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THE MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS
CONTAINED WITHIN FINITELY BOUNDED COMPACT

SETS: SOME PRELIMINARY RESULTS*

Despite the great generality inherent in the definition of maximum
likelihood estimators, the actual use and the derivation of "optimal" pro-
perties have Been restricted, with few exceptions, to those cases where
regularity'cénditions hold. The continued fascination of maximum likelihood
estimators for econometricians lies in the challenge to weaken the regularity
conditions and to derive properties of the estimators in more general situa-
tions than formerly. With few exceptions, Hammersly (1950), Hanson (1965),
Hocking (1965), and Moran (1971), the attention of researchers has been
restricted to the problems raised by the algebraic form of the parent cumu-
lative distribution function (c.d.f.) or, when it exists, the probability
density function (p.d.f.): see, for example, the latest efforts along these
lines Huber (1967) and Weiss (1971). Almost all of these papers have ignored
the topological structure of the parameter space, assuming invariably that
it is an open set contained within a compact subset of the appropriately
dimensioned Euclidean space. It is interesting to note that the scattered
exceptions examined a number of special cases and none of the authors re-

ferred to the others.

*The research discussed in this paper was supported in part by the
National Science Foundation Grant No. GS-3291 and by the Social Science Re~
search Council (U.K.) Grant No. HR 2166/1. Their support is gratefully
acknowledged.



In this paper 1 intend to concentrate on the effect of changing these
"regularity" assumptions about the parameter space on the distribution of
maximum likelihood estimators. More precisely, the basic assumption made
in this paper is that the parameter space is compact and finitely bounded.l
As will be shown, this seemingly minor change has extensive and significant
effects on the distribution of maximum likelihood estimators and leads to
definitions of alternative estimators with lower mean squared errors than the
conventional maximum likelihood estimator.

The results in this paper are important to econometric research for
three basic reasons:

(1) Economic theory frequently indicates the existence of in-
equality constraints on parameters and on the values which
endogenous variables may assume,

(ii) 1In many important applications, theory indicates that para-
meters and endogenous variables are restricted to a number
of isolated points, e.g. a dependent variable may only take
on integer values,

(i1ii) The discipline of economics has in many areas progressed to
the stage in which the imposition of inequality and other
constraints is indicated by prior research efforts and it is
suspected at least that the use of such empirical information
would improve the quality of inferences.

So far in the econometric literature inequality and "isolated point' con-
straints have not been used as extensively (and intensively for that matter)
as might have been the case. This is due in part to the absense of an ade-
quate theoretical analysis of the properties of such estimators. This paper
is one further step in the direction of providing such an analysis.

The outline of the remainder of the paper is quite straight forward.
The first section states the problem formally, defines three altermative

estimators, relates the current analysis to the existing literature, and

discusses the economic relevance of the problem. The second section comments



oﬁ the respective statistical properties of the estimators, while the third
section examines the resu1t§ of some sampling runs which serve both to il-
lustrate the theory in the first section and give some insights into the
potential results of further and more extensive formal analysis. The work
reported in this paper is to Be regarded mianly as exploratory and prelim-

inary, although I trust the reader will find it both interesting and poten-—

tially useful.

I. The Problem Stated and Some Alter-
native Estimators Defined

Some examples will be helpful im further illustrating the problem
and to indicate the usefulness of considering parameters constrained to
lie in compact sets. First, tﬁe obvious examples are those in which para-
meter values are constrained by inequalities, the most usual situation being
that O 5_61 < 1, where ei denotes the ith parameter. Economic examples are
marginal propensities to consume or export, the distributed lag parameter
in adaptive expectations or in partial adjustment hypotheses, bounds on
production coefficients, coefficients representing threshold effects or
minimum consumption levels, etc.

With dependent variables it is often the case that not only is the
range of the variable bounded, but that the boundary values are often taken
with positive prcbability. This is opposed to the standard logistics curve
approach in which it is assumed that the boundaries represent suprema (or
infima) of functions so that the variable approaches the boundéry asympto-~
tically. Economic examples would involve fixed minimum size of purchase order,
pricing decisions with price or wage controls, budget deficit 1limits, fixed

capacity output limits, etc.



Many other situations involve restricting parameter or dependent
variable values to a finite number of discrete values. For example a para-
meter may be defined by the ratio k/n where, k, n are integers, k < n, and
k is unknown and to be estimated; or oné wishes to estimate which one of a
finite set of alternative strategies decision-makers will choose. Many -
variables should naturally be restrigted to integer values; estimating the
number of plants or machines in a firm, number of firms in an oligopolistic
industry, number of aircraft in a run-way queuye, etc.

Lastly, the suggestion has been frequently made that various in-
equality constraints obtained from prior research should be incorporated in

"later estimates and hypotheses tests in order to improve estimating and test
efficiency. However intuitively appealing this recommendation is, the gains
from such a procedure are not generally clear, especially in view of the
increased cost in compiexity of estimation thereby engendered. Theoretical
analysis of the effects of incorporating inequality constraints into one's
inferences will provide the tools necessary for answering such questions.

Let L(g|§) denote the likelihood function obtained from an assumed
parent p.d.f. f(X|Q) and a random sample of size n on the random (vector)
variable X whose n-fold realization is represented by x. The sample space
is a subset of Rn, n dimensional Euclidean space, and is assumed to be
independent of 6. 8 is a p dimensional parameter vector assumed to be
contained in a parameter space € which is itself assumed to a compact sub-
set of RP. TLet 2(3|x) denote the 1n likelihood function obtained from
L8 |x) .

The maximum likelihood estimator § is defined quite simply by:

R - N ,
ACIFIN sup é(gnz)- 1)



When f(x]@) is continuous in § for all x and O is assumed to be compact,-
the supremum exists, so that we do not need to consider Rao's "near maxi-
mum likelihood" estimatoré.

The only property which follows from the definition (1) and some very
weak regularity conditions is that of consistency as proved by Wald (1949).2
Desirable small sample properties, if any exist with respect to a given p.d.f.,
have only been derived under the assumption that © is open and even under this
assumption, the properties stem from the fact that maximum likelihood estimators
are functions of the sufficient statistics when they exist, and sometimes can
be shown to be minimally sufficient themselves. Asymptotic properties, more
particularly, efficiency (in the sense of attaining the Cramer-Rao lower bound)
and normality of the distribution require more strigent regularity conditions
than does consistency. 1In the derivation of these properties, the openness of
@ is crucial, see, for example, Daniels (1960). Provided © is open, then for
sufficiently large n, an open neighborhood about 90’ the true parameter point,
can be found such that within it the first two total derivatives of the like-
lihood with respect to 6 exist, and the first partial derivatives vanish except
over sets of measure zero. When O is bounded and if 90 lies on ;he boundary,
this regularity condition no longer holds, even asymptotically.

An important regularity condition on the compact parameter space 0
which will be imposed throughout the remainder of the paper is that 0 is
convex or that it contains only a denumerably infinite number of points.
In order to relate the estimators which incorporate knowledge of © to the
unconstrained maximum likelihood estimator which does not, it is mathemati-
cally convenient to assume that © CZGO, where GO is an open set, and that

for all x (except over a set of measure zero--a condition hereafter referred



to as "almost everywhere') the supremum (over 8 € Oo) of the likelihood

function exists.

-

If A denotes an r dimensional vector of Lagrange multipliers, it is

notationally convenient to define © CZR‘p+r), where 0, is the Cartesian

A

product of the parameter spaces @ and A, X € A.

A

Three estimators will be considered: unconstrained maximum likelihood
(UML) , constrained maximum likelihood (CML), and the minimum distance estimator
(D).

The unconstrained estimator, to which the other estimators will be related,
is defined in the conventional way for. 6 ¢ 90, Go an open subset of RP which
contains ©. Since, the intent of this paper is to concentrate on the effects of
making © compact, it will be assumed that the full set of regularity conditions
neededlto ensure that the UML estimator is asymptotically efficient and normally
distributed do in fact>hold for all 6 ¢ Oo; a useful reference is Daniels (1960).
Under these conditions, the UML estimator éu is defined by:

1Oy [0 = max 2], @
= )

and gu can be obtained as a root of the normal equations BQ(QJE)/BQ_= ]
almost every where for sufficiently large n.

The constrained maximum likelihood estimator (CML) gc is defined by:

l(éblgc_) = sup 2(8]x).
¢ 6 eo . 3

For parameter spaces which are at most piecewise continuous, like that
shown in Figure 1, there are no simple analytical solutions and the

process of obtaining an actual value for gc from a given sample reduces
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essentially to some form of search procedure. However, if Qu £ 0, then

gu, otherwise Qc is found by searching along the boundary to 8.

5] =
_C .

If the boundary of 6 can be characterized in terms of a set of r con-
tinuous differentiable functions gj(g), j=1,2, «e. T, T < p, then the
constrained optimization problem can be formulated as:

max 2(a|x) - A'g(e) >

@ ) €0, (4)

where g(8) is the r dimensional vector of constraints defining the boundary
of © and 6 must satisfy for each j, j =1, 2, ... r, gj(g) < 0 and X is the
vector of Lagrange multipliers. If the inequalities are replaced by equali-
ties, one has the Aitchison and Silvey (1958) problem. A slightly more
general problem is specified by assuming that © imposes non-negativity (or
equivalently non-positivity) constraipts on 6.

The solution to the most general problem is given by solving the

Ruhn-Tucker conditions:

32(8|x) /38 ~ A'og(e) /a0 < B (a)
(32(8|x)/38 - A'ag(e)/ag)o = © (®)
8 > 9 ()
(5)
g(® < ¢ (@)
A'g(® = 0 (e)
A > P ()

If the inequality constraint (c) is not imposed then inequality (a)

becomes an equality and equation (b) is redundant. If the inequality (d)



is in fact an equality, then equation (e) is redundant and the inequality
(f) no longer applies. The Aitchison and Silvey problem can be characterized
in terms of conditions (5) by stating that in their problem (c) does not apply
and that (d) is an equality. Consequently, the solution is characterized by
(a) being an equality and (f) not applying. Under these conditions, Aitchison
and Silvey were able to show that the vector (éc, i), the constrainted
maximum likelihood estimator of the vector (9, A), is efficient and asympto-
tically disfributed as (p + r)-variate normal. If inequality (5(c)) does
not apply, then éc = éu if A = 9, i.e., if gjéc) < f; otherwise éc lies on
the boundary and is not equal to éu.

In terms of the general formulation in equation‘(S) Hanson (1965)
extended the Aitchison and Silvey results by giving Fhe conditions required
to prove the existence of the constrained maximum likelihood estimator and
its convergence in proBability to the unique solution of the system of
equations (5). Moran (1971), apparently unaware of Hanson's work, derived
under quite strong regularity conditions the asymptotic‘distribution of
the constrained maximum likelihood estimators of a set of parameters ei,
i=1, 2, ..., of a continuous unimodal p.d.f. £(X, 6) defined with respect
to a vector random variable X where Gio = 0 and 0 < eio < b,

§? denotes the true parameter vector.

n1/2 -

1f En(e) = (6 - 8), where 8§ is the constrained maximum likelihood

estimator of 6 and the matrix %ciji is defined by:

PR -~

gc > _ R \ a‘-ln f(X,e)\\
133 ¥5 730,00, y

—_ 2 l X,

C 3 3

then Moran's chief result is the following theorexm; Moran (1971, 444).



Theorem.--Suppose that 61 =0, and 0 < ot < bi for i = 2, ..., k.

Then the distribution funct}on

¢,(t, 8) = Prob (z, <t, 8)

converges, uniformly in t and 6, towards the mixture of distributions

Prob (z < £, 8) = TE (L, 0) +3 F,(t, ),

where Fl(E’ 8) is a k-dimensional multivariate distribution defined on the

region
i
tt > 0, @<t <o 1i=2, ..., k),

and having in this region a probability density equal to twice the density
of a multivariate normal distribution with means zero, and covariance matrix

equal to (o FZ(EJ 6) is a (k - 1)-dimensional distribution concentrated

ij)'
on the subspace t1 = 0, ~» < ti < wfori=2, ..., k, and such that the

joint distribution of zz, eeey zk is that of the quantities

2, ..., k),

1~ %

§=2 0y ¥ “

where yl, cens yk are jointly normally distributed with zero means and
covariance matrix (cij)’ the distribution of y2, ey yk being taken con-

ditional on the inequality

1j o=2 js

(1)

where the Oij are the elements of the matrix
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-1
sz . . CZk
1, _ . . .
(Oij ) = ) .
Cx2 Cxk

Furthermore, the convergence to the limiting distribution is uniform in t

and in the subset of Q. given by 6

1 1= 0. F2(t, 8) is not distributed as

normal.

The last estimator to be considered is the minimum distance (MD)

estimator 6 defined by:
~m

lle, -6 I1* = min [lo_ - o]l% 6)
6 eo
where ||§J| denotes the Euclidean norm of the vector a. If éu € 0, then

~ A ~

the norm is zero and 6- = 8 , otherwise the norm is non-zero and 6 1lies on
-m -—u Zan

A ~

the boundary. em is characterized by the relation that the vector (éu -~ em)
is orthogonal to the tangent plane to O at the point ém and that ém is unique;
these results follow when O is convex. If © is composed of a finite number

of points, ém need not be unique.

Hammersly (1950) completed an intensive analysis of the distributions
of two special uniparameter cases of the minimum distance estimator where it
is formally identical to thé constrained maximum likelihood estimator: these
two situations may be regarded as examples of the use of Theorem 2 proved
in the next section. The first and more interesting problem examined by
Hammersly involved the estimation of the mean of a normal distribution with
known wvariance 62 with a random sample of size n. The unknown mean is

restricted to an integral lattice, i.e. u eiO, +1, + 2, ...§ . If x is the
~

sample mean, the minimum distance (constrained maximum likelihood) estimator



11

is given by m, m = n.i.(x), where n.i.(.) indicates taking the nearest
integer. The distribution ebtained is a special case of that derived in
Section II of this paper. Of particular interest is the asymptotic approxi-

mation to the sampling variance of m which is (Hammersly (1950, 192)):

2
var(m) ~ (212

— Exp (—n/(802)), as n/o2 >

The estimator converges very rapidly indeed to its unbiased expectation
. . . . an . -
since the variance is decreasing to order e , where a is a positive con-

stant! This property is illustrated in the examples discussed in Section

IIT.
Hocking also considered the use of the minimum distance estimator

in the case of a linear regression model with normally distributed distur

bance terms with the parameter space constrained by a continuous every-
where differentiable boundary function. The result is a special case of
the distributional results discussed in the next section of the paper.

Of some interest is the relationship between éc and ém’ one aspect

of which is illustrated in Figure 1. One may informally characterize the

~

difference between the estimators by stating that whereas gc maximizes

~

the likelihood subject to the constraint, gm is the closest point in 0
to the unconstrained maximum. Still speaking loosely, it is clear that
(in two dimensional space) the values taken by the two estimators will
differ most markedly when the angle between the major "axes" of the like-

lihood contour and of the parameter space is w/4.

1

Clearly all three estimators are functions of '"n," sample size, and

~ ~

strictly speaking Qu, gc’ gm should be written gu(n), gc(n), gn(n) to stress
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-~

Figure 1,--Illustration of the Relationship Between 8, 8.> and

8 when 8 ¢ 0.
-m ~u
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that fact. However, it is expositionally convenient to suppress the notation

L] Ty

on 'n"" which will be followesd throughout the paper.

~ A

IT. The Statistical Properties of 8 , 6 , @
—u’ ¢’ -m

As a first remark in this section, we should note the distinction
between the theoretical analysis of the distributions of the estimators and
the algorithms required to produce estimates from actual data. Although, as
will be shown, the theoretical analysis is at times complex, the reguired
algorithm for.ém is relatively siﬁple; in short, the theoretical justifica-
tion for ém is much more difficult than the actual use of the estimator.

The problem involved in finding suitable algorithms for obtaining estiﬁates
éc have been widely discussed elsewhere, see for example Judge and Takayama
(1966):

Under the assumptions put forward in the first section, it is intuitively
clear that no matter what the specification of the parameter space 0, éu is
asymptotically distributed as multi-variate normal and is efficient. This
result follows from consistency, which is easily proved below, and the regular-
ity conditions which are assumed to apply. It is further clear that the

~

minimal sufficiency of gu is not affected by the specification of 6.

Consistency of the Estimators

The first step in the comparison of the three estimators is to demon-
strate that both gc and gm are consistent. Wald's 1949 proof of consistency
utilizes the fact that Q(ng) 3_2(g0|§) where go denotes the true parameter

point. By using the strong law3 of large numbers, Wald proved that for all

6 ¢ O:
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lim Pr(i(8]x) < 26 |x)) = 1,
Lim CAES 8 |x )

-

and combining the two inequalities one obtains the result:

lim P é = 0 = 1,
Lim Pr (9 = &) ®)

Since Wald's proof relies directly on the compactness of @, gc is consistent.

~

6. is consistant since £(8 |x) > 2(8_|x) holds a fortiori.
—u —u'=~" = "o '!= = ———

Because the space 0 is a metric space and gm is defined by min ||

~ 6 0
the consistency of gu implies that for any £ > 0,

8, ~ &l

lim Pr(|le, -8 || <& = 1. 9
1m 213, - o, ||

Since ||6 - 6 || < ||é -8 ||, it follows immediately that 6 1s consistent.
-t -m'' —'l-u -o —m

Some Mean Squared Error Properties

Before deriving the probability distribution functions (p.d.f.s) of
the estimators defined in the previous section, it is useful to consider as
generally as possible the degree of mean squared error gain from imposing
inequality constraints. Although the mean squared error result for the
single parameter situation is obviously a special case of the multi-parameter
case, it 1s expositionally convenient to begin by proving some lemmas and

theorems in the former case.

Mean Squared Error for a Single Parameter

In this situation 0, the parameter space, is a compact sub-set of R
and it is assumed that either (i) © contains an infinite number of points and
is convex, or (ii) 9 contains at most a finite number of points; (the exten-

sion to a denumerably infinite set of points is straight forward).
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Let t be any unconstrained estimator with fiunite second moment of
eo € O.with p.d.f. f(t|eo);ft is said to be unconstrained if its range is
(-», @), i.e. t belongs to a class of estimators not restricted to a proper
sub-set of R. When © is a compact convex set it can be represented by the

interval [a, b]. Let the minimum distance constrained estimator t be

defined by:

/t, if t e[a, b]
t = a, if t < a : (10)

b, if t > b

In the uniparameter case, the estimator tm has been recognised for some
time; in particular Zellner suggested the use of this estimator several
years ago, Zellner (1961).

Theorem 1.

MSE(t ) < MSE(t)

Proof .—-Let eo be the true value of the parameter, 60 € © and let

@ denote the complement of © in R, then:

MSE(t) = J (t -0 )zf(tle )dt
—e ° ° Qau)
- (¢ — 0 )2£(e]6 dde + | (- 8 )2£(t]o )dt
0 o o) 5 o o ?
and MSE(Em) = J (Em - eo)zf(t|90)dt :
e (12)

2 & ' ®
= Je (t~0) f(t|eo)dt + J_m (a - eo)zf(t|80)dt + Jb (b - eo)zf(tleo)dt.
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Since (t - 60)2 > (a - 60)2 for all t < a and (t - 60)2 > (b - 60)2 for all
t > b and the first two integrals in equations (11) and (12) are identical,
the theorem follows immediately.

Now let t be the unrestricted maximum likelihood equation estimator

of 00 e O, i.e. t is defined by the solution to the normal equation:

dg
- @l = o, (13)

where 2(8|X) denotes the log likelihood function and X a set of observed
data points. We assume that the usual regularity conditions hold for R(GIX)
for all 9§ ¢ Oo, Oo an open set containing ©; see for example Daniels (1960,
p. 152), so that t is asymptotically distributed as normal with mean eo and
variance given by the inverse of the information measure, The corresponding

constrained maximum likelihood estimator t is defined by:

t, if t e[a, b]
t = Ja, 1f t ¢[a, b] and £(alX) > 2(b]|X) (14)

b, if t #[a, b] and 2(a|X) < 2(b|X)

The definition given in equation (14) is equivalent under the given conditions
to the standard formulation, namely where t is defined by the solution to
equation (15):

2(t]|X) = sup 2(8]X).

teO® (15

Lemma 1.--Under condition I(3) (Daniels, 1960, p. 152), namely the
condition that 32(6|X)/86 is a nowhere increasing and somewhere decreasing

function of 6, then, when t ¢#[a, b], Q(alX) z_E(bIX) is a necessary and
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sufficient condition for t < a, and z(a§x) < 2(b

X) is a necessary and

sufficient condition for t > b.
Proof.--Need only prove the result for t < a since the proof for t > b

is similar. If t < a, then by the conditions of the lemma 2(a|X) > £(b|X).

If the inequality #(a|X) > 2(b|X) holds, 2(a

X) > Z(be) for otherwise by

the conditions of the lemma 2(6|X) is constant over the interval [a, b] and
t e[a, b] which contradicts the assumption that t #[a, b]. Further, if
l(aIX) > 2(b|X), then given the assumed regularity condition that 2(6|X) is
continuous in éo’ for almost all X, there exists an § neighborhood of "a,"
such that Z(SIX) is a decreasing function of 8 so that Q(GIX) > Q(aIX) implies
0 < a in the & neighborhood, in short, t < a.

Theorem 2.--Under the conditions of Lemma 1 where t is an unconstrained
maximum likelihood equation estimator, the constrained maximum likelihood

~

estimator E and the minimum distance estimator t are equivalent in the sense
that for any value of t, E = Em' Further, the mean squared error of E is
equal to that of Em which is less than or eéual to that of t.

The proof of this theorem follows in an obvious manner from Lemma 1
and Theorem 1.

The proof of Theorem 1 depends upon the restrictive assumption that
for all 9 ¢ OO, 2(9|X) isconcave in §. One can replace the condition I(3)
in Lemma 1 by a much weaker condition, but under such conditions the con-
clusions of Theorem 1 can be shown to hold only asymptotically. Accordingly,

consider Lemma 2.

Lemma 2.--Following Daniels (1960, p. 155) assume: (i) At every

8 e @0, 92(0|X)/236 exists for almost all X and is not zlmost everywhere

zero. 2(8|X) is discontinuous in 5 at at most a finite number of points
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at which points the discontinuities are finitely valued. (ii) The probability

that the interval (8, 8 + A8) contains a discontinuity point of BE(BIX)/BG

is of order not exceeding IABI for any true 60 € 60.

Under assumptions (i) and (ii) (together with some further minor

regularity conditions, see Daniels (1960, p. 155)), and when t, the uncon-

strained maximum likelihood estimator, #[a, b], then, as n

(sample size)

+ o, the probability that each of the following statements holds approaches 1l:

i) 2(t|X) z_l(alX) is a necessary and sufficient condition

for t < aj

(ii) 2(t|X) z_l(bIX) is a necessary and sufficient condition for

t > b.

(iii) 1In addition, t_ as defined in equation (1) is equivalent to

~

t, where t is the constrained maximum likelihood estimator as

defined in (17), and where equivalence is defined in Theorem 2.

Proof .-~Under the assumptions of Lemma 2, Daniels showed that for

given o > 0, § > O:

S+ -3+ 8
limPrge - on < t<©6_ +4+an §=1,
o o
nr«
) =
or lim Przt € lnleoi = 1,
no>«
-3+ 8 SRS

where 2n = (90 - on , 60 + on ). Further, for

lies within a narrow band of slope —nI(Go), where I(eo) is

all 6 e &, AL (o |x) /08

the information

measure, with probability approaching 1 as mn + ». In short 3%(8|X)/36 can

be approximated arbitrarily closely by a nowhere increasiﬁg and somewhere

decreasing function. The meaning of (iii) is that under the given assump-

~ ~

tions tm converges almost surely to t.
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Suppoée 80 ¢ (a, b), then, given o > 0, § > 0, as n > =, Pr%t € 2n§ <
Prgt e(a, b)g + 1 and Prét ¢(a, b)g 3 0; i.e. Prgt = a, or b[eo e(a, b)g 2 0.

Suppose 60 = a, then from the results in the previous paragraph, as

(a) Prgt ¢ mé(a)g 2 0, where mé(a) denotes any neighborhood of "a" of
radius §.

(b) For t ¢ % ln centered at "a," 32(8/X)/36 can be approximated
arbitrarily closely by a nowhere increasing and somewhere de-
creasing function.

Em is equal to t for t €(a, b), by definition of Em and E. Em and E can»only
differ for t ¢£(a, b) for if 90 e(a, b), then as n » «, Pr?t £(a, b)g 3 0, so
that Pr?fEm - EI < 6,90 e(a, b)f 3 1. Let 90 = a, since as n + ®, results
(a) and (b) hold, then Pr;EmA= a? 2 1 and Pr?E = af % 1, so that

Pr?lzm - EI < 5§ 3 1. This concludes the proof of proposition (iii). Pro-
position (i) also follows from results (a), (b), and that t #[a, b]. Pro-
position (ii) follows from similar arguments when 90 = b.

Theorem 2'.--Under the conditions of Lemma 2, as n - «, the probability

limit ts one that:

(a) E is equivalent to Em;

(b) the mean squared error of.E is equal to that of Em which is less
that or equal to that of t.

The proof of Theorem 2' is an obvious extension of Lemma 2 and

Theorem 2.

Given the simple nature of the above lemmas and theorems we might
. . b . . .
anticipate that the mean squared error gain for constrained estimators in

the case where 0 is composed of a finite number of points would be even
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gfeater. However, despite Hammersly's results cited earlier, a general proof

has not yet been found. The difficulty is illustrated in Figure 2 where we

assume that 0 = %a, bg. Let c (a+b)/2 be the mid point of the interval.

The minimum distance estimator Em takes on only two values; a if t < c, b
if t > c, where t is some unconstrained estimator. The contributions to
mean squared error for both estimators (t, Em) over the intervals [-=, c],
[b, =] indicate that Em has smaller contribution to mean squared error over
the indicated sub-region. However, little can be said in general, it seems,
about the relative contributions to mean squared error over the interval [c,
b]. Consequently, it appears that nothing can be said in general about the
mean squared error gain for the minimum distance estimator. A similar ten-
tative conclusion holds for the constrained maximum likelihood estimator for
finite sample sizes,

kDefinite conclusions can be obtained asymptotically since Theorem 2'
can be extended with only trivial modifications to handle the situation
where © contains only a finite number of points. The reason is that for
given a > 0, € > 0, one can obtain for sufficiently large n an interval
ln which centains only the true value 90.

A special case can also be proven. Let us assume that the distri-

, N . . 2
bution of eu is normal with mean Oo and variance o o’ where the subscript

"n" stresses the fact that the sampling distribution of Bu depends on

sample size n. Let us assume that q = 2 and without essential loss of

generality that 60 = g = 0. Under these conditions, the expected value

of Gm is b'sz,

W, = L xp (/200 /e o



T

21

Figure 2.,--Illustration of Constrained Estimator of Two Parameter
Points Showing p.d.f. of tleo = a,
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c = (a+b)/2 so that em is biased upward (but not asymptotically, since

Ty > 0). The mean squared error of eu is simply the variance of Bu, Uzn
~ 903

The mean squared error of em, E;Gm %is given by:

E%Gi% = az'rrl + b21r2

(16)
= bzw = bz [w Expz-uzl(Zcz)gdu
2 Y2no ‘b/2 n°3

52 .
and one wants. to prove that E{eé% < oi for all b > 0. An equivalent expres-

sion of the problem is to prove that:

b2 J ¢(u)du < 1, for all b > O, @a7z)
b/2

where ¢(u)du represents the p.d.f. of a normal variable with mean zero and

unit variance.5 Using an inequality cited in Rao (1965, p. 117), we have:

o 2
b/2 - b V2r

so that if the right hand side of the inequality in (18) can be shown to be
less than b“2 for all b, the inequality in (17) follows. The inequality in

(18) can be re-expressed as:

Y21 Bpfp’/8% > b (19)

It is easily shown that the function g(b) defined by:
Joe

) = (G Exgp/8f-b), (20)

is everywhere strictly positive with a minimum at b = 1.9675 (minimum
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~

g(bj = 0.0658). Consequently, the mean squared error for Bm is less for any
alternative péint in the two Point problem. In passipg, it is interesting
to note from this anélysis that the minimum gain in.M.S;E. occurs at b =
1.9675 standard deviations from the true value. The extension to multiple

points on the line is easily made.

Mean Squared Error in the Multiparameter Case

There are a number of alternative ways in which the concept of mean
squared error can be extended to the situation in which we estimate a vector
of parameters.

Following the discussion in the Gniparameter case let us define Q as
the parameter space, where O is a compact subset of Rk so that elements of
© can be represented as k dimensional vectors. We further assume that
either Oacontains a finite number of points, or @ contains a non-countably
infinite number of points and is a convex set. Let Qo denote the true
element of © and let t, t*, be two alternative vector estimators of 90'

We can now state some alternative definitions of "smaller" mean squared
error.

(A) t* has smaller mean squared error thatlg iff

2

E§(t} - 6,;) % < Eg(ti - eoi)2§’ i=1,2, ... k.

(B) t* has smaller mean squared error than t iff
S(t® - V(EE - - '(t -
Ef(tx - 8 )' (¢ 90)3 < E§<£ 8" (e - 083
(C) t* has smaller mean squared error than t iff
* - "A(t* - - ' -
ES(r* -~ 8 )'A(E* - 8 )8 < EH(t - 8 )'A(t - 8)3,
for all positive semi-definite matrices A.
(D) t* has "smaller" second moment matrix that that of t iff the
matrix N(t*, t) = M(t) - M(t*) is positive semi-~definite, where

M(EF) = EY(eh - 0 ) (x* - 0 '3, M) = EZ(r -8 )(t-8)'%.
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(E) t* has smaller mean squared error than t iff
|M(£ﬁ)| < |M(£)|, where |A| represents the determinant

for any square matrix A.

(F) t* = a't* has smaller mean squared error than

t = a't, 1ff Ef(tx - ¢ )7} < E{c - )7,

where a' is any k dimensional vector and ¢0 = gfgo.
A last alternative which is useful to consider for mean squared error
for linear combinations of coefficients is to defime the space ¢ € R, which
is a mapping frém 0, and is defined by 3 = §¢|¢ =a'8, 8 ¢ Oi. Define the

~-unconstrained estimator t by t = a't, where t is the unconstrained estimator

for 8 € © and the constrained estimator t* by

t, if t e @
tx = <a, if t <a |, (21)

b, if t > b

where a = inf§¢ € Q% and b = sup§¢ £ ¢§. In short, the constrained estimator

is defined in terms of the constraints after transformation from O space to

® space.
The various definitions for smaller mean squared error of an estimator

are not as disparate as would at first sight appear. Definitions (C) and

(D) are equivalent in that the inequality in (C) is a necessary and suf-
ficient condition for N(t*, t) to be positive semi-definite, for proof see
Theobald (1974). Definition (D) (and hence (C) as well) implies (E), see

Rao (1965, p. 267). Definition (E) implies (B) since letting the matrix A

in (C) be the identity matrix yields the condition in (B). Similarly; (C)
implies the condition {, (A) (by suitable choice of the matrix A) and the

condition in (F), by rewriting each term in the inequality as a quadratic
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forﬁ in the matrix A = g_éf. Finally, condition (A) implies (B). Con-
sequently, the condition in (B) is necessary, but not sufficient, for the
conditions in (A), (C), (D), and (F).

With these preliminaries completed some mean squared error results
can be obtained in the multiparameter situation. Consider first the situa-
tion in which @ CLRk is a convex set. Let t be any unconstrained vector

estimator of 90 e 0. Let t be the corresponding minimum distance estimator

defined by:

t, if t € @,

t = (22)

t*g ]|t - t*|| = min| |t - 8]|], £t ¢ 0, t* € 0.
0el

Theorem 3.--Under definition (B) above t has smaller mean squared

error than t.

-~

Proof.--If t ¢ @, t = t, so need only consider t # 0. If t £ 6, then
through the point i_lies a separating hyperplane between t and ©; this

follows from the convexity of @. Consider the line defined by the two points
E_andli. Suppose § lies on this linme, then clearly 1t - Qollz > [|£_- §°||2,
since i_minimizes the Euclidean distance from t to ©. Suppose 90 does not

lie on the line, so that there exists on that line apoint ¢ which minimizes

the distance from 90 to the line defined by t and i,v Clearly c lies on the
same side of the separating hyperplane as Qo' Since the squared Euclidean
distance from any point x on the line defined by ¢, i_to the point 90 is

given by llgo - 5}{2 which is equal to {]Qo - EJIZ + ||E_‘ EJIZ, it follows

immediately that |[§0 - £J|2 < ||_Q0 - E}'z for all t ¢ 8. This geometric

result is sufficient for showing that:
E¥E - 80" (£ - 8 ¥ < Eje -2 8}

o

A(D
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Unfortunately, one cannot prove in general for any estimators t and
iﬁas defined above that E_has,smaller mean squared than t in the sense of
definition (C). The problem is best illustrated in terms of definition (F)
which is a special case of (C); see Figure 4. ¢o is the infimum and ¢l is
the supremum of the projections of vectors 8 ¢ O. Over the domains A and
C shown in Figure 3, E_clearly contributes less to mean squared error than
t. However, over the domain B i_obviously does not have smaller mean squared
error than t for any value of t, as is illustrated in the figure, so that
without further information about the distribution of t, one cannot conclude
that £_has smaller mean squared error than t in the sense of (F) or (C).

The problem is that i_is defined in terms of the Euclidean distance from t.

Further insight into this problem can be gained by considering a

generalization of the minimum distance estimator. Thus, let us define Ea by:

t, if t € 0O,

t, if t ¢ A, C

t, = (23)
t* 3 ||t - t*|| =min||t - 8]| ¥ &
8e0anda'(t -8) =0, if t ¢ B

Essentially, for t # © is that point on the boundary of O which is

t
—a
"nearest" to t among the set of vectors with the same projection as t onto

the line "a," when t is contained in the domain B; otherwise t is equal to t.

If t ¢ domain A or C, then

] . 3 ' _ .

a'(t-8) > a'(c, -8);
and if t & domain B,

a'(t-08) = a'(e, -6)

-0 “a -0
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Figure 3,--Two Dimensional Parameter Space and Projections Onto an
Arbitrary Line "a."
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by construction. Consequently, for a given vector "a" in definition (F),

Ea has smaller mean squared error than that of t.
Alternatively, a mean squared error gain for a given vector a can

be obtained in the following way. Let ¢o = » 8 € 0 and define the

a'sg
= >0

convex set ¢ by:
o = 3¢|¢ =a'f, 8 € 03.

The convexity of ¢ follows from that of ©. The unconstrained estimator of
¢ is t = a't, where t is any unconstrained estimator of Qo. Let us now
define the constrained (minimum distance) estimator in & space, instead of

in © space, in short:

t, if t £ o,
o= 34, if t < b, (24)
¢, if t > ¢,

where ¢o‘and ¢l are as defined above.

Since the multiparameter problem has been transformed into a uniparameter
problem, all of the results derived in the first part of this section for

-~

the minimum distance estimator now apply, so that t has smaller mean squared
error than t.

No useful general results have yet been directly obtained for the con-
strained maximum likelihood estimator in any of the above situations even
though the required moments exist under the assumptions of the problem.

With respect to the situation in which 0 contains only a finite number
of points no general finite sample size results have yet been obtained on mean
squared error properties. However, under suitable regularity conditions mean
squared error gains can be shown to hold asymptotically by a minor extension
of Theorem 2' to the multivariate case and in various specific cases, see

for example Hammersly (1950).
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Finite and Asymptotic Distributions of & and 9
- T

Finite Sample Results -
In the uniparameter situation there are two subcases; those where ©

is composed of a finite set of points and those where it is not. 1In the

former case, let O = §xl, Ays ve- kq%, A € Rl, Ay < Xi+l’ and we define Ri»
i=1, 2, ... q, by:
Ry = (==, 17200 +4,)),
R, = [1/2("1 + >‘2)' 1/2(>\2 + x3)) , (25) .
e e

1f f(eu) deu denotes the p.d.f. of the random variable eu, the discrete

distribution of 6, is given by:

Al’ with probability =

1
em = Az, with probability L5 (26)
A , with probability w ,
q q
where:
T, [R f(eu)deu, i=1,2, ... 4. (27)

i

In the latter case, where O is convex, 6 can be represented by a

A

. 1 . .
closed interval [Al, Xz], Al’ Az e R, Gm is given by:

A if 8 <A

xz, if eu 3_12 (28)

D >
|

~

eu, otherwise,
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A [ A
ao= | £0 Yd: ,  w, o= . £(8 )da . (29)
! Je <A - Je 2a, T

1=
[

The distribution of 8 is clearly of the mixed discrete/continuous tyve
m 3 ¥

whose specific form is:

-
@
il
>

£(3), Ay <8< Ay

The multi-variate extension of the finite number of points is to -
consider that € = %31, EQ, .o £q§’ where Ei is a point in s—dimensional
Euclidean space. The definition of the minimum distance estimator leads
directlyrto the definition of regions in the whole of R® such that if R

i
is the appropriately defined subset of RS, then:

TS Pr§§m = P, = JR ¢B du, (31)

-

8 du denotes an s-variate p.d.f. of the vector estimator Qu with
o}

mean vector 90. The discrete distribution is given by:

where ¢

ral 5149 .
21, with probability T

_ - N '
Qm, 22, with probability T (32)

P with probability =
q° p Yy q

To illustrate, consider the situation in which q = s = 2 and ﬁo =f

as shown in Figure 4. Under these conditions E(Qm) = ﬂzg, so that the M.D,

estimator is biased, though consistent since Ty > 0 as n ~ = for any P # @.
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Distance'ﬁg equals

distance aP.

R
2
-2
A -7
\ //
Sxa
AN
N\
\
N °1
R .

Separating Plane

Figure 4,--M.D. Estimator in the Two Dimensional Case
Illustrating the Integrating Regions.

Figure 5.-~Illustration of a Compact Two Dimensional Parameter
Space with Continuous Differentiable Boundary.

%

Figure 6.—-~Illustration of a Compact Two Dimensional Parameter
Space with Oaly Piece-wise Continuous Boundary.
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The multi-variate analogue to tﬁe closed interval is a more complicated
case to analyze. The basic situation is most easily discussed in terms of
two dimensional space and two important sub-cases are illustrated in Figures
5 and 6. Let us consider first the case in which the boundary of the parameter

space is defined by a continuous differentiable function g(el, 0 = 0 which

2)
defines a closed curve in R2, see Figure 5.

The main problem is to define the p.d.f. of Qm along the closed curve
g(el, 82) = 0. .Let the point p.d.f. of Qu be denoted by £

defined over all of R2.

eo(el, 8,)d6 do,

; " . . .y L o ,0 o
The density of gm satisfying g(gm) = 0 at (65, 62) is denoted by ?(Q_)

and is defined by:

° ~ R R
p(e”) = f £, (81, 0,)ds, (33)
. (o] (o]
where
ds = (gi + gg)l/zdt, (34)

is the rate of change (with respect to a parameter t) in arc iength of the
normal to the tangent plane to the curve g(f) = 0. The partial derivatives
81> 8, evaluated at Q? give the direction numbers of the normal (N(g?) in

- Figure 5) to the tangent plane and the parametric representation of the normal

line is:
~ o .
] = 6, + g.t
1 1 1 (35)
" _ o
0, = 08, + g,t.

The term P(®) can be regarded as defining a "marginal" p.d.f. which has been

rotated out of parallel with the axes and is truncated at the point 90, for
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example if @ in Figure 6 were to be reduced to a straight line parallel to
the el axis (i.e. 62 = 6; is known), P(g?) produces (by integrating in both

~

directions from g?) the marginal distribution of eul‘by integrating out euz.

The p.d.f. of Qm can now be written down:

P8 ), (8 ) = O
h(e) = (36)
£C6 ), 8(8 ) < O

~

The mean vector of gm is obtained by:

n = fc (6 )P(8 )ds + ”e (8 )£(8 )de , (37)
where the first integral is evaluated along the length of the closed curve
g(é) = 0'and the second integral is an ordinary multiple integral over the
domain 0.

Figure ¢ illustrates the problem of point discontinuities in the
first differential of a piecewise continuous boundary function. The regions
Rl’ R2, R3, are defined by the cones with apex at a, b, and ¢ respectively
and sides determined by the normals to the intersecting tangent planes at
the point of intersection. For example, if at the point "a" in Figure ¢ the
angle subtended by the boundary of 6 is o radians, the cone defining Rl has
angle (71 - a) fadians between its boundaries. In this situation, the dis-

tribution function of Em is defined by probabilities at certain points,

line integrals, and ordinary multiple integrals. Thus, as in this example,

the distribution of 6 is:
~—m
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M for ém = a
Tys for ém = b

h(ém) = A, forém = ¢ (38)
P(6), for g(8 ) = 0

£(6, ), for g ) < O,

where:

L : J f(gu)dgu, (39)
R,
i
and P(Qm) is defined as in the previous situation.

~

With respect to the distribution of gc’ it was shown in the previous
section on mean squared error properties that under the conditions imposed

by Lemma 1 for the uniparameter case where © is a closed interval that the

a a

distribution of BC was the same as that for em. Unfortunately, so far this

a

is the only general finite sample size result for the distribution of 8

when 6 1is not equivalent to 6 .
- -

Asymptotic Results

By the definition of the parameter space © and the definitions of

~

6 and 6 , it is easy to show that both estimators are convergent to 8
- -m -0

almost surely; i.e.:

Pr(limeé = § ) = 1 and Pr(1imb = 9§ ) = 1.
a - —m -0
>0 n-+o

Y

By the definitions of © and of Qc’ respectively, there exist vectors a,

)
-m

b such that (in the vector sense) a < < b and similarly for L consequently

8
—
the variances of the components of Qc and of gm are uniformly bounded, since

the bounding vectors a, b depend only upon 0. Thus, by a corollary to the

Y

"Kolmogorov Theorem on the strong law of large numbers Qc and Qm are convergent
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almost surely to 90’ see, for example Fisz (1963, pp. 220-224). More im—

portantly, 8 and 8 are almost surely convergent to 6 even when 6 is not
—c —m e —u

itself almost surely convergent, see for example the exchange between Wald

(1949) and Wolfowitz (1949). 1In such cases, that is, cases where Eu although

convergent in probability is not almost surely convergent, it will follow

that the series

Pr(gc # Qu) and by Pr(gm # gu)
n=1 n=1

I~ 8

are divergent, even though by consistancy lim Pr |6 -0 | <gg =
tn wefls, -, < ]

- Eul < ei = 1; see Fisz (1963, p. 226).

lim Prglém

>
One other important asymptotic result can be easily demonstrated

and is posed as Lemma 3.

Lemma 3.--The sequence y, = (gc - gm) is convergent in probability
to § so that § is convergent in probability to 6 .
- -m

Proof,.,--Since the analysis is being conducted in terms of a metric

space the convergence in probability of y, can be characterized by:

1im Px < € = 1.
ln £y I §
. 2 - ~ 2
since ||y [1" < |le, - 8 I1" + |le - &,I1%; then
peflly ] < e} » eeflls, - o)1+ (16, -6l <} 0

The right hand side of inequality (40) is equal to:

Pr?

o, - sl < ey +eeflle, -5l < o} - peglle, - 8 0l < e, [l8, - 8 1] < ek

|
(41)

but
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prille, - gyl < e llo, - 8 0] < e} < erglle -8 ]] <€,
therefore expression (41) is greater than or equal to Pr§||§m - éull < €8s.

But, have already shown that:

. - o 2
it USRS B
so that lim Prg||yn|| < eg = 1 and the lemma has been proved,.
n->e ™

Corollary.--Since by Lemma 3 éc converges in probability to ém’ and
if g(ém) represents the asymptotic limiting cumulative distribution of ém’
and Hn(éc) the cumulative distribution corresponding to éc(n) in the sequence
of random variables éc(n), n=12, ..., then:

3-1-];2 Hn(éc) = g(ém)
at evefy continuity point of g(ém). The proof of this corollary is standard,
see, for example, Fisz (1963, pp. 236-239).

The main result of the previous lemma and its corollary is that even
though neither the finite sample nor asymptotic distribution of éc in general
has been derived directly, we can say that the asymptotic distribution of éc
is the same as that of ém’ the finite sample size distribution of which has
been given above. The distribution of 6c in the uniparameter situation is
simply a special case. The only finite sample results for the distribution
of éc are in the uniparameter situation where © is an interval and the re-
strictive assumptions of Lemma 1 on the parent p.d.f. hold, or the situation
examined by Hammersly (1950).

ITII. Illustration of the Three Estimators
by Sampling Experiments

A number of simple models were run using random variables generated by

‘computer routines in order to check the theory developed so fgr and to explore
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the probable consequences of further amalysis. In the single parameter situa-
tion N(8, 1) variables were generated in sample sizes 30, 50, and 100. For
various definitions of O, UML, CML, and MD estimators were calculated for

the mean; UML in this case is simply the sample mean. Invthe two parameter
situation, two bivariate normal distributions were generated with mean vector
6; one with a unit scalar covariance matrix, and the other with a covarianée
matrix defined by 011 = 099 = 1, 019 = Oy = 1/2. 1In each of the two situations
all three estimators were used to estimate the mean vector under a variety

of constraints on ©. The experiments were each réplicated 500 times and the
Monte Carlo sample means and variances were calculated for each estimator.

In addition Monte Carlo estimates of the standardized measures of skewness

and kurtosis, Y15 Yo» Were calculated where Yy» Yo are defined by:

: 3/2 2
o= owlu vy = wluy - 3.0 (42)
where My denotes the ith moment about the mean. For the normal distribution
(hence for the distribution of the UML estimator) Y =Y, = 0.

The alternative specifications of the parameter space O are:

Uniparameter (mean of a normal distribution)

I: 0 = {4, 53, o, = 4
II: o = [4, 5], 60 = 4
III: o = [4, 5], 6, = 4.333

Biparameter (mean vector of a bivariate normal distribution)

I: 0 = 84, 2, (5,5 8 = ¢4, D
I: 6 = §(4, 2), (5,3), (5, )3, 8! = (4, 2)

III: O is defined by el + 62 = 1, 0 < ei’ i=1, 2; gé = (1, 0
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IV: Same O as in III, Qé = (0.5, 0.5)
. . 2 2 v
V: © is defined by 81 + 62 = 6, 90 (2.4495, 0.0)
VI: Same 0 as in V, 8' = (1.0, 1.0)
-0
VII: 0O is defined as a unit square with lower left co-ordinate of (4, 2),
' =
8l = (4, 2)
VIII: Same O as in VII, 8' = (4, 2.33)

-0

IX: Same 0 as in VII, Qé

(4.318, 2.368).

The first question at issue is the difference in distribution between
the CML and MD estimators. With two exceptions to be discussed below, the
sample distributions of the two estimators appear to be almost identical -in
the models examined; this is so in terms of the means and variances, sampled
values of Y1 and Yos as - well as in terms of the observed histograms.

Tﬁe gain in mean squared error in using constrained over the uncon-
strained estimator can be considerable. O0f course, if the true value of the
parameter is strictly within the bounds, then for sufficiently large sample
sizes all three estimators are asymptotically equivalent. In the single
parameter case, model II, the M.S.E.(ém) was less than half the variance
of 5u; In the biparameter models (III, V, VII, and VIII), the decrease in
M.S.E. in using 6m instead of 6u was substantial; the ratio M.S.E.(ém)/Var(éu)
was typically about 0.5 and in one set of models about 0.13.

There are two exceptions to these results, the results for models V

and VIII using the non-scalar covariance matrix. In these cases, but for only

one of the coefficients, the ratio M.S.E.(em)/Var(eu) is only marginally under

1.0. Further the M.S.E. of Qt seens to be considerably larger. These results

are in broad agreement with the theoretical analysis in the previous sections.
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The models involving the choice of isolated points show that the con-
strained estimators converge very stronglv to thz trues parameter value. The
only experiment for which the constrained estimator did not pick the true
poiﬁt every time in 500 trials was that for the univariate case, sample size

30, in which the true value was chosen 497 times.

Conclusion

In conclusion, we may say that the analysis in this paper indicates
that the incorporation of inequality constraints in the estimation process
through the use of the minimum distance estimator is advantageous. The
estimator is relatively easy to calculéte, leads to a considerable reduction
in mean squared error, and has the same asymptotic distribution as the con-
strained maximum likelihood estimator. In addition, although the finite
sample size distribution (given knowledge of the distribution of éu) of ém
is not always easily evaluated in actual situatioms, its analytical form is
at least known.

A

The extremely rapid convergence of when © space is composed of

Qm
at most a denumerably infinite number of points is well worth noting.
Further, the immediate extensions of the above analysis to forecasts
of dependent variables leads to the broad conclusion that considerable gains
in lowering the mean squared error of forecasts By using point or inequality
constrained estimators can be achieved., Thus, the range of situations use-
fully analyzed by regression techniques has been extended by this analysis.
Finally, the work contained in this paper enables one to begin to

evaluate the infercntial gains from incorporating the results of previous

research into subsequent analysis.



FOOTNOTES

1The additional and somewhat unnecessary phrase "finitely bounded"
is added because of the common practice of extending compact spaces by
"compactification," see Kingman and Taylor (1966).

2 - . . s
In addition to some obvious regularity conditions on the cumulative
distribution function, the two most important assumptions from the viewpoint

of this paper are:
(i) The parameter space is a metric space and every closed bounded

subset 1is compact,
(ii) Expected values of the logarithms of the p.d.f.'s exist and

are finite.

3Wolfowitz (1949), pointed out that only the weak law was needed
to prove consistency.

_4The required moments exist given the assumptions made for the
previous theorems.

SIf the right hand point were the true parameter point, the analysis
would be essentially the same, except (17) would hold for all b < 0.
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