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Abstract.

We study the question of Common Knowledge and Agreeing-To-Disagree
first discussed in the seminal paper of Aumann (1976) in a dynamic
framework which is a generalization of Geanakoplos and
Polemarcharkis (1982). We replace the Common Prior Assumption
typically used in this literature with a generalization which
merely requires that agents' priors satisfy an ex ante mutual
absolute continuity condition. We obtain conditions for beliefs to
converge. We show that beliefs and actions become common kKnowledge
in the limit. We also discuss what happens to the Agreeing-To-
Disagree results when priors are not common. In particular we show
that limiting beliefs or actions or "announcements"™ equal that
resulting from the (not necessarily common) prior conditional on

common observations.
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II. Introduction. In this paper we study the question of Common
Knowledge and Agreeing-To-Disagree first discussed in the seminal
paper of Aumann (1976). Unlike most of the literature however, our
emphasis will be on dynamic settings where we dispense with the
Common Prior Assumption. Dynamic considerations arise naturally
in the study of market economies over time or sequential games,
where the question of whether there is "common knowledge" in the
limit becomes important. In this paper we provide conditions for
the convergence of beliefs and determine when those limiting
beliefs are common knowledge and the when they are the same. 1In
particular, we answer the question of what happens to the Agreeing-
To-Disagree results when priors are not "Common."

We consider a dynamic setup without common priors which is a
generalization of the model studied by Geanakoplos and
Polemarcharkis (1982), where at each date "announcements" are made.
Those announcements could for example be market prices in an
economy where agents are incompletely informed about some
"fundamentals." We show that the announcements converge and become
common knowledge. We show that agents' limiting announcements will
equal that resulting from their (not necessarily common) prior
conditional on their "common observations."

In the model of Aumann (1976) it was shown that if agents have
common priors and their posteriors are common knowledge then those
posteriors must be the same. If we assume in our setup that the
priors are common (i.e., the same) and the "announcements" are the

posterior distributions we obtain original Aumann (1976) model, in
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a dynamic setup. Our result that the limiting announcements equal
the prior conditional on the common observations then implies the
Aumann (1976) Agreeing-To-Disagree result as a special case.

The common prior assumption begs the question of where the
"common" priors come from. Imposing this assumption requires the
imposition of a great deal of coordination of beliefs of agents,
which runs against the very spirit of the incomplete information we
seek to model. Furthermore, it has been shown in Nyarko (1991b)
that when we index a game by the beliefs of each player-type, then
the set of games which satisfy the common Prior assumption has much
smaller dimensionality relative to the set of all such games. In
addition, the relative dimension goes to zero as the number of
players goes to infinity. Hence, "most" games violate the Common
Prior Assumption.

We replace the Common Prior Assumption with a generalization
which allows the priors to be different, but requires them to be
mutually absolutely continuous so that there is ex ante agreement
on which sets have probability zero. With this condition we may
obtain the convergence of belief hierarchies over time. We believe
that such a mutual absolute continuity condition is necessary' at
the level of generality of this paper since without it one may
easily obtain examples where beliefs cycle ad infinitum and hence
do not converge. (See Nyarko, 199la, for a simple example in the
context of a single agent decision problem.)

Aumann (1976) studies common knowledge via finite partitions

and "the meets" of those partitions. We define common knowledge in
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Bayesian terms; i.e., an event is common knowledge if each agent
assigns probability cne to it; each agent assigns probability one
to the event that other agents' beliefs assign probability one to
the event; etc. Tan and Werlang (1988) show the equivalence of
these two defintions wunder finiteness assumptions on the
partitions. Nielson (1984) shows the equivalence for possibly
infinite partitions via the use of completed Boolean Algebras and
common priors. Brandenburger and Dekel (1987) show the equivalence
via the use of proper conditional probabilities and posterior
completed o-algebras.

The proofs of the convergence of announcements available in
the literature typically exploit critically the finiteness of the
partitions. This is the case in Geanakoplos and Polemarcharkis
(1982) and McKelvey and Page (1986). When the partitions of each
agent is finite, then so is the join of those partitions. It is
easy to see that the number of periods until the announcements no
longer provide any new information is bounded above by the number
of elements in the 3join. Given that the announcements have
converged at some finite date, it then follows almost immediately
that the announcements must be common knowledge from that date on.
Nielson (1984) provides a proof of convergence of announcements
when the partitions are not finite; that paper however imposes
common priors.

Since we are concerned with dynamics we do not use meets of
partitions or completions of information fields. In a dynamic setup

the assumption of finiteness of partitions would be very
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restrictive since it implies that after finitely many periods there
is no new information. We instead exploit the mutual absolute
continuity properties in our generalization of the common prior
assumption.

In our setup we identify a parameter, 6, which we refer to as
the "fundamentals" which is the principal item over which agents
have incomplete information. Agents have beliefs over 0, their
first order beliefs. Since agents do not know the beliefs of other
agents they will have beliefs about the first order beliefs of
others; this will be their second order beliefs. Their third order
beliefs will be their beliefs about the second order beliefs of
other agents. Etc. Each agent will have a hierarachy of beliefs of
all orders. This will be that agent's type.

The agents then receive observations or signals over time.
These observations may for example be equilibrium prices which are
a function of the actions (e.q., sales and purchases) made by the
agents as a function of their beliefs. The observations provide
information on the unknown parameter 6, and possibly also on the
types of agents in the economy.

We use this setup with "tyﬁes" to enable us to relate our
work to the structure of Harsanyi (1968) and indeed to state our
generalization of the Common Prior Assumption. Further by
identifying such a parameter, we isoclate that with respect to
which we seek to state our limiting convergence and common
knowledge results.

The paper is organized as follows. In section 2 some
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terminology in introduced. Section 3 constructs the types or
hierarchies of beliefs. Section 4 defines a very general
mobservation process." Section 5 introduces the generalization of
the Harsanyi Common Prior assumption we require. Section 6 states
the result on convergence of belief hierarchies. All this is taken
from Nyarke (1991c), which should be consulted for details and
examples on the Generalized Harsanyi Condition and the convergence
of beliefs result.

Section 7 introduces our definitions of common knowledge of
events and random variables and proves some key results on common
knowledge in the 1limit and relates common knowledge with
measureability and "probability one events." Section 8 introduces
the generalization of the model of Geanakoplos and Polemarcharkis
(1982) . Within the context of that model the question of Agreeing-
to-Disagree without common priors is studied. All proofs are

relegated to the appendix.

2. Terminology: I is the set of agents, assumed to be finite.
Given any collection of sets (S}, we define sS=X, S, and

S

=%;,i5;. Given any collection of functions f£,:S;, = Y; for ieI,

f£.,3S; » Y, is defined by £ (s ;) = X,,:E(s)) - The Cartesian product
of metric spaces will always be endowed with the product topology.

Given any metric space S we let P(S) denote the set of all
probability measures over Borel subsets of §; all probability

measures in this paper will be of this form. ®P(S) will always be



8
endowed with the weak topology of measures. Given any u in P(s),
Supp 4 denotes the support of g, the smallest closed subset of §
which has u probability of one. #(ds) denotes integration with
respect to u over 8; in particular, if f is any real valued
function on S, [f(s)u(ds) is the integral of f with respect to u.
If S=S'xs", Marg;,, 4 is the marginal of 4 on 8!'; and u(ds')

denotes integration with respect to the Marg,, u.

3. The Hierarchy of Beliefs. We let © denote the "fundamental®
parameter space, with some 8 ¢ o representing the "true® parameter
value. Agents have incomplete information about 8. Each agent ieI
will have beliefs about the value of 0; that will be that agent's
first order belief. Since agents do not know the beliefs of others
each agent will have beliefs about the first order beliefs of
other agents; this will be that agent's second order beliefs.
Inductively, an agent's k~th order belief will specify that agent's
beliefs about the (k-1)th order beliefs of the other agents. An
agent's type specifies the complete hierarchy of all orders of
beliefs for that agent.

We now proceed to formally define the set T; of types (or
hierarchies of beliefs) for each agent i, (following Mertens and
Zamir (1985)). 1In the construction below Tﬂ will denote the set
of all k-th order beliefs of agent i, and T; will denote the set
of all hierarchies of beliefs all orders for the i-th agent. Those
uninterested in the details of the formal construction may proceed

to section 4.
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The parameter space is assumed to be a complete and separable
metric space. Construct the sets {T"i}“’k=1 inductively as follows:
T'= P(8), and given T for k 2 1, define T' = P(T*,x8). It
should be clear that higher order beliefs of an agent should be

related to the lower order beliefs of the same agent by some kind

1
i

2

and 7°, are the first

of projection operation; for example, if r
and second order beliefs of the same agent then ru should be the
marginal distribution of Tﬂ on 8. Indeed, the k-th order beliefs

X e T, determine a unique k-1 th order belief 1’

e TX' via
functions ¢ *:T*' - TkX defined inductively by setting for any
subset B of 9,

@' (12) (B) = 7% ({T'. .xB)) for all r2eT? (3.1)
(i.e., ¢ﬂ is the operator that yeilds the marginal distribution
on © from any joint distribution on T' .x8); and given ¢f4 for all
jeI define for any X' ¢ T.¥'' and any subset B of T X'xe,
¢ (1) (B) = (0,7 (8,0, (7%)) € BY) (3.2)
The set of all possible types of agent i is then defined to be the

set

— 1 .2 © K
Ti = {(Ti,ri,...)exklei

k

_ k., k+1
i = ¢

| 7 i ) for all k 2 1) (3.3)

{One may be curious why we did not construct the types sets by
T*'=P(T* ;) as opposed to P(T*,x8). The reason is that we seek to
allow the i-th agent to have beliefs under which various orders of
beliefs of other agents are correlated. For example the i-th agent
may think that if 6 = 8' then other agents have first order beliefs

7', while if 6 = 6" then the other agents have first order beliefs
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"1 . The above construction allows for these correlations).

i

The set T, can be shown to be homeomorphic to ?(que) (see
Mertens and Zamir (1985)). Hence each T; € T, may also be considered
to be a probability measure on T ;x0. Indeed, since each agent is
assumed to know its own type each 7, € T; may also be considered a
measure on Tx8 where T = X;T;7 such a measure 7. on Tx6 assigns
probability one to agent i having beliefs ;. To recap., agent i's
type 7, has the following three equivalent definitions:

(a) A hierarchy of beliefs, i.e., a member of T, in (3.3);

(b) a probability measure on T ,X0;

(c) a probability measure on Txe.

4. Dynamics and Learning.
4.i. The Observation Process. In the initial period, "date o",
each agent i will have some hierarchy of beliefs, 7., € T;; there
will also be some "true" value of the "fundamental" parameter, 6¢o.
The collection of belief hierachies of agents' and the true
parameter vector will be denoted by I' = ({Tip};e1,0)€TXO. This will
represent the "true" state of the "economy" or "“game" at date 0.
There is an observation process, {znf;ﬂ, which is a stochastic
process taking values in some (complete and separable metric) space
2. The process (not necessarily i.i.d.)} has a probability law or
distribution P, which depends upon the vector I = ({Tip}iere©)
€Tx0.

The date n observation is a vector z, = {2 At the end

in}is!'
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of each date n agent i observes z, . If all agents observe the same
information then of course z, = z;, for all i and j in I. Since
each z, itself may be a vector this formulation allows agents to
observe some common signals (e.g., market prices) as well as

private signals.

We shall suppose that the distribution of the observation

process, P., is "common knowledge" (as a function of T} in a
"constructive" sense. By this we mean that i uses P. in forming
beliefs about 2z° =(z)°_, (i.e., P, is 1i's beliefs about A

conditional on I'eTx®); also i believes that other agents use P, in
forming beliefs about z”; and i believes others believe others use
P.; etc.

The assumption that P. is "common knowledge" is of course
without loss of generality: One could always expand the definition
of the parameter 6 to include a specification of the probability
law of the observation process, in which case P, would necessarily
be "common knowledge."

We assume that the sets 6 and Z are complete and separable
metric spaces. This in turn implies that T and 2°=2.Z2.Z.... are
also complete and separable metric spaces if we endow sets of
probability measures with the weak topology and endow product
spaces with the product topelogy. (See Partharathy (1967, Chpt.
IT.6)).

The set of elements over which there is uncertainty is

therefore the set

1

I

TxOx2" (4.1)
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Any wefl is a tuple o= (6,{rm}ul,{z“°m1) which specifies the true
parameter vector 6, the initial hierarchies of beliefs of the
agents, {7,};,, and the sample path of observations, {z,}°_. B(Q)
will denote the set of Borel subsets of 1. The evolution of the
observation process is governed by the probability P.. This shall
be considered to be a probability distribution over Q which assigns

probability one to the true vector T'=({(r1,,) 8) eTx8 of types of

ielr
agents and the parameter vector. P. will be referred to as the
objective probability distribution.

As explained in section 3, any initial hierarchy of beliefs,
T.0€T;, for any agent i may be considered a probability measure on

the set of I' ¢ Tx8. Since P, is assumed known to each agent this

results in a probability distribution over Q1. We denote this by

ui(.|1m): i.e., given 7, € T,, the associated measure over 0 is
defined by
B (S 7,) = [,oPr(S)T.,(dl') for each S € B(Q) (4.2).
Let &, = o({2z;,.--,2,,}), the information (or o-) field
generated by agent i's ocbservations {z,.+.,2;,}i let B = v;ﬂsm,

the information field generated by the entire sample path of agent

i's observations. Bi(«174,9;,) 1is the probability g, (. T.0)
conditional on ., for n=1,2,.... and n=w.
4.ii. Date n hierarchy of beliefs over 0. It is easy to see how

the date n conditional probability u,(.[7,,%;,) results in a date n

hierachy of beliefs 7., € T, for each agent i and date n=1,...,w,
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Indeed, agent i's first order beliefs at date n is simply Marg,
“i('lersm)' If agent i could observe the types of others, T igr
and their observations (in ;) agent i could compute those agents'®
first order beliefs at date n. Since ;H(.ITW,QM) is agent i's
beliefs about other agents' types and observations, this induces
beliefs about other agents' first order beliefs at date n; in
particular this induces i's second order beliefs. It is easy to
see how all higher beliefs may be constructed.

The formal construction is as follows: Fix any @ € 0. Let
ui(.ITm,ﬁh)(m) be agent i's date n conditional probability at e.
Define 7', (@) = Marg, u.(.|7,,%,) (0); then . (0)eT,'. Suppose we
have constructed for each agent jeI, that agent's k-th order belief
Th o (0) € Tﬂ at each wefl for some integer k > 1. Let B(w) be the
value of the "fundamental" parameter at wefl (i.e., the projection

of v onto its @-coordinate). Define 7,X'(w) ¢ T,*!, by setting for

each subset B of T .x8, r1,*'(0)(B) Bi({w'eq: (5. (o) ,0(0'))

eB}le,Sm)(m). The i-th agent's date n hierarchy of beliefs at o

is then defined by 7. (w) {Tkm(m)}xﬂ; it is easy to check that
this lies in T,.

T,, 18 the date n beliefs of agent i about the other agents'
date n hierarchy of beliefs over 8; i.e., i's beliefs about 0 at
date n; i's beliefs at date n about other agents' date n beliefs
about 0; etc. Note in particular that 7., 1s NOT the marginal of
ui(.ITm,Sm) on T; the latter is belief hierarchy of agent i about

other agents' date 0 hierarchy of beliefs conditional on date n

informaticn, Jin-
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5. The Generalized Harsanyi Condition. We now restrict the beliefs
of agents to those satisfying a mutual absolute continuity
property. Since the distribution of the observation process, P,
is known to each agent (as a function I') it will suffice to place
assumptions on agents' date 0 belief hierarchies. All
probabilities in this section will therefore be with respect to
date 0.

The "Harsanyi Doctrine" of Harsanyi (1968) is said to hold if
each agent’s type (and in particular, beliefs about other agents'
types) is obtained by conditioning some joint probability (on the
set of all types and parameter vectors) on it's own realized type.
Under the Harsanyi Doctrine this joint probability is assumed to be
the same for each agent. In the condition below we generalize the
Harsanyi condition to allow the joint probabilities to differ
across agents,

Given two probability measures g' and q" on a metric space S,
we say that gq' is absolutely continuous with repect to g", or q' <<
q" if for any (measureable) subset B of S, g"(B)=0 implies q'(B)=0;
q' and q" are mutually absolutely continuous if q'<<q" and gq'<<qg'.

Let € and Ti be subsets of 8 and Ti.

(GH) For each i€l there exists a probability measure 7. on Tx®,
such that Supp 7, = Txe, 1, = n.(.|r,) for =,-a.e. T., and for

all i and j in I, #, and 7, are mutually absolutely continuous.



15

Recall that 7., may be considered a probability measure on Tx8;

the same is true of ﬂ}(.lrw). Condition (GH) requires the the
equality of these two measures. The Harsanyi Doctrine would
require that 7; = 7, for all i and j, while the generalized Harsanyi

condition (GH) allows these joint probabilities to be different.

Condition (GH) further requires the joint probabilities, (=} to

ielf

be mutually absolutely continuous with respect to each other.

6. Convergence of Beliefs Under the Generalized Harsanyi Condition.
We now show that belief hierarchies converge under condition (GH).
The convergence will hold on a set of sample paths with
"probability one". Note however that the probability required is

P the objective probability and not any agent i's subjective

I\
probability u;(.[7,,).

The results of this section will NOT specify where beliefs
converge to, and in particular the results here will not claim that
there 1is convergence to complete information about the true
parameter vector.

Let wlim denote the operation of taking the 1limit of a
sequence of probability measures in the weak topology of measures.
(See Billingsley, 1968, for more on this.) Recall that r, is the
hierarchy of beliefs under the limiting information field §,_, for
agent i€I. Define for each ie¢I and each k and n=1,...,o,

ck = (wen|wlim_, 7% = 1%} and c =N, 01" _cX (6.1)
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The set Cﬂ is the set of sample paths where the i-th agent's k-th
order beliefs converge; the set C is the set where all orders of
beliefs of each agent converge.
We now show that P.(C) = 1. This means that most sample paths
(where "most" is measured with the objective probability P.) lie in
the set C. 1In particular, with P, probability one there will be

convergence of the belief hierarchies.

Theorem 6.1 (Convergence of Beliefs). Suppose condition (GH)

holds. Let {w.}.,, be the measures obtained under condition (GH) and

iel
let 7 be any measure mutually absolutely continuous with respect to
the average of the agents' measures, I, 7./(#I), where #I denotes
the cardinality of the set of agents, I. Then for m-almost every T

€ Tx0, P.(C) = 1.

The above theorem states that for "most" values of the truth,
I') the belief hierarchies of agents will converge on a set of
sample paths with P~-probability one, where P, is the probability
generated by "truth". The qualifier, 'for "most" values of the
truth' means for a set of truths with w-probability one, where 7 is
any measure absolutely continuous with respect to the average
measure 7, = I, 7./ (#I).

Now clearly we could set 7w = 7., to obtain the required
absolute continuity. Alternatively, since each 7, and w, are
mutually absolutely continuous (MAC) with respect to each other,

each will be MAC with respect to the average measure ., Hence we
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could set 7 equal to the 7, of any agent 1i.

7. Knowledge and Common Knowledge.
7.i. Some Definitions. From the definition of the sample space Q,
each weQl has associated with it (or generates) a type 7,, and

information or o-field, § for agent i at each date n=0,1,..., and

inf

n=o, . (.[7:,3,) (0) represents the posterior probability of agent
i at date n in the sample path wefl. We shall use the terminology
"at (,n)" to mean at date n in the sample path wefl. For ease of .
exposition we shall let u, (.) (w)= ui(.lrm,S"J(m). (Recall also that
J., 1s the trivial o-field information representing no information).

In all of this section we shall let X:0+S denote a generic
(Borel measureable) random function taking values in some complete

and separable metric space S. 1 denotes the indicator

{M(w)eAl

function, which equals one if X(w)¢A and equals zero otherwise;

and for any xe$, 1 =1

Ma)=x} (lw)e(x22*

Definition 7.1 {(common knowledge of a set). Agent i knows the set

D € B(Q) at (w,n) if weD and p, (D) (w) = 1. Define K'. D = (wen|i
knows D at (w,n)} and K| = . K. . Define inductively for
r=1,2,...,

K,/ *'D = {we|i knows KD at (e,n)} and K™ =N, K ™. (7.1)

Also define K°D = 1" K’ D; if weK”D the event or set D is said to

be common knowledge at (w,n).
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Definition 7.2 (common knowledge of a random variable). Agent ieI

knows the random function X:0-S at (w,n) if

B ({u'eq s.t. X(0')=%)) (@) = Ly, Lor all xeS. (7.2)
Define
1 = : 1 _ 1
K' X = (wet|i knows X at (e,n)} and K'X =, K. (7.3)

The random variable X is said to be common knowledge at (w,n) if

the set K'X is common knowledge at (e,n).

Note that if we set x=X(u) in eq. (7.2) then we obtain the
conclusion that "i knows X at (e,n)" implies that "i assigns
probability one X taking the the value X(w) at (v,n)," and hence i

knows the "true" value of X at (wo,n).

Definition 7.3. Let S be a separable metric space with metric d and
let S'=(s,,s,,...} be a separant. Let B(s,, 1/r) be the open ball of
radius 1/r and center s_; then define U(S} to be the set of all
finite unions of the balls B(s ,1/r) over all n=1,2,... and r =

1,2,.... It is easy to check that U(S) is countable.

In the following lemma we show that knowledge of a random
variable at (w,n) is equivalent to knowing whether or not the
random variable lies in any given set A in the class U(S) defined

above.
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Lemma 7.4. Agent i knows the random function X:(»S at (v,n) if and

only if
B, ({w'efl s.t X(w')eRA}) (0) = lyenr for all sets AeU(S). (7.4)
Remark (Measureability). Fix any date n=1,2,... and any Borel

measureable set D in 0. Since the conditional probability pm(.)(m)
is by definition Borel measureable on f1 for each i€I, the set K;D
in definition 7.1 where each agent knows the set D, can be shown to
be Borel measureable. This in turn will imply that the sets K;D
of r-th level knowledge of D are each Borel measureable for each r=
1,2,.00,%9. For any set A € U(S) of definition 7.3, define
vhs{men|(7.4) holds for the given set A}. Then since g, is Borel
measureable, so is the set W,. since the class of sets in U(S) is
countable, this implies that W = nnaumwn is also a Borel measureable
set. Lemma 7.4 then implies that the set KKnX where i knows the
random function X is Borel measureable. The Borel measureablility

of the sets in definition 7.1 in turn implies that the sets where

there is higher level knowledge of X are all Borel measureable.

7.ii. Common Knowledge Under condition (GH). In the next
Proposition and the rest of this subsection we use the Generalized
Harsanyi condition (GH). Recall that under that condition, before
agent i observes its type T, that agent has a prior over the set
of types and parameter vectors given by w, €P(Tx8). This in turn

induces a prior, u;, over the set of sample paths defined by
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u,(B) = jP (B)m,; (dT) for each B € B(Q). (7.5)

Let 7 be any measure as in Theorem 6.1 (i.e., ® € P(Tx6) and

is any measure mutually absolutely continuous with respect to 7,

Zupn/(#l)). We let u, be the probability over induced by 7 and
Pp: i.e., we define

L, (B) = [P (B)m(dr') for each B € B(Q). (7.6)

If a subset B of 01 has ;ﬂ—probability one then for mw-a.e. T,
P.(B)=1. Under the mutual absolute continuity condition of
assumption (GH), (which we refer to as the M.A.C. condition) each
p; and u; is mutually absolutely continuous with respect to each
other and with respect to pn,.

Under condition (GH) each agent's set of all "conceivable
states of the world", o, is a subset of the support of Kk,. The
next proposition states that if in every such "conceivable state of
the world" each agent knows some set D then that set must be common

xnowledge at each such state.

Proposition 7.5 (Knowledge a.e. of a set implies Common Knowledge.)
Fix an n=0,1,2,...,%. Suppose that for u,-a.e. wefl each agent iel
knows the subset D of 1 at (w,n). Then for p -a.e. o, the set D

is common knowledge at (w,n).

An immediate implication of the above lemma is the following:
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Corollary 7.6. (Knowledge a.e. of X implies X is common Knowledge).
Suppose that for u -a.e. ® and some n=0,1,2,...,%, each agent 1
knows the random function X:0-S at (e,n). Then for g -a.e. v, X is

common knowledge at {(w,n).

Suppose that the random variable X:»S is measureable with
respect to ¥, for all ieI at some n=0,1,...,®. This would be the
case if each agent observed the random variable X at date n in
every state of the world. Is X common knowledge at (w,n)? Due to
"probability zero subtleties", the answer to this question is no!
The measureability of a random variable is determined solely by the

o~field, g, in our case, and is a concept independent of the

in
underlying probability measure, 4, in our case. Knowledge and
common knowledge use the conditional probabilities in their
definition. However conditional probabilities are defined only up
to "probability zero."™ On "probability zero"™ sets the conditional
probabilities may be arbitrarily defined and hence can do "strange

things."

In particular, on a set of sample paths, «, with ITH

probability zero the conditional expectation at w, p;(.]7,,3;,) (v)
need not assign probability one to X taking the observed value X(w)
at w! On such sample paths agent i has beliefs which contradict
observations. 1In the language of Blackwell and Dubins (1975) such
prcbability measures are not "proper."

To avoid this problem we may proceed in one of two ways. On

the one hand we may assume that agents have proper beliefs and have
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proper beliefs of other agents having proper beliefs, etc. We shall
not follow this route, as this may itself lead to other sutle
complications (see Brandenburger and Dekel, 1987). Instead we

shall impose condition (GH). With that we obtain the following:

Proposition 7.7. (Common Observations are Common Knowledge.)
Suppose that for some n=0,1,2,...,%, the random function X:{1»S
(taking values in the complete and separable metric space S) is
measureable with respect to g, for each ieI. Then for p -a.e. o,

¥ is common knowledge at (w,n}.

The following is a corollary of the above proposition. It
states that if a sequence of random variables is observed at each
date by each agent and if the random variable converges in "every
conceivable state, v," then the limiting random variable is common

knowledge.

Corollary 7.8. (Limit of Common Observations are Common Knowledge).
Let {&J”M1 be a sequence of random functions on 1 taking values
some (complete and separable) metric space S. Suppose for each
n=1,2,..., and ieI X is §;,-measureable. Suppose further that
with p -probability one lim X, exists and equals some limiting
random function X,. Then for u,-a.e. wefl, the limiting random
variable ¥, is common knowledge at (w,%) (i.e., under the limiting

o-fields ).
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8. The Geanakoplos-Polemarcharkis "“Oral" Exchange.
8.i. The Model. In the model of Geanakoplos and Polemarcharkis
(1982) (henceforth the G-P model) there is a finite collection, I,
of agents each with incomplete information about some parameter 0

in some parameter set 6. Let (7} denote the initial (date O0)

i€l
hierarchy of beliefs of the agents over 8. Each agent i€l receives
some private information, z;, at date one about 8. Agents use this
information to revise their beliéf hierarchies over the parameter
8. (We will describe formally the updating process later). In the
next period each agent announces to all others their posterior
probability of the parameter lying in some fixed set E.

Since agent j's announcement will provide agent i information
about the private information observed by j, agent j 's announcement
will be used by i to update i's beliefs about 9. In the next
period, after each agent has revised its beliefs using the previous
period reports, each will report their new reports to all agents.
This again provides information about 6 to each agent. Belief
hierarchies will again be updated, and new announcements will be
made based on the updated beliefs. This process is continued in
each periocd.

We shall generalize the original G-P model in many directions.
First, we shall suppose that at the end of each date n, if agent i
has beginning of period n hierarchy of beliefs 7, , € T;, the
announcement is some function of vector of date n hierarchy of
beliefs of agents, é(7.,), where 6:T —~A maps the date n vector of

types of agents into the set of possible date n announcements, A,
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a comlete and separable metric space. In many cases the
announcements are a vector, &=(§.},,,, where §&.,:T;~A, is i's
announcement as a function of its type. Some typical types of
announcements that have been studied in the literature are as
follows: Either,

(a) each agent i announces the posterior probability it

assigns to 0 lying in some fixed set E; i.e., &;(7y,) =

T”N(E) and §={§;} This is of course the announcements

iel "
that are used in the original G-P model as described
above. Or,

(b) each agent i announces it's posterior distribution on

1
N

B; i.e., §;{(7y) = T1m where 71 is the first order belief
(or first coordinate) of r7,,. Or,

(¢) each agent i announces it's posterior expectation of
8; i.e., &, (7)) = IBdr’m, where here 8 is assumed to lie
in some compact subset of a finite dimensional Euclidean
space. Or,

(d) each agent observes the average of the announcements
functions §(7.)=E,,8,(7;}/(#I) of the values §.(r;,) where
either 6, is as in (a) or is as in (c) above (with 6
real-valued). This is typically the case in models with
economic markets where agents observe prices which are

aggregates of agents' beginning-of-period expectations

(see, e.g., McKelvey and Page, 1986).

As a second generalization of the original G-P model, we allow
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agents to receive at date n not only the vector of date n
announcements of all the agents, §(7 ), but possibly some other
supplementary private information, z';, which may be correlated
with the true parameter vector. Hence, at the end of date n the
observation of agent i is the vector z,, = (6(7.4).2";,):

Further, unlike the original G-P model we shall NOT suppose
that agents begin with common priors. We shall also NOT assume
that the private information that agents observe can fake only
finitely many values (and in particular, using the language of
Geanakoplos and Polemarcharkis, 1982, we shall not assume that

agents' information partitions are finite).

8.ii. The Formal Construction. We now show formally how the model
described in previous sub-section can be made to fit the precise
framework of section 4. Those uninterested in the formal details
may proceed to section 8.iii. At date 0 there will be some true
vector of agent types and parameter vector F={9,70) e8xT. The date
one observations are the vector z={z;};, taking values in some
complete and separable metric space Z and governed by some
probability distribution which is some function of 8; i.e.,
z, ~ P,(.]8) (8.1)
z,, denotes the coordinateé of z, observed by agent i.
We proceed inductively. Suppose for some N>1, we have defined
the joint probability distribution of the observations for the
first N periods, z"s(zl,...,zH)eXﬂF1Z, as a function of the date 0

types and the parameter vector I'e8xT:
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First we show how (8.2) induces a beginning of date N+l
hierarchy of beliefs, r,, for each agent i: Recall that

T, may be considered a probability measure on Tx8. Define 7", to

i iN

be the probability distribution induced on TxexX"n=1Z by 7, and

P'(.|r); i.e., given any (Borel measureable) subset B of Txexx" _,Z"

T (B) [PN(B|T) 7T.,(Ar) (8.3)

* N s 2 * PP .
Let riN(.|z1.) denote the probability 7, conditicnal on i's

observations zi" ={2y4,++-s2;)+ One then proceeds just as in the

construction in section 4.ii. (with 7°,(.|z,") taking the place of
pi (1 7.0,8,)). This will result in date N+1 infinite hierarcy of
peliefs, r, = gM(z/, 1,), for each agent iel which is some

function, gi”, of that agents' date 0 hierarchy of beliefs, 7,,eT,,

vector of observations, zi", from date 1 to N.
The date N+1 observation is then the tuple z , = (6(7y),2"44q)
= (G(g"(z”,fo)),z'm) where 6(7)) is the date N vector of

announcements of agents and z! is the vector of other

N+1
supplementary private information the agents may receive. This
defines the probability distribution, P,,(.|2",T), of z,,. The
joint distribution over zM' is then defined by p*lazMin) =
P, (dz"'|2",T) .P¥(dz"|T). By induction we have this for all N=1,2,...

The sequence of joint distributions on finite dimensional

subsets of Z° (the cylinder sets) extends naturually to a unique

probability, P.(.), over the entire sample space Z°. (One may
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consult, e.g., Laha and Rohatgi (1979) for more on unique

extentions of measures).

8.iii. The convergence of Announcements and Common Knowledge In the
Limit. In all of this sub-section we assume condition (GH) holds.
We know from Theorem 6.1 that the belief hierarchies of the agents,
{T:y}ier cCONVerge over time. The announcements of agents are some
function, &, of those hierarchies of beliefs. Hence if those
functions are continuous we obtain that the announcements also
converge over time. In examples (b) and (c) of the previous sub-
section it is easy to see that the required continuity holds.
Under example (a), we are not assured of the required continuity.
However even for that example an easy direct martingale argument
shows that the announcements converge. In particular we have the

following:

Proposition 8.1. (Convergence of Announcements): Suppose condition
(GH) holds in the model of section 8.1, and let 7 be any measure on
Tx® as in Theorem 6.1. Suppose further that the announcement
function, &, is either of the form of one of examples (a)-(d) of
the previous section, or is continuous. Then for w-a.e. T'eTx0,
lim_, (7)) = &(r,) with P ~probability one.

At the beginning of date n agent i will have a type 71, , €T,.
The announcement §(r__,) is then made for all to hear. At the end

of date n, each agent will have information o-field §,,. Hence for
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each n>1, the date n announcement, &§(7_ ), is measureable with
respect to gm for each i. We know from Proposition 8.1 that 6(7)
converges to 6§(7,) with u -probability one. From Corollary 7.8 this
in turn implies that for u -a.e. ®, &(r,) is common knowledge at

(w,»). Hence we have:

Proposition 8.2. (Common Knowledge of Limit announcements).
Suppose that the announcement function, §, is continuous or is of
the form of example (a)-(d) in the section 8.i. Then for pu -a.e.

©», the limiting announcement, &§(7_.), is common knowledge at (w,«).

Let us suppose for a while that agents announce their
posterior (first order) beliefs on 8 at each date as in example (b)
of section 8.i. Proposition 8.2 implies that the limiting belief
hierarchies, {ru}ul, will be common knowledge at (w,») for almost

every wefl. But what exactly does common knowledge of 7!

o imply?
First of course i knows each agents beliefs about 6. This defines
i's second order beliefs. Each agent knows that i knows this
{(since TE is common knowledge). In particular, each agent knows
i's second order beliefs. This of course defines each agents third
order beliefs. Proceeding inductively this way we see that each
agent will know the entire belief hierarchy of each agent. Further
each agent will know that others know the entire belief hierarchy:

etc. In particular we have the following (where by common

knowledge below we of course mean in the sense of definition 7.2).
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Corollary 8.3. (Common Knowledge of Limit Belief Hierarchies).
Suppose that announcements are as in example (b) of section 8.1.
Then for u -a.e. w®, the vector of belief hierarchies of agents,

{Tio}ie» 1S common knowledge at (w,®).

We stress at this stage that common knowledge of the belief
hierarchies does not imply that they are the same. Indeed at date
0, each agent ieI may be "born" wi£h some hierarchy of beliefs, 7,,.
These may be common knowledge at date 0. Suppose that the
information signals at date 1, {Z;4};, contain no information on ©
(e.g., they are constant numbers); suppose also that there are no
supplementary private information over time. Then the process of
announcing posterior distributions at each date conveys no new
information about ©6. Agents never revise their beliefs and hence
in the limit their posteriors are the same as their priors. The
limiting belief hierarchies will be common knowledge but will not
be the same! (We will show in the next section that common priors

are required for them to be the same.)

8.iv. Agreeing To Disagree in the Limit. Since at each n>1 agents
ocbserve the anncuncement 6(7,,), this will be SM-measureable for
each n > 1 and ielI. Hence the sequence across time of these
announcements, §°(7°)={6§(7.)}" ., is "known at date « under "+ or,
more precisely, it is measureable with respect to the o-field .,
for each ieI.

Now, as of "date =", i.e., under 3w' each agent iel would have
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information from three sources: (a) Observation of the
announcements 6”(1“)E{S(Tn)}ﬂp1; (b) knowledge its own type, T.0€T;:
and (c) any supplementary private information from the observations
{zin}"n=1 not already accounted for in the announcements.

Suppose condition (GH) holds, and let the measure M; over the
sample space fl be agent 1i's prior subjective beliefs before
observation of it's type as defined in eq. (7.5). At "date "
each agent ie€I will have beliefs represented by ”i"lTngwJ'
Consider an outside observer with the same prior u; but who only
observes on the sample path of the announcements, &6%(7r°), and
nothing else; in particular such an outside observer does not Know
i's type or any other private observations of agent i. At "date
©" the outside observer has beliefs represented by ui(.l6”(r“)).

Suppose that the announcements are of the form of any one of
examples (a)-(c) in section 8.i above. We now show that on each
sample path such an outside observer will make the same

announcements as agent i. In particular we have the following:

Proposition 8.4 Fix any ieI. The following is true on a set of
sample paths, weQl, with #; probability one. If the announcement is
of the type (a), (b) or (c) respectively, then,

(@) Bi(El7,0,8.) = 4, (E|6°(1°)): or,

(b) Margy u;(.|7,4,%,) = Marg, u.(.|6%(r®));: or,

(c) [Ou,(adlr. S, = JOu; (ad|6°(1%)), respectively.

The above proposition states that the limiting announcements
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of agents equals the announcements that would be made by an outside
observer who has only information on those announcements and
nothing else. An immediate corollary of the above result is the
following: Suppose agents have a common prior, (i.e., suppose
Harsanyi condition holds, and not it's generalization, condition
(GH), so that p;, = u; for all i and j in I). Then each then each
agent's limiting announcement must be the same. ©Of course from
Proposition 8.2 we know that the limiting actions will be common

knowledge. Hence we have:

Cercllary 8.5. (Under Common Priors Agents Will Not Agree to
Disagree!) Suppose that the Harsanyi Common Prior assumption holds,
and in pérticular suppose that Condition (GH) holds with 7, = 7, =1
for all i1 and j in I. Suppose further that the announcement
function one of examples (a)-(c) above. Then for u almost every o,

agents limit announcements, {6,(7;,)};,, are common knowledge at

(w,0) and are the same (i.e., §;(7;,)=6;(7;,) for all i,jeI}.

Suppose that the announcement function is of the form &6(7.)
=X, 506, (7;)) where the set of functions (§;};, is of the form of
one of examples (a) or (c) and where the functions (f;},,, are each
monotone real-valued functions. Then using the arguments of
Nielson, et. al. (1990) it is easy to show that corollary 8.5 holds

for this case;
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8.v. On Partitions, Meets and Joins. Proposition 8.4 answers the
question, "What happens to the Aumann (1976) Agreeing-To-Disagree"
result when agents do NOT have common priors?" The result is
however stated a very specific and dynamic setup. We now restate
the classic Aumann (1976) to shed more light on the results of the
previous sub-section.

In the Aumann framework there is a finite collection of
agents, ieI, each with an information field, 3., generated by a
finite partition; (i.e., X, has finitely many elements). Each agent
ieI has a prior probability i; over the probability space (Q,SQ.
Recall that the meet, Aiﬂgi, of the o-fields is the finest o-field

that simultaneously coarsens each of them; the join, Viel

J;, is the
coarsest common refinement. Assume u, assigns strictly positive
probability to each element of the join.

In Aumann (1976) an event is common knowledge at wefl if and
only if it contains the element of the meet at w. With this it is
easy to show that the original Aumann result may be restated as

follows:

Proposition 8.6. (Aumann (1976)): (a) If posterior probability of
some agent 1ieT, ui(.lﬂi), is common knowledge at some well, then the
posterior must be the same as the prior probability conditional on

A9

the common element of the meet at o; i.e., By (. Si)=ui(.
(b) If each agent's posterior probability is common knowledge at
wefl, and, in addition, the agents have common priors (i.e.,;g = U

for all i and j in I), then those posteriors must be the same at
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0; i.e., u (.1 = uj(.lsj) for all i,jel.

The conclusion of the original Aumann (1976) result was that
under common priors, if the posteriors are common knowledge they
must be the same. The above restatement shows what happens when
the priors are not "common" (i.e., not the same): If the posteriors
are common knowledge then the posteriors equal the prior
conditional on the common element of the meet.

set &, in Proposition 8.6 equal o({7;,%,)), the g~-field
generated by knowledge of agent i's date 0 type and limiting
information. The sample path of the announcements of agents,
§°(1°), was shown in section 8.iii. to be common knowledge in the
sense of definition 7.2. In a finite partitions world, this is
equivalent to common knowledge in the sense of Aumann (1976).

Propostion 8.6(a) and (b) are then equivalent to Proposition
8.4(b) and Corollary 8.5 respectively. 1Indeed, via very simple
modifications in the statement and proof of Propositon 8.6, we may
obtain the analagous expressions for Proposition 8.4(a) and (c).
The interpretation of Proposition 8.4. then is that if the priors
are not common then the posteriors over 0 (or more precisely the
expressions in Proposition 8.4(a)-(c)) equal the prior conditional
on the common observations, &°(7°). Corollary 8.5 then says that

Agreeing to Disagree will not occur if priors are "common."
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9, Appendix. The Proofs.
Proof of Lemma 7.4: Let (w,n) be given. Suppose that i knows X at
(0,n). Define x=X(w). Fix any set A in U(S). Using definition 7.2,
if xeA, Hin({w'ell s.t. X(w')eA}) (w) 2 g, ({o'ell s.t. X({0")=x}) (0)
= Loy 1 from which eq. (7.4) follows; and if xeS-A (the

complement of A in S), u, ({0'€l s.t. X(w')eA})(e) < B ({X(w')eS-

{x}))(w) =1 -1 = 0 from which eq. (7.4) follows.

(X(0)=x)

Next suppose that eq. (7.4) holds at (w,n). Define x=X(u).
Let S' denote a separant set of the separable space S. One can
find a sequence of points {xr}’r=1 in S' converging to x. One can
also find a sequence of integers, n_ for each r=1,2,..., which
converge to infinity and are such that for each r sufficiently
large, x lies in the open ball A = B(x.,1/n) with center x_ and
radius 1/n..

Define A" = (1" A . Then A" monotonically decreases to {x}.
Now by (7.4), for each r=1,2,..., since X(w)=xeA and A eU(S),
Bin({v'ed s.t X(w')eA })(w) = 1. This in turn implies that for each
M= 1,2,..., f;({0'€Q s.t X(0')eaA"}) (60) = 1. Taking limits as M-w
then implies that b ({w'eql s.t X(w')e{x}})(w) = 1 so (7.2) holds
for x=X(w). This in turn implies that the conditional probability
#;,(.) (0) assigns probability one to X taking the value ®*=X(w) at
w. Hence u; (.) (@) assigns probability zero to any other value of

X. In particular, (7.2) holds for all xeS.//

Proof of Proposition 7.5: Under the hypothesis of the Proposition,

4, (K'D) = 1. We proceed inductively. Suppose that for some r



35
=1,2,..., we have shown that p, (K" D) = 1. Then from the Mutual
absolute continuity (M.A.C.) of pu; and u,, p; (K D) = 1. This in
turn implies p (K"D|7;,3;,) (0) = 1, for p-a.e.o. However this
latter equality is the definition of "i knows K',D at (e,n)." Hence,
p(K', (K"D)) = 1. The M.A.C. of u, and y; then implies po (K (K7 D))
= 1. Since this is true for all ieI, and I is finite we conclude
that g (K™'D) = 1. Hence by induction we obtain that u (K D) =1
for r. This in turn implies that p (1°_,K D) = 1 from which the

Proposition follows.//

Proof of Corollary 7.6: Fix any ieI. Under the hypothesis of this
corollary, ur(K%X) = 1; so from the M.A.C. of y;, and u,, pi(K%X) =
1. This implies, from the definition of a conditional probability,
that p, (K" X|7,,,8,,) (8) = 1 for p,-a.e. @. Hence g (K (KU X)) = 1.
From the M.A.C. property we have p_(K', (K' X)) = 1. Since the set I
is finite we conclude that p (K' (K'X)) = 1. In particular, for u,-
a.e. o, each agent knows the set Kmx. Proposition 7.5 in turn
implies that K%X is common XKnowledge from which the corollary

follows.//

Proof of Proposition 7.7: Fix any set A in U(S) (recall definition
7.3). Since for each ieI, X is &8, measureable Hi({w'en s.t.

X(o')eAy|r.,,8,)(0) = 1 for p;-a.e. wen. Since U(S) is

{X¢0)ER)
countable, this holds for all sets A € U(S) (simulataneously) for
u;-a.e. o. From Lemma 7.4 this is equivalent to "i knows X at

(0,n)." Hence u (K' X)=1. From the M.A.C. condition this implies
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(R X)=1. Since I is finite we obtain u (X' X)=1. An application

corollary 7.6 then implies conclusion of this proposition. //

Proof of Corollary 7.8: Define X' to be equal to X, on the set
where lim X exists and equal to zero where it does not exist.
Since X is §,, measureable for each ieI it is easy to show that X',
is J,,-measureable. Proposition 7.7 then implies that for p,-a.e.

w, X', is common knowledge at (u,®). Since X', =X,, wu,~a.e., this

implies the conclusion of the corollary. //

Proof of Proposition 8.1: When the announcement functions are
continuous the result follows trivially from Theorem 6.1. The
announcement function in example (b) is continuous, since it is in
that case the projection map onto the first coordinate. The
announcement function in part (c¢) is continuous because it is the
integral on a compact, and hence bounded, set.

In example (a) the announcement function is not necessarily
continuous. However, we may show directly in that case the
required continuity. Indeed, fix any ieI and T;0€T;» Observe that
the sequence of posterior probabilities of E, UH(E|Tm:3m)}%ﬂr is
a bounded martingale sequence on the probability space (qQ,B(Q),
“i(-lfm))' From the Martingale Convergence Theorem those posterior
probabilities converge with ui(.[rm) probability one. Since this is
true for each 7., we obtain the convergence with 4; probability one.
From the mutual absolute continuity of p; and u_ this is true with

M, probability one. Since the set of agents is finite, this is
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true for each i€l (simultaneously) with pu_ probability one, from

which the convergence of §;(7;,) in example (b) follows. //

Proof of Proposition 8.4: (a) We are given the subset E of 8. For
ease of exposition we write u,(E) when we mean ui({BeE}). Since

§°(7") is measureable with respect to the information c-field 3.,

L (Bl 70, D)= B(El7,0,%,,6°(7°)). From the convergence result of
Proposition 8.1, U (E|7.5, $es 6°(7°)) = &, (7;,) = Llim , §;(7,,). Hence
L (Ef 70, S0 =1im , 6,(7;,) (8.6)

Now, p.i(E|6‘°('r°°))=j,u.i(E|rio,Sﬁim,S”(f‘"))dpi(.|6"°('r‘")). So integrating eq.
(8.6) with respect to the probability ui(.|6°(1°)) and noting that
the 1limit in eq. (8.6) is measureable with respect to o-field
generated by 6§°(7°), we obtain u, (E|6°(r°)) = lim_, §,(7;). Using
this in (8.6) and noting that all of the above statements hold u;-
a.e. results in part (a).

(b) The arguments used in the proof of (a) shows that for each
fixed subset D of ©, u.(D|7.,,8.) = k;(D|&°()), m;-a.e. This
equality can be made to hold for each set D in the class U(®) of
definition 7.3 (simultaneously) on a set of sample paths with pu,-
probability one. It is easy to show that if two (Borel)
probability measures on a metric space S agree on each element of

U(S) in definition 7.3. then the two measures must be the same.

Hence with u,-probability one, when restricted to 8, 4. (.|7,,3;,)
= p.(.|8%(r")), and (b) follows.

(¢) The proof of (c) is similar to (a) so is omitted. //
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Proof of Proposition 8.6. Suppose at some wefl, the posterior of
agent i, u';, = ui(.lﬁﬂ, is common knowledge. Then from Aumann
(1976) we know that the event that the posterior distribution takes
the value p'; must contain the element of the meet at o, M € Aiﬂgi.
Now, M is the finite union of elements in &, M = UR ., M. on each
such element i's posterior is u',. Fix any subset D of 1. Then by
Bayes' rule, u.(D N M) = B (D) iy (M) for each r. By summation over
r, u;(D N M) = u'. (D)p;(M); hence using Bayes' rule again, u';(D) =
;g(D[M) from which part (a) follows. Part (b) is an immediate

corollary of (a). //

Footnotes.
In the framework of the model we study, our mutual absolute
continuity assumption is however much weaker than that used by
Blackwell and Dubins (1963) and Kalai and Lehrer (1990) . See Nyarko

(1991c) for details.
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