the average payoff accruing to
the players will be (b + ¢)/2, this is not the case in contests involving both types of players
due to the presence of multiple equilibria. Therefore, we are not able to rank the average
payoffs obtained by independent and interdependent types in an unambiguous way, and
hence cannot derive definitive results regarding the long run population composition in this
case.

A more interesting case obtains if the interdependent behavior of an agent alters the set
of equilibria to the singleton {(D, H)}, which occurs if and only if a®(1) > ¢® (2¢/(b + ¢)),
that is, when player 2 is sufficiently interdependent. In this case, H is a strictly domi-
nant strategy for interdependent players regardless of whether their opponent is indepen-
dent. Consequently, they reap the benefits of their aggressive nature in games they play
against independent players. Yet, when matched against another interdependent agent, an
interdependent player suffers, since (H, H) is then the unique equilibrium. As a result, no
monomorphic population of either kind can be stable. A population that is composed of
only independent agents will be vulnerable to an invasion by a sufficiently small number of
interdependent mutants, since the likelihood that two interdependent types will be matched
with each other is negligible. Therefore, both types of individuals must be present in a
society with a stable population composition (if such a composition exists at all).!® This
intuition underlies the following proposition.

Proposition 5 Consider any game of the Hawk-Dove type and any strictly increasing pos-
itive ® with a®(1) > c¢®(2¢/(b+c)). Let the population size N be finite (but large), and
consider the pairwise contests scenario along with an arbitrary payoff monotonic dynamics
with vertical transmission. For any ko € {1,..., N — 1}, there exists some strictly positive
number 6 such that, except. for some finite number of initial generations, the population

composition contains at least a share 6 of each player type.

The above result states that convergence to the boundaries cannot occur under the dynamics
(6). It is amply possible, even for simple specifications such as the widely used replicator
dynamics, for stable limit cycles and more complex dynamics to occur in this model so the

15This finding is very much in the same spirit as that of Banerjee and Weibull (1995), who consider a
pbpulation consisting of three types: (irrational) hawks, (irrational) doves, and optimizers, with the latter
playing a best response against whichever opponent they meet. In this setting the only stable composition
is a mixture of hawks and optimizers. Our independent types are identical to their best responders, while

the behavior of our interdependent types (if they are sufficiently interdependent) is indistinguishable from
that of their (irrational) hawks.




population composition may not converge at all. What the result implies, however, is that
if convergence does occur, it will be to an interior state.

Propositions 4 and 5 draw markedly different pictures of the long run population compo-
sition of the society even though they both use vertical transmission mechanisms and payoff
monotonic evolutionary dynamics, and even though the commitment of the interdependent
players always pays off against independent agents in the games under consideration. It
appears therefore that the evolution of preferences is likely to yield different outcomes un-
der selection dynamics of the playing the field variety as compared with dynamics based
on pairwise contests. The main reason behind this difference is that in pairwise contests it
is possible for two interdependent agents to be paired, which may thus result in absolute
payoff losses. Therefore, if the share of interdependent agents in the population increases
sufficiently, the frequency with which this occurs rises, and thus the expected average pay-
off of the interdependent types becomes smaller than that of the independent types. This
possibility simply does not exist in the playing the field framework, for, at least in common
pool resources and public good games, emergence of a polymorphic population composition
always guarantees a higher absolute payoff to all interdependent agents.!6

5 Parental Socialization

In this section we consider two models of parental socialization: myopic and “rational”. In
the case of myopic socialization parents attempt to socialize their children on the basis of the
current payoff distribution, and children are either successfully socialized or simply inherit
the preferences of their parents. In the case of forward-looking (rational) socialization parents
take full account of the effects of their actions on the future population composition.

5.1 Myopic Socialization

In order to examine the effects of myopic socialization, we proceed under the assumption
that each generation has the same population size N and that each adult has exactly one
child. As before, let NE(k;, N) denote the set of Nash equilibria corresponding to the popu-
lation composition and size at time ¢. Having observed the payoff distribution, adults must

16In passing, we note how Proposition 5 would be altered, under the basic evolutionary scenario we
examined above, if we replaced the games of Hawk-Dove variety with other symmetric 2 X 2 games. In
games of Category I, either any initial population composition is stable (as in Prisoner’s Dilemma), or
the population is composed of only independent agents (the latter case being observed only for relatively
uninteresting games where cooperative behavior is strictly dominant strategy for all players.) In Category
II type games, on the other hand, we again face the multiple equilibrium problem and thus are unable to
reach to unambiguous conclusions.
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decide whether to inculcate independent or interdependent preferences in their children. It
is assumed that parents are altruistic, but that they are able to judge different payoff distri-
butions only in the light of their own preferences. (Bisin and Verdier, 1996, refer to this as
partial empathy.) A parent with independent preferences will therefore wish to inculcate pref-
erences in her child which yield the highest absolute payoff. A parént with interdependent
preferences, on the other hand, will wish to inculcate preferences in her child which yield the
highest value for the objective function (1). Even if parents had static expectations regarding
the behavior of other parents, a forward looking parent who chooses to instill preferences
that differ from her own will expect to influence the population composition and hence the
set of equilibria that will emerge in the subsequent generation. This complicates the decision
problem faced by parents quite substantially, in a manner that is briefly explored in Section
5.2. For the moment, however, suppose that parents ignore this effect of their actions, and
myopically use the current payoff distribution to determine which of the two preference types
yields a higher value for their objective function. Propositions 1 and 2 imply that for any

common property and public good games, regardless of which equilibrium is played, and:

regardless of the population composition and size in period ¢, we have 7;(Z;) > (>) m; (%)
for all (some) 7 € {1,...,k;:} and all j € {k; + 1, ..., N}. Since interdependent parents obtain
greater absolute as well as relative payoffs than do independent parents, they will certainly
choose to inculcate interdependent preferences in their children. Independent parents, on the
other hand, will choose to inculcate interdependent preferences in their children, imploring
them to “do as I say, not as I do!”

Of course, the parent’s socialization efforts may not be successful, in which case we assume
that the child simply inherits her parent’s preferences. Let us assume then that there is an
exogenously given probability, o, with which the socialization effort is successful, and refer
to the resulting preference formation mechanism as myopic socialization with probability o.

The long run implications of this mechanism can be summarized as follows:

Proposition 6 Fiz a population size N > 2, and consider any common pool resource or
public good game. For any given initial number of independent players ko € {0, ..., N—1}, any
myopic socialization mechanism with probability o > 0 entails that the long run population
will be composed entirely of interdependent agents.

We note, however, that if the population initially consists exclusively of independent types,
it will continue to do so in each subsequent generation. This occurs because there is no possi-
bility in this model that an independent parent will have an interdependent child. However,
if we add to the model the possibility of errors, trembles, or mutation in the process of pref-
erence adoption, then the resulting stationary distribution will have full support {0,...N},
and as the mutation rate gets vanishingly small, the stationary distribution of the process

19




converges (with probability 1) to the homogeneous distribution which is again comprised of
only the interdependent agents.!”

Finally, we consider the games of the Hawk-Dove type in the light of the present myopic
socialization mechanism. Given Proposition 5, the following observation is unsurprising:

Proposition 7 Consider any game of the Hawk-Dove type and any strictly increasing pos-
itive @ with a®(1) > c® (2¢/(b+c)). Let the population size N be finite (but large), and
consider the pairwise contests scenario along with any myopic socialization mechanism with
probability o > 0. For any ko € {1,..., N — 1}, the expected population share of indepen-
dent agents in the long run is strictly smaller than 1, that is, the long run population is
polymorphic in expectation.'®

As expected, Propositions 6 and 7 yield different conjectures for the long run composition
of the society as determined by myopic socialization. Yet, it is striking that in each of
these results (and those of previous section) we see no evidence supporting the presence of
populations that are composed entirely of independent agents.

5.2 Rational Socialization

Finally, consider the case in which parents are forward looking and deliberately shape the
preferences of their children in order to increase what they perceive, in the light of their
own preferences, as the child’s well-being. In terms of the framework used here, a rational,
forward-looking parent with independent preferences will choose to inculcate interdependent
preferences in her child if it enhances the child’s absolute payoff. Similarly, a parent with
interdependent preferences will choose to inculcate independent preferences in her child if,
by doing so, they can induce an action profile in the subsequent generation which yields her
child a higher value of the parent’s interdependent objective function.

Since parents are forward looking, the dynamics of the population composition will, in
general, depend on the expectations held by each parent regarding the behavior of other
parents. As before, assume that each parent has only one child, so that the population
is stationary at N. In period ¢ there are k; € {1,..., N} independent individuals. Denote
by ki, the expectations of parent ¢ in period ¢ regarding the number of other parents who
will socialize their children with independent preferences. In deciding whether to transmit
independent or interdependent preferences to her child, an independent parent ¢ compares

17For brevity, we omit the proof of this assertion which is available upon request. The issue at hand is
analogous to the double limit problem studied by Young (1993), Kandori, Mailath and Rob (1993), and

Vega-Redondo (1996).
180f course, if the population is initially composed of only interdependent (independent) agents, so will it

in every period.
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the absolute payoff to an independent player in a society with &7, + 1 independent players
with the absolute payoff to an interdependent player when there are k{, independent players.
If the latter is higher, then the parent chooses to inculcate interdependent preferences in her
offspring. Similarly, an interdependent parent ¢ compares the interdependent payoff to an
independent agent in a society with k7, + 1 independent players with the interdependent
payoff to an interdependent agent in a society with k7, independent agents. If the latter is
higher she chooses to inculcate interdependent preferences in her child.

If parents have static expectations regarding the behavior of other parents, then kf, = k;
for all interdependent parents and kf, = k; — 1 for all independent parents. At any steady
state of the dynamics under static expectations, parents’ expectations will be self-fulfilling,.
Static expectations will not, however, be self-fulfilling whenever the population composition is
changing from one period to the next. In this case one might wish to explore the properties of
trajectories along which parents have rational or self-fulfilling expectations at all times. With
rational expectations, the dynamics of the population composition may be indeterminate:
from any initial population composition there may exist multiple paths which satisfy the
parents’ optimality conditions and in which expectations are self-fulfilling. In the case to be
considered below, however, not only is the rational expectations path determinate, it yields
precisely the same trajectory as the hypothesis of static expectations.

When the population size N is large, dynamics under static expectations will be closely
approximated by the dynamics under myopic socialization. The only difference between my-
opic socialization and forward-looking socialization with static expectations is that the latter
requires that parents take into account the possible changes in the population composition
induced by their own socialization efforts. Therefore, when the relative share of a single
parent is negligibly small in a population, these two notions of socialization coincide. In
particular, the results one would obtain in terms of myopic and rational socialization with
static expectations would be virtually identical for games of Hawk-Dove variety that are
played in pairwise contests in finite but large populations. Similarly, Proposition 6 would
remain intact in the present framework if NV is sufficiently large.

If the influence of a single parent on the population composition is not negligible, then it
is conceivable that the implications of rational socialization (with static or rational expecta-
tions) will be substantially different than those of myopic socialization. Due to the potential
efficiency losses induced by the inculcation of interdependent preferences, the absolute payoft
of an independent individual can be larger than the absolute payoff she would have earned
had she acquired interdependent preferences instead, even though it remains true that for
a given population composition, interdependent agents earn greater payoffs. Consequently,
in small populations, rational socialization may act against the evolutionary forces that fa-
vor the spread of interdependent preferences. We find, however, that rational socialization
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Figure 2: Rational Socialization in Commons Game

need not always go against the evolutionary selection processes (such as vertical cultural
transmission) even in small societies. In fact, depending on the particular characteristics of
the strategic environment under consideration, it may well act just like a payoff monotonic
selection dynamics. We conclude the present study with a demonstration of this possibility.

Fix an arbitrary N, and consider the common pool resource game with w =1, P(t) =1
for all t > 0, and

2X — X2 if0<X <1
f(X)z{l, if X >1

Therefore, the objective function of an independent agent is m;(z) = z;(1 — X) for all
z € RN, and p; = w2/, m for all i € {k+1,..,N}. It is easy to check that the
equilibrium of this game (for any & € {0, ..., N}) is interior and intra-group symmetric (i.e.,
all independent (and interdependent) agents choose the same level of extraction effort in
the equilibrium). Unfortunately, the algebra involved in comparing the relevant payoffs at
arbitrary (k, N) tuples turns out to be quite complicated. Consequently, we have chosen to
simulate these equilibrium payoffs for a variety of N levels (including 2,3, 10, 20, 50, 100).
The simulation results for the case N = 20 are typical and are plotted in Figure 3. The
striking observation is that an independent parent will choose to inculcate interdependent
preferences in her child, regardless of their expectations concerning the behavior of other
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this occurs under both static and self-fulfilling expectations. As in the case of vertical
cultural transmission, rational socialization too gives rise in this example to a monomorphic
population composed only of interdependent agents. From any initial composition, the
population will become completely interdependent in a single generation.2°

6 Conclusions

The findings reported in this paper give some support to the hypothesis of interdependent
preferences on theoretical grounds. Our results do not allow us to conclude that interdepen-
dent preferences are the only possible outcome of evolutionary selection, nor do we claim
that independent preferences can never be sustained in evolutionary equilibrium. We do feel
justified in concluding, however, that there are sufficient theoretical grounds for considering
the hypothesis of negatively interdependent preferences to be an important and reasonable
alternative to the more standard postulate of independent preferences.

There are a number of directions in which we believe the present research could be fruit-
fully extended. It is interesting to know the extent to which our results generalize to include
additional, broader classes of games. In Kockesen, Ok and Sethi (1997) we address this
question for classes of supermodular and submodular games, and provide conditions under
which players with interdependent preferences do no worse (and sometimes better) than
those with independent preferences. Another possible direction for future research pertains
to the implications of our results for managerial behavior in oligopolistic markets. The pay-
off structure in the common pool resource game resembles that in Cournot oligopoly, and
the conditions under which rational socialization predicts the inculcation of interdependent
preferences are likely to be related to those in which a profit seeking shareholder (principal)
will instruct the manager (agent) of her firm to pursue objectives other than the maximiza-
tion of absolute profits. This issue has already been explored for duopolistic markets with
linear demand by Fershtman and Judd (1987) but our findings suggest that the phenomenon
will arise much more generally. A third possible extension involves the application of the
present framework to study certain anomalies frequently observed in experimental games.
It appears particularly well suited to explain behavior in ultimatum bargaining games, in
which a concern for relative standing would predict the rejection of highly skewed offers
and entail fear of retaliation on the part of the first movers (cf. Bolton, 1991, Saijo and
Nakamura, 1995, and Levine, 1996). Furthermore, the ultimatum bargaining environment is

the interdependent parents is symmetrical, i.e., if an independent parent chooses to transmit interdependent
preferences so does an interdependent parent (since domination in absolute payoffs implies domination in

interdependent payoffs).
20The same result was obtained for a variety of public good games, including the case U(c, X) = ¢X, and

for several other examples of common pool resource games, details of which are available upon request.
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one in which responders with interdependent preferences will earn higher payoffs than those
with independent preferences, so that evolution operating in this environment is likely to
select against the latter. These and other questions arising from the present work are left
for future research.
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Appendix

Proof of Proposition 1

Let £ € Rf be an equilibrium of an arbitrary common pool resource game. Strict concavity
of f, together with the assumption that f(0) = 0, implies that -&-d)? (ﬂ%l) < 0forall X > 0.
Given that P’ < 0, therefore, we have R’ < 0. From this observation, boundedness of f
(which implies that limy_, f'(X) = 0), and the hypothesis that R(0) = P(O) f(0) < w, it
follows that there exists a unique X, > 0 such that R(X, ) w whenever X Xo-

Suppose that X = > 2; > X,. Then, &; =0 for all ¢ € {1, .., k}, for otherw1se mi(Zs —
€,%_i) > mi(%:,%_;) for any € € (0,%;]. Since ® is bounded and strictly positive, we must
similarly have Z; = 0 for all j € {k+ 1,..., N}, and we contradict X=X,>0. Therefore,
X < X, holds, and we have R(X) > w. But then, &, > 0 for all r € {1,..., N}, for
mi(e,£—») > 0 = m;(0,%_,) for any € > O such that R(e + >_,, &) > w. (Since R is
continuous and R(X) > w, such an € must clearly exist.) Therefore, equilibrium must be an
interior one.

Now pick any i € {1,...,k} and j € {k+ 1, ..., N}. The first order conditions yield that

R(X)—w+#R(X)=0 (7)

and

- DRI QRS @) -

Zj

where all the derivatives are evaluated at Z. It is easily verified that 3 _,.0m./0z; < 0 and
7j/ > 7 < 1. Hence, since ® > 0, ®' > 0 and Op;(£)/0z; = 0, we must have 0r;(Z)/0z; <0,
that is, R(X) — w + #;R'(X) < 0. Combining this inequality with (7), we obtain

(; — ;) R(X) < 0.

The proposition then follows from (4) and the fact that R <0. QED

Proof of Proposition 2

Let 2 € [0,w]" be an equilibrium of an arbitrary public good game. Proposition 2 is an
immediate consequence of the following two claims.

Claim 1. If there exists a 5’ € {k +1,..., N} such that &3 > 0, then U(w — Z,;, X) >
U(w — &;, X) holds for all (4,5) € {1,...,k} x {k+1,..., N}.
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Proof of Claim 1. Note that by (5), we have
ox;
where X = (3.4%)/?. Now take an arbitrary i € {1,..,k}, and assume that & < w.
Therefore, 0m;(Z)/0z; < 0 so that

= —Uy(w — &, X) + 271 (& + X))V Up(w — 2, X)

—Uy(w — &, X) + 2771 (@0 + X_) VPO Uy(w — £, X) < 0. (8)

(Clearly, strict inequality holds in (8) only if Z; = 0.)
Next take any j € arg maXjc{k+1,.,n} £j7, and note that £; > 0 by hypothesis. Then
Om;(£)/0z; > 0, and hence

2@ EE] @RS E e () o

T

But for all r # 7, given that p <1 and U; > 0,

Oy = 227132 + X_,) /Uy (w — 24, X) > 0.
Oz,

(Notice that &2 + X_, > 0, for we have assumed above that #; > 0.) Therefore, (9) implies
that Om;/0z; > 0 so that we have >

~Uy(w — &5, X) + 277135 + X))V Ua(w - 25, X) > 0
Combining this inequality with (8) and recalling that % + X_; = # + X_;, we find that
—Ur(w — &5, X) + 277 Us(w — 25, X) < —Ur(w — &4, X) + 27 Ua(w — 2, X). (10)

Now suppose that £; > #;. Then Uy; < 0 implies that Uy (w — &5, X) > Uy (w — &, X’) SO

that by (10)

37 Vs (w — £, X) > 807 Ua(w — &4, X).
But this is a contradiction, for since p < 1 and &; > #;, we must have :i:g"l <z ~! and
since Uy, > 0, we must have Us(w — Z;, X) < Uz(w — &, X ). Therefore, we may conclude
that £; < #; for all 7 € {1,...,k} such that Z; < w. But then by the choice of j, it follows
that £ < &; for all ¢ € {1,...,k} and all j € {k+1,..., N}. Claim 1 then follows from the
hypothesis that U; > 0.

Claim 2. If # = 0 for all j € {k +1,..., N}, then U(w — #;,X) > U(w — &;, X) holds
for all (i,5) € {1,...,k} x {k+1,..., N} and U(w — 2;, X) > U(w — 2;, X) for at least one
ie{l,..,k}andall je {k+1,.. N}

Proof of Claim 2. Given that £; = 0 for all j and U; > 0, the first part of the clalm is
obvious. In fact, the payoff level of any interdependent player would then obviously be strictly
greater than any independent player with Z; > 0. But since limy_,o Uz(w, X) > U;(w,0), we
must have #; > 0 for some 7 € {1,...,k}, and we are done. QED
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Proof of Proposition 4

Letting N* stand for an upper bound for N;, we have

N‘
k
st €85 = U {N:ke{l,...,N—l}} forallt=0,....
N=2

Since S is finite, and s;y; < s; whenever s; > 0, there must exist a T < #585 such that
st=k,=0forallte {T,T+1,..}. QED

Proof of Proposition 5

By appealing to the assumption of “large” population, we may assume that the probability
that a given person is matched with an independent agent is s; in period ¢. Consequently,
for any t,

b+c¢

Tindep(St) = St ( ) + (1 —st)c and Tinter(St) = stb+ (1 — s¢)a.

By using payoff monotonicity, therefore, we have

Windep(s) E 7rinter(s) < 8 § s & g(S) E S (11)
2(c—a
b+c—2a

or s* € argmingee 1) g(s) implies that lim,_. g"(s) = s* for all s € (0, 1), which in turn

where s* = . By using (11), one can easily verify that either s* € arg maxcjo,s) 9(s)
establishes the proposition trivially.?! In what follows, therefore, we assume that neither of
these conditions hold.
Define
0 = sup (arg max g(s)) and 0= inf (arg min g(s))

s€(0,1) \ s€0,5*] s€(0,1) \ se[s*,1)

(see Figure 3). By continuity of g, § and 8 are well-defined. Moreover, since g is contin-
uous, g(0) = 0, g(1) = 1 and g(s) € (0,1) for all s € (0,1), we have 0 < § < s* < 0 < 1.
Finally, we define @ = min{8, 1 — 6}. Proposition 5 is then an immediate consequence of the
following Claims 2 and 3.

Claim 1. If s € (0,s*), then g(s) < 0, and if s € (s*,1), then g(s) > 6.

Proof of Claim 1. We only prove the first assertion, the second one is proved similarly.
Take any s € (0,s*) and suppose that g(s) > 8. Then since g is continuous and g(1) = 1,
the choice of 8 implies that g(g(s)) > g(6) (otherwise, it follows from the intermediate value

21For any positive integer n, we let g" stand for the nth iterate of g, that is, g" = go - - - o g where the
composition operator is applied n times.
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St+1

St

Figure 3: Construction of the interval [6, 6]

theorem that there exists a #' > 8 such that g(¢') = g()). But since g(s) > s* > s, by (11)
and the definition of 8,

9(9(s)) < g(s) < max g(s) = 9(9),

contradiction.

Claim 2. If s € [, 6], then g"(s) € (6,8) for any positive integer n.

Proof of Claim 2. Let s € [0,s*). By Claim 1, g(s) < 8 and by (11), g(s) > s > 6. The
claim then follows by induction. The case where s € (s*, ] is established similarly.

Claim 3. For any s € (0,8) U (6, 1), there exists a positive integer M such that g™ (s) €
(6,9).

Proof of Claim 8. W.lo.g., we only study the case where s € (0,8). Suppose for con-
tradiction that ¢g"(s) < @ for all n > 1. This means that 0 is an upper bound for the
sequence g™(s) which is, by (11), strictly increasing. Therefore, there exists an 3 such that
0 < lim, .. g*(s) = § < 8. But then § must be a fixed point of g, for by continuity of g,

n-—000 n—oo (TL—'OO

5 = lim g"*1(s) = lim g(g"(s)) = g (1im ¢"(s)) = (3.

By (1), therefore, § > § = s* > 8, contradiction. Consequently, there exists a positive integer
M such that gM(s) > 8. Let M be the smallest such integer. Then g™~!(s) € (0, s*), and
by Claim 1, we also have g™ (s) < 6. Proof is then complete. QED

28



Proof of Proposition 6

The myopic socialization with probability o entails the discrete time Markov chain with the
transition matrix Q € [0, 1JV*DX(N+1) where

7!
———(1—0)P0™?, ifp<r
Q,p = Problky1=p|ke=7r]={ pl(r —p)!( ) i (12)

0, ifp>r.

Let, for any positive integer n, A, denote the n-dimensional unit simplex (i.e., the set of all
probability distributions on a set of cardinality n), and let €’ denote the ith unit vector in
A,. We wish to show that limy .. €l = ey, for all i € {1,..., N}. (Notice that e},
is the degenerate probability distribution that corresponds to the state ky = 0.) Clearly,
2 represents a reducible and aperiodic chain with states 0 and N being absorbent. Define
Q e [0,1]MN by Qp = Qp for all 7,p € {0,..., N — 1}. Since Q is lower triangular, it is
easily observed that zQ = z implies that z = e}, (i.e., the unique stationary distribution of
the chain  is ek ). By using the ergodic theorem, therefore, we obtain

tlim (z,0)Q = tlim (22, 0) = eNt1

for all z € Ay, and the proposition follows. QED

Proof of Proposition 7

Let k* =N (%r(-cc{%) . Notice that if k, = k* (or 0, or N), we have k; = ky13 = - - - . On the
other hand, if k; > k*, then the probability of k;1 > k: is zero, and there is a probabilistic
tendency for k; to shrink. More precisely, the myopic socialization with probability ¢ yields

the discrete time Markov chain with the transition matrix € [0, 1]V+Dx(V+1) where

Qp = Problkyy=p| ks =7]

( !
— (1= P ifr>
Loy drzp if N #£7>k*

0, ifr<p
(N —r)! Nep o )
1- PoP—T  ifr <
Nl 7 drsr
, ifr>p

, f0#r<k*

(
0
{é’ ifr=p if r € {0, k*, N}.
\




(Notice that k* may or may not be a state in this chain. W.l.o.g., however, we shall assume
in what follows that it is.)??

Now choose any €*, i ¢ {1, N + 1}. Proposition 7 will be established if we can show that
lim; oo €'Q° ¢ {e!,eN*1}. If ¢ = k* + 1, the claim is trivial, so let i # k* 4 1. Since any
r ¢ {0,k*, N} is aperiodic (i.e., .. > 0) and since the mean recurrence rate of state k*
is 1, by the generalized ergodic theorem for Markov chains (Grimmett and Stirzaker, 1992,
Theorem 6.4.21), we have

t—oo

lim Q. = "Problky #k*, ..., ki1 # k" and k, = k* | ko =].
t=1

That is, lim; o §2,. is equal to the probability that the chain ever visits k* given that it
starts from r ¢ {0,k*, N}. But the latter probability is obviously nonzero since all states
other than 0 and N communicate to k*. Consequently, the (k* 4+ 1)th entry of e*lim,_,o Q°
is nonzero, and we are done.? QED

221¢ is not difficult to show that all states of this chain other than 0, k* and N are transient. It follows
that if £ € Apn.1 is a stationary distribution, then z; = 0 for all ¢ ¢ {1,k* 4+ 1, N 4+ 1}. Given that 0, ¥* and
N are absorbent states, therefore, co{e!,e* 1, eN+1} is the set of all stationary distributions of Q. (Here
co(-) stands for the convex hull operator, and e denotes the ith unit vector in An41.)

231n fact, one can easily show that, for any i # N with i > k*+1, lims., o, €'Q? € int(co{e!, e*"}). Similarly,
for any i # 1 with i < k* 4 1, lim;_.. 'Q € int(co{e*",eN}). If k* was not a state of the chain, then it
could easily be checked that all p € {1,..., N — 1} would communicate to state 0, provided that k* < N —1.
But by appealing to the “large” population hypothesis, we can assume that %_%:——% < % Consequently,
the above proof would go through with state 0 replacing the role of k*, if k* was not a state of the chain.
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