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ABSTRACT

The second order properties of a given MA process are compatible with several
different model specifications, only one of which is invertible. Consequently,
traditional estimation procedures, such as OLS or Box and Jenkins ARIMA
modelling, which are based on second order properties, are incapable of
distinguishing among these alternative model specifications; this ambiguity is
usually resolved by restricting the process to be of the invertible type. This
paper presents an estimation procedure, based on higher order moments, which
is capable of distinguishing between these alternative specifications, without
recourse to the invertibility assumption. The true sequence of innovations
that drive the MA process can be estimated once the correct model is
determined. Also discussed, is the finding that the application of OLS to a
non-invertible MA process generates an ARCH structure in the residuals.
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It is well known that for any MA(q) stochastic process, there corresponds
29 alternative models that are not distinguishable from each other using the
usual autocorrelation based techniques (OLS or Box and Jenkins ARIMA
procedures, for example). Of these 2% models, only one is invertible. This is
the only model estimated as it is the one model that can be re-expressed as a
weighted lag of the past observed members of the time series. In this paper,
we demonstrate the conditions under which we can identify the other 2%-1
models, estimate their parameters, and estimate the unobserved underlying
innovations. In the process, we demonstrate that the estimation of a
noninvertible model by traditional means generates an ARCH process in the
residuals.

Some of the issues that we address in this paper within the context of
the time domain have been discussed by Lii and Rosenblatt (1982) within the
context of the frequency domain; further references are cited in the
bibliography. The advantage of the time domain approach is that it allows us
to concentrate on the structure of the models and to relate the results to the
precise formulation of those models, a task that is particularly appealing to

economic analysts.

This paper has been distributed purely for the purpose of stimulating comments
and suggestions for the improvement of both its contents and its exposition.
Please do not quote without the authors’ permission.



The outline of this paper is simple. The first section recalls the proof
that there are 27 models that have the same auto-correlation function so that
they are not distinguishable by traditional means. All of these models provide
the same linear forecast. The second section of the paper demonstrates that
non-normality of the innovations can be used in conjunction with higher order
moments to identify and to estimate the parameters of each of the other
models. In the process, the "pathology" of the normal distribution is shown;
there exist 29 distinct models as defined by their parameter values, but as
far as we can discover all of these models are statistically indistinguishable
from each other, even though the time path of each model is different. The
next section utilizes the results of the previous section to provide a test
for identifiability, to demonstrate the estimation of the original
innovations, and to show that the standard parameter estimation procedure,
when applied to a non-invertible model leads to the generation of residuals
with an ARCH structure. In this context, a beginning is made on the use of our
ability to estimate the innovations in trying to learn more about the total
statistical properties of the stochastic process. There is considerable unused
information in the original innovations that has not been exploited. The
fourth section briefly indicates that indeed there are actual economic time
series that are sufficiently non-normal to enable us to use our new tools,
Illustrations of the theoretical concepts discussed are provided in each
section. The paper is concluded with some summary comments and some ideas for

further research.



(1) THE EQUIVALENCE OF MA(q) MODELS

We consider the following linear model;

X, = Zg a €, (1.1)

= C!néih + €, + Qy € o + ... €

The distribution of the {e.} is assumed to be a white noise process in
that terms in the sequence {¢, ) are mutually uncorrelated and have a zero mean

and a constant variance of ai. By solving the roots of the auxilary equation;
2
a, + a;B + a,B° + ...+ anq; (1.2)
we obtain the alternative form of expressing equation (1.1):

X, = 0I(1-2,B)e,; (1.3)

where "B" is the backward shift operator. The A;, i = 1,2,...q, are the roots
of the auxiliary equation (1.2). It is well known that invertibility requires
that the maximum modulus of the set of roots be less than one in absolute
value. The reader will recall that invertibility in the linear model means

that equation (1.1) can be "inverted" to yield:

€p =y ByXeoys (1.4)



where the infinite series is convergent for almost all realizations of the
stochastic process {X,}.

Let {A;} denote the set of roots corresponding to some one choice of
model coefficients as defined by the choice of a coefficient set {e;}, 1 =

1,2, ..q, where, without loss of generality, we use the normalization rule

1 1

that e,=1. Let {A;} denote an alternative set of roots that differ from the

first set only in that for some values of k, ke(l,2,...q}, A is replaced by
A_i. Corresponding to this choice of set of roots, there is a set of model

coefficients {a;} that differs from the original set of coefficients lo,}.
The two models defined by {X;} and [A;], or by {a;) and {a;}, are
autocorrelation equivalent in that both models have the same autocorrelation
function. This well known result can easily be demonstrated by using the
concept of the autocovariance generating function; see for example, Brockwell

and Davis (1987). We define the autocovariance generating function by:

G(z) = T , v(k)z"; (1.5)
with convergence in some annulus rq<|z|<r, r>1, where y(k) is the
autocorrelation function. If X, is an MA(q) process, then G(z) can be
rewritten as;

G(z) = d2a(z)a(z '); (1.6)

where a(z) is defined by:
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a(z) =1+ a2z + azz2 + oz L. a Z

and equation (1.6) follows from substituting the definition of ¥(k) into
equation (1.5) and the fact that for a real process the autocorrelation
function is an even function of the index; that is, Yy = Y-y

We conclude that if z, is a root of equation {(1.6),then so is z“é. There
are 2% choices of q roots from the 2q roots, {};} and {Agl}, since for each
distinct root there are two choices of associated power, *l1. Consequently, any
choice of g values from the set [Ai,A?} will yield upto a scale factor the
same autocovariance generating function and therefore exactly the same set of
auto-correlations. Indeed, one might well characterize the auto-correlation
function as being "time blind".

This result also shows that any property that relies exclusively on the
auto-correlation function will be the same for all members of the auto-
correlation equivalent group of models. For example, the linear one-step ahead

OLS forecast ir’ is given by:

-~

Xp = ~oyXp g - Xy, - 0¥y 5. (1.7)

the statistical properties of which depend only on the auto-correlation
function of the observed sequence (X.}. Consequently, all these auto-
correlation equivalent models yield precisely the same forecast.

As an example we present the following four MA(2) models, with

{x1=1(2,3}, that exhibit the same autocorrelation function: -.565 for lag 1



and .097 for lag 2. The last model, (1.8d), corresponds to the roots

{x;1=(2,3}. The invertible model is (1.8c).

EQUATION ROOTS
Xy, = €, - 2.33€,., + .666e,_, (2,1/3) (1.8a)
Xy, = €, - 3.5¢,_, + 1.5¢,, (1/2,3) (1.8b)
Xy, = €, --833e,_, +.1666¢€, _, (1/2,1/3) (1.8¢)
Xyp = €, - 5€y_q + b€y, (2,3) (1.84d)

(2) THE IDENTIFICATION OF MODELS WITH NON-NORMAT, TINNOVATIONS

In this section we demonstrate that for models based on non-normally
distributed innovations, that is, for models where {e¢, ] has a distribution
other than normal, the 2% distinct models can be identified and their
parameters estimated consistently. For the corresponding approach using the
polyspectra, see Lii and Rosenblatt (1982), or Matsuoka and Ulrych (1984) with
assoclated references.

The assumed model is that presented in equation (1.1), except that
normality of the probability distribution function is specifically denied.

However, we do assume stationarity up to the fourth order, i.e., all moments



up to the fourth are constant. In the final part of this section we will
discuss the difficulties with the normal distribution.

Equations (1.1) and (1.3) summarize the two ways of writing out the Ma(q)
process, one in terms of the model coefficients and one in terms of the roots
of the equation. The roots and the coefficients are related by the following

expressions for an MA(q) process.

2
)
I

(-1)Z, A,

- 2¢q g-1
a, = (-1) 23>121=1A1lj

3 -1 -2
(DRSS I S NP YD YD

Q
w
i

o, = CGDIA G0 (2.1)

The statement of the main theorem is simple. The 2% distinct models
generated by alternative choices of Aff where {};} are the q roots for some
choice of q model coefficients, {w«;}, can be identified, if, and only if, the
stationary distribution of the sequence {¢,} is not normally distributed,
provided only that the joint distribution of (e} has finite moments up to the
fourth order.

The proof is by induction. The procedure is first to show that if an MA
model of order gq-1 is identified, then a model of order q is identified. The

next step is to show that an MA(l) model is identified when the ¢, are not



Gaussian. The last step iz to show that the models are not identified by the
procedures used in the first part of the proof when the {e¢,} are normally
distributed.

We begin by defining the bicovariances for any MA process, where the
innovation sequence {e¢. ] has zero mean see, for example, Rao and Gabr (1984,

pg.118).

Be(ty,ty) = E(X Xipy Xpwy, !
= EuzvzwauavawE{et-u€t+tl-v€t+2-w}

= lu:'!(e)[E:l.ltll.lau'i't.]_a\.l+t’42] (2'2)

Consider the subset of bicovariances of lag length g, max lti|=q, i=1,2,
in order to avoid sums of the products of the model coefficients. The terms

are:

Be( 0,-9) = (o a )a

Be(-1,-q) = (pByapa,)a
Be(-2,-q) = (psanaq)aq_z
Be(-3,-q) = (pyapada,_,

Be(-q,-q9) = (pzapay)ey; (2.3)



The bicovariances are all propertional to the individual model
coefficients. This characteristic is the clue to model identification using
the bicovariance.

Let {X,}, i=1,...,q-1, designate the set of roots for a (q-1) order model
with model coefficients (8,}, i=1,...,q-1, so that the q'th order model can be
written in terms of the (q-1) roots {);) and the additional q'th root for the
q'th order model, designated as A . We can express the q'th order model’s

coefficients, (a,), in terms of the B, and the q roots, 1i;, by:

a, = B -Aq
a, = B, + TXy /\q
a, = B3 TEA A (2.4)

....................
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where the multiple summations on the X, at the k’th step run from 1 to q-k for
index i, from i to q-k+l for index j, from j to q-k+2 for the next index, and
so on; the last summation is from the previous index to q. The alternative set
of model coefficients, designated {a)}, corresponding to the choice of roots

(%;, 1=1,2,..q-1, A}, is given by:

a, = B, + T A7 (2.5)
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.......................

Let us assume without loss of generality that the model set {o,)} ave the
model coefficients for the "true" or "correct" model and that the set {eaf)}
are the coefficients for any other model. The task is to demonstrate that
ratios of the a; do not equal corresponding ratios of the a;. Ratios are
examined because ratios of the bicovariances in (2.3) can provide estimates of
the ratios of the model coefficients. If the ratios of the {a)} are not equal
to the ratios of the {a;}, the coefficients of the assumed correct model,
then, in principle at least, the bicovariances can be used to distinguish
between the alternative models. The different models are identifiable, if
o; /o, * a;/a;. This is easily verified. Consider, for example, the ratios

oy /oy and oy/a . The ratios are:

al/aq = (ﬁl - Aq)/ ﬁq-l(-)\q); (2.6)

oy /ey = (By - A1)/ Byoy (AGT); (2.7)

by multiplying numerator and denominator of equation (2.7 by l;, we obtain:
ay /o = (M2B1-2) /By (-2

which demonstrates that, while the denominator is the same as that in equation

(2.6), the numerator cannot be re-expressed to obtain the numerator of

equation (2.6). Similarly with the ratio a,/a,, we obtain:
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ay/a; = (B + ZAA)/ (By1(-3));

ay/ay = (B + AN/ (B (-A D)

and again by multiplying both numerator and denominator by the appropriate
power of ), we can demonstrate that the models are not equivalent with
respect to these higher moments. Similar arguments can be used to show that
the result that we have just demonstrated for @, and a, is true for any pair
(ai,aj). However, the proof so far depends on p;(¢) being non-zero. To show
the identifiability of the models when the third moment is zero, we will have
to go to the tricovariances, which correspond to the fourth order moments.

It is convenient to introduce the cumulants as an alternative to moments.
The cumulants are of great theoretical use, but are seldom used in estimatien
directly. The r'th cumulant, x,, is obtained by taking the k'th derivative of
the log characteristic generating function, where the k'th moment is obtained
by taking the k’'th derivative of the characteristic generating function. The

cumulants and moments are related by:

Hz = K
By = K3
p, =&, + 3xZ (2.8)
Kz = H;
Ky = H;
K, = B, - 3p§ (2.9)
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For the normal distribution the cumulants beyond the second are all zero.
Consequently, if the distribution of the innovations is normal, then the
alternative models are completely unidentifiable by any means that rely on
moments or cumulants.

When the third moment is zero we can no longer rely on the bicovariances
in equation (2.3) for identification and must resort to the next higher order
moment, the tricovariance in this case. Following Rao and Gabr (1984), the

tricovariance, Tr(t,,t,,t;), can be expressed in terms of the cumulants as;
Tr(t, ,t,,t;) = e(t;)e(ty-t,) + c(t,)e(ty-t,)
+ c(tyde(t,-ty) + c(t,,t,,t5) (2.10)
where Tr(t,,t,,t;) = E[xtxt+t1xt+t2xt+t3].
c(t) denotes the second order cumulant which is equal toc the second order

moment, the autocovariance, and c(t,,t,,t;} denotes the fourth order cumulant

whose expression is
4
c(ty,t,,t3) = (u,-30,) = T L L e {2.11)

Equation (2.11) indicates immediately that this expression cannot be used to

identify models in the Gaussian case because with the normal distribution
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p4#30: so that e(t,,t,,t;) is zero. We can re-express equation (2.10) in terms
of the autocovariance, R(t), and solve for the fourth order cumulant:

ety ty,ty) = Tr(t, ,t,,t;) - R(t;)R(t,-t,)

1

- R(t,)R(ty-t,) - R(tyIR(t,-t;) (2.12)

While we cannot directly estimate the fourth order cumulant, we can
estimate all terms on the RHS of equation (2.12). Also, a close look at
equation (2.11) reveals that we can choose a subset of the t,,t,,t, time lag
combinations such that the cumulants are preportional to the individual model
coefficients, as we did with the bicovariances in equation (2.3). In general,

for an MA(q) model we have (from equation 2.11):

c( 0, 0,-q) = (n,-30") (agay)eg

e(-1,-1,-q) = (#,-30") (@payday

e(-2,-2,-9) = (m,-30")(age 'l

c(-q,-9,-9) = (#,-30") (aya,)al (2.13)



14

Each of the above cumulants corresponds to a particular combination of
time lags and is proportional te the square of one of the coefficients of the
moving average process. Therefore, as with the bicovariances, we may use the
estimated cumulants (from equation 2.12) to identify model coefficients.

As an example of the use of fourth order cumulants consider estimating
c(0,0,-2) for an MA(2) model. This cumulant is proportional to the coefficient

ai. From equation (2.12) we obtain:

c(0,0,-2) = Tr(0,0,-2) - 3R(0O)R(-2)

=% XX,, - 32 X)) (= XX,,) -

Similarly, for c(-1,-1,-2), which is proportional to a’:

e(-1,-1,-2) = Tr(-1,-1,-2) - 2R(-1)R(-1) - R(O)R(-2)

2 2 2
=Z XK Kpp - 2(EX X D7 - (XD (BXX, )

and finally, for the cumulant proportional to ag, we get:

c(-2,-2,-2) = Tr(-2,-2,-2) - 3R(O)R(-2)

3 2
=% XX, - (X)) (BX X o)

We now prove the necessity of the condition of non-normality. We have
already shown that the alternative MA(q) models are not identifiable using the

first two moments, or cumulants, so that moments, or cumulants, beyond the
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second are needed. Since all the cumulants for the Normal distribution are
identically zero beyond the second, the proof of necessity follows.

To complete the theorem all that is needed is to demonstrate that an
MA(1l) process is identifiable. The induction argument just developed can then
be applied to complete the proof that only non-normal models with finite
moments can be identified. This part of the proof will also provide an example
of the technique.

Let us define two processes:

X, = € -a€, _y; || <1 (2.14)

t

) -1
Yo = €, -Bepys B=oa .

The {e ]} are assumed to be independently and identically distributed with

moments p2=af and p,(e). Using (2.2) it is easy to verify that:

E[Xixt-l} = -a,

E(X} ) = py (1-a”);
E(Y2Y,_,) = -Bu, (2.15)
E(Y)) - 4y (1-8°);

and if we now look at the respective ratios to eliminate the presence of g,
we obtain:
2 3 3.
E{X{X, ,}/E{X{} = -a/(1-a”);

E{Y2Y, . }/E(Y,} = -B/(1-8); (2.16)
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and identification is achieved if the two expressions in (2.16) cannot be

-1

transformed into each other. Recalling that £ = a it is immediately clear
that such a transformation is not possible. Consequently, the MA(l) model is
identifiable and therefore by induction all MA(q) models are identifiable
under the stated conditions. A similar argument using the tricovariances when
p;(e)=0 can be used to show that an MA(1l) model is identified and therefore
all MA(q) models that are non-Gaussian with finite fourth moments.

In what follows we will concentrate mainly on MA(2) processes for
expository purposes. However, extensions to higher order processes are
straightforward. As noted, for any MA(q) model there exist 2% possible
specifications compatible with the same autocorrelation function, one of which
is invertible; consequently, an MA(2) will have four specifications, one of
them being invertible. The standard estimation methods available, such as OLS
or Box and Jenkins ARIMA modeling, are based on the autocorrelation function
and are thus incapable of discriminating among these 29 alternatives. The
implicit assumptions made by these techniques yield only the invertible
specification. To find the other 29.1 specifications we take this invertible
specification, find its roots from equation (1.2), then take different
combinations of these roots and their inverses and substitute them into
equation (1.3) thus obtaining the complete set of alternative models. Once
this is done, we use the bicovariances estimated in equation (2.3) to identify
the correct model, i.e., the one compatible with the observed data. (If the
third order moment of the innovations is zero we use instead the

tricovariances defined in equation 2.12}.
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To discuss the probability limits of our estimates, we begin by assuming
that the estimates of the coefficients {a,;} of the MA process obtained by
traditional methods have probability limits that equal the MA parameters being
estimated. From Slutsky’s theorem (see Judge et al, p.147,150), if g(.) is a

continuous vector function, then, when plim a=a, :

plim[g(e,)] = glplim(a,)] = gla,), (2.17)

where plim &i=ai is defined by: {Ega Pr{|&i-ai|>e]=0.

Equation (2.17) implies that the roots [ii} of the estimated auxiliary
equation (1.2) converge in probability to A, and that, likewise, the other
29-1 sets of estimates obtained by combining these roots in the manner of
equation (1.3) also converge in probability to their respective limits.

Illustrating this for an MA(2) process, we may establish
plim X, = plim[(-a, * /(& - 4a,))/2a,]
= (-plim &, * J((plim @,)® - 4plim ay))/2plim a,

from which we conclude that A, and A,, and their combinations, converge in
probability.

Given that the bicovariances are proportional to the individual
coefficients of the correct model, a visual comparison is sometimes sufficient
to carry out the selection, or at least, to discard some of the alternative

specifications. A more formal, though disarmingly simple, test for
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identification can be proposed by finding the correlation coefficient, p (one
for each of the 2% models), between the series formed by taking the magnitudes

of the bicovariances

‘BC('Q.'Q)1 ] |BC(‘C1+1:‘C])| EREEE I | IBC(O,'Q)l (218)

and the series formed by taking the magnitudes of the coefficients to which

they are proportional:

‘aol,lall,---,|aq|- (2.19)

The model with the highest positive correlation is selected. The same
type of test may be used with the cumulants of equation (2.12). This test can
be explained as follows. Our problem, once we have the 29 sets of alternative
coefficients, is to choose the correct one. We know that the set of
bicovariances in equation (2.18) is proportional to the corresponding sequence
of the absolute values of the coefficients of the correct model. Therefore, by
searching for the largest positive correlation between the bicovariances in
(2.18) and each alternative set of coefficients we are, in effect, looking for
that set of absolute values of the coefficients {e, )} which exhibits the "best

fit" to the bicovariances. We can write in general:

|BC1(')| = kilail
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where k, >0, i=1,...,q, is a factor of proportionality between the magnitudes
of the bicovariance and the corresponding model coefficient. Therefore,
letting &i denote the estimates obtained by the procedure outlined above, we

have:

p = cov(lﬁci|,|&i|)/Jvar(|ﬁci|)Jvar(|&i|)

I

covik, |ay |, |a, |)//var(k, e |)/var(|e; |)

(E ka® - E |o,| E K, |a, |)//var(k, |a, |)/var(]a,)
(2.20)
From the above equation we can see that only if, for all i, k,=k, where k is

some constant, will p=1 since we are then able to pull k, out of the

expectation operator and write

p =k var(|e,|)/k var(|e,]|) = 1
The condition that all k;'s be equal for a given coefficient set implies the
true model which in turn implies a perfect fit with the bicovariances.

Returning to the MA(2) example, the bicovariance series is

|Be(-2,-2)|,|Be(-1,-2) ], |Bc(0,-2)|
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which would be correlated against the set of absolute values of the

coefficients

|au|,|a1l,|az|

from each one of the four alternative models.

To illustrate the identification procedure we generate a sequence (X}
using equation (1.8a) from our previous example and repeated here for
convenience,

X, = €, - 2.33e,_; + .666¢, _, (1.8a)
with roots {X,;}={2,1/3}.

The sequence {e,} used to generate (%} consisted of 1000 draws from a
zero mean, variance one, exponential distribution with skewness, p,, equal to
2.2,

Suppose we observe only the sequence {x,} and are asked to estimate the

parameters of the underlying model. We begin by applying the Box and Jenkins

ARIMA procedure to the observations (x,] to obtain (t values in parentheses),

%, = € - .8233e._, + .1366e,_,, (2.21)

(-26.1) (4.3)

as an estimate of the invertible model shown in equation (1.8c) with roots

(1/2,1/3). Using equation (1.2) we can re-express the estimated model as
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%, = (1 - .8233B + .1366B%)¢, (2.22)

The estimated roots of the auxiliary equation above are 4.35 and 1.685.
The set of autocorrelation equivalent specifications are found by substituting
different combinations of the roots, and their inverses, into equation (2.1)

to obtain:

oy oy a,

model 1 1 -(4.35+1.685) = -6.00 (4.35)(1.685) = 7.33
model 2 1 ~(4.35+41.685° 1) = -4.90 4.35/1.685 = 2.58
model 3 1 -(1.685+4.3571) = -1.90 1.685/4.35 = 0.39
model & 1 -(4.35"1+1.685"1) = -0.82 {(4.35)(1.685)} % = 0.14

The estimates of the bicovariances for these data yield:

|Be(-2,-2)]

lzxtxt-th—Zl = 2550 oc|C‘o|

|Bc(-1,-2) |

It

|2tht-lxt—2| = 4466 “lall

|Be(0,-2)| = |=x,x,%x,.,] = 601 o|a, |,
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for the correct model.

The correlation coefficients, p, between the bicovariance series
(2550,4466,601} and the magnitudes of the coefficients is estimated for each
model. These correlations were -.2, .59, .99, .756 respectively for model 1 to
4. On this basis, model 3:

X, = €, - 1.9¢,_, + 3%, (2.23)
is correctly chosen as the estimate of the process we generated using equation
(1.8a). In this example the fact that the .99 correlation was easily singled
out might leave an overly optimistic impression about the effectiveness of the
method. Further, the above results indicate that the estimation of the roots
is sensitive to the estimation of the invertible coefficients. In short, it
would appear that the mean square error of estimate for the non-invertible
model's coefficients are substantially greater than the mean square error of

the invertible model’s coefficients.

(3) IMPLICATIONS OF IDENTIFIABILITY

A) Recovery of the Innovations

In other disciplines, seismology for instance, there is great interest in
estimating the innovations {e,} due to their information content about the

underlying physical system. Recovery of the sequence {e¢.}, known as
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deconvolution, presupposes that the identification and estimation stages have
been carried out, i.e., the coefficients {a;) have been estimated. Once this
is achieved and the roots of the auxiliary equation (1.2) found, we can easily
solve for gt, our estimate of ¢,, by solving equation (1.3). The resultant
expression for ;t may be a function of past and present x's, of future x's,
or a mixture of past and future x's. The {;t} recovered by traditional
methods, say by taking the OLS residuals or through Box and Jenkins ARIMA
modeling, yield consistent estimates of le.} only if the observations come
from an invertible model.

It should be noted that some innovations at the beginning or at the end
of the sequence {e¢,) can not be estimated. In the invertible case, for
example, the expression for gt is of the general form

€, = Yo%y * Pyx g F (2% SR S (3.1)

where {@s} is a decreasing sequence of estimated coefficients obtained by
solving for Et in terms of [&i} and the observed {x.}. It is clear from this
expression that the innovations at the beginning of the sequence cannot be
recovered due to the lack of previous observations on Xx,. In the strictly non-
invertible case, the expression for ;t is of the form

-~

€p = £1%yqq * €aXesn * $3%psa Too oo (3.2)

where {£,) forms a decreasing sequence in time. If, say, we have observations

up to time T, the innovations close to, and at T, cannot be estimated because
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we do not have future observations on x,, i.e., for t>T. This fact has
important negative implications for our ability to improve forecasts by
identifying the correct model. If we were allowed to retrieve ep, then a
linear forecast for x;,, would be superior in the non-invertible case compared
to that of the invertible case, by virtue of the higher weight assigned to ¢,
in the former model; a discussion about the irrelevancy of invertibility to
linear forecasting is found in Granger and Newbold (1977, p.l44). However,
while this is the case for linear methods, the door is still slightly open for
research aiming at improved forecasts via non-linear methods.

To illustrate the recovery of the Innovations we recall the estimated

equation (2.23) and solve it for gt as follows

X, = €, - 1.9¢,, + .39%¢, 5,

or x, = (1 -1.9B + .39B%)¢,,

or 39(B - 4.35)(B - .59)¢,,

]
I

or %, = -1.69(1 - .23B)(1 - .59B"))Be,,

in order to obtain a convergent expansion in terms of the sequence {x,}. After

suitable truncation we obtain:

€, = -.03x%,_, - .15x, - .68x,,; - .405%.,, - .26,

(3.3)
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Figure 1 compares a section of the original exponential innovations e,
with our estimate gt from the above equation. Figure 2 compares the original
innovations with those that would be obtained by incorrectly assuming
invertibility and running OLS on the observations; the OLS estimates of e, are

the residuals of the regression equatiomn:

X, = -.813x,_, - 512x, _, - .33xy - lax, (3.4)

(-26) (-13) (-8)

where the t values are shown in parentheses.

B) The Generation of ARCH Results

This section shows how attempts to forecast by running OLS using
observations from a noninvertible MA process result in residuals with ARCH
structure. In contrast, no ARCH effects are generated if the process is
invertible. For simplicity, moving averages of order one will be used.

Consider the following invertible (3.5a) and noninvertible (3.5b) models,

appropriately labeled xi for jnvertible and xn for noninvertible:

xi, — €, + ae, || <1 (3.5a)

xn, = o€, + €, |e]<1 (3.5b)
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where the coefficient a is the same in both equations.
The one-step-ahead forecast for the invertible case, denoted here as

xi,, is found by running OLS to obtain

xi - .. (3.6)

which is simply the inverted (or autoregressive) representation of the MA
process.

Given that OLS is based on the autocorrelation properties of the process,
we obtain the same result in the noninvertible case:

s - -~

- 2 3
Xn, = axXng_, - o' Xn,_, + oA _5 - ... (3.7)

While the estimated coefficients of both equations are the same, their
OLS residuals differ. To facilitate comparisons let us substitute for the
estimates, their probability limits. Substituting model (3.5a) into equation

(3.6) we get

%
[ atd
I

2 3
N afe, ., + ae,_,) - a [, _, + ae, 5] o [, 5 F ae, _, ] -

- ae,_, (3.8)

where all terms other than oe ., cancel. The OLS residual for the invertible

case, labeled Ir, is therefore
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€, + @€ Ly - @E g = € (3.9

In contrast, the residuals defined with respect to the finite sample size

estimate a are:

€, + By, - abe,, +albe - @ fe .. (3.10)

where §=a-a. Because a has a probability limit e, |a|<l, the expression in
equation (3.10) converges rapidly in probability to e,. Even for finite
samples, one would only need the first few terms to obtain a very close
approximation. We define these residuals by Ir.

For the noninvertible case we substitute model (3.5b) into the regression
in equation (3.7) to obtain a different forecast in which the lag innovations

do not cancel

2 3
xn, = afae, _, + €,_p] - o [ae, _, + €3] + o [ae,_5 + €y}

2 3 2 4 3 5
=a€ _, + (- Yey, ., - (o - Ye .4 t+ (& - Ye€u-4 = -

(3.11)

Finally, the OLS error for the noninvertible case, Nr, is

Nr = xn, - Xn, = o€, + €,_4 - X0
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2 3 2 4
- a¢, + (l-a Ye ., - (a-a Ye ., + (a”-a e, 5 -

(3.12)

As with the invertible case, the substitution of ﬁnt for Xn, yields a rapidly
converging sequence in powers of o« and § associated with lagged values of e,.
Notwithstanding the differences in residuals exhibited in equations (3.9)
and (3.12), the mean square prediction error, MSPE, is the same in both cases.
For the invertible case, using equation (3.9), we find the MSPE to be
2 s ms 22 2 2
MSPE = E(Ir]® = E[(xi,-Xi,)"] = E(e, )" = o) (3.13)
For the noninvertible case we use equation (3.12) and note that terms

containing cross products of the {e¢ )} will vanish once the expectation 1is

taken:

MSPE = E[Nr]2 = E[(xn, -int)zl =

E[azez+(1—a2)2e§_1+(a-as)zei_2+(a2—aq)zei_3+(aa-as)zei_q+...]

ai[az+l-2a2+a4+az-Zaﬁ+a6+a4-2a6+a8+a5-2&8+a10+a8-2010+a12+...]

= o (3.14)
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The usual test for ARCH structure, variances that are themselves
conditionally autoregressive, is to regress the OLS residuals squared on past

r

x’'s: significant asymptotic t values for these variables is indicative of an
ARCH structure; see Engle (1982). Estimating the residuals from a non-
invertible model when invertibility is assumed produces an ARCH structure in
the squared residuals. To see this, square the noninvertible OLS residuals and
regress them on xn,_;, to obtain:

~ -

b = plim ([ Nr? xn,_,1/[= x?_, 1}, (3.15)
where b is the estimate of the linear relationship between Nri and xn,_,.

Substituting (3.12) and (3.5b) into (3.15) and noting that terms with cross

e,’s will vanish in the probability limit, we get
plim b =

plim {Bfae, +(1-a)e,_ - (a-a’de, ,+

(&% -a*)e, 5-...)% (ac,_ +e, ;)1 /Slae, 1+e,.,17)

plim {E[;(l-&z)zéi_l + (&-&3)25i_2]/2[&et_1 + Et-z]]z

g(a)pu, (e) /02, (3.17)

where g is a function of a.
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In this example we obtain significant ARCH effects as long as the third

order moment of the innovations is nmonzero. When the innovations have a zero

third moment, such as with a normal distribution, no ARCH effects would be

found, whether invertible or not.

To demonstrate the appearance of ARCH effects we have generated 4 pairs

of models, where the first model in each pair is invertible and the second is

noninvertible. All sequences are 1000 observations long and are described as

follows:

pair 1:

pair 4:

yo,

u, + 24y

2u; +oug

Ge

e t ST S

+ 5e,., + 6€t_2

v, + Svi_, + Vi,

v, + 5vo., + 6v, _,

6d, + 5d,_, + d, .,

d, + 58,., + 6d,_,

where u, is distributed as
exponential with variance

of 1 and p,=1.6.

where ¢, is distributed as
exponential with variance

of 1 and p;=2.2.

where v, is distributed

N¢O,1)

where d, is a uniform
distribution with zero mean

and a variance of 1.
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OLS was used to estimate the invertible version of all eight models. The
next step was to square the residuals and regress them on various lags of the
observations plus a constant. The results are shown by pairs below. Notice
that the t values for the lagged variables are higher in the noninvertible
cases than in the invertible cases except, as expected, when the innovations
are normal or symmetrically distributed. Likewise, the F values for the non-
invertible models in the first two pairs are significant at the 1% level, but

not significant with the unidentifiable non-invertible models in pairs 3 and

pair 1:  (yiRES)® = .89 - .06yi,_, + .12yi,., - .O4yi,_,

(146.9) (-.9) (1.9) (-.7) Fy gg3=1.37

(ynRES)? = .9 + .28yn,_, + .07yn,_, - .0Syn,_,

(15.9) (4.7) (1.2) (-.8) Fy ggs=8.74
pair 2:  (xiRES)? = 40 - .2xi,_, - .13xi,_, - .5xi,_,
(10.5) (-.3) -.2)  (-.9 Fy gg2=1.00

(anES)z = 39 + 2,9xn + 13xn, _, + .8xn, _4

t-1
(16.7) (8.2) (.3) (2.1 Fy ggp=42.9
pair 3: (ziRES)? = 37 - .24zi,_, + .3zi,_, - .5zi,_,
(22.5) (-.9) (.9 (-1.8) Fy gg,~1.27
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(znRES)2 = 37 + .lbzn,_, - .02zn,_, - .hzn,_,

(21.4) (.5) (-.1) (-1.3) Fy gg1=1.07
pair 4:  (siRES)? = 38 - .15si,_, + .42si,_, - .lsi, _,
(34.8) (-.9) (2.0) (-.6) Fy ggy=1.68

(snRES)? = 38 + .06sn,_, + .l4sn,_, + .07sn, _,

(24.4)  (.2) (.5) (.3 Fy gg1—-47

The critical F values for F,, are:

3.78(1% level), 2.60(5% level), 2.08(10% level), 1.37(25% level)

(4) SOME EMPIRICAL EVIDENCE OF NONINVERTIBILITY

In this section we examine the practical relevance of our procedures.
This is an important exercise in that it may well be true that all economic
time series that can be represented as moving average processes are in fact
invertible. Further, the presence of extra noise, the inevitable
approximations that are involved, not to mention the very limited number of
observations available in most economic time series, may vitiate our results.

The data base that we used to search for time series that might prove
amenable to our analysis was CITIBASE of Citibank. The time series that we
considered, at least briefly, included: monthly M1, currency, demand deposits

and the monetary base; income velocity, quarterly GNP and the GNP deflator;
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monthly prime rate and the LIBOR rate; monthly exchange rates for Canada,
Japan, United Kingdom and W. Germany with respect to the US dollar;
expenditure for new plant and equipment; new construction put in place;
monthly unemployment rate; some stock market data; and some leading
indicators.

All economic time series that were scanned in any detail were transformed
into percentage changes of the original series; we found this procedure to
yield generally acceptable stationarity in the series while still preserving
their economic significance. Our interest, at this preliminary stage, was to
find time series that could be modelled as very low order moving averages,
MA(1) or MA(2). While non-zero third moments were commonly estimated, the
invertibility assumption was supported in most of the series that we scanned,
a finding that agrees with the conventional wisdom. However, we can present
some evidence of noninvertibilty in the series for the percentage change in
the Prime Rate and percentage change in Expenditure for New Plant and
Equipment.

The Prime Rate series includes monthly averages of daily figures, in
terms of percent changes (mean subtracted). 200 observations from April 1970
to November 1986;: Citibase code FYPR, were observed. The autocorrelation
function for the prime rate series is shown in Figure 3; two lags were
selected as significant: r(1)=.59 and r(2)=.19. The estimated autocovariance
function is ﬁ(0)=31.5, ﬁ(1)=18.6 and ﬁ(2)=6. The estimated standarized
skewness is 2.8.

The Box and Jenkins procedure applied to these observations yields the

following invertible specification (t values in parentheses):
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PR, = €, + .67¢,., + .19¢, . (4.1)

(9.7) (2.8)

The roots of the above equation are -1.73 * i1.47, where 1 is J-1.
Combining these and their inverses, by pairs, we get four autocorrelation
equivalent models, of which two will have complex coefficients. Use of these
coefficients implies that the innovations would also be complex to assure real
valued observations of the prime rate. We assume that the innovations, or
shocks to the economy, are real and consequently disregard models with complex

coefficients. The two alternative specifications with real coefficients are:

PR, = ¢

‘ + .67¢,_, + .19¢,_,, invertible;

t
(4.2)
PRL = g, + 3.466t_1 + 5.15¢, _,, non-invertible.
As the reader can appreciate, the two versions differ significantly. The
invertible one, obtained by traditional estimation procedures, exhibits
descending coefficient values; the noninvertible model has ascending

coefficients, that is, the major effect of an innovation is with a lag of 2,

From the data, the estimated bicovariances are:

-5568

Be(-2,-2)

3330

Be(-1,-2)



35

Be( 0,-2) = 13829

The correlations between the absolute values of the bicovariance series
and the absolute values of the coefficients for the two models are
respectively p,=-.82 and p,=.68; thus the second alternative, the
noninvertible, is selected as the appropriate MA expression for the percentage

change in the monthly prime rate:

PR, = ¢

. .+ 3.46e, _, + 5.15¢, _, (4.3)

The sequence of innovations that drives the prime rate process is found

by solving for e, in equation (4.3):

e, - .19PR,,, - .13PR,,, + .OS5PR,,, - .O1PR,, 5 + ... (4.4)

A plot of {gt} versus time is shown in Figure 5.

The data on Expenditure for New Plant and Equipment is quarterly percent
changes (mean subtracted), for all industries, in current dollars; there are
161 observations from 1947/1 to 1987/2; Citibase code IXI. The estimated
autocorrelation function for this series is shown in Figure 4; two lags were
selected as significant: r(l)=.52 and r(2)=.31. The estimated autocovariance
function is R(0)=10.6, R(1)=5.5 and R(2)=3.3. The estimated standarized

skewnesg is -2.95.
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The Box and Jenkins procedure yields the following estimation (t values

in parentheses):

NPE, = u, + .428u__, + .23u,__,. (4.5)
t t t-1 6 -2

{5.6) (3.0)

The roots are complex and form the conjugate pair -.93 * il.87. The two

specifications with real valued coefficients are
BPE, = u, + .428u, _; + .23u,_,, invertible;
(4.6)

NPE, = u, + 1.86u, _; + 4.36u,_,, non-invertible.

From the data the estimated bicovariances are:

Bc(-2,-2) = -1027
Bo(-1,-2) = -1385
Be( 0,-2) = -1572

The correlations between the absolute wvalues of the bicovariances and the
coefficients of the two models are p,=-.996 and p,=.9, suggesting the

noninvertible alternative as appropriate, that is,
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NPE, = u, + 1.86u,_, + 4.36u,_, (4.7)

The innovatiens that drive this process are found by solving for {u,} in

equation (4.7):

u, = .23NPE,,, - .INPE,,, - .OINPE_, , + ... (4.8)

A plot of [ﬁt} versus time isg shown in Figure 6.

5) DISCUSSION

While we acknowledge the statistical difficulties that accompany such
limited samples as those presented in the previous section, the results
obtained in these examples have important implications for the way that we
model economic behavior in terms of the timing of an agent's reactions to
incoming innovations or shocks. Invertibility, the usual assumption in
traditional estimation procedures, automatically places restrictions on the
value that the moving average parameters can take. It rules out, for example,
the case where |a1| is greater than |a0| in an MA(1l) model. It rules out, in
other words, the possibility that economic agents react more vigorously to an
innovation ¢, after some time has elapsed. Similar statements can be made
about higher order moving average processes MA(q), where, if invertibility is
imposed, Iaql can never be greater than |a0|. We must note, however, that no
simple ranking rule is available for the other intervening coefficients of the

model,
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Qur results tentatively indicate that the variables, prime rate and
expenditure on new plant and equipment, both in percent changes, delay their
strongest reactions to incoming innovations, by 2 months for the prime rate
and by 2 quarters for the expenditure figures.

If forecasting (x.} is the only criterion and if we restrict ourselves to
linear forecasts, then non-invertibility is an irrelevant issue. But if one is
concerned with the recoverability of the {¢. ) and the timing of responses to
shocks, then invertibility should be tested in these situations as a matter of
course,

A gquick way to check for invertibility is to estimate only the
bicovariances proportional to the first and last coefficients, that is, from

equation (2.3),

|Bc(-q,-q)| Ithxb_x which is proportional to [a0|

i t-ql'

Be{ 0,-q) ZX, X X which is proportional to |a
tt q

eql
then, if |Bc(-q,—q)| < |Bc(0,-q)|, one should be wary of assuming
invertibilicty.

Thus, if we are interested in the information content of the innovations,
then the identification of the correct model is wvital. To date,
forecastability has been an almost sole criterion for the estimation of an MA
process. Perhaps it is time to shift our research emphasis towards a better
understanding of the underlying process, even though it might have little

initial effect on forecasting. As we have seen the estimated time paths of the
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invertible and non-invertible innovations are very different. Consequently, we
now have the opportunity to begin asking more searching questions about both
the statistical properties of the innovations and their informational and
economic content. As a modest beginning, we can now attempt to relate the
identified innovation time paths to economic events, news releases, such as
the Federal Reserve money supply announcements, and to other observed changes
in economic conditions.

The timing of a reaction to a shock is important when we wish to consider
a policy that will create its own innovation; for example, how quickly and
when will new plant and equipment expenditures occur is now, not only an
important issue, but a solvable one. This should be considered when using
vector autoregressions to estimate the impulse response of an economic system.

The further work to be done in this area involves both statistical
procedures and the analysis of economic implications stemming from the use of
these new procedures. A priority issue is to discover the approximate
distribution for the identifiability test and to evaluate the rate of
convergence of the estimates as well as to explore asymptotic normality of the
estimators. In this connection more effort is needed to evaluate the power of
the test at the sample sizes that are traditional in economic time series.

A major concern, of course, is whether improvements in forecasts can be
obtained by non-linear forecasting procedures when confronted with non-
invertible models. Preliminary work indicates that while the forecasts
themselves are unchanged, non-invertibility has implications for the estimates

of the confidence region associated with a given forecast.
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On the economic side, the discovery of non-invertible medels should
stimulate considerable research into the economic significance of innovations.
No longer should they be treated as a "black box", or as an uninteresting
residuum for conventional analysis. Indeed, if an economic variable is an
MA(g) process, then understanding the innovations is fundamental to
understanding the economic series itself; the innovations are in fact more
interesting economically than the actual series, because the innovations are
the driving force behind the observed series. Further, the innovations may
prove to be somewhat easier to analyze than the original observed series.

The results of this first paper should be easily extendable to full ARIMA
processes, a topic which is currently under consideration.

Finally, in many areas of economics, the stock market, foreign trade,
unemployment policy, and so on, the timing and initial time path of responses
to policy shocks is of prime importance in evaluating alternative fiscal and
monetary policy recommendations. Identification of the correct MA model will

be crucial for this type of analysis.
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