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A Ricardo Model With Economies of Scale!
by Ralph E. Gomory?

ion 1, Intr ion

This paper describes a model of international trade that resembles the
classical Ricardo model, but differs from it in admitting economies of scale in
production.

The 2-country model discussed here does allow both economies and
diseconomies. However almost all the discussion here will be on the pure
economies of scale case. The mixed economies-diseconomies case, while
straightforward from a purely mathematical point of view, has independent interest
because of its economic interpretation and also as a bridge to the usual pure

diseconomies model. These aspects will be discussed in a forthcoming paper with
William J. Baumol.

Allowing economies of scale does of course have a profound effect on the
behavior of the model. One aspect of almost any production economy of scale is
that it gives a production advantage to countries that are actually engaged in
production of a given good, as opposed to those who are not participating at all.
This barrier to entry effect tends to stabilize the production status quo, whatever
it is, and leads, as we will show, to a multitude of possible equilibrium points.
These different equilibrium points represent vastly different outcomes for the
countries involved, either in terms of national income, or in terms of utility.

Equilibrium points in this model are virtually the same as in the ordinary
Walras equilibrium model. At each of our many equilibrium points there are prices
and wages at which supply equals demand for each good. The wage bill for each

‘A summary of some of the results of this paper appeared as Ref[1].

’Alfred P. Sloan Foundation. The author mentions with pleasure the many

contributions of Herbert E. Scarf without which this paper would not have been
written.
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producer equals the value of goods produced, while for non-producers the profit
for entering into production at these wages and prices, and for low levels of
production, is negative or zero. However while in the presence of a linear model
or of diseconomies of scale these conditions would provide a single equilibrium,
they lead here, inherently, to many. The situation mirrors the unavoidable

differences between local optimization with convexity and local optimization in the
presence of non-convexity.

Integer variables enter naturally into this model through a set of 0-1
variables which determine which country is to be a producer of a given good and
which is not. Finding production patterns whose associated equilibrium points have

some utility maximization properties then becomes an integer programming
problem.

Unlike the classical Ricardo model, the more efficient producer will not
always be the one who produces in this model. An entrenched economy of scale
can be a barrier that prevents effective competition from a non-producer, even one
with a superior production function. However Ricardo-like concepts can be
reintroduced into the model with the concepts of Ricardo Level and Ricardo Point.
The Ricardo Point is one in which goods are only produced by the more efficient
producer, while the Ricardo Level is the exchange rate at which this is possible.

There is always a Rlcardo Level but not always a Ricardo Point in the presence
of economies of scale.

The outcomes from a typical two-country pure economies of scale model are
illustrated by Figure 1.1 which is based on the data of Table 1.1. Fig.1.1 plots
Cobb-Douglas utility versus a normalized national income Z for country 1. Each
dot in the figure is an equilibrium point. The large dots are outcomes in which
only only one of the two countries is a producer for each good, so these are the
perfectly specialized equilibria. The exchange rate ratio w,/w, corresponding to
the national income is plotted on the top horizontal line, the Ricardo Level is the
vertical bar decending from that line. The utility in autarky is marked by the
horizontal bar on the right. This example has nine products (or nine industries.)

There are several aspects of Fig.1.1 worth noting. First there are many
possible equilibrium points or equivalently many pHxsible outcomes. Second,
outcomes form an array of points with a definite and characteristic shape,
equilibrium points are not just anywhere. This shape recurs throughout our limited
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empirical experience, and a rough rationale for it will be given. Second, the upper
edge of the array of outcomes is rather well defined, in figure 1.1 it is marked by
a dotted line. The equilibria near this boundary are the ones that maximize utility.
We will see that this boundary line, and equilibria near it, can be computed by a
simple and rapid calculations without computing the assemblage of equilibrium
points. Third, there is a lower boundary as well as an upper boundary to the array
of perfectly specialized points, this lower boundary can also be easily computed.
We will also see that as the number of industries becomes large, the entire area
between the upper and lower curves fills up with equilibrium points. Fourth, we
note that utility does not increase indefinitely with national income but rather
decreases after a certain point, and finally we note that while most equilibria in
this figure lie above the autarky level there are also a substantial number with
utility below the autarky level, a feature that is far more pronounced in Fig.1.2

Each equilibrium point gives a utility to Country 2 as well as to Country 1.
Figure 1.2 shows the utility of Country 2 on the left vertical axis and the utility
of Country 1 on the right as before. The same collection of equilibria is shown as
in Fig 1.1 but now the utility for Country 2 is plotted for each equilibrium point
instead of the utility for Country 1. Each equilibrium point is represented by a
gray dot. Both autarky levels are shown but only the boundary curves are shown
for Country 1. The horizontal axis is still Z, and in this normalization the national
income of Country 2 is 1-Z. In both figures the utility of each Country is
normalized separately so that its greatest utility is 1.

In this nine industry example there happens to be a Ricardo Point, and the
gray and the black squares in Fig. 1.2 show its utilities for the two countries.



Section 2. Existence of Solutions

This paper emphasizes the array of solutions rather than the existence of any
particular one. Nevertheless we need an accurate statement of an existence theorem
and of the conditions assumed on the production functions and utility, and we will
provide that in this section.

In this model the production functions f;; will always have economies of
scale. f;;(/;;)/];; will always be a non-decreasing function of the labor input L;
Also the Cobb-Douglas utility, or its logarithm, will be used throughout, so for
country j, (j=1,2)

In Usu=)" djngq,, d>0, E, I

with q; the quantity of the ith good It is a well known consequence of this choice
of utility function that country Jj spends a constant fraction d;; of its national
income Y; on good i, for all prices p;

In the classical model, the pattern of production specialization is determined
by the equilibrium solution. In this formulation we will have to deal with many
equilibrium solutions and with equilibria associated with essentially arbitrary
choices of the industries that are active in each country.

For any pattern of specialization that a331gns a set S; of industries to country
J, an average-cost pricing equilibrium is a price vector p,, a set of wage rates w
and an allocation /;; of each country’s labor supply I, among those industries i m
which it spec1ahzes such that

The supply of the ith good is equal to its demand
@1 p iz:j,ieS(i)J;J( Ly )=Ej dwiL; E] o

and each active industry makes a profit of zero. so

(2.2) P; f;'j(lij)=wjlij fOT iESj.



5

Many papers have been written containing existence theorems® for economic
models in which production exhibits increasing returns to scale, for example
Ref.[2]. This model is a special case of these more general models in two ways.
The average-cost pricing equilibrium used here is an example of these more general
pricing rules, and secondly, the production possibility sets are simple examples of
the sets allowed in these more general formulations. But some of the conditions
required by these existence theorems are not satisfied in this model, so we need the
theorem that follows. We make two assumptions about the production functions f; ;.

Al. Aside from a possible initial interval in which f;i(/;;) is zero, average
productivity f,,(/;)/;; is continuous and strictly increasing.

A2. Each country in autarchy produces a positive quantity of all goods. More
succinctly f;(d;;L;) > 0 for all i,j.

Theorem 2.1: Under these assumptions, there will be an average-cost pricing
equilibrium for any pattern of specialization in which each of the two countries is
the sole producer of at least one of the goods. In this equilibrium each industry
assigned to each country will produce positive quantities of output.

The proof of this theorem is found in appendix A-2.1 .

Different equilibria associated with different patterns of specialization are
natural in the presence of economies of scale. While the patterns of production at
any one of these equilibria can not be expected to be stable against large changes
that move prices, wages, and specialization close to another equilibrium point, they
can reasonably be expected to be stable against sufficiently small changes. This
motivates a further mild restriction on the production functions that is appropriate
for economies of scale. We will assume

This zero derivative at the origin ensures that if at a particular equilibrium

point country j is a non-producer of good i, that non-producer would make a
negative profit in the immediate neighborhood of the equilibrium. Stability in a

*As well as on many other aspects of economies of scale in international trade.
See for example Ref[3],[5],[61,[7],[8].
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negative profit in the immediate neighborhood of the equilibrium. Stability in a
much wider sense will be discussed in Section 9.

This condition is satisfied for all production functions of the form f(J)=el*
with o >1, as well as by any production function that satisfies Al and is zero for
an interval to the right of the origin. It does not hold for the Ricardo case el* with
a=1, but it does hold if el is preceded by an interval of zero output.

For two countries the existence theorem provides us with 3°-2°+!41
equilibria, at least 2°-2 of which, the perfectly specialized ones, are locally stable

in the sense just given. We now turn to the analysis of this array of possible
outcomes.



Section 3. The Array of Solutions

Dealing with the array of variables is facilitated by normalized variables that
allow us to plot all the equilibria in a finite part of the plane. We also introduce

variables x;; that determine the pattern of production and will play a key role in
the analysis.

Normalized Variables and the x;;

_ At any equilibrium point we will have (2.1) and (2.2). Together these imply
that (monetary) demand equals wages, that is

4, Y, +d Y, =w il +wyl,

We now define x; , to be the fraction of the total demand for the ith product
that is spent for product made in Country 1. Similarly x;, is defined to be the

fraction of the total demand for the ith product that is spent for product made in
Country 2.

(B.0) x,,(d, Y, +d,,Y))=wi,
(B.1) x,,(d,,Y;+d, 2Y9) =Wyl 5
From the definition, 0=<x;;<1 and x; ;+x;,=1
Next we define the normalized national incomes of the two countries to be
Z,=Y,/(Y,+Y,and Z,=Y,/(Y,+Y,). Clearly Z,+Z,=1 and 0<Z,<1. The ratio
Z,/Z,=Y,/Y,=(w/w,)(L,/L)), so Z,/Z, is proportional to the wage ratio for fixed
country sizes L,

In terms of these normalized variables (3.0) and (3.1) become



(B2 x,d, 2Z,+d,,Z)=1",Z,

B33)  x,(d,Z,+d,Z)=1" 2,

Here the I';; are normalized labor variables, I';;=1;;/Lj representing the
fraction of the labor force in Country j employed in making product i, and the
expression in parentheses is the normalized total demand.

In what follows we will also need to refer to the actual labor used in country
j. We denote it by [;(Z), | (Z)=x,(L/Z)(d; ,Z, +d; ,Z,).

One of the conditions for equilibrium is that the assignment of labor
provided by the x;; is in fact a partition of the entire labor force, i.e that Li* ;=1
Summing (3.2) and (3.3) over all products i gives

G4 Q. dxy) Z+Q dipxy) Z,= Z,

3.5) (E,- d;1%:2) Zl+(Ei di%) 2= Z,
(3.4) and (3.5) are in fact linearly dependant and therefore equivalent. This
dependence is a consequence of Walras Law, but it can also be seen directly by
adding the two equations ¢. We will use (3.4) and (3.5) interchangeably and refer

to either one as the zero excess labor equation.

Equilibria and integer x

* Adding the two equations is also equivalent to adding all the terms in both
(3.2) and (3.3) which yields 1=(Z[;)Z, +(&J2)Z, . This implies the useful
relations L/, =1 <=> El,=1, IJ;,<1 <=> LJ[,>1, and EJ;,>1
<=>Ll,<1.
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We now look at the conditions that must be met for x to be an equilinrium
point.

For any set of x;;, whether they give an equilibrium or not, the national
incomes Z, and Z, are determined by and can be calculated from (3.4). The labor
amounts [ ;j can then be calculated from equations (3.2) and (3.3), and these in
turn determine the amounts produced f; i(i)- Note that because the zero excess

labor equation (3.4) is satisfied, the total labor supply in each country is used by
these 1%;;

For x to be an equilibrium point one more condition must hold. That
condition is that for the f;; and /;; that have been computed using x (2.2) must

hold, i.e. there is a price p, for ith good such that, for producers who produce ar
a positive level

wl, wl AT
(B.P) p=—>2="22 or equivalently—-"'= izl
fu  fa fu fa

This is equivalent to saying that these producers produce at equal cost. If
they do we have explitly found the price p. If this condition is met (2.1) and (2.2)
are satisfied and we have an equilibrium point.

While most arbitrarily chosen x do not satisfy this condition, all integer (i.c.
0,1) x do, since the entire wage bill is in one country and there is only one
producer of each good who produces at a positive level. The price is then
determined from (3P). So all integer x are equilibria automatically. They are of
course the perfectly specialized equilibria.

We will see that the integer equilibria are the ones that largely determine the
shape of the solution array.

3c. Utility

Next we write down the utility each country receives at any equilibrium
point x. We will use Z,(x) and Z,(x) for the national incomes calculated from (3.4)
using x. While we will derive these utility expressions for Country 1 only, the
changes for Country 2 are straightforward.
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The logarithm of Cobb-Douglas utility is the sum of terms involving the
quantity of the ith good Country 1 receives. These quantities in turn can be written
as the product Q,(x,Z(x))F; (Z(x)), where Q,(x,Z(x)) is the total quantity of the
ith good produced in the world and F,,(Z) is the fraction used by Country 1.

So the log utility can be written

ul(x,Z) -anl (x’Z) 'Z i di,llnFi,l(Z)Qi(er)

Since the goods are all sold at a world price the fraction going to Country 1 is
proportional to its (monetary) demand so

d,Y, _ d, .z,
di,lY 1+a4;,Y, d,\Z,+d 7,

F,,(2)=
The quantity produced is

Qi(x9Z) 'qi.l(x pz) "'qi g(xgsz)
the sum of the quantities q;; produced in each country. The q;; are defined by

qy(x,Z)=f(L;) where the labor ; depends on x and Z and is determined from
(3.2) or (3.3).

The full expression for the utility is then

d .z
(3.6) u(x,Z) =Ei di.lmm{qm(xﬁl’zl) +q;‘,2(xi,2’zz)}

This expression is complicated both in its dependence on the production pattern x
and the normalized national incomes Z. In addition x and Z are linked to each
other through (3.4). This makes it difficult to compare the many different equilibria
other than by fully computing each one. Although useful and suggestive
experiments along that line can be done and were done as part of this work® we
will take a different approach in what follows.

*Computer experiments played a suggestive and useful role in many parts of
this paper. See Appendix C-1.
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We will deal with this complexity in two ways. First, by analyzing the array
of solutions and their boundary rather than individual points, and second by
working with perfectly specialized solutions. The emphasis on perfectly specialized
solutions will be justified retrospectively when they turn out to be the solutions that
determine the upper boundary of the entire array of solutions.

Utility for Perfectly Specialized Equilibria

If x, and x, are any variables constrained to be either O or 1, and if x,;=0
implies x,=1 and vice versa, then we always have for any function g(x,,x,) the
tautology g(x,,X,) =x,g(1,0)+x,2(0,1). Intuitively the variables act as a switch

between the two values that are the only ones possible with such restricted
variables.

Letting g be successively the individual terms of the sum (3.6) yields an
expression for utility that is valid for integer x only.

Lu,(x,2) =E,- xi,ldi,llnFi,l(_Z)q 1112 +x,,d,  InF, (Z)q,,(1,Z,)

For integer x we have Lu(x,Z)= u(x,Z) so for integer x only we can use these
expressions interchangeably. The merit of Lu(x,Z) is that for fixed Z the
expression is now linear in the variables x;

Boundaries

To find the upper boundary of the array of perfectly specializes solutions we
define the function B(Z) for fixed Z to be the result of maximizing u(x,Z) subject
to (3.4) and subject to the x; being O or 1. Finding this maximal u(x,Z}, for any
given Z, is an integer programming problem, in fact a knapsack problem (Ref[4])
and we will describe it explicitly below. The B,(Z) values obtained this way will,
by definition, be equal to or above the utility of any integer equilibrium point.

This maximization problem also has economic meaning. Once Z is fixed, the
demand in both countries for any good is fixed. Hence the fraction F;; of the total
production of any good that goes to each country is also fixed. The only way to
improve the utility from any one good is to attempt to assign the production to the
more efficient producer and so increase the quantity produced. (3.4) is the labor
constraint that prevents this assignment from being made in every case, and the
maximization problem is to make the efficient assignments as much as possible



12

subject to that labor constraint,

The introduction of the concept of boundary turns out to enormously
simplify the task of dealing woth the array of solutions. We will be able to
compare various equilibrium points to the boundary far more easily that we can
compare them to each other.

Before proceeding to a boundary calculation we need one more concept.
Ricardo Level

We will see that there is only one Z for which it is even possible to assign
all the production to the more efficient producer, this is the Ricardo Level
mentioned in the introduction. For wage rates Z greater than the Ricardo level,
were country 2 to be the sole producer of those goods it makes more efficiently
at that wage rate, the demand for its labor would outstrip the supply. For Z below
the Ricardo Level, the same obtains for Country 1.

More precisely, let S,(Z) be the set of goods made more efficiently by
Country 1 (as sole producer) at normalized national income Z. This means
q;,(1,Z)>q;,(1,Z) for i in S,. For Z, sufficiently small (very low wage in Country
1), S; will be non empty. The demand for Country 1’s normalized labor if product
is always assigned entirely to the more efficient producer is given by

* * Z2
L@ = Ziesl(zl)l Bl Eies,(zl) (di.l+di.2_2—)

1

Thisis >1 for Z, near 0 and then decreases monotonically with increasing
Z, (increasing wage) and eventually becomes < 1. The steady decrease is due to
two causes. First, for any fixed set S; the demand for County 1’s labor only
decreases with increasing Z, as we can see from the equation. Second, as Z,

increases the set S(Z) only loses members. Such a loss causes a discontinuous
downward jump in L,

We now define the Ricardo level Zg as sup Z,, L*,(Z) > 1. For national
incomes Z < Zj the labor demanded exceeds the labor supply in Country 1. The

behavior at Zy itself and the notion of Ricardo Point, are both explained in
Appendix (A3-1).
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We could also have defined the Ricardo level in terms of the increasing
demand for Country 2’s labor. The result would be the same because of the
relationships between L*, and L*, given in footnote (4).

The nomenclature is due to the fact that this reasoning echoes that of the
usual Ricardo model.

The Boundary B(Z)

Precisely as written equation (3.4) will not usually have a solution for
integer x. This reflects the economic fact that there are equilibria for certain Z
only. To deal with this difficulty we relax (3.4) to an inequality and define B,(Z)
by the integer programming problem,

(3.7) B(2)=Max_ u(x,Z) x;, integer, Osxuﬂ
with Y U, Z+d,Z} x,< Z,

In this zero excess labor inequality we have rearranged the terms to show

the x;,. The inequality points as shown for Z above the Ricardo Level (Z;, > Zg)
and is reversed for Z below the Ricardo Level

This relaxation allows the underutilization of labor in the country whose
labor is scarce. Consequently the maximization of utility for the given Z should

push the inequality very close to equality as the attempt is made to use this
valuable labor

In (3.7) we have arbitrarily chosen (3.5). Of course we could just as well
have chosen (3.4). Since we will often have occasion to refer to the inequality
versions of (3.4) and (3.5) we will refer to these as (3.4i) and (3.51). It will always
be assumed that these inequalities point in the proper directions.®

SWhile we have given an economic meaning to the Ricardo level, it is also
possible to give a purely mathematical description of this maximization problem
as follows. Any equation is equivalent to two inequalities, one = and one <. If
we consider the maximization problem (for some Z) as a linear (not integer)
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(3.5) only involves the variables x;,, but the objective function in (3.7)
involves both x;, and x;, If we rewrite the utility in terms of the x;, only, using
X1 +X%,=1 to eliminate the x;, we get

(G8) Lu(x2) =

(1
Eg 31 ;(Z)+El. d,Ing,,(1,2)+Y" x ﬁt,xlﬂq"z( L)

qi,l(l,Z)

so we can put the maximization problem (3.6) in a good computational form
involving the x;, only.

% 9;,(1L2)
9,,(1,2)

with Y U, Z +d,,Z)} x,,< Z, and x,, integer

(3.9 Max, Lu(x,Z) —Pl(Z)+Ei 12 0

With P,(Z) representing the first two sums in (3.8).

If we choose the x;, instead of the x;, we obtain the following formulation
which we will need at times.

programming probleni, one or the other of the two inequalities will be the binding
constraint. This inequality is the one that should be used for the integer
maximization problem (for that Z).
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q..(1,2)
q,,(1,2)

with Y \d,,Z +d,,Z)} x,,> Z, and x,, integer

(3.10) Max, Lu(x,Z) = 2(Z)+E,- xi,ldi,ll'n

The P,(Z) is identical with P,(Z) except for the substitution of g; , for q; ,.In
the objective function the q’s have also been interchanged, but since this occurs
in the logarithm the result is simply the negative of the corresponding term in
(3.8). That is as it should be since increasing x;, means decreasing x;, . In terms
of the x; ; variables the problem (3.10) is to make the best assignment of producers

while being obliged to overutilize the labor in the country whose labor is little
sought after.

The formulation (3.10) uses (3.5i) while (3.10) uses (3.4i).

The B(Z) so defined can be computed by any integer programming
technique. For a single inequality problem such as this, ordinary dynamic
programming is very effective, It allows the computation of the array boundary
without examining the 2" specialized solutions. Furthermore the dynamic
programming problem gives actual integer solutions, and hence equilibria, which
can be expected to be close to the boundary curve. (Appendix A3-2)

The Boundary B(Z

In addition, there is an even easier calculation for getting a weaker boundary
curve, which we will call B(Z). To get B(Z) we further relax the problem (3.6)
or (3.9) by allowing continuous x; ,. It is easily seen that with continuous variables
the zero excess labor inequality will always be satisfied as an equality, so in fact
B(Z) is given by the maximization of Lu,(x,Z) subject to (3.5).

q;,(1,2)
q;,(1,2)

subject to Y d, 7 +d, Z}x,, = Z,

The solution technique for such a "continuous knapsack problem"is well

(3.9a) Max_ Lu,(x,Z) =P1(Z)+E.- x;,d;,In
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known and particularly simple (ref[4]). The solution procedure can be thought of
as filling a space of length Z, with amounts x;, of goods each of length

J L
GA1) d,Z, + d,Z, with value d,In222)
9;,(1,2)

The solution to such a problem is to put in goods in succession in the order of
their value per unit length, which we will call value density. The densest variable
is used first. When its turn comes the amount x; , of each good is increased until
either the amount x;,=1, or the equation is satisfied( i.e. the space is used up),
whichever occurs first. If the x;, reaches 1 first, start again with the next good in
order of value density. If the equation is satisfied for some value of x;, < 1, the
current values for all x;, are the solution. Note that x;, is the only variable that is
non-integer in this solution. The variables that preceded it are 1, and those after
it are Q.

This calculation is then repeated for different Z to get the boundary curve.
It is the results of these simple calculations that appear as the dotted lines in our
figures. While this is a rapid and simple calculation it can be very much further
refined. (Appendix A3-3))

Lower Boundaries

While the goal so far has been to find the upper boundary of the array of
perfectly specialized equilibria, exactly the same methods will give us the lower
boundary. It we minimize the objective functions in the problem (3.9) instead of
maximizing we will get the lower boundaries BLy(Z) and BL(Z). This only
involves changing the sign of the objective function, everything else goes forward
as before. This approach produces the lower boundaries seen in figures 1.1 and

1.2 and fixes all perfectly specialized equilibria to be somewhere between these
curves.

The Two Methods

The two methods of calculation we have been using, one with integer
variables and the inequality form of (3.4) and one with continuous variables and
the equality (3.4), are two different relaxations of the original maximization
problem described in 3c. Both seem to have their advantages in thinking about
boundary related problems and both will be used in the rest of this paper.
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We can consider both calculations both from the point of view of generating

boundary curves and from the point of view of finding actual equilibria near those
curves. .

Figure 3.1, which is an 8 product model based on Table 3.1, resembles
Figures 1.1 and 1.2 except that the upper boundary By(Z) has been added for
Country 1. This is the jagged black line’ under the B(Z) curve in Figure 3.1.
B((Z) does follow the location of the integer points more precisely than does B(Z).
However in Fig. 3.2, which is a 17 product model based on Table 3.2 we see that
the two boundary curves are much more alike.

Both calculations can also give us points near their respective boundaries,
the integer calculation does this automatically while the continuous calculation does
this by rounding the non-integer variable up or down. Figure 3.3 shows the B(Z)
from the continuous calculation together with the integer points obtained by the
integer maximization calculation. Fig 3.3 is based on Table 3.3 and represents a
problem with 27 goods. From the more than 100 million specialized equilibria the

calculation has produced the ones shown in the figure that are sitting virtually on
top of B(Z)

While both calculations appear to be very effective in bounding the solution
array in actual computation, we will also make a more precise statement about how
solutions approach the boundary curve.

"The data for the points on the line was obtained by using the dynamic
programming calculation for a series of points from Z=.1 to Z=.9 with spacing
of .005, and then using a standard plotting routine to create the line.
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Section 4 : Convergence to the Boundary

To motivate what follows we will indicate very roughly one interpretation
of the results. First, in this section, we will see that under certain reasonable
restrictions, that, as the number of products in the model increases so that each
one absorbs a decreasing fraction of the national income, every point of B(Z) and
of B(Z) is approached by equilibrium points. Then, in section 6 we will see that
every point that lies between the upper and lower boundary curves is also

approached by equilibria. Thus that the entire shape between the upper and lower
boundary curves eventually fills in with equilibria.

Our approach will aim at proving these results with minimal complexity. As
a result the estimates will be crude, and the results described here seem to occur
in practice in much smaller problems that these estimates would indicate.

We will start by showing that points on B(Z) are approached by equilibria.
We will first show that the there are equilibria that are not too far away in terms

of it Z- coordinates, then we will show that some of these also have utility that is
close to B(Z).

3a. Nearby Z.

Choosing some fixed point Z’, the corresponding boundary point is
(Z',B(Z’)). Let us assume that we are above the Ricardo Level, (Z° > Zp).
Relative to this choice of Z' we define a near equality (n.e.) integer equilibrium
point x to be an x satisfying (3.5i) but such that increasing some component X, ,
from 0 to 1 would result in a new x that does not satisfy (3.5i).

That there are always n.e. equilibria for any choice of Z’ follows from the

fact that the optimal integer solution to (3.9) must be n.e. as is the x obtained from
rounding down the non-integer component of the knapsack problem solution.

For n.e. equilibria we can state:



21

interval of interest by:

-

r-_—1 p. 6me.}
2. x)  Z, (X

We can summarize this in the following lemma:
Lemma 4.2: If x is n.e. then

| (6.2, (5,200)) | s%

Step 2.Since Z'is above the Ricardo level the variables appearing at a
positive level in the solution to (3.9a) will have positive coefficients in the
objective function. If we round the one non-integer variable in that solution down
to obtain an integer solution x, we have

0<B(Z))-u(x,Z" <68,(Z)

where

G20 - Sl ZG)
9., (LZ() i@ (LZG))

B, will be large if for the given Z, in some industry Country 2 can produce a much
greater quantity as sole producer compared with Country 1 as sole producer. The
argument appearing in the production functions is the (normalized) total demand

divided by the wage rate and hence the amount of labor bought by the total
demand.

(4.2) p,(Z)=max]n

Now consider any integer x that is as good or better an integer solution to
the maximization problem (3.9) as is x,. For such an x.

(4.3) Uy (x,2’) < u(x,Z’) < By(Z") so 0 <B@Z)u(x,Z") < 68,2

Both the maximizing integer solution and the rounded solution x, itself are
examples of such x. This completes the elements of the proof for Z’ above the
Ricardo level.
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For Z’ below the Ricardo Level we need only switch to using the X;, and
the argument will proceed in exactly the same way. However we will have a B,
which is the maximum of the negatives of the terms appearing in (4.2). If we

define §=Max(8,,5,) and put together the two preceding lemmas and (4.3) we can
state the following theorem.

Theorem: If B(Z"),Z’ is any point of B(Z) then, provided 7 is not 0, there is an
perfectly specialized equilibrium point x with 0 < Z’-Z,(x) < §/1-r and 0 <
B(Z’)-u,(x,Z(x)) <6(B+T).

This theorem relates any boundary point to a nearby integer solution in
terms of the parameters of the given problem. However it can also tell us what
happens as problems get large under reasonable circumstances.

Consider a sequence of problems with increasing numbers of goods, each
of which absorbs a decreasing fraction of the national income. Let us denote the
various parameters appearing in the theorem as it is applied to the nth problem by
0qs8,,7, and pa.( When these are known and Z is specified we have T')

Then we have the following Corollary:

Coroliary: Let P, be a sequence of problems with bounded parameters 8_,1/(1-
To)lq and I'y and with §,->0. Then, for any Z’, and any ¢ there is an n
sufficiently large that the point Z’ B (Z’) on the nth boundary curve will have an
integer equilibrium point within € in both coordinates.

Let us discuss briefly whether the parameters of a sequence of reasonable
models would remain bounded as assumed in the corollary. We will simply assume
that the models do not converge on "orthogonal demands" so that 1/(1-7,) remains
bounded. p and B depend on the production functions, and if they are bounded and
6L.,.x is bounded, so is I'. If we assume that the production functions that appear
with increasing n are not radically different from those before them, we would
expect the various production ratios that make up the parameters to vary in value
but remain bounded unless they are being evaluated at ever increasing labor levels.
However the largest possible labor input into any one production function is, from
(3.2) and (3.3) L., d,/min(Z’,,Z’;). So if L,,,, 8, is kept bounded as n
increases, i.e. industry sizes remain bounded, the conditions of the corollary will
be met.
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For example if the sequence of problems was produced by adding new
industries one at a time to an existing model, the new industries being roughly the
scale of those that preceded, and also enlarging the labor force at the same time
by adding the labor for the new industry, the conditions of the corollary would be

met, and we would see integer points approach every point of the boundary as n
increased.
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Section 5. Geometry and Linear Programming

What we have done so far is also capable of a geometrical interpretation.

We have seen that any x, 0<x;, <1 determines a Z(x), and hence a labor
allocation /;;, and production quantities q;; of each good and hence utility.
Geometrically we have a mapping from the n-dimensional cube C,, 0 < X;1<1, into
(Z,U) space. In terms of this geometry we saw in Section 4 that the mapping sends
all the vertices of C,, except (0,0,..0) and (1,1,....1), into the space between the
two boundary curves in (Z,U) space.

The restriction provided by the zero excess labor equation (3.4) is linear in
x once Z is fixed, so the condition Z=Z’ specifiesHxn n-1 dimensional linear
space cutting through C,, with the intersection forming a polyhedron P(Z*). It is
on this polyhedron that we have maximized the linearized utility by solving the
knapsack problem.

The knapsack problem is of course, in its continuous form, a linear
programming problem with upper bounds on the x;, or the X; . Its maximum value
over P will always be obtained at a vertex of P(Z"), or equivalenesttly on a 1-
dimensional edge of C,. Since we are solving a linear programming problem with
only one constraint (and upper bounds) we can expect, from ordinary linear
programming considerations, at most one non-integer variable.

We will also obtain ordinary linear programming prices, the price
associated with the zero excess labor equation being precisely the density of the
non-integer variable.

By way of motivation for the next section we also observe that the
polyhedron P(Z’) has a vertex which minimizes the linearized utility. This point
is mapped onto a point on the lower bounding curve. There is also a path of 1-
dimensional edges of P(Z’) leading from the maximizing vertex to the minimizing
one. Along this path all intermediate values of the linearized utility are obtained.
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Section 6. Filling In

With this background we will now show that under the same circumstances
as in Section 4 the various perfectly specialized equilibria not only approach the
upper boundary but entirely fill out the space between the upper and lower
boundaries as the number of goods grows.

We start the proof with the following lemma which is immediate from the
Iinear programming point of view. As usual we will assume Z'>Z,

Lemma 5.1: Let B(Z’) and BL(Z’) be the values of the upper and lower boundary
curves for some Z’. Then for any value v, BL(Z)< v < B(Z’), there is a
feasible (non-maximizing} solution x to (3.9), with at most two non-integer
components, for which the value of the objective function is v.

Proof: Let us add to the maximization problem (3.9) the linear constraint
Lu,(x,Z’)<v. The problem now has two constraints and upper bounds, so the x
that attains the linear programming maximum, which is v. will have at most two
variables that are neither O or 1.

Let x’ now be that solution with its two non-integer components x’;, and
X’,4. X’ satisfies (3.5) as an equality so that the integer point obtained by rounding
up both x’; , and x’, , to 1 can not satisfy (3.5i), while the x obtained by rounding
them both down clearly does. It follows that x or one of the x’s obtained by
rounding one component up and one down has the n.e. property, and Lemma(4.1)
applies to that x, as does Lemma(4.2)

Consequently we have for this x

S
1-<

|u1(x,z’)—ul(x,2(x))|s%

|Z,-Z, ()| =< and

To bound the difference between v and u,(x,Z’) we simply observe that the
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difference made by changing each term can not exceed 8 so the total change in Lu,
from the value of the linear programming solution, which is v, can not exceed 28.

Putting together these three elements we have proved the following theorem.
Theorem. If (v,Z’) is any point between B(Z’) and B (Z’), then, provided 7 is
not 1, there is an integer equilibrium point x with 0< Z,(x)-Z’, <8/1-7 and with
{v-u,(x,Z(x)) | <6(2B+T).

And we have a similar corollary:

Corollary: Let P, be a sequence of problems with bounded parameters B_,1/(1-
T.),M,, and I', and with §,->0. Then, for any Z’, and any € there is an n
sufficiently large that any point Z,v between B,(Z) and B, ,(Z) will have an
integer equilibrium point within € in both coordinates.

The fill in effect is already visible in Fig. 6.1 which is a 13 product model
based on the data of Table 6.1. In Fig. 6.1, as in Fig 1.2, we plot the utility
values for Country 2 of various equilibria. However unlike Fig 1.2, the only points
plotted are perfectly specialized equilibria.
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Section 7:Non-Specialized Equilibria

So far we have worked entirely with integer solutions, that is to say with
perfectly specialized solutions. Some justification for this approach can be seen
from the following theorem.

Theorem 7.1: Let x be any equilibrium solution, whether specialized or not. Let
Z(x) be the corresponding Z and u,(x,Z) the utility of x to Country 1, then

u,(x,Z2) < B(Z)< B(Z)

So all the equilibrium points, not just the specialized ones, lie under the
boundary curves.

Since x is not specialized we can not use the linearized utility so we will
need the following lemma

Lemma 7.1: Let q; (x;,,Z(x)) and q; ,(X; ;,Z(x)) be the quantities of the ith good
produced at national income Z(x) at an intermediate equilibrium point x. Then
9,1 (%;,1,Z(X)) + Qia(Xi2,Z(x)) < Min( g;;,(1,Z(x)), q;(1,Z(x)) )

This lemma states that either country, as the sole producer of good 1, at the
demand and wage levels of the equilibrium point, will produce more than the two
countries together at the equilibrium point x.

The lemma does not assert that more would be produced if one country were
in fact to be the sole producer. For if that were to happen, we would have a
normalized national income different from Z(X), with different wages and
therefore possibly a different outcome. It also does not assert that for any
0<x;;=<1 the inequality holds but only for those x;, that come from an
equilibrium x. Without that restriction the result would not be truHx

Proof:
At equilibrium we have for each i

(7.1) pifi,,=wl;, and pfia=wili,
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At x, £ 1s q;,(x;;,2(x)) and [ ,=x; ,(L,/Z,)(d, ,Z, +d; ,Z,) with similar expressions
for f; ,and /;,. If we divide the two expressions in (7.1) and use these relations we
obtain -

s,1(X;,1,2(X))/q; (X 2, Z(X)) = X4/X, oOr equivalently

(7.2) Qi,x(xi,l »Z(X))/ X1 =Qi,2(xi,2az(x))/ xi.2=R

Since x;;+x;,=1
qj.l(xi.l’z(x)) + q;(%;2,Z(x)) = R

Since the q’s are the quantities produced and the x’s the corresponding wage
bills, the production economies of scale conditions assert that the first ratio in (7 2)
grows with x;, and the second with x;, so

Q1 (L,ZG)1 = g;4(x;, Z()/X; ) = R = G;4(%;,1,Z(X)) + G 5(%;2,Z(X)).
As the same relation holds for q;, the lemma is established.

In the remaining part of the proof we assume, as usual, that Z(x) is above
the Ricardo level.

x satisfies (3.5). Let us consider the integer equilibrium point x* obtained
from x by rounding down all the non-integer x;, to 0. Since all the coefficients in
the inequality are nonnegative, x’ satisfies (3.5i) and therefore is a feasible solution
to (3.9). We will compare u,(x’,Z(x)) with the utility of x. Note that u,(x’,Z(x) is
not the utility of x’( which is u,(x’,Z(x")) ) but it is the value that x’ would give
to the objective function in (3.9) whose maximization produces B{Z(x)) and

B(Z(X)).

If we can show that u,(x’,Z(x)) is = u,(x,Z(x)), we would know that the
maximum value of the objective function in (3.9) is larger yet, so we would have
B(Z(x)) = u,(x,Z(x)) which would prove the theorem.

To compare the values of u,(x,Z(x)) and u,(x’,Z(x)) we lock at the
individual terms in the two u, expressions. Using z as a dummy variable, the
terms are of the form
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d, InF(Z(x)Q(z.Z(x)) with

F2) =t
f d; \Z(x)+d, ,Z(x)

Qi(z’z(x)) =qi,1(z1,1 JZ(x)) +q; 'z(z,' ’ZZ(x))

The F term is the same for both expressions. However if we compare the
results of putting the components of x and of x’ into the z of the second term we
will always get a larger result from the x’ component. This is because the
conditions of lemma 7.1 are fulfilled, the x’ components are always O or 1 while
the x’ components come from an equilibrium point.

So u,(x’,Z(x)) is = u,(x,Z(x)) which establishes the theorem.

Non-specialized Equilibria

Non-specialized equilibria are harder to analyze than are the specialized.
Fortunately they are connected by the theorem we have just stated. In addition, our
empirical work, of which Fig (1.1) and Fig (1.2) are examples, shows the
generally lower utility of non-specialized equilibria.

However, mixed equilibria exist, they are numerous, and they have their
own interesting properties.

The simplest case of a mixed equilibrium is the case in which only one
good, say x is produced in both countries. Let x(x, ;)=(x, ;,x") where x’ is a fixed
m-1 vector of 0’s and 1’s representing the x; . If we take x, , as a parameter which
varies from zero to 1, then for each value of x, , we have an x and therefore can
compute the national incomes from (3.4) and then the utilities. The result will be
a curve connecting the perfectly specialized points x(1) and x(0). An example is
the dashed line in figure (7.1).%

®This figure is based on Table (7.1).It is a six product model, and the treaty
curve connects the points x,=(1,0,0,1,0,1) and x,=(1,1,0,1,0,1). One effect of
using a small model is to make the figures more readable, another is that the small
number of goods gives large swings in national income as a result of the shift of
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With isolated exceptions the points along this curve are not equilibrium
points since the twe producers are not producing at the same unit cost. However
the points can be given an economic interpretation. Imagine that the two countries
sign a treaty agreeing to pool their output of the good represented by x, ,. They
agree to sell this pooled output at the resulting world price, and to split the
proceeds to cover their respective wage bills. This arrangement will correspond
to the computed points, and we will therefore refer to them as treaty points or
treaty solutions. While such a treaty might stabilize these points and allow them
to persist, in the absence of such a treaty, they are non-equilibrium points and

subject to market forces that will be described below and that will generally cause
movement away.

For each Z along such a treaty curve one country or the other will be
producing at a lower unit cost. In figure (7.2) the curves of figure (7.1) have been
redrawn with the dark part of each curve showing the more efficient producer. The
point at which the curve switches from dark to light is a point of equal unit
production costs and hence an equilibrium point.

In Fig (7.2) there is a single transition point, and hence a single equilibrium
point along each curve. This is what one might expect intuitively since as x,
increases from O toward 1 Country 1 would generally become a more efficient
producer of good 1 because of economies of scale, while Country 2 becomes less
efficient, and this is in fact the commonest case.

If we denote the unit production costs in each country by 1/p, , and 1/p,,
respectively we would expect a plot of the p’s versus x, to look something like fig
(7.3) which is in fact that plot for the treaty curve of Fig.(7.1). For x, , near zero
P:, should be very large, and for x,, near 1 p,, will be very large. Also Pi
should generally (but not always) decrease with increasing labor to produce a
single crossing point, p;,=p;, where we would have equilibrium and a price
P=Di1=Pi12

The single equilibrium would in fact be the only case if the quantities

a single industry. Note that the production functions used here, and described in
Table 7.1, are different from those of previous tables. They have a slower build
up of production.
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produced were given by q;(x,,,Z’) and g,(x,,,Z’) for some fixed Z’ as in the
lemma above. Here however we are dealing, not with a fixed Z’,but with a
varying Z(x(x, ,)). Or equivalently we are dealing with a wage rate that varies as
Xy, varies. Because of this the possible outcomes are more complex and multiple
intersections and multiple equilibria can occur. Fig.(7.4) and its p plot (7.5)
provide an example®.

In any case the behavior of the p,, and p,, in each coming down from
unboundedly large values at one end of the interval to finite ones at the other, does
force the number of intersections of the price curves, and therefore of equilibrium
points, to be odd in every case.

We can also associate a rough dynamics with Figs (7.3) and (7.5). To the
left of the intersection in figure (7.3) Country 2 is the lower cost producer.
Country 2 can therefore cover its labor costs and more, and still sell at a price
lower than County 1, which at that price can not cover the wages of all its
workers. This creates a situation where Country 2 will be motivated and able to
increase production and get a larger share of the demand, (increase x, ,), while
Country 1, which can not even pay all its work force, must reduce it and lose

share, (decrease x, ,,increase x,,). These directions of change are shown by the
arrows in Fig.(7.3).

These conventions for dynamics can be applied in the same way to the
general situation. We will assume that at each Z if producer j has the lower price
curve will increase x,; while the other producer is obliged to decrease his Xy A
handy result of this convention is that direction arrows on a curve reverse as the
curve passes through a (simple) equilibrium.

In fig (7.3) this convention for dynamics gives the intuitively plausible
result. The Country 1 producer will not cover his labor costs until he is operating
at the scale that gives the equilibrium point, but thereafter he can profitably
increase, The Country 2 producer does well until his production is brought down
to the equilibrium point, after which these dynamics would cause collapse. We will

This figure is based on Table 7.2, and the curve connects x,=(1,1,0,1,0,1)
and x,=(1,1,1,1,0,1) . Table 7.2 differs from Table 7.1 only in the data on the
third product. There is been a change in demand for this product but more
significantly the production exponent has been reduced to near 1.
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call an equilibrium, such as that of figure (7.3), in which all arrows point away
from the equilibrium point, an unstable equilibrium.

Unstable equilibria such as the one illustrated in (7.2) and (7.3) play a role

in measuring how large a scale Country 1 must reach before it can compete with
Country 2.

However in Fig (7.5) with its triple of equilibria, the first and third points
are unstable but at the second one the arrows all point toward the equilibrium
point. We will call such a point stable. From these conventions and our previous
remarks we have at once the following theorem.

Theorem 7.2: The number of intermediate equilibria is always odd. If the
intersections are numbered in order of increasing x, , the odd numbered ones are
unstable and the even numbered ones stable.

Some light on when the different cases occur is given by the following pair
of theorems,

For production functions of the form e; i, o;>1, the following holds.

Theorem 7.3: If q,,(1,Z(x))=q,,(1,Z(x)) for both x(0) and x(1). or if
q1.1(1,Z(x)) £q,,(1,Z(x)) for both x(0) and x(1), then there is only one
intermediate solution x(x,), 0<x;<1, and it is unstable.

In words, the theorem asserts that if one country or the other is the more
efficient producer of the entire demand over the range 0<x, <1, we have the
simple outcome.

That the condition on the efficiencies and the wage rates can not be wholly

dispensed with, and that in its absence there are instances of multiple equilibria,
is shown by the following partial converse:

Theorem 7.4: If the condition of Theorem 7.3 is not met, there are always
multiple equilibria for values of the production exponent ¢; sufficiently close to 1.

This implies that in these cases there are stable equilibria.



Both theorems are proved in Appendix A7-1.

33
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Section 8.:Special Cases

While there are several interesting special cases we will confine ourselves
to discussing three.

Case 1 - Symmetrical Demands.

When we calculate the boundary curves, whether these are the B(Z) or the
B,(Z) we maximize an objective function

&y Y ,,1nd Zé AL

For j=1 this is the utility for Country 1 and for j=2 this is the utility for
Country 2. If we have symmetrical demands, i.e. d,,=d;, the functions are
identical except for the first term in the logarithm which becomes Z, in Country
I’s utility function and Z, for Country 2. Since this term does not enter into the
optimization calculation, the objective functions to be maximized are exactly the
same for both countries. Therefore we obtain the boundary curves for both
countries with a single calculation and for each Z we have the same maximizing
x. This is true both for the integer programming and linear programming (i.e.
continuous knapsack) calculations.

The fact that the same x maximizes for both countries strongly suggests that

Jor symmetrical demands a solution (for fixed Z) that is good for one country is
good for the other. In fact this is true,

From the observations just made about the terms in the utility
functions it follows that the ratios of the utilities (not the log utilities) of the two
countries are, for any x, U,/U,=Z,/Z,. This applies to any x, whether integer or
not and therefore the boundary curves themselves obey this ratio as do all the
equilibrium solutions. Therefore if x is an integer or non-integer equilibrium near
the B(Z) of Country 1 the utility of x will be near the boundary of Country 2 since
the utility value of both boundary and point for Country 2 are derived by
multiplying the Country 1 utility by Z,/Z,

This benign property of the symmetrical demands does not carry over to the
non-symmetrical demand case. There countries will put different weights on
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different elements of the objective functions and the production plan (even for
fixed Z) that is best for one is generally not best for the other

Case 2. We next consider symmetrical demands and production function pij(D=¢;;
I* for a fixed exponent «.

As usual the utility consists of two parts, one independent of x and one
dependent. The independent part is

Ld,*

E; lllnFiqi,l=Ei E d lne )

1

“K+(a~1)ln—
Zl

with K=E d; In d, e, le which is u, in autarchy.

while the x dependant part is

82) Y x,d,In22

il

« ZG
D %iadiln I'ZLZ‘, +(Q, %) lnz—

€14 2

However for symmetric demands and an optimizing x the part in parentheses
is from (3.5) exactly (1-Z,) so (8.2) becomes

Z,
Knap(Z )+aln I
4

where Knap(Z,) denotes the solution to the knapsack problem with length (1-Z,).
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and length d, Z +d,,Z,=d,

objective function coefficients d, In

So the utility simplifies to

Z
+Kna
-2 p(Z)

Since in Knap(Z) the coefficients are independent of Z we can solve this
once for all Z, either in the dynamic programming case to get B(Z), or in the
continuous knapsack case to get B(Z). It is also true that the integer solutions that
are obtained for various Z in the course of the calculations all lie directly on the
respective boundary curves.

u(x,2) =K+(a—1)1n%+ «(1-2)In

Since we are solving a knapsack problem of length (1-Z,) we can express
the result as a density d(Z)) times the length. d(Z,) will increase monotonically and
be bounded above and below by constants representing the greatest and least
possible densities. Upon rearranging terms we get for the utility,

84) U@=KZ, (L) (1
'z "a-z)

If d(Z,) varies slowly as it often should, this is close to a simple formula
giving the boundary shape.

(i-Z)
) Vexp(1-Z)d(Z,)

To take it one step further we note that competition among identical
countries does make sense in this model, and of course can have many different
outcomes. In the identical country case with production functions e;;1*, the ratios
appearing in the objective function term will be all be 1’s, so their logarithms will
be 0, and d(Z) will be 0. The resulting boundary curve

U@-kz (L) (L)
Z (-2
which is given by an explicit formula, is plotted in Figure 8.1 for a=1.5. It

exhibits the characteristic boundary shape, one from which (8.4) can also deviate
only slightly.
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In this very special situation the lower boundary curve calculation is the
same as the upper, they both have objective function 0. It follows that the upper
and lower boundary curves coincide, so the curve of Figure 8.1 must have all the
integer equilibria directly on it.

Case 3. Exclusionary Model.

Next we take the production function of case 2 with =1, but modify it for
small values of the labor / to guarantee stability at the origin. This gives a case
that may be called exclusionary competition. There are no economies of scale but
whichever producer is actually in business can to some extent exclude the non
producer. The degree of exclusion ( or effort required to enter) is determined by
the details of the low [ production functions, but the boundary curve is the same
in all cases and is therefore characteristic of the exclusionary competition situation.
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Section 9. Other Aspects of the Model

One significant aspect of this model is the array of solutions it presents, and
the fact that, in the model, pure market forces will allow many equilibrium points
covering a wide area. In addition there are other properties of the model that are
worth mentioning.

9a. Changing the Production Functions.

Economies of scale can be thought of as having two distinguishable effects.

The first in what might be referred to as a "barrier to entry” effect, it acts
to give a producer an advantage as compared to a nonproducer. In this model this
shows itself in the low end of the production curves as little output for the labor
input. It is this aspect of the curves that forces a high level of activity before the
non-producer can hope to compete with the producer, and also, through the
condition A3 of Section 2 eliminates the possibility of incremental entries.

Although this theory uses the term production function to describe the
translation of input labor into output, that term should not be taken to literally
refer to a manufacturing plant. True barriers to entry come from many sources
aside from the obvious possibility of economies of scale in manufacturing.
Examples are knowledge and expertise in the manufacturing process, the largely
experience born ability to design a manufacturable product, knowledge of and
experience with marketing channels, knowledge of customer needs, and even
knowledge of and being known to particular customers. Much knowledge can only
be obtained by doing, and there will be period of doing poorly through
inexperience for any new entrant. In addition, especially in the case of industries
in different countries,there is the question of infrastructure. If one industry is
flourishing in Country 1, and non-existent in Country 2, a large part of the
difficulty in entry will be to find the people or companies who can build plants of
the proper type, and supply parts, specialized instruments, and specialized support
services. While some of this can be imported, some cannot, and working at a
distance is often not the same as working close by.

All of these factors and many more often make entry into a new industry a
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large commitment now to a refurn that is both distant and inherently uncertain,
And that uncertainty too is part of the barrier to entry. All these factors should be
thought of as contributing to the shape of the low end of the production function.

The second aspect of economies of scale is the advantage that large scale
may give one producer over another when both are active in the industry. In this
model these aspects are reflected in the production functions for larger labor
inputs.

Keeping these points in mind we will state and then interpret the following
theorem which at this point is quite straightforward.

Theorem 9.1: Let M, and M, be two n-industry models with identical demands
d;;'+d,;? and with production functions f;;'(;;) and £, ’(I;;) that are identical above
the autarchy level, i.e. for [;;>d;;Y;. Then the integer equilibria and the boundary
curves are the same for both models.

Proof, for any integer x the resulting Z(x) will be the same in both models,
since the equation (3.4) only involves the demands and not the production
functions. Thus the integer equilibria are the same pairs (x,Z(x)) in both models,
and these x in turn determine the labor levels /;;. These labor levels are above the
autarchy level, so for perfectly specialized equilibria, the output is also the same
in both models.

An immediate consequence is that the coefficients in the linearized utility
function are the same for both models, and therefore so are all the boundary
curves. This completes the proof.

Although the points and the boundaries are the same what does change as the
production functions change from model 1 to model 2 in this limited way is the
barrier to entry. If the change from model 1 is to new production functions that
rise sharply near 0, we can make the barrier to entry as feeble as we wish. On
the other hand if the new production function were zero till near the autarky level

and then and then jumps rapidly back to the production curves of model 1, we
would have an extremely strong barrier to entry.

. Return to Autarky.

The various figures always show the utility of each country decreasing after
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a certain point and in fact returning toward the autarky value. This effect we can
call "return to autarky”, and an economically plausible explanation for it will be
given here and a proof in Appendix A9-1

For Z, near 1, Country 1 will be the producer of most goods in any purely
specialized solution. The fraction of world production of these goods that Country
I gets is d;,Z,/(d,;Z,+d;,Z,). For Z, near 1 and Z, near O that fraction is near 1.
Therefore Country 1 is producing most things and keeping almost all of the
production of those things. So, with the exception of the few goods being made
in Country 2 and consumed in Country 1, Country 1 has "returned to autarky".
Country 2’s existence has little impact on Country 1.

To back up this scenario requires a more careful examination of the effect
on Country 1’s utility of the few goods that are made in Country 2. After all they
are being made in large quantity as they consume all the labor of Country 2. Also
we need a more rigorous statement of the connection between being the producer
of most goods and Z,-> 1. Both these elements are provided in Appendix A9-1.

Effect of Country Size
!

Let us substitute for Country 2 a different Country 2 with the same demand
function, and the same production functions, but with a larger labor force. We will
see that all specialized solutions for Country 1, with the exception of autarky, will
improve in utility. In other words autarky becomes relatively less attractive for
Country 1 as Country 2 grows. This is reflected In Fig. 1.2, The larger country,
Country 2, does less well relative to autarky than does its smaller trading partner.

This effect is quite direct. If L, increases, equations (3.4),(3.2), and (3.3)
are unchanged. Any specialized equilibrium point x will yield the same Z from
(3.4) and the same [’ i from (3.2) and (3.3) as before. However the I';, which are
normalized labor variables, will be multiplied by a larger L, to get the actual labor
l; ,. This means larger quantities g, in every term of the utility representing a good
made by Country 2, while the fraction F,; , of that good going to Country 1 remains
the same since the F’s depend only on d;; and Z. Only autarky has no such term,
so for every x except autarky Country 1’s utility improves as L, gets bigger.

In words, if Country 1 can hold onto the industries it has as Country 2 gets
bigger, it gets the same fraction of a bigger total output and it is better off.
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Effect of Demands

Fig 3.3 illustrates the fact that the equilibria that are best for one country,
for each assignment of national incomes, are not necessarily those that are best for
the other. On the other hand, in section 8 case 1, we saw that for symmetrical
demands an equilibrium near the upper boundary for one coumtry is near the upper
boundary for the other. If we consider the knapsack calculations for the two
countries we can see that similar demands mean similar objective functions when
the utilities of the two countries are being maximized for any given national
income Z. The maximizing solution for Country 1 will then usually not be too far
from the maximizing solution for Country 3, while they will tend to be unrelated
if the demands are very different. Similar demands seem to mean more equilibria

that are good for both countries, dissimilar ones seem to make these outcomes less
likely.

Effect of an industry changing hands.

Within this model we can look at specialized solutions that differ in only one
industry, i.e. Country 1 makes product j in one solution, Country 2 makes that
product in a second solution and all other products are made as before. In the
notation of section 7, we can compare the national incomes and utilities of x(0)
and x(1). The effect on national income is always to increase it in Country 2 and
decrease it in Country 1. Increases and decreases with the gain of a single
industry were illustrated in figure (7.1). However utility can either increase or
decrease depending on the location of the initial equilibrium in the array of
soluttons. While the gain of an industry usually improves utility until one is
beyond the characteristic hump of the boundary curve, there seems to be no simple
general statement that can be made.
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Section 10, Extensions

While almost all aspects of this model are unexplored at present there are
two extensions that seem both worthwhile and straightforward.

1) Replace the Cobb-Douglas utility with a utility of the same type but with
the demand constants d;; replaced by d, (Z) which are functions of Z. This would
allow the demand of a country to shift as its national income changes. Since the
calculations are all done for a fixed Z they will go forward virtually unchanged.
The proof of some of the theorems in sections 4 and 6 will become slightly more
complicated.

2) The mixed economies-diseconomies case. If we divide the n goods into
goods 1....r which are produced with economies of scale, and goods r+1....n
which are produced with diseconomies, both the calculation for the boundaries and
the calculation for all the equilibrium points go forward easily. Essentially there
are two separate problems, one a pure economies problem and one a pure
diseconomies problem, that interact by sharing the labor supplies in each country.

To compute the boundary curves, for example, we would start just as in the
pure economies case by choosing a Z. The condition of equal marginal
productivity ‘fixes the production levels and labor employed in each of the
diseconomy industries in each country. This means that the X;; i>r, are
determined, and what is left in (3.9) can then be calculated as a pure economies
of scale problem and boundary points B(Z) and BL(Z) can be found as above.
Intuitively what this means is that once the wage levels are set, the demand and
production levels of the diseconomies industries are determined. This then leaves
a smaller labor pool in each country to be employed in the remaining r industries,
but what remains is the pure economies case with all its different production
possibilities leading to different equilibria.

Much of the interest in the mixed case lies in its various interpretations and
they will be discussed in the paper mentioned in the introduction.
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Appendix A2-1 Existence Proof

We will use the assumptions on autarky and on the production functions as
given in Section 2.

Let §; be the set of products which country j produces at a positive labor
level when in autarky. Let us assume there are n products in the model, and the
number of elements in S, is m. Let us assume also that S, and S, between them
contain every good. Then

Theorem Al: In trade there is an equilibrium point in which Country 1 is the sole

producer of any proper non-empty subset of products of S, with the others being
solely produced by Country 2.

Proof: For any (wl,w2) we can determine /;, from
(AL.1) wilid;;, + woladi; = wil;

and thus have demand = total wages. Here i belongs to the set S, of products
made exclusively by Country 1. Similarly we determine / , from

(Al2)  wLd, + wlydip = Wik,
Where i belongs to the set S, of products made exclusively by Country 2.

To satisfy the equilibrium conditions we also need a price p,. If there is
positive output of product i, we can get a price by dividing total demand (or total
wages) by the number of units produced, provided this is not zero. This will yield

a price with the right properties, as long as we can be sure of a positive output at
labor level [

However [, cannot be less than the corresponding labor level in autarky as the
expression for /,; is L,d;; + (wy/w))L,d;, = [, and in autarky it is 2 ;=L .
Since there was a positive output in autarky (one of the Theorem Al assumptions)

there is some output at this point as well. So there is a price for any choice of
(wl,w2).
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However for arbitrary w, and w, the resulting /; , from (A1.1) and (A1.2) will not
generally add up to L, so we will have to choose w properly.

If we apply (Al.1) to any good of which Country 1 is the sole producer we see
that if w, is sufficiently large relative to w, ;, alone will exceed L,. Also for
very small w,/w, ., ieS, ,will exceed L,.

Next, summing over all i gives
(A1.3) widi,ILl+w2di,21"2=wlLDl + WzLD2

Where the LP,; are the total amounts of labor demanded in each country. It follows
immediately from (A1.3) that L >L, implies L, <L,, L?, > L, implies L?, <L,
and LP, =L, implies L?,=L,,

Since for w, sufficiently small L°, >L,, and for w, sufficiently small LP, <L, there
is some intermediate value of w,/w, with L, =L,. The same equality also holds
in Country 2, so we have an equilibrium point. This proves the theorem.

We next extend the theorem to include the cases where there are goods
produced by both countries. After an initial lemma required to show a unique

labor level and price when both countries are producers, the proof will proceed in
the same way as above.

Let us consider a good i for which, in the specialization being considered,
both countries are producers. Let x; , be the fraction of the total demand that goes
as wages to labor in Country 1, while x;, is the fraction going to Country 2.
Clearly x; ,+x;,=1. Also, once w=(w,, w,) is given, the X;; uniquely determine
the labor levels /;; in each country.

Lemma Al: For any choice of w=(w,, w,) there is a unique x,(w) =(x;,x;,) and

p; such that pf; ,=wl;, and pf;,=w,l;,. Furthermore x,(w), and hence the labor
levels, depend continuously on w.

For the proof we need a preliminary remark. The autarky labor levels in both
countries are provided by x%,;=d;w,L/d,,w,L, + d;,w,L,) and
X% 2=d; oW, Lo/(d; yw; Ly + d;;w,L,). Since there is, by assumption, positive output
in both countries at these labor levels, it follows that if x; ;< x% | there is positive



output in Country 2 and if x;,< x*, there is positive output in Country 1.

For any x yielding positive production levels in both countries we can obtain
different candidate prices for the two producers by defining p, by Pt =wl;
=X;,(di ;WL + d;,w,1;) and p, by p,fi,=w,];,= Xi2(diwi Ly + diyw,L,). These
prices give zero profit to both producers. However they are not generally equal
and we must show that there is an x for which they are equal.

Let x%; be the fraction of total demand that just covers the set up cost of
Country 1, and let x, be the fraction of total demand that just covers the set up
cost of Country 2. Let x;, approach x%, from above. Certainly then p, is well
defined and in fact as Xi,1 approaches x% , p; becomes arbitrarily large. However
for these x values p, is also well defined because x;, , being near x* ;1 must be
below the country 1 autarky level, and therefore the corresponding x, 4 provides
posmve output. Consequently we have well defined p, and p, with p, >p,. If we
increase x;, the labor and output from Country 1 increase continuously and
monotonically while labor and output from Country 2 decrease continuously and
monotonically. Finally for x; ; such that x; ,=x; -1 approaches X*; , from below we
have P, becoming arbitrarily large Hence for some unique inbetween x we have

=Pa-

This x is the x of the lemma. Its continuous dependence on w follows
directly from the continuity of the production functions, the continuity in the

dependence of total demand on w, and the monorone behavior of the p’s as
functions of x.

With lemma Al proved we can repeat the reasoning of the first theorem.
Al.1 and A1.2 still hold for the good or goods that, by theorem hypothesis, is

produced by each country alone. Al.3 holds because we can get it by summing
the relations

(ALT)  x;; (wiLydi + wolod; ) = wil;
(AL27) x5 (wilidi; + woladiy) = wol,,
over all i. Since the demand for labor in each country is continuous, and since for

w, sufficiently small LP, >L,, and for w, sufficiently small LP, <L, there is once
again an intermediate value of w,/w, with equality of labor demanded and total
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labor supply both countries. Since we have established the existence of prices
already for each w, this proves the extended theorem.

-



Appendix A3-1: Ricardo Point

If we assume that the more efficient producer of each good is its producer
we have a monotone decrease in the demand for Country 1’s labor as Y, increases.
This decrease in continuzous except at the points where q,(1,Z)=q,(1,Z). At these
points S, loses a member and therefore L*,(Z) takes a downward jump. At such a
point L*,(Z) can perfectly well pass from > 1 to < 1. If this happens, the Ricardo
Level, Z; is at that point.

Therefore there are two possibilities.

1) L*,(Zg)=1. In this case x;;=1 for ieS;, x;,=0 (and therefore x;,) otherwise,
solves (3.4) and provides an equilibrium point where each good is being produced
by the more efficient producer. We call this the Ricardo Point.

2) L*(Zp) < 1. In this case there can be no equilibrium solution with the properties
of the Ricardo Point. If there were a Ricardo Point x, Then Z(x) would be a point
with L*,(Z)=1. But there is no Z value for which that equality holds.



Appendix A3-2 Dynamic Programming

The dynamic programming recursion for an n-piece knapsack problem with
total length L, piece lengths 1, and piece values v, is

Bo(s)=0
bu(8)=Max($,.((8),bu1(s-l) + v) O0<s<L.

If we apply this to (3.9) the ]; for a given Y, would be (d,,Y, + d;,Y)), total
length would be Y,=1-Y, and the v, would be d; In(q; ,(1,Y/q; ,(1,Y), just as in
@3.11).

The condition on ¢y(s)=0 simply sets the starting values at O for all s, and
each successive ¢, then gives the best value that can be obtained for length s using
only the first m pieces. The ¢, are related to the ¢, through the recursion which
asserts that the best that can be done at length s with m pieces is either done not
using the mth piece, this is the first term after Max, or it is done using the mth

piece, the second term after Max. ¢,(s) then gives the maximizing value with n
pieces.

To determine the actual x that gives that value requires recording, when
calculating ¢_(s), whether or not the mth piece was used at that s. Then it is
possible to backtrack from ¢,(L) and find out how the value was obtained which
gave ¢,(L). x;, = O if the ith piece was not used, x;, =1 if the ith piece was
used.

In actual calculation L is usually divided up into a uniform grid of P points
S;, 5;=0 and sp=L. The lengths ], must then be rounded up or down since for use
in the recursion they must fit the grid. Rounding down can introduce some
inadmissable combinations but it will give a B,(Y) that is either correct or too high
and therefore is a valid boundary at each calculated point.

For each calculated value of Z there is an x, obtained by backtracking, and
therefore a Z(x) that can easily be calculated from (3.4). These (x,Z(x)) generally
give a set of points near the boundary.



Refined Calculation - Appendix A3-3

While the straightforward knapsack calculation for some finite grid of Z’s
gives a very rapid-and simple calculation, the calculations can be very further
refined. In visualizing these refinements it is useful to keep in mind a plot of value
density versus Z, for each of the goods.

The value density is, from 3.11,

q;,(1,Z)

et e

_ 9,09
d;\Z,+d;\Z,

We can plot the various curves V; against Z,. If two curves intersect each
other then their density order changes, otherwise it does not.

V(2)

Let us imagine that for some Z, we have the solution and the non-integer
variable is the kth one. Then Z, can be increased without changing the form of the
solution until either x, , becomes 1 (or 0) or until one of the V, equals the ith one.
For all Z, in this range the value of the knapsack problem is obtained with
virtually no effort. Until one of these events occurs the x;, that are 1 remain 1,
those that are 0 remain 0, and only x, , changes to maintain the equality in (3.9a).

If the event that occurs first is that x, , becomes 1 (or 0), then we actually
have an integer solution, and therefore an equilibrium point, lying on the bounding
curve. At this point a new x, , (the densest of the 0 valued variables) is introduced
at a level of zero and the calculation continues with further increases in Z,. If the
first event that occurs is that another density curve crosses the current ith one then
there is always one simple choice to be made and after that the calculation
continues as before. We will give one illustrative example. Suppose the jth density
curve crosses the kth curve in an upward direction. If we set x, ,=0 and all the
other x;, as before, we will get a value for x;, that would enable it to satisfy
(3.9a). If x;, is <1 it is the new non-integer variable and the calculation
continues. If it is >1, then the calculation continues with x;, =1 and x;, still the
non-integer variable. In this manner all Z values can be exhausted using only a
Jfinite series of intervals within which the calculation is essentially unchanged.



ndix A7-1.Preof of Theorems 7.3 and 7.4
Proof of Theorem 7.3
In the notation of section 7 equilibria are the points where
(A7.1.1) qi(X4,1), Z(X))/qa(X; 5, Z(X)) = Xy /% 2= Xp4/1-x,
and the x referred to in Z(x) is x(x, ).
From the definition of x;, we always have (X1, Z)=xy 14 (1,Z). So for

production functions of the form e, J* we have q; ,(x;,,Z)= (x;, ,)"ﬂl q;,(1,2). So
(A7-1.1) becomes

11 ey 0,,(1,Zx) _ x;,
1 "'xl,l q, g(l,z(x)) 1 X1

or equivalently

(

q1,2( 9Z(x)) ll(a l) xll

A7-1.2) {
ql’l(l,Z(x) 1 xl,l

We will refer to the left hand side in (A7-1.2) as L(x, ;) and the right hand
side as R(x,,) and we will plot L and R versus x;; in Fig. A7-1.1. We are
essentially plottmg P, and p, since if we look back to (A7-1.1) we can see that
L>R is equivalent to p, <p, and L <R is equivalent to p,>p,.

The condition of Theorem 7.3 is that L(x,,) should either be below 1

throughout the interval 0<x, ;<1 or always above it. In Fig. A7-1.1 we take the
first case.



9

In Fig. A7-1.1 the right hand side starts at 0 with slope 1 and moves up
toward infinity. Also since both R(x, ;) and its slope are monotone increasing the
intersection of the tangent line to this curve with the vertical line x;,=1, which
is 1 for x, ,=0, always is above 1 for X, >0.

Next we need some similar statements about L(x;;). Now

{M}U“ -1 =( el.le)lla -1( Zl(x) ')ulu-l
ql,l(l»z(x)) e l.ILl 1- l(.x)

- Clearly L(x, ,) is monotone increasing because Z,(x) is. To see that the derivative
of L(x, ,) is monotone increasing as well we will explicitly solve (3.4) or (3.5) for
Z(x)/(1-Z(x)) and establish that its derivative is monotone. If we use

d

Dx.1=E,->1 xi,ldi,l and D, ,= 12

i1 Fil

we obtain

Z(®) _ Dipdi
1-Z(x) @ "Dl,l) -dl,lxl.l
the derivative of this is
D, ,d,,+d,(1-D, )

@a-b,) "dl,lxl,l)z

and this last is clearly positive and monotone increasing. Since L(x, ,) is a constant
times Z(x)/(1-Z(x)) raised to a power of one or more, its derivative has the same
property.

With this preparation we can assert that only a single intersection of L and
R is possible. Suppose otherwise. Then at the second intersection the derivative of
L(x,,) must equal or exceed that of R(x, ). Since this derivative is monotone
increasing L(x, ,) must thereafter lie above the line tangent to R(x, ,) at that second
intersection point. Therefore its intersection with the vertical line X, ; is above that

of the tangent line and therefore > 1 contradicting the assumption L(x,;)<1. This
ends the proof of Theorem 7.3
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For the proof of“the Theorem 7.4 assume q,,(1,Z(0) < q,,(1,Z(01) but
q:.(1,ZA)= q;,(1,Z(1). Clearly as a->1, 1/a-1, which is the exponent om the
ratio of the g’s becomes very large. Since there is a value of x; ; that makes the
ratio of the q’s be 1, there is a value for which L(x, ;)=1 and that value, x, ,=c,
is the same for all > 1. In Fig. (A7-1.2), which is based on Table 7.2, « is 1.1
and we start to see the effect of letting a->1. As 1/1-a becomes very large, L
will be as close to 0 as desired until near x, ,=c. As it approaches x, ;=c¢ it
rapidly rises to 1 and then after that to very large values. With c fixed and «
sufficiently near 1 we can be sure of a first intersection between L and R with a
height near O, and another with its x, ; coordinate near c. (It can be a bit before
or a bit after c, in Fig. A7-1.2 it is after ¢). This provides two intersections for «
sufficiently near 1 and establishes the theorem.

Of course, since there are an odd total number of intersections there will
always be at least one more.
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Appendix A9-1 Return to Autarky

We will prove that both the upper and lower boundary curves approaches
the autarky level as Z;->1.

Equation (3.5) is satisfied by the non-integer x that optimizes (3.9) for any
given Z. As Z,->1 the first term L, d;,x;,, which is the coefficient of Z, must
approach 0. The optimizing solution x consists of x; , that are 0 or 1 except for one
term the jth. For L; d; ,x; , to approach 1 all terms except possibly X;» will have to
be 0 (all goods except one are made in Country 1) and X;» Will be given by

Z,
g Zd,

12y 2,
which approaches 0 as Z, -> 1.

The terms in the utility involving the jth variable are

49-1.1) xj'l%'llnF}'lqj'l(;le’Z) and xj,Zdj.IlnF,‘i.zqf»z(l’Z)
wnere

L Z +d.Z) d,,Z,+d,,Z,)
1 j,lzl i,222 ) and qj.z’_"ffz(l‘z ] Zl 1,272 ).
1 2

Clearly the q;, term approaches the autarky quantity as Z,->1, and the F
terms approach 1. It remains to show that the second term in (A9-1.1) approaches
0.

This actually requires some assumption on the production functions because if the
production of the jth good grows in some explosive fashion with additional labor
the quantity of goods produced overwhelm their decreasing marginal utility and
singlehandedly boost Country 1's utility to a very large level. However the rate of
growth required to do this is quite extreme. In fact it is enough to assume that
f())/e!->0 as I grows very large. This reasonable assumption is will make the
second term approach 0. This then gives the autarky value to the utility as Z,-> 1.

;1 a(

The reasoning about the lower boundary is virtually identical.



C-1. A Note on Computations

The various computations referred to in the text were all run on the author's
home computer, an IBM PS/2 Model 80. Typical run times are:

(1) for a boundary curve of a 17 industry model with a 90 point grid 2.5
minutes, 27 industries, 3 minutes.

(2) for the integer boundary and the integer points using a 90 point grid, 20
minutes, for 27 industries 30 minutes.

(3) for obtaining all the approximately 8000 perfectly specialized equilibria
points in the 13 industry model in Fig. 6.1, 8 minutes.

(4) for the computation with roughly 19000 intermediate equilibria in Fig.
1.1 about 5 hours.

Computations (1) and (2) grow slowly with model size, and are linear in the

number of grid points. (3) and (4) have of course exponential growth with model
size.

All programs except those relating to Section 7 were written in Basic by the
author and are far from optimal. Mathematica was used to plot all the figures and
to compute the treaty curves shown in the figures of section 7.



TABLE 1.1!

PRODUCTS 1 2 3 4 5 6 7 8 9
C1 Demands 0.10 0.10 0.21 0.14 | 0.22 0.04 0.06 0.13 0.07
C2 Demands 0.05 0.21 0.11 0.15 0.23 0.07 0.08 0.10 0.20
Production 1.30 1.50 1.70 1.90 2.00 2.00 2.10 2.00 1.61
Exponents

C1 Efficiencies 0.52 0.71 0.91 0.92 1.01 1.23 1.30 1.02 0.30
C2 Efficiencies 1.00 1.02 0.70 0.94 1.24 0.60 0.70 0.77 0.50

Cl - Labor Supply 4 C2 - Labor Supply 8 Production Function e,

4

! The demands in all Tables are renormalized to total 1 in actual computation.



PRODUCTS 1 2 3 4 5 6

7 8
C1 Demands 0.05 0.20 0.12 0.15 0.22 0.08 0.08 0.10
C2 Demands 0.12 0.10 0.20 0.15 0.20 0.05 0.08 0.15
Production 1.00 1.50 1.70 1.90 2.00 2.00 2.10 2.00
Exponents

C1 Efficiencies 1.00 1.00 070 0.9 1.20 1.30 1.10 0.77
C2 Efficiences 0.50 1.00 0.60  0.90 1.00 1.20 1.30 1.02

%
C1 - Labor Supply 2 C2 - Labor Supply 2 Production Function ey i
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TABLE 7.1

PRODUCTS 1 2 3 4 5 6
C1 Demands 0.10 0.20 0.20 0.15 0.25 0.10
C2 Demands 0.15 0.15 0.25 0.15 0.25 0.05
Production 1.15 1.50 1.70 1.90 2.00 2.00
Exponents

Cl Efficiencies 1.00 1.00 0.70 0.90 1.20 1.30
C2 Efficiencies 0.50 1.00 0.60 0.90 1.00 1.20

%
C1 - Labor Supply 2 C2 - Labor Supply 1

Production Function ¢ 1= £,()), fi(D=g(x), x=I/(.6 d; L), gx)=1x >1, g(x)=x‘ x <=1,



PRODUCTS 1 2 3 4 5 6
C1 Demands 0.10 0.20 0.20 0.15 0.25 0.10
C2 Demands 0.15 0.15 0.20 0.20 0.25 0.05
Production 1.15 1.50 1.10 1.90 2.00 2.00
Exponents

C1 Efficiencies 1.00 1.00 0.70 0.90 1.20 1.30
C2 Efficiencies 0.50 1.00 0.70 0.90 1.00 1.20

C1 - Labor Supply 2 C2 - Labor Supply 1

Production Function e ! ® f()), fi(D=g(x), x=1/(.6 4; L), g(x)=1 x >1, gx)=x'x <=1.
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