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Abstract

Economists have long known that time scale matters in that the struc-
ture of decisions as to the relevant time horizon, degree of time aggregation,
strength of relationship, and even the relevant variables differ by time scale.
Unfortunately, until recently it was difficult to decompose economic time
series into orthogonal time scale components except for short and long run
in which the former is dominated by noise. This paper uses wavelets to
produce an orthogonal decomposition of some economic variables by time
scale over six different time scales. The relationships of interest are the
permanent income hypothesis and velocity. We confirm that time scale
decomposition is very important for analyzing economic relationships and
that a number of anomalies previously noted in the literature are explained
by these means. The analysis also indicates the importance of recognizing
variations in phase between variables when investigating the relationships
between them and throws considerable light on the conflicting results that
have been obtained in the literature using Granger causality tests.
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1. Introduction

For decades, the idea of “time period”in economic analysis was enshrined in text-
books as the “short run” and as the “long run.” Marshall, Edgeworth, Schum-
peter, Hicks and others of the period realized that there were more time periods
involved in economic decision making, but the pedagogical advantages of just two
periods dominated the relevance of many periods. In any event, it was recognized
early in the profession that the time period of analysis, or as we would now term
the matter, the “time scale” of the analysis is very important for determining
those aspects of decision making that are relatively more important and those
that are relatively less important. In the physical sciences, the notion of time
scale captures the notion of the distinction between “slow” and “fast” variables;
the former are variables whose values are changing slowly relative to those of the
latter variables. For example, in the analysis of turbulence, there is a cascade of
time scales each of which determines a particular mode of behavior. Similarly in
economics, one can envisage a cascade of time scales within which different levels
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of decisions are being made at different rates. Some decisions are taken with long
horizons, others are taken with short horizons. The choice of time scale deter-
mines not only the length of the period over which one requires forecasts of future
events, but the very choice of variables that are to be the focus of the decision
maker’s processing of information.

For example, to use the illustrations of the classical economists, a plant man-
ager planning an extension of the plant, or ordering fuel for the plant machinery,
or adjusting the plant output rate to recover from a breakdown, are all decisions
that can be formulated in terms of different time scales of decision making, from
decades to hours. In each case, not only does the manager focus on a particular
time horizon for gathering information, but he or she will “average over shorter”
time scale variations. Further, the manager will most likely take into consideration
quite different variables in the different cases. In the plant planning process, the
key issues are the anticipated long run conditions of demand for the firm’s prod-
uct, which depend in turn on the growth of the industry and the firm’s relative
position in the industry. For ordering fuel they are only concerned with current
inventory stocks and the price of fuel over the next few months at most. And in
the recovery decision the manager is probably only concerned with overtime labor
rates and the probability of breakdown from running machinery too intensely.

In this paper we will investigate some of these issues empirically, by using
wavelet analysis that enables one to separate out different time scales of variation
in the data. We investigate the role of time scale in economic relationships in
terms of two classic relationships. The first is that of the permanent income
hypothesis and the latter is velocity. Recently, both concepts have been under
empirical investigation and in both cases there is some controversy about the
nature of the relationship and the extent to which the relevant theory, or theories,
are supported by the empirical evidence. We seek to reinvestigate these issues
in the context of separating the relationship into ones between the variables at
different time scales of analysis. By so doing we hope to shed light on a number
of apparent anomalies in the literature.

1.1. Consumption and Income

The analysis of the consumption function during the post war period has been
extensive. Friedman’s original and seminal conception of the permanent income
hypothesis, [24], [25], was an attempt at that time to reconcile the Keynesian, lin-
ear, short run income hypothesis with the obvious empirical finding that long run,



say averaged over decades, consumption was proportional to income. Friedman’s
solution essentially was to propose an “errors in the variables” model to reconcile
the short and long run empirical results. Further work recognized the role of the
interest rate in determining “permanent income” and distinctions between the
consumption of different types of goods.

The next major wave of research interest grew out of the discovery that eco-
nomic variables seem to be dominated by trend and random walk components
and the importance of the rational expectations hypothesis. Hall, [33], stimulated
a substantial literature by “confirming” the revised permanent income hypothesis
which stated that the marginal utility of consumption and therefore consumption
itself evolves according to a random walk with trend. A major implication is that
only lagged consumption has any explanatory role to play for current consump-
tion. In subsequent work, Flavin, 23], rejected the permanent income hypothesis
as postulated by Hall, but then Nelson, [41], was able to retrieve the hypothesis
in part; the difference in results depends on how one detrends the data.

Deaton, [17], added to the debate by pointing out that while the permanent
income hypothesis in its new rational expectations guise with income as a random
walk implied that consumption should be relatively volatile, the evidence indicates
that consumption is relatively smooth; this is the “Deaton paradox”. Quah, [43],
rescued the hypothesis by returning to the original Friedman observation that one
should split income into permanent and transitory components.

Campbell and Mankiw, [9], generalized the permanent income hypothesis by
generating a model that relates expected changes in consumption to expected
changes in income. They came to the conclusion that the ratio was as high as
50%. Further, they noted the empirical regularity that changes in the real interest
rate do not explain changes in consumption. Christiano et al., [11], generated
a model in continuous time in which consumption persistence is due to time
aggregation or the effects of exogenous technology shocks. Using quarterly data
they found it difficult to distinguish between the two models and weakly accepted
the permanent income hypothesis.

Molana, [40], concentrated on the role of wealth and interest rates. Molana
modelled the contemporaneous variation in the data in terms of an error cor-
rections model. While the model provides additional reasons for the “empirical
failure of the simple random walk model” and reintroduces the role of the interest
rate, the empirical results are implausible; for example, that the long run wealth
elasticity for consumption is two. Campbell and Mankiw in examining the em-
pirical evidence, [10], argue for a “rule of thumb model of consumer behavior”



instead of the permanent income hypothesis and that there is no observed role for
interest rates.

In terms of long run trends, Viard’s analysis, [57], was pragmatic and examined
the impact of the post 73 productivity slowdown which implies a long run decline
in real income and that in turn should imply an increase in the saving rate; the
empirical evidence is the opposite, the saving rate declined.

In all the papers that have been reviewed above the consumption/income
relationship is regarded at most as a two fold distinction between permanent
and transitory income. However, it is plausible that consumers have different
time horizons for different consumption decisions. Consequently, it is productive
to consider that the relationship between consumption and income may depend
on the range of time scales involved. That is, different relationships, certainly
different coefficient values may apply over different time scales; in one sense, this
idea is nothing more than a generalization of Friedman’s original idea. In the
early research, there were only two “ranges of time scale”, long period and short.

An alternative view of the decision making process is that the relationships
between variables is in fact between frequency components of the variables. In
Engle, [21], the idea was expressed that there might be several ranges of fre-
quencies for consumption and income such that different coefficient values might
relate consumption and income at different frequency ranges. Engle used band
spectrum estimation techniques to evaluate the relationship between consumption
and income. He allowed for different relationships at low frequencies and at high
frequencies, but was able to adjust the break between low and high frequencies
continuously. Engle’s results were remarkably consistent in that the two regres-
sion results were virtually identical and adjusting the break between low and high
frequency did not alter the results.

Recently, Corbae et al., [15], returned to this question with tools developed
since the '74 Engle article. This article extended the Engle results in two im-
portant ways. First, they allowed for the trend in both consumption and income
by recasting the analysis into a cointegration framework. Secondly, the authors
derived a theoretical model that indicates that as the frequency of consumption
and income rises the marginal propensity to consume falls from its maximum of
one at zero frequency; the (very) long run MPC is one since there is no bequest
motive in the model and the representative consumer exhausts his wealth in the
limit as time goes to infinity. Corbae et al. used seasonally adjusted quarterly
per capita data from 1948 to 1990. The results are that the zero frequency mar-
ginal propensity to consume, MPC, is about 0.73, less than one with very high



probability, and that the constancy of MPC across higher frequencies is also re-
jected. However, the direct estimates yield the result that the high frequency
MPC is larger than that for zero frequency. Redoing the experiment using first
differenced data yields the more theoretically satisfactory result of lower MPC at
higher frequencies. In interpreting these results the reader should recall that the
model used by Corbae et al. is a simple representative agent model incorporating
a quadratic utility function, which clearly cannot be a reasonable representation
except in a small region around the “bliss point”.

The results from these papers are broadly inconsistent with the permanent
income hypothesis and with each other. Further, it would seem that interest rates
do not matter. Certainly, one cannot regard the relationship between income and
consumption as a closed topic.

However, there are some lessons that have been learned from these exercises.
First it is reasonably clear that the permanent income hypothesis is correct in the
idea that there is some difference between the MPC in the long run and the MPC
at other frequencies, Engle’s results notwithstanding. Secondly, not enough is
known about the mechanisms generating the data to formulate reliably a specific
model such that inference can be reduced to the relatively simple process of esti-
mation within the confines of a known model. Thirdly, over the past thirty to fifty
years, evidence has accumulated for nonstationarity in the data series that goes
beyond the simple presumption of a trend, or of an integrated process. Fourthly,
one might well suspect that economic relationships may well differ over different
time scales in that different time horizons are involved. At least one should be
prepared to consider that relationships over decades may well involve different
levels of evaluation than decisions over the next ten hours. The standard repre-
sentative agent model, say in the statement of the maximization of consumption
over time, assumes that any unit of consumption that is being considered over
any time horizon is the same; there is no difference in buying paper clips from
buying a house. The distinction here is not on the relative size of the purchases,
but the time intervals over which the agent is operating and the focus of the agent
when making the decision. In the former case, the decisions are over a time scale
of weeks and decade changes in income are irrelevant, the latter is over a time
scale of years to decades and temporary fluctuations in income are ignored.



1.2. Money and Income

The interaction between monetary aggregates and income has been used to explore
a number of different economic questions, from financial development to the money
demand function to the operation of monetary policy. The investigation of these
various questions differs with respect to the time period over which money and
income are assumed to be related. For example, to solve the basic simultaneity
problem encountered in estimating the relationships between money demand and
supply, it has been customary to pose the money demand equation as a long run
(cointegration) relationship between velocity and interest rates, whereas the short
run relationship between money and income is affected by monetary policy and
constitutes the money supply relationship.

1.2.1. The “long run” Money Demand Relationship

In recent years, the long run money-income relationship has come under increasing
scrutiny. In the U.S., attempts to model the demand for money has progressed
from a general agreement about the existence of a stable velocity relationship to
concern about what appeared to be systematic over prediction of money balances
during the 1970s. Subsequently there emerged further concerns that estimates of
the money demand function were tending to under predict balances. Levantakis
and Brissinis, [37], provide a thorough survey of these developments.

McMillin, [39], reviewed the evidence for a structural break in M1 velocity
widely presumed to have occurred in the early 1980’s. He found that the break was
due more to changes in the process generating velocity rather than to variability
in money and income. Conversely, Bomhoff, {4], using a Kalman filter and annual
data for the US over the period 1959-1988 found that estimates using a stochastic
trend in M1 are not significantly different from those for a constant trend.

The ”institutional hypothesis”! on velocity involves an extension of the VAR
approach of the error-correction models. Restrictions are placed on the cointe-
grating vectors in order to identify the structural relationships and to examine
parameter stability. These constraints are based on the hypothesis that the long
run behavior of velocity depends on the rate of financial development and innova-
tion. Raj, [44], finds that the cointegrating vectors in the countries studied suffer
from substantial parameter instability. He argues that “if institutional change

IThis hypothesis was emphasized by Bordo and Jonung, and builds on Friedman’s 1956
formulation of velocity as depending on the the state of the financial sector, see for example,
Humphrey’s survey.



is a plausible explanation of at least some of the on-going changes in long run
velocity,... then it might be impossible to obtain a stable relationship.”

Several new approaches are under investigation. Boyle, [6], and Dueker, [19]
and [20], explore the idea of variable velocity in the theoretical literature. Barnett
and Xu, [3], develop a model in which they explore the behavior of velocity under
different models of interest uncertainty. The simulation of their model generates
volatile coefficients in the velocity functions. They find that estimates of a ran-
dom coefficients model with money velocity data produce similar results to their
simulations.

A recent article by Serletis, [51], reexamines composite sum and Divisia indices
of monthly velocity in a search for chaotic behavior.. He finds that the null
hypothesis of a unit root cannot be rejected even after allowing for a break in the
level and slope of the trend function. In addition, after removing a unit root and
stochastic second order dependence using a GARCH model, he claims to have
found weak evidence of chaos in the Divisia L velocity, but see [45], and [46] for
a countervailing view of such results.

Artis and colleagues, [2], investigated the stability of money demand functions
using spectral techniques. They estimated the evolutionary spectral density using
a monthly proxy for M1 velocity by taking the product of industrial production
and producer price indices as a substitute for monthly nominal GDP. This proce-
dure was first introduced by Christiano, [12]. Stability tests were performed on
the evolutionary coefficients for different frequency levels. For the U.S. they did
not find evidence for a structural break in M1 velocity, but did find breaks across
a wide band of frequencies for M3 velocity.

1.2.2. The “short run” Supply Relationship

The analysis of the stationary parts of the money and income series is generally
understood as an examination of the short to medium run relationship between
the two variables. Analysis of “short run” money income relationships have con-
centrated on testing the strength of Granger causality between various monetary
aggregates and nominal or real income.

The seminal piece in this literature is a paper by Sims, [52] who found using
quarterly data that money Granger causes real output, where output is measured
by the industrial production index. However, when he reestimated this equation
in 1980, [53], using the 6 month commercial paper rate, his results changed. The
proportion of variance in the real variables attributable to money innovations was



much lower than in the original specification. These findings spawned a literature
investigating the strength and direction of Granger causality between measures of
monetary activity and output. Most of this literature used logarithmic differences
with either quarterly or monthly data, in order to obtain short run stationary
data.

Stock and Watson, [55], used monthly data from 1960-1985 and found that
output was influenced by changes in the growth of M1. Friedman and Kuttner,
[26], extended the same data to 1990 and reported that the strength of the Stock
and Watson result is weaker using the extended period. The research contin-
ued with many papers that tested for improved methods of trend removal, the
possibility of cointegrating structures, checked out-of-sample performance, and
examined alternative lag structures and the relative strength of other financial
variables. Feldstein and Stock, [22], using quarterly data attempted to show that
the strongest relationship exists between M2 and nominal GDP.

Spencer, [54], showed that VAR results are very sensitive to trend removal, lag
length, and the level of temporal aggregation. Abate and Boldin, [1], concluded
that money-output specifications suffer from significant heteroscedasticity and
uncorrected serial correlation. Using monthly data on industrial production and
alternative monetary aggregates over the period 1960:1-1992:12, Abate and Boldin
concluded that “contrary to the claims of some researchers, the money output
relationship does not break down in the 1980s and M2 helps forecast into the
early 1990s.”

1.2.3. The Overall View of the Money Income Relationship

The general conclusion from the literature is that the relationship between money,
defined in several ways and output, also defined in several ways, is still not com-
pletely understood. This is true both in the long run and in the short. Further,
there is disputed evidence on the existence of structural breaks and the possibility
for nonlinearity in the relationships. The ambiguity of these results may well be
due to the fact that there are several time scales involved in the relationships
and that a single dichotomy between “trend” and short run stationary fluctua-
tions may be inadequate to separate out the time scale structured relationships
between the variables. There is also the possibility that the overly restrictive di-
chotomy between trend and stationary components has masked shifting dynamical
relationships between the variables. The time scale at which the introduction of
checkable interest deposits affect M1 demand is most likely different from the one



at which a change in Fed operating procedures affects the money output link, and
different from the time scale at which disintermediation might affect M2 velocity.

1.3. The Major Implications for Research

In both streams of literature, the consumption income relationship and that be-
tween money and income, several similar strands of difficulty appear. The first has
to do with non-stationarity of the data beyond that which might be incorporated
in a unit root, or a trend. One does not have to accept, as in the money income
relationship, a structural break in order to be concerned about non-stationarity of
these data. At both the theoretical and empirical levels, there are many reasons to
suspect that the relationships might well have evolved over the decades since the
war; nowhere is this more probable than in the money income relationship, espe-
cially during the last decade. The evolution and increased efficiency of the capital
and the money markets will have affected both relationships. Long run changes
in the relative proportions of income spent on various consumption categories will
affect the consumption income relationship, as would the obvious effects caused
by broad large scale changes in demographics.

The next strand of common problems to the two sets of data involves the
partially recognized need for analyzing relationships between variables conditioned
on a given time scale of analysis. We have made the case that the choice of time
scale will determine not only the time horizon involved in decision making, but
also the degree of time aggregation, or averaging, the choice of variables that enter
the relationships, and even the direction of causality in that at short time scales
the causal relationship may well be from income to money, but that at higher
time scales the other way around.

The final strand that links the two sets of data is that in both cases, while there
is a core of agreement over some basics in the relationships, there is considerable
disagreement over everything else. These disagreements have waxed and waned
as different researchers have tried various and ingenious methods for examining
the basic relationships. The conjunction of different theories, different data sets,
and different econometric technologies, has probably inhibited our ability to learn
more rapidly from the observed data. The only matter that is certain is that
simple, non-complex, stable relationships between consumption and income and
between money and income do not exist, for otherwise they would by now have
been revealed and tested many times over.

We conclude this review of the literature by stating that the main require-
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ments of an exploratory analysis involve the recognition that nonstationarity in
addition to the so called “unit root” problem are relevant issues; that an allowance
for effects that are localized in time is needed, that relationships may well vary
by time scale of analysis; and that, given the lack of knowledge about the under-
lying functional forms involved, nonparametric procedures will be required. This
combination of conditions indicates that as an exploratory tool an analysis using
wavelets should prove useful and to this topic we now turn.

2. Wavelet Analysis

The discussion to follow is meant to give only an intuitive feel for wavelet analysis
and to stress those points that are at the heart of the examination of the statistical
properties of the data. For a thorough review of the basics of wavelet analysis
Chui, [13], is an excellent reference and Daubechies, [16], contains a detailed
analysis of the mathematical properties of wavelets. A useful recent article that
helps to link wavelet analysis to more conventional time series analysis is Priestley,
[42] and a useful non-technical review article is [50]. An important article that
explores the use of the wavelet approach to the estimation of complex signals
contaminated by noise is Donoho et al., [18]. Further, Brillinger in [7] develops
the relevant distribution theory.

Wavelet analysis has points of comparison and points of contrast to Fourier
analysis. Recognizing both is important for understanding what wavelet analy-
sis can bring to the examination of a data series. Both procedures involve the
projection of a signal onto an orthonormal set of components, trigonometric in
the case of Fourier series representations, “wavelets” that are to be defined below
in the case of wavelet analysis. Fourier projections are most naturally defined
for functions restricted to L?(0,27), since Fourier series have infinite energy, but
finite power, when extended to being defined over the entire real line. Intuitively,
this is the source of the difficulty that a single disturbance to a signal affects the
analysis at all frequencies and that a single disturbance in time is interpreted by
Fourier analysis as an event of period T', where T is the length of the observed
series. While Fourier analysis allows for the complex superposition of individual
harmonics, or “waves”, the maintained hypothesis is that over any sub-segment of
the observed time series the precise same frequencies hold at the same amplitudes;
the signal is as it were “homogeneous over time.”

In contrast, the functions that are to be represented by wavelets have finite en-
ergy over the entire real line and are naturally defined within L2(R). This means
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that the functions involved have narrow support and the functions rapidly con-
verge to zero as the index ¢ approaches +infinity. The functions allowed in wavelet
analysis are not necessarily “homogeneous over time” as is assumed for Fourier
analysis. In short, the functions involved need to be represented by “wavelets”,
that is, “little waves” as opposed to the trigonometric functions that have constant
amplitude over the entire real line. However, this approach brings its own diffi-
culty in that functions that do not have narrow support, have to be approximated
by a sequence of functions that do. It is this difficulty that leads to the neces-
sity for defining wavelets with respect to specific locations and then considering
a sequence of such functions, each indexed by a particular location. By string-
ing together a sequence of such wavelet functions each localized to a particular
position on the time axis, quite complex functions can be approximated.

There is another aspect of wavelets that produces much of their appeal and
that aspect derives from the “rescaling” capability of wavelets. Instead of con-
sidering a single sequence of functions g(¢,u), where u denotes a sequence of
positions about which the function g(.) is centered, we consider a double sequence

of functions:
1 t—u

g(t) = %g(

) (2.1)

where s is a sequence of scales. The term ﬁ maintains the norm of g(.) at

S

one. The function g(.) is centered at uw with a scale of s; that is, the energy of
g(.) is concentrated in a neighborhood of u the size of which is proportional to s.
Essentially, as s is increased the length of the support of ¢(.) in terms of ¢ increases.
For example, if the support of g(.) for s = 1 is [—d, d] when.u = 0, then the effect
of s is to broaden the support to [—ds,ds]. In effect, the rescaling characteristic
of wavelets in the time domain is equivalent to the rescaling of frequencies in
Fourier analysis. The process is also known as “integral dilation”. That is, in
Fourier analysis all frequencies are generated by rescaling, or dilating, a single
fundamental frequency. If wq is the fundamental frequency, then the function to
be approximated is projected onto a sequence of expressions of the form:

{emtewoty (2.2)

In short, 2m-periodic functions are representable by integral dilations of the single
function e~*ot,

Dilation in the time domain has advantages in addition to those stemming
from frequency dilations. In the latter case, one is considering projecting the
entire signal onto ever lower frequencies. In the former case with wavelets, a
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localized component of the signal is projected onto an ever broader base. The
two important aspects here are that the projection is for a local component of
the signal and that each projection is onto a wavelet whose support is a function
of s. In a sense the choice of a dilation, or scale, level indicates the size of the
“packets” used to represent the signal. A broad support wavelet yields information
on signal variations on a large scale; a small support wavelet yields information
on signal variations on a small scale. One way to visualize the process is in terms
of maps in that a large scale map gives the broad picture without details and a
small scale map fills in the details. A rapidly oscillating signal might be regarded
as a superposition of a sequence of “small packets” of information, whereas a
slowly oscillating signal might better be regarded as a superposition of very large
packets of information. Projections at a given scale are not affected by features of
a signal at scales that require broader support, except for the highest, and ignore
features at scales that require narrower support. Resolution is another property
of representations which reflects the ability to “resolve” the local signals; that is,
to be able to separate nearby frequencies. High resolution requires one to be able
to detect small scale variations in the data, but is not to be confused with the
concept of “scale” itself.

However, as indicated by Priestley, [42], there is only an intuitive and very
indirect connection between frequency and the scale of the analysis. It is only
true in the simplest of cases that large scale wavelets are associated with low
frequencies in that the detection of low frequencies requires components with
very wide support in the time domain. Correspondingly, that the analysis of
high frequencies requires a high sampling rate which is provided by components
that have narrow support and so provide high frequency samples is also a naive
interpretation. Consider for example, a given scale, say 23, or eight months, and
that the signal contains components that are at that scale. It might still be true
that the power of the projections depends in a cyclic manner on the value of u,
the index of position; for example, the power of the projections indexed by u
might oscillate with a period of ten years, or indeed any period greater than eight
months.

More importantly, this intuitive idea of “packets of information” that arises
out of the dilation procedure can be used and interpreted, even when a signal
cannot usefully be regarded as a superposition of trigonometric components. For
example, Priestley, [42], illustrates this idea in the context of a signal with a fixed
frequency, but a time varying amplitude; Fourier analysis, of course, incorrectly
detects power at all frequencies.
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We can therefore consider two ways of examining a given signal. At a fixed
point in time, say u, we can examine how the localized signal projects on to
wavelets of varying length of support. In effect this procedure examines the signal
at the given location for variations in the strength of projections onto wavelets of
various scales, or dilations. The other view is to examine how the signal projec-
tions vary by position as indicated by the value of u, but at a given fixed scale,
or dilation, s.

The literature on wavelets is growing rapidly, but so far in economics the de-
velopment has been sparse. Goffe, [30], illustrated the application of wavelets to
nonstationary data and Gilbert, [29] attempted, using quarterly data, to examine
macro relationships for rapid regime shifts. In the two Ramsey and Zhang papers,
[47]and [48], an effort was made to use waveform dictionaries to analyze financial
data; waveform dictionaries provide a generalization of both wavelets and Fourier
analysis. The emphasis in these two papers was on examining the time-frequency
(Wigner) distributions. Ramsey et al., [49], pursued an approach that was com-
mon in the earlier wavelet literature by querying the statistical self-similarity of
financial data. The detection of discontinuities and the occurrence of sharp cusps
are explored by Truong and Patil and by Wang in [56], [58], respectively. Further
work on financial data and the role of fractional differencing is explored in [32],
[34], and [36).

One of the sources of confusion in understanding the role of wavelets is that
the wavelet approach can be used in very many different ways, see for example
the discussion in [50]. Some of these procedures, or aspects of wavelet analysis,
might be useful in economic and financial analysis, but not necessarily all. For
example, the early emphasis in using wavelets to explore ideas of self-similarity
was not very productive, nor did that analysis lead to very useful insights into
economic and financial mechanisms; see for example, Ramsey et al., [49]. Priestley,
[42], indicates some of the difficulties involved in shifting from models that are
essentially deterministic with low levels of noise to the stochastic processes that
are more common in the economics and finance literature, see also for example,
the discussion in Donoho et al., [18].

In this paper we are interested in three major facets of wavelet analysis; the
ability to handle nonstationary data, localization in time, and the resolution of
the signal in terms of the time scale of analysis. The nonstationarity that we
are concerned about is a broader notion than the existence of a mere unit root
process. Given the discussion above, it is clear that some allowance should be
made for variation in the process over time as well as for local effects.
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We end this section by summarizing the description of a signal in terms of
wavelets and define a few terms that will be used subsequently. There are a
variety of functions that have been developed for use as the fundamental wavelet
that is to be dilated by s and translated by u. Some examples are:

e Haar, a square wave with compact support;
e Daublets, continuous orthogonal wavelets with compact support;
e Symmlets, a “symmetrical” alternative to Daublets;

e Coiflets, symmetric and with vanishing higher moments.

Depending on normalization rules there are two types of wavelet within a given
family, such as the Symmlets; father and mother wavelets.

_ia =2k
D, = 2719( =)
_io t—2k
Father wavelets : /<I>(t)dt =1 (2.3)

Mother wavelets /\Il(t)dt =0

Father wavelets are used for the “lowest frequency” smooth components, those
requiring wavelets with the widest support and mother wavelets are used for the
“higher frequency” detail components. In short, Father wavelets in the sequel are
used for the “trend components” and the Mother wavelets are used for all the
deviations from trend.

Any function f(t) to be represented by a wavelet analysis can be built up as
a sequence of projections onto Father and Mother wavelets indexed by both {k},
k = {0,1,2,..} and by {s} = 27, {j = 1,2,3...}. In actual data analysis using
discretely sampled data, it is necessary to create a lattice over which the calcula-
tions will be made. Mathematically, it is convenient to use a dyadic expansion as
illustrated in equation 2.3.
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The coefficients in the expansion are given by the projections:
e = / FO)B(t)dt (2.4)
dip = / F()¥;k(t)dt
j = 1,2,..J

where J is the maximum scale sustainable by the number of data points. The
representation of the signal f(¢) can now be given by:

) = Z srx®@ur(t) + ZdJ,k‘I’J.k(t) (2.5)
Z dy_1eVi_1k(t) + ...
P
ot Y dieyg(t)

The large J refers to the highest level of dilation that is used for the “low fre-
quency”, smooth variation of f(t) and the small j refers to the “higher frequency”
detail coefficients. When n the number of observations is divisible by 27, then the
number of coefficients of each type is given by:

e At the finest scale: 2! : 5 coefficients dy x;
e At the next scale: 22 : s coefficients da x;

At the coarsest scale: 27 : 57 coefficients d;

e At the coarsest scale: 27 : 57 coefficients S ;

n _n n n n
n,:-§+z+....§]-—_—l+-2—j+§ (2.6)
We can summarize the string of coeflicients by
Sy
ds
w=| %1 (2.7)
dy



However, most of the coefficients of w are zero, or very close to zero; the matrix w
is sparse. The wavelet associated with each coefficient is termed an “atom” and
each row of w represents the coefficients of a “crystal”.

We can define the multiresolution decomposition of a signal by specifying:

e S coarsest scale
e S;_1=8;,+D,
e !

e 5;.1=8;+D;

{Ss,855-1,...51} is a sequence of multiresolution approzimations of the function
f(t) at ever increasing levels of refinement. The corresponding multiresolution
decomposition of f(t) is given by:

L J {SJ,DJ,DJ_l, ...D]‘, Dl}

The sequence of terms: S;(t), D;(t), Dj_1(t), .....D:1(t) represent a set of or-
thogonal signal components that provide representations of the signal at resolu-
tions 1 to J; each D;_j provides the orthogonal increment to the representation
of the function f(t) at the scale, or resolution 2/*. The sequence of partial sums:

Sj_l(t) - SJ(t) -+ D_](t) + DJ__I(t) + o + D](t)

provides a multiresolution approzimation of the signal down to the scale 2/. Con-
sequently the sequence of terms: {S;(¢)}, provide a sequence of approximations to
the signal that include ever finer scales and ever more detail and so an increasingly
closer approximation to the signal; whereas the sequence of {D;(t)} provide the
orthogonal increments at each individual scale, or resolution, level.

In addition to the differences in the choice of scale function, Haar, Symmlet,
Daublet, and so on, there are other differences that can be fine tuned to suit a
particular project. In our case it was felt that symmetry of the scaling function
was most important, so that we chose the Symmlet as the basic.scaling function.
We are able to determine the length of the compact support at the finest time
scales; in our case we chose an intermediate value of 11 observations. Another
major question is the degree of smoothness of the wavelet and this is in turn
determined by the number of vanishing moments; again we chose an intermediate
value for the mother wavelets.
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The discussion of scale and its variation as reflected in the projections of the
data onto the corresponding wavelets merits further discussion. At each scale

the strength of that projection determines the magnitude of the corresponding . -

coefficient. In essence, one is extracting at the chosen scale those components
of the data that resonate most strongly at that scale. There is, however, only
a weak relationship between “scale” and period, or frequency, of oscillation for
data that contain spectral power within certain frequency bands. It is true that
very small scale projections are best at representing behavior at very high fre-
quencies, or very short periods, and that very long scales are best at representing
oscillations with very long periods. But this link between scale and frequency is
only interpretable when the data are stationary; the wavelet projections are still
meaningful even if there are no oscillations in the data. The view using wavelets is
that the total variation of the data centered at any given point in time is obtained
by “adding up” the components extracted at each of the admissible scales. An
alternative view is that obtained by aggregating the data to various levels using a
windowing technique, which can in turn be interpreted as a projection on to the
vector {1/N,1/N,....1/N}, where there are N observations selected to be in each
projection, N = {2,3,4,5...}. However, by taking this view one soon recognizes
the non-optimality of such a sequence of projections, in that at the very least
orthogonality of the projections has been lost, not to mention the fact that one
does not have a basis. Consequently, the wavelet approach potentially adds to our
understanding of the relationships between variables by enabling us to separate
the relevant time scales that may be involved.

3. The Data Used in the Analysis

The details of the data used and their sources are listed in Table 3.1. Monthly
data, seasonally unadjusted where available, were used in order to have a suffi-
ciently high sampling rate to carry out the wavelet analysis, to introduce as little
preprocessing of the data as possible, and to allow for the effects of short term
dynamics on the results. The real interest rate was calculated by subtracting an
annual inflation rate from the U.S. Treasury Bill rate for 1 year bonds. The ex-
pected inflation rate at time ¢ was proxied by the actual inflation rate from time
t to time t + 1. The inflation rate is based on the implicit deflator for personal
consumption expenditures on durables. :
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Name S.A. | Dates Units Source | Code
Disp. Pers. Inc. (real) Y 1960:5-1994:4 | Bill. 1987% | Citibase | GNYDQ
Nominal Pers. Inc. Y 1960:5-1994:4 | Bill. $ Citibase | GMPY..
Pers. Consump. Exp. Y 1960:5-1994:4 | Bill. 1987% | Citibase | GMCQ
PCE - Durables Y 1960:5-1994:4 | Bill. 1987% | Citibase | GMCDQ
PCE - Non-Durables Y 1960:5-1994:4 | Bill. 1987$ | Citibase | GMCNQ
PCE - Services Y 1960:5-1994:4 | Bill. 1987% | Citibase | GMCSQ
M1 N 1960:5-1994:4 | Bill. § Citibase | FMZ1
M2 N 1960:5-1994:4 | Bill. § Citibase | FMZ2
U.S T-bill Maturity-1yr N 1960:5-1993:12 | % per ann. | Citibase | FYGT1
PCE-Imp Defl (Durables) | Y 1960:5-1994:4 | 1987=100 | Citibase | GMDCD

Table 3.1: The Data Used in the Analysis

4. The Methods Used

Our main interest is in the reconstructions of the time series by crystals and the
relations between them. The process is exploratory. Qur objective is to examine
the extent to which an allowance for different effects by scale and for variations in
the relationships over time lead to insight into the total variation of the signal over
time. Our conclusion is that these topics merit further study and the development
of procedures that are designed for the classes of statistical requirements that are
indicated by our preliminary analysis.

We used the Wavelets package produced by StatSci of MathSoft that was
written by Bruce and Gao, [8]. We choose as the basic wavelet the Symmlet, des-
ignated ”S12”. This wavelet is a compromise between competing requirements.
S12 is nearly symmetric, is intermediate in support length with eleven units, has
five vanishing moments, and is twice differential. This choice of wavelet is an inter-
mediate choice in that it has reasonably narrow compact support, is fairly smooth,
is nearly symmetric, and has a moderate degree of flexibility. We experimented
with alternative choices of scaling function and of wavelet, but the qualitative
results were very robust to such changes and the initial choice of wavelet seemed
to be the best on balance. We used the boundary condition “infinite” to reflect
the fact that the data contain a “trend” component.

The empirical results are presented in two parts, the first is for the relationship
between consumption and income and interest rates. The second is to provide
an examination of velocity in terms of its behavior at different time scales and to
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examine the composition of the dynamics of velocity with respect to the dynamics
of its constituents, money and of income. With each set of data the idea is to
examine in some detail the relationship between the variables when the variation
in each variable has been restricted to a specific scale. For example, instead of
looking at the relationship between consumption and income “averaged” over all
time scales, we examine the relationship at each time scale separately. Similarly,
we examined the relationship between money and income by individual time scales
instead of examining that between income and money averaged over all time scales.

5. The Consumption Income Relationship

Tables 5, 5.2, and 5.3 show the coeflicient estimates from running a sequence
of least squares regressions of consumption on disposable income using the data
described in the previous section. Figures 8.1 to 8.3 illustrate some of the results
obtained.

In Figure 8.1 is portrayed the time paths of durable and non-durable goods
consumption at the S5 level; that is, this level includes the long term drift in the
data with respect to the longest time scale available for these data, 26 = 64 months
using the father wavelet coupled with the deviations induced at the scale of 2°
months using a mother wavelet. Figures 8.2 and 8.3 illustrate the relationship
between total consumption and income at scales varying from 2° = 32 months to
2 months using mother wavelets. Recognize that at each scale level one is seeing
the “isolated” effect of the given scale; rather at each scale, the graphs indicate the
relationship between total consumption and income where the variation in both
variables has been restricted to the indicated scale. The graphs indicate clearly
that except for the highest scale, there is only a weak relationship between the
variables; indeed below D4 there seems to be little of significance. The regression
results reveal somewhat more structure, but nevertheless confirm that below S5,
the relationship is very noisy.

A review of Table 5.1 indicates that the degree of fit of the regression of
total consumption on income that is shown in Figure 8.1 falls as we move to
shorter time scales and the slope coefficient declines to zero as the time scale of
analysis declines. There is an exception to this pattern in that at the very lowest
level of time scale analysis, the degree of fit is greater than the previous level
and the slope coefficient, which is statistically significant at even high confidence
levels, is commensurate with that obtained at a level between D2 and D3. The
intercept terms are very small and operationally insignificant, even where formally
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significant in a statistical sense.
Tables 5.2 and 5.3 portray these relationships by time scale in terms of a de-

composition of total consumption into non-durable goods and services in one table _ ..

and durable goods in the other table. The general conclusions that were obtained
with respect to total consumption are confirmed with respect to the components.
In each case the intercept term is insignificant in effect and is statistically insignif-
icant for all regressions past the “trend fit”. The slope coefficient for non-durable
goods and services has a maximum of 0.78, but the pattern for degree of regression
fit and the size of the slope coeflicient across time scales reflects the same pattern
observed for the total consumption variable.

The pattern of results for durable goods is similar to that for non-durable
goods, but with some interesting differences. As expected the slope coeflicient
for durable goods is much lower than that for non-durable goods at all time
scales. However, there is the interesting difference that the slope coefficient at
the highest time scale is less than that at the next level down. Or to express the
matter another way, the marginal propensity to consume for durable goods has
a maximum value at a time scale of 25 = 32 months, which may well be quite
plausible in that cars and household appliances dominate the durable goods index
and a time horizon of three years seems in this context to be reasonable. Further,
examining Figure 8.1 for durable goods there is clear evidence of a shift in the
relationship between consumption and disposable income that occurred over the
period January 1979 through August 1981; the slope that prevailed before this
extraordinary movement was regained by the end of the eighties. The trend for
non-durables and services does not exhibit similar behavior.

In the discussion above, we mentioned that the plot for D5 is very different.
The explanation is to be found in Figure 8.4. This Figure shows the time series
plots of both consumption and income superimposed on each other. The inter-
esting aspect is that from about 1976 on variations in income and consumption
at this time scale were in phase. But before this period, income and consumption
were out of phase, although moving into phase. We also note that at this time
scale, over the period during which the variables were in-phase, consumption was
less volatile than income. The reverse was true when the variables were out-of-
phase. In Figure 8.5 we relate these events to the official NBER business cycle
dates for each of income and consumption; the NBER dates are shown in Table
5.8. It is interesting to note that at this time scale at least, it is consumption that
is in phase with the business cycle peaks and troughs and income is in phase only
after it has become in phase with consumption.
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Crystal | Intercept | Slope Coefficient | R?

(std. err.) (std. err.)

S5 -63.448 0.934 0.997
(6.206) (0.002)

D5 0.217 0.669 0.573
(0.539) (0.029)

D4 -0.032 0.338 0.239
(0.355) (0.030)

D3 0.029 0.224 0.139
(0.272) (0.028)

D2 0.0173 0.034 0.004
(0.270) (0.027)

D1 0.001 0.143 0.057
(0.207) (0.029)

Table 5.1: Regressions of Total Consumption on Income for Individual Crystals

The result obtained above introduces an important generalization to modelling
relationships; namely the need to allow for variations in the timing of relationships.
Thus, in this example, we might need to consider:

Ci = BYs—qx) + &

where d(X) is variable lag function that might well indicate a lead relationship for
suitable values of X. The variable(s) represented by X could include institutional
factors, variations in anticipated price changes, or interest rate changes. The idea
is that besides having to model the relationship between the levels of variables,
we may also have to consider the timing relationship as an added component. For
example, during the early period following the first oil price shock in 1973, the
then Federal Energy Office announced that in three weeks the price of gasoline
would be allowed to rise; supplies fell dramatically and almost instantaneously
and demand rose as precipitately, so that excess demand was phenomenally high
and the rate of change was very swift. Both sides of the market were trying to
rearrange the timing of their market actions as well as in this case of wishing
to change their level of activity. Further, anticipated changes in interest rates, or
credit constraints can lead to a change in timing of relationships.
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Crystal | Intercept | Slope Coefficient | R?
(std. err.) (std. err.)

S5 44.72 0.783 0.999
(3.253) (0.001)

D5 0.195 0.392 0.572
(0.316) (0.017)

D4 -0.032 0.203 0.188
(0.249) (0.021)

D3 -0.00 0.128 0.120
(0.128) (0.017)

D2 0.019 0.020 0.005
(0.142) (0.014)

D1 -0.01 0.085 0.062
(0.170) (0.016)

Table 5.2: Regressions of Non-Durable Goods and Services Consumption on In-
come for Individual Crystals

Crystal | Intercept | Slope Coefficient | R?
(std. err.) (std. err.)

S5 -108.164 0.152 0.965
1 (3.754) (0.001)

D5 0.021 0.277 0.453
(0.284) (0.015)

D4 -0.001 0.135 0.211
(0.153) (0.013)

D3 0.029 0.096 0.057
(0.190) (0.019)

D2 -0.001 0.014 .001
(0.213) (0.021)

D1 0.002 0.058 0.016
(0.230) (0.022)

Table 5.3: Regressions of Durable Goods Consumption on Income for Individual
Crystals
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Intercept | Income | Interest Rate | Interaction | R?
(std err) | (std err) (std err) (std err)
S5 -31.3 0.054 -11.65 0.003 0.940
5.15 0.002 1.76 0.001
D5 -0.072 0.064 -0.149 -0.000 0.528
0.056 0.003 0.071 0.002
D4 -0.020 0.014 -0.585 0.011 0.166
0.048 0.004 0.075 0.006
D3 -0.003 0.015 0.275 0.001 0.143
0.027 0.003 0.048 0.003
D2 -0.003 0.009 0.171 0.006 0.058
0.025 0.002 0.052 0.004
D1 0.002 0.008 -0.071 0.001 0.027
0.026 0.003 0.087 0.008

Table 5.4: Regressions of Furniture and Household Equipment on Disposable
Income, the Real Interest Rate and an Interaction Term for Individual Crystals

Intercept | Income | Interest Rate | Interaction | R?
(std err) | (std err) (std err) (std err)
S5 13.02 0.048 -16.52 0.005 0.954
4.41 0.002 1.50 0.001
D5 -0.188 0.180 0.152 0.030 0.289
0.266 0.015 0.339 0.010
D4 -0.001 0.097 -0.151 0.009 0.211
0.111 0.010 0.175 0.013
D3 —0.007 0.063 0.565 0.072 0.074
0.177 0.018 0.314 0.020
D2 -0.024 0.008 -0.925 0.032 0.016
0.195 0.019 0.415 0.035
D1 -0.014 0.036 -1.142 -0.007 0.015
0.217 0.022 0.739 -0.087

Table 5.5: Regressions of Motor Vehicles and Parts on Disposable Income, Real
Interest Rate and an Interaction Term for Individual Crystals
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Intercept | Income | Interest Rate | Interaction | R*
(std err) | (std err) (std err) (std err)
S5 -19.13 0.028 -2.82 0.001 0.993
0.80 0.000 0.27 0.000
D5 -0.018 0.026 0.242 0.001 0.438
0.033 0.002 0.042 0.001
D4 -0.005 0.017 -0.124 0.016 0.104
0.036 0.003 0.057 0.004
D3 -0.002 0.007 0.044 0.003 0.026
0.025 0.003 0.044 0.003
D2 -0.004 -0.004 0.104 0.003 0.011
0.032 0.003 0.067 0.006
D1 0.001 0.008 -0.462 0.025 0.068
0.031 0.003 0.104 0.012

Table 5.6: Regressions of Other Durables on Income, the Real Interest Rate and
an Interaction Term for Individual Crystals

mean | median | st. dev.
Durable Goods Consumption: Total 274.5 256.1 113.3
Durable Goods Consumption: Furniture et al 99.6 90.45 40.6
Durable Goods Consumption: Motor Veh. et al | 126.0 118.3 45.7
Durable Goods Consumption: Other Durables 48.9 50.4 21.3
Real Interest Rate _ 4 2.86 3.67 | 3.11

Table 5.7: Summary Statistics for Durable Goods Consumption and the Real
Interest Rate

Trough | Peak
1960:4
1961:2 1969:12
1970:11 | 1973:11
1975:3 1980:1
1980:7 1981:7
1982:11 | 1990:7
1991:3

Table 5.8: NBER Business Cycle Dates
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5.1. Decomposition of Durable Goods Results by Category and the Role
of Interest Rates

As was noted above, the relationship between consumption and income shown in
Figure 8.1 indicated a dramatic shift in the relationship beginning in about 1979.
This observation is worth exploring further and in addition it would be productive
to examine durable goods consumption as a function of the real interest rate,
notwithstanding the negative results in the current literature. Tables 5.4, 5.5, and
5.6 summarize the regression results. The three sub-categories of durable goods
consumption were furniture and household items, automobiles and auto-parts,
and the category “other”, which includes jewelry, boats and sports equipment;
summary statistics on the sub-series are shown in Table 5.7.

The main issue to be addressed is whether the shift in the relationship between
income and consumption can be explained by the variation in the real interest rate.
A corollary investigation is whether real interest rates play a more important and
longer term role in the demand for durable goods as consumer theory would
indicate.

Before beginning the main investigation, we observe that the qualitative prop-
erties that were observed for all the categories combined are reflected in the three
sub-categories. That is, the degree of relationship as measured by R? declines
with the reduction in scale. The strength of the effect of income on consumption
as measured by the magnitude of the regression coefficient also declines with the
reduction in scale; all intercept terms are statistically indistinguishable form zero,
below the S5 scale. At the S5 scale the intercept terms are both statistically signif-
icant and substantial in size relative to the respective mean values. There'is some
indication that the relative importance of furniture and equipment is increasing
relative to motor vehicles and parts.

Figure 8.6 shows the time series plots at the S5 level of the three sub-categories
of durable consumption, furniture, autos, and “other durables.” with straight line
approximations of the pre 1976 trend superimposed as a visual reference for the
shift in trend after 1979. One notices immediately that the three categories behave
in different ways after 1979. Furniture after a minor slackening in consumption,
increases at a faster pace than before. Autos are the most affected and account
for much of the “dip” shown in the total durable goods index in Figure 8.1. The
“other” category has a more moderate fluctuation.

One common reaction to observing this situation is to rationalize the result as
a reaction to an “oil price shock”. We are unpersuaded that this is a reasonable
first line of attack because the timing of the change is apparently anticipatory
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of the actual oil price rise. Further, the far greater price rise in real terms that
occurred in November 1973 that was even more of an unanticipated shock did
not produce a similar reaction to automobile purchases. More convincing is the
observation that net of our allowance for the interest rate effect to be discussed
below there is very little evidence for any special “shock.”

The model that was used to investigate the potential relevance of interest
rates at each scale level was a linear model that allowed for an interaction term
between interest rates and income. If we define consumption by C;;, for each
of the three categories of consumption, Y; as real disposable income, and r, ‘as
the real interest rate, the regression model assuming an error term e; that is
approximately Gaussian in distribution is:

Ci = aoi+ oY +ogm+as;Yir +ey, (5.1)
i = 1,2,3.

Analysis of the residuals indicated that the assumption of approximate Gaussian-
ity was justified.

Before examining the interest rate coefficients themselves, the pattern of coefli-
cient values for income are very interesting in the case of motor vehicles and parts.
The size of the income coefficient for the scale of 2° = 32 months is nearly four
times greater than for the trend levels and about twice for the next lower scale
level. Furniture and household equipment exhibits this “business cycle ” scale
concentration to a very limited extent and the “other” category, like non-durable
goods, illustrates a monotonic decline in income coefficient values. Consequently,
it appears that the anomalous coefficient behavior for durable goods as a whole
is explained almost entirely by motor vehicles and parts. This would make some
intuitive sense in that one can easily believe that relative to the other components,
automobile consumption is most likely best analyzed on a three year time scale.

The interest rate effects, reported in Tables 5.4 to 5.6, were revealing. First
of all, the interest rate effect at the highest scale was strongest for automobiles,
considerably less for furniture and least for “other”, even after allowing for the
differences in units of measurement. Not only is the interest rate very highly
significant statistically, its effects on the levels of consumption at the top scales
is considerable. In all cases the interest rate effect falls off dramatically as the
scale is reduced from sixty four months and in most cases the interest coefficient
becomes insignificant, this is particularly true for motor vehicles and parts.

“Furniture and household equipment” provides an interesting contrast. The
interest rate is statistically significant with a negative sign to the D4 level, or
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down to a scale of sixteen months. However, for variations within a year, time
scales of four and eight months, the interest rate effect is seemingly positive and
significant. One might speculate that these results represent timing effects in that
with interest rates rising, customers are able to buy at the old interest rate when
suppliers in anticipation of a demand downturn attempt to decrease inventory
levels.

The only real puzzle is provided by the regressions for “other goods” in which
there is a strong positive interest rate effect at business cycle time scales. The
remaining interest rate coeflicients are statistically insignificant. This result could
be interpreted as a substitution effect in which the demand for furniture and motor
vehicles rises with a lowering of interest rates so that there is a corresponding
decrease in the demand for “other goods”.

If we examine the role of the interest rate at all time scales using S4, that
is, we are examining the relationships at all time scales up to thirty two months,
then for every category the interest rate effect is statistically insignificant; never
above a t-ratio of 1.4. These results help to explain the non-significance of the
real interest rate variable in regressions using the variables at all time scales; the
lack of relationship that holds at the shorter scales dominates the theoretically
expected results at the very highest scales.

A similar regression using non-durable goods also indicated that at the highest
scale there was a strong interest rate effect of the correct sign with a t-ratio of 6.1,
but that for all scales up to 5S4, there was a marginally significant positive interest
rate effect with a t-ratio of 2.5. One might hazard the idea that at business cycle
frequencies and below, high interest rates by dampening long term durable goods
consumption, free up resources for short term non-durable goods consumption.
However, the empirical support for this result is not clear, so that these remarks
are purely speculative until confirmation can be obtained.

In any event, the overall results unambiguous show that the interest rate effect
is a long time scale effect, not a short, and has its maximum impact on those
components that intuitively one would expect to be most interest rate sensitive.
With respect to income it is still true for automobiles and furniture that the
maximum income effect is at level 2° = 32 months, rather than at sixty four
months, whereas the “other” category, more closely follows the monotonic decline
found for non-durable goods.
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6. Money and Income by Time Scale

In this section we use the wavelet decompositions of monetary aggregates and
nominal income in order to investigate whether there are distinct differences in
the relationship between these variables at different time scales. We also wish to
explore the dynamical relationships between the variables at each scale in more
detail.

We note a difficulty in that monthly measures of nominal GDP are not avail-
able. Christiano [12] and Artis et al [2] both used as a proxy the product of the
industrial production and producer price indices. We used an alternative proxy
for nominal GDP namely, nominal personal income, NPI, which is available in
monthly data. The series used are listed in Table 3.1. Our proxy obviously un-
derestimates nominal GDP because we have left out business income. However, a
regression of GDP on our proxy and on the index produced R? of 0.996 and 0.978
respectively and a regression of log differenced GDP on log differenced NPI and
on the log differenced index produced R? values of 0.123 and 0.020 respectively.
While NPI as a proxy for the monthly values for GDP leaves much to be desired
in terms of the detail variation, the proxy seems to be closer to monthly GDP
than the index. Further, if the remarks that are to follow concerning results are
restricted to our definition of income little confusion should be occasioned. Our
results should be easily interpretable for the definition of income used and should
be indicative for the measure of income that we could not use.

Although the following analysis concentrates on wavelet decompositions of
the monetary aggregates and nominal income individually, we also examine the
wavelet decompositions of velocity measures using the ratio of nominal income to
money balances. Figure 8.7 plots the raw data time series for M1, M2, Nominal
Personal Income and the two velocity measures in order to remind the reader of
the major characteristics of these data.

The remainder of this section is in three subsections; the first provides an
overview of the wavelet results and addresses the issue of whether there is any
wavelet evidence for a structural break in velocity. The second examines the
spectral analysis of the time scale components and the third section.examines the
effect of time scale on the evidence for Granger causality.

6.1. A Review of Wavelet Multiresolution Decompositions

Figures 8.8 to 8.12 are time series plots of the individual crystals for M1, M2,
Nominal Personal Income, V1, and V2; where V1 is velocity defined with respect
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to M1 and V2 is velocity defined with respect to M2. In order to provide a
comparison using the standard analysis, we have included in each set of graphs
plots of the log first differences of each variable

The series of plots fall quite naturally into three broad groups; the resolution
of “trend” at the very longest scale possible with these data series, namely sixty
four months, a second group that involves the scales from D6 to D4, sixty four
months (of differences) to sixteen months, and finally the finest scales, D3 to D1.

Beginning our review of results with the first group, we note that as would be
anticipated, the natural variables, M1, M2, and nominal personal income (NPI),
all have approximate exponential growth paths. The two velocity measures are
more interesting in that both indicate strong deviations from steady growth. For
V1, velocity reaches a peak in 1981 and has been declining since. There is no
evidence at this scale of a structural break, although it is clear that one can
no longer support the hypothesis of a steady increase in velocity. Whether the
observed time path exhibits a moderately slow change in parameter values, or
whether the results indicate a more subtle relationship between M1 and NPI is
an open question.

Somewhat more interesting is the observation that at the scale S6 for the V2
variable, there is a very definite cycle in the upward growth of velocity with a
period of oscillation of 17 years. In interpreting this result, one should recall that
our measure of income does not include corporate income.

The next group of scales include the time scales for deviations around the
longest time scale and vary from sixty four months to sixteen months. The reader
should recognize that the scales on the axes for all these plots are all very much
smaller than was true for the “trend ” scale; this is not unexpected given the design
of the crystals, but should be noted to facilitate interpretation of the results. One
can best summarize the plots for the natural variables by remarking that the
variance before 1980 was in all cases very much less than that for the period after
1980. However, for several crystals it is also clear that the increase in variance
began before 1980, but was not clearly evident until well after 1980. The evidence
for a rapid rise in variance of the time scale paths is best for M1. An hypothesis
stimulated by these observations is that there were changes in the time paths of
the variables M1, M2, and NPI, that were exacerbated, or at least added to, by the
Volker experiment during 1979-1981. In short, the seeds of the change observed
so clearly in the post 1981 period seem to have had their beginnings, albeit subtle
beginnings, before that time. At least this possibility should be considered. There
is no obvious evidence from the distribution of coefficients for a structural break
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in the data at these time scales.

The last group of scales involves variation in the data over periods of eight
months or less. In this group of time scales as well, the evidence for the hypothesis -
that 1980 marked a transition period, rather than a structural break, is even
more clear. One of the most striking features of this group of time scales is the
remarkable periodicity in V1 that occurs at the four and two months scales,but
that is not apparent in the constituent variables. This periodicity does not occur
in V2 at these time scales.

We may also capitalize on the orthogonality of the crystals to decompose the
total variance of each variable across the component time scales; this decomposi-
tion by variance is shown in Figure 8.13. In all cases the greatest percentage of the
total variance is explained by the highest scale, S6. Consequently, we have shown
in Figure 8.13 the variance decomposition by time scale only for the crystals D6
and lower scales. We see immediately that the energy decomposition for M1 is
quite different than that for M2. For M1 the biggest contribution is at the D6
level, but for M2 it is at the D5 level, and even D4 has a larger contribution than
does D6. In short, there is much more relative variation in M2 at the scales D5
to D3, that is, between eight and thirty two months, than is true for M1. The
variance decompositions for the velocity measures are different between M1 and
M2 as well, but the contrast for velocity is not as sharp as it was for the money
supply measures themselves.

6.2. Spectral Analysis of the Crystals

We mentioned on two occasions above the presence of well pronounced oscillations
in some of the crystals. In this section we explore this observation more fully and
examine some of the dynamical relationships more carefully. Table 6.1 summarizes
the major spectral peaks found at each scale level for each variable. We see that
M1 and M2 have the same period at all levels, at least approximately, and that
they are in phase. However, M1 and NPI have quite different periods at the D6
and D4 levels; but there seems to be a common period at the D5 level. In Table
6.1 the figures listed in bold are those that do not appear in a spectral analysis
of the log first differenced data. Consequently, we see that decomposing the data
by time scale reveals oscillations that are not apparent in the raw data. It is only
at the very lowest time scales and hence at the very highest frequencies that we
observe the same evidence for periodicity in both the differenced data and in the
time scale decomposed data.
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An obvious and important question for understanding the relatively short run
relationship between M1 and NPI, is to speculate about the mechanism that is
producing such precise cyclical outcomes. The question is more interesting than
that there are three pronounced cycles in V1 velocity data. The interesting aspect
is that these periods do not appear in either M1 or in NPI, so that the observed
periodicities are produced by the very short run dynamics linking M1 to NPI.

Another example of interactive dynamics producing interesting results is illus-
trated by the relationship between M1 and NPI at the time scale of D4. Figure
8.14 has overlaid the plots for the D4 crystals for both M1 and NPI. What is in-
teresting here is that at this time scale the two variables M1 and NPI repeatedly
move in and out of phase with respect to each other over the sample period. In
part this is due to the fact that at this scale the two series have different spectral
peaks; that of NPI is approximately twenty four months and that of M1 is ap-
proximately twenty one months. Consequently, the whole series of observations is
made up of stages in which the two series are moving into phase and periods when
they are moving out of phase. Any stable relationship that might exist between
these two variables at this scale will have to have incorporated into it an allowance
for this difference in period between the two series. This analysis is too simple in
that for each variable the spectral peaks are broadly based because there seems
to be a certain amount of frequency variation about the modal frequencies. If
in these data there were only a simple difference between two frequencies with
periods of twenty one and twenty four months, the period from fully in phase to
fully in phase again would be every 189 months, or every fifteen years and nine
months. The observed matching of phase seems to be about every twelve years
approximately. :

If we calculate the coherence and phase relationship between the two variables
at this scale, the results indicate very high coherence, almost one, for periods
of one hundred months, and for period ranges of 10 to 7.4 months, 4.5 to 3.8
months, 2.86 to 2.6, and 2.1 to 2.0; these high coherence ranges are very precisely
demarcated; see Figure 8.15. The phase spectrum increases monotonically over
the range from zero frequency to w, rotating about 7/4 radians. We define the
group delay, or envelope delay by:

dw) = —{2l)

where ¢,,(w) is the phase spectrum between the two series. In the simple situation
in which one of the variables is linearly related to the other with a lag of “R”
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months, the group delay would be a linear function of frequency with a slope
coefficient of “R”. In the more general situation, as exemplified here, the group
delay is no longer a simple constant, but varies with frequency. A group delay
of this type can be created by relating two variables with multiple lags, or by
allowing the lag structure to vary over time.

We note that the derivative is greatest at low frequencies and is much less at
high frequencies. We can approximate the change in phase into two nearly linear
segments; a low frequency range and a high frequency range. At the D4 time
scale and for a period of ten to fifteen months, or longer, the approximate slope
is 67.7 months and for periods less than ten months the approximate slope is 6.6
months. We can roughly summarize this result at the D4 time scale by saying
that at relatively low frequencies, or equivalently at relatively long periods, money
leads income by about five years and six months and at the shorter periods money
leads income by about six months.

As we considered in the consumption income relationship, we should also in
this case consider the potentiality that the timing of the relationship between
money and income may change over time; that is:

my = BYi—d(z) + Et

where, m; and y, are real logarithms of money and of income respectively and,
as in the discussion on the consumption income relationship, d(x) is a variable
lag that for suitable values of “x”could well be a “lead”. A potential explanation
for such a timing function d(x) in the money income relationship is provided by
variations in Federal Reserve policy. For example, the Federal Reserve might
change from a reactive to a proactive policy with a consequent change in the
timing of the relationship between changes in monetary actions and variations
in income. Alternatively the Federal Reserve might have asymmetric strategies
between tight and loose monetary policies, so that the lead/lag relationship might
well vary over the business cycle. Certainly, these issues are worth exploring more
fully and their existence is plausible.

6.3. Granger Causality

As we documented above, Granger causality tests have provided over two decades
of debate concerning the possible line of causality between money, however de-
fined, and income. Given the discussion above, two aspects of wavelet analysis
might well provide some insight into this matter. First, it is likely given our expe-
rience so far that separating money and income into time scales and analyzing the
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Series Dé D5 D4 D3 D2 D1
M1 81.6 58.3 21.5 13.2 8.5, 7.6 2.9
M2 81.6 58.3 20.4 13.6 8.3,7.7,5.7 3.7, 29
Nom. Personal Income | 102.1 | 58.3, 51.0 | 24.0 | 15.7, 12.4 diffuse diffuse
V1 = NPI/M1 82.8 59.1 23.0 11.8 6.0, 4.0 3.0
V2 = NPI/M2 81.6 58.3 24.0 15.7 6.8 2.7

Table 6.1: Spectral Peaks in Individual Crystals for Each Variable Identified by
Period in Months. Bold Entries Indicate Peaks Missing in The Spectrum of Log.
Diff. Data

relationships within time scales will provide considerable insight into the mech-
anism linking money and income. Secondly, the research results quoted in the
previous section indicate that another potential complicating factor stems from
the variation in phase between the variables at certain time scales. In this section
we will investigate each of these aspects.

Table 6.2 summarizes the first set of results. We ran Granger causality tests
using the version cited in [31] and restricted attention to M1 and NPI. The joint
F tests for the inclusion of lagged values of income in an AR representation of
the money equation and for the lagged values of money in the AR representation
of the income equation are quoted in the third and fourth columns of Table 6.2.
The null hypothesis for each F test is that the added coefficients are zero and
therefore that lagged income does not reduce the variance of money forecasts or
that lagged money does not reduce the variance of income forecasts. If neither
null hypothesis is rejected the results are quoted as “inconclusive” and if both
pair of F tests reject, the result is labelled as a “feedback ” mechanism. A unique
direction of causality is indicated only when one of the pair of F tests rejects and
the other accepts the null hypothesis.

The results indicated in Table 6.2 are very interesting. At the very finest
scale, D1, the evidence indicates (weakly) that NPI Granger causes M1, but at
the intermediate time scales represented by D2 to D4, we observe with varying
degrees of strength that M1 Granger causes income. At the highest levels of time
scale, the test results indicate that the mechanism is a feedback one. These results
are intuitively plausible. At the finest time scale, it is reasonable to suppose that
variations in economic activity initiate corresponding changes in checking account
balances, so that one concludes that NPI Granger causes M1. At the higher time
scales, the monetary authorities are trying to control the money supply so that it
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is plausible that M1 Granger causes NPI. At the very highest scales it might well
be true that M1 and NPI interact in a feedback mechanism. Consequently, we
have evidence that not only is it true that the degree of causal relationship varies
across scales, but that the direction of causality differs by time scale. Examining
the log first differences for the historical period under examination, we obtain the
unremarkable result that the Granger causality tests are inconclusive. The various
outcomes obtained for different time scales provides one explanation of this result
in that the differenced data averages over the individual scale effects, so that the
change in direction across scales can easily lead to an inconclusive outcome for a
time aggregate expressed in differenced form.

A second question that arises from this analysis concerns the dynamical links
between the variables and the way in which they may vary over time. We may
question how sensitive our results are to the choice of time period over which we
perform the tests. For example, using the data in log first difference form, one
can show that M1 Granger causes NPI during the period 1970-1979, but that the
tests are inconclusive over the period 1980-1994. We also examined in light of
this result the Granger causality tests for M1 and NPI at the D1 level with the
data separated into two periods; 1970-1979 and the 1980-1994. For the former
period, we obtain that M1 Granger causes NPI, but that for the latter period,
the situation is reversed in that NPI Granger causes M1. Given these results, we
decided to explore the sensitivity of Granger causality tests to variations in phase
between any two variables. Table 6.3 presents the results of one such investigation.

Refer to Figure 8.14 in which are plotted the D4 crystals for M1 and NPI.
We have mentioned in the previous section the differences in fundamental periods
between the two series; Figure 8.14 plots out as a pair of .time series the two
variables using the D4 crystals. It is immediately clear that the two series at
this time scale are moving into and out of phase with each other. Consequently,
depending on whether the series are moving into phase, or out of phase, one is
likely to obtain different results from a Granger causality test, depending on which
part of the “cycle” is included. The idea is to go beyond the usual observation
that different causality results can be obtained from different segments of the
data. Our point is that a key element in obtaining different causality results
in the presence of phase varying series is that different causality results depend
on one’s selection, implicit, or otherwise, of the sequence of phase relationships.
Table 6.3 illustrates this notion. We observe that if the series are moving into
phase, Granger causality tests indicate that M1 causes NPI, whereas when the
series are moving out of phase, one obtains with the same tests the opposite result,
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NPI causes M1; and that if one picks a period in which the series move into and
out of phase with each other, Granger causality tests can produce an apparently
inconclusive result.

One lesson here is that results that are apparently sensitive to the subset of
data that are chosen might well be caused by the effects of the variation over time
of the phase relationship between the two variables, even after one has allowed for
different effects across time scales. With respect to the different results obtained
before and after 1980, we note from Figure 8.14 that 1970 to 1979 is a period in
which the series moved from out of phase to in phase; whereas the period after
1980 is characterized by a move from in phase to out of phase.

Our results have not yet been thoroughly demonstrated and much more careful
analysis will be needed to substantiate the tentative results that we have quoted
in this section. However, the ideas that we have raised merit serious considera-
tion, both from the econometric perspective and from a theoretical one. The role
of variations in the phase modifying the structural relationship between variables
may not only provide more parsimonious models of the relationship, but should
also lead to interesting developments in the theory underlying money income rela-
tionships. Indeed, in general, the role of phase variation should be examined more
carefully in that allowing for such variation may resolve many current anomalies
in the literature.

7. Summary and Conclusions

A key element in any set of economic time series of any length is the potential
presence of non-stationarity beyond the notion of a unit root. Further, the the-
oretically imprecise statement of the functional relationships between economic
variables has led many researchers to consider non-parametric procedures. An
important class of such procedures is that provided by wavelets. More impor-
tantly, wavelets have some characteristics that make them particularly suitable
as a vehicle for analyzing economic data. Because of the translation and scale
properties, non stationarity in the data is not a problem when using wavelets and
prefiltering is not needed. Further, because of the flexibility in choice of basis
function; that is, choice of wavelet function, and because of the property of “nar-
row” compact support, wavelets are particularly well suited to handle complex
signals that involve cusps, discontinuities, and rapid changes in modeling regime.

For the objectives of this paper, an even more important property of wavelets
involves the separation of time scales of variation into a sequence of scales that can
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Results Null Hypotheses
M1-»NPI | NPI-»M1

D6 (5 lags) feedback 6.398 6.968
(0.000) (0.000)

D5 (20 lags) feedback 4.491 5.242
(0.000) (0.000)

D4 (19 lags) Ml= NPI 3.334 0.809
(0.000) (0.695)

D3 (17 lags) MI —NPI | 1.83% 1.294
(0.023) (0.193)

D2 (23 lags) Ml= NPI 5.620 1.146
(0.000) (0.293)

D1 (14 lags) Ml<= NPI | 1.558 5.194
(0.089) (0.000)

log diff. (12 lags) | inconclusive 0.534 2.063
(0.892) (0.186)

Table 6.2: Results of Granger Causality Tests on Individual Crystals and Log
Differenced Data for M1 and NPI: P Values in Parentheses

Phase shifts IN-OUT OUT-IN IN-IN
Time Period | 1962:4-1967:8 | 1967:8-1974:5 | 1962:4-1974:5
Ml= NPI M1« NPI mconclusive
NPI -» M1 6.401 (0.00) 0.997 (0.434) 0.643 (0.696)
M1 -» NPI 1.465 (0.208) 2.714 (0.020) 0.933 (0.474)
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be decomposed orthogonally. A key premise underlying the research in this paper
is that the relationships between economic variables may be better expressed in
terms of restrictions to given time scales. The idea of time scales in structural
relationships is ubiquitous in other fields including biology and has in fact a long
history in economics. Very simple versions of this notion are captured by con-
cepts of the “short run” and the “long run” and by Friedman’s formulation of
the permanent income hypothesis. For example, the relevant variables, decision
horizons, length of window for time averages, and so on will vary considerably
between the decision to buy a house, or a car, or dinner, or paper clips.

A separate concept that can be easily investigated in the context of a wavelet
decomposition of economic variables is that of the timing of economic relation-
ships and its variation over the business cycle. For example, the timing of the
relationship between money and income may vary with Federal Reserve policy,
even to the point where monetary changes sometimes lead and sometimes lag in-
come changes. Another example is provided by the timing of consumption income
variations which may be affected by expected changes in prices or in interest rates.
These variations in timing are recognized as “phase drift” in terms of the spec-
tral analysis of the data, even after restricting attention to a specific time scale.
That is, as in the consumption-income relationship, there may be time periods
in which the timing of the normal relationship between variables may change;
variables that were in phase, may move out of phase, and variables that were out
of phase with each other may move further apart in time, or come together. The
importance of phase drift is that if ignored in an empirical study, one may easily
conclude that the relationship is a complicated nonlinear function, when in fact
the relationship can be quite simple, but subject to phase drift.

These general ideas were explored in the context of two famous areas of re-
search; the consumption income relationship and that between money and income.

The first case study was that involving the relationship between consumption
and income. We can conclude that an appropriate way to model consumption-
income relationships during the post war period is that at the time scale dominated
by trend, a simple proportional relationship exists and the marginal propensity to
consume is for all goods and services about 0.94. As one reduces the time scale of
analysis, the degree of fit and the slope of the consumption-income relationship
declines monotonically, except for the very lowest scale, which partially reverses
the decline.

The results for the scale analysis of the consumption/income relationship for
durables. are even more interesting. While the overall evidence of time scale
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variation was as important in durables. as elsewhere, there were two other facts
that are of interest. The first involves an unexpected drop in durable goods
expenditure at the highest scale of analysis between early 1979 and mid 1981
approximately. The second fact involved the maximum value for the MPC, which
for durable goods is at the scale of 32 months. In fact, this result is almost entirely
due to automobile purchases and there is some evidence that three years is the
relevant time horizon for automobile purchases, at least over the historical period
studied.

The former fact, the dip in the relationship between durable goods consump-
tion and income, seems to be explained by the strong dependence of the rela-
tionship on the real interest rate. Indeed, we discovered that at the longest time
scales for both durable goods and for non-durable goods that the real interest rate
had the theoretically expected signs, was very highly significant, and explained a
substantial proportion of the total variation in consumption. However, at shorter
time scales the interest rate effect declined dramatically for durable goods and
for non-durable goods there seems to be a moderate positive effect. We specu-
lated that this might represent the effect that when interest rates are high and
have their maximum effect on durable goods purchases, resources are released for
shorter run non-durable goods purchases.

In almost all cases the residuals from the regressions with interest rates in-
cluded were close in distribution to Gaussian and seemed to be both identically
distributed and uncorrelated.

The reader will recall that because monthly measures of GDP are not available,
we used NPI, which is available monthly, as a proxy; this measure while clearly
underestimating GDP seems to be closer to the variation in GDP than the index
measure that has been used in the past. In any event, all the comments to follow
are easily interpretable for NPI and should be indicative for GDP. In terms of the
money income relationships, we observe little evidence of a structural break in
either velocity measure in 1980, although there is a definite, but smooth change in
the rate of increase in velocity using the M1 measure of money at the longest scales.
Indeed, there is weak evidence that the changes that are generally presumed to
have been induced by the Volker experiment between 1979 and 1981 were to some
extent anticipated by subtle changes that were only fully apparent after the end
of 1980, or even later. There was however a rather surprising degree of evidence
for periodicities at certain time scales for the M1 velocity and a seventeen year
cycle for M2 velocity at the very longest time scale. These strongly observed
periodicities are not apparent in the constituent series, so that one may well
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conclude that the observed periodicities are due to the interaction between money
and income at specific scales.

While the distribution of energy, that is the distribution of variance, across
time scales is quite different between M1 and M2 and their corresponding measures
of velocity, the two measures of money are in phase through out the period. But
for M1 and income at the D4 scale, the two series move into and out of phase
with respect to each other over the whole observed period. A spectral analysis
of these two series indicated that over very well pronounced frequency bands M1
and income were very highly coherent and that the phase relationship drifted up
in a smooth fashion. This latter finding is consistent with a relationship between
money and income in which the timing of the relationship is changing over the
observed period. '

The results of applying Granger causality tests between money and income at
various time scales provided very interesting results. First, at the very lowest time
scales we observed that income Granger causes money, but that at business cycle
periods that money Granger causes income and that at the longest scales that
there is apparently a feedback mechanism at work. However, these conclusions
are tentative because of the observed sensitivity of Granger causality tests to
phase drift.

At the business cycle scales, the same scales in which there is phase drift
between money and income, the observation of Granger causality depends on
whether the two series are moving into phase with respect to each other, or are
moving out of phase. More precisely, in one case one can obtain the result that
money Granger causes income and in the other that income Granger causes money,
or neither, or both, depending on the combination of phase changes that are
observed in the data used for the Granger causality tests. This is a result that
requires considerable further research in that its implications for the nature of
the relationship between economic variables and how we discover apparent lines
of causality is crucial.

While further work is necessary in order to pursue these tentative findings, they
are of interest for those wishing to model macro data successfully. The immediate
requirements for further work involve first the confirmation, possibly using data
from other countries, of the qualitative results presented in this paper. The second
step is to explore the potential causes of the changes that were observed in the time
series at the various scales. The empirical resuits lead us to rethink our theoretical
development to include the role of time scale as a characterization of economic
data and to recognize that sometimes the “loss of simple relationships between
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variables” merely indicates the occurrence of a phase shift in the relationship,
that is, a change in the timing of the relationship between variables. Of course,
the corresponding challenge is to discover why the phase shift occurs and what
factors bring the shift to closure. Finally, it is gratifying to be able to indicate
how the role of the real interest rate in consumption can be resuscitated.
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Figure 8.1: Plots of Consumption on Income Using Crystal [S6]. 1960:6-1994:4
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Figure 8.3: Plots of Total Consumption on Income using Crystals [D3], [D2] and
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[D5]. (Income: solid line. Consumption: dashed line) 1960:5 - 1994:4
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Figure 8.5: Real Disposable Income [D5], Real Personal Consumption [D5], and

NBER Business Cycle Dates (Troughs: dotted lines. Peaks: dashed lines) 1960:5-
1994:4
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