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ABSTRACT

The paper characterizes the optimal policy for a model of inspection
and repair when the number of projects is endogenous and the firm maximizes
the discounted sum of returns. A current project is either functioning or
failed, but its status in any period can be determined only by evaluation.

The firm may discard any subset of current projects in each period, but it may
evaluate only one current pProject or one new project per period. We
demonstrate that the optimal policy takes one of two forms. A "discard®
policy specifies that the firm evaluate a new pProject in each period and
discard current projects at some critical age. An "age inspection" policy
specifies that the firm evaluate a new Project only if all current projects

are sufficiently young.



1. Introduction

In this paper, we analyze a model to determine the optimal allocation
of entrepreneurial attention and its relation to the size, growth and
innovativeness of a centrally organized firm. A firm consists of a number of
projects of different ages. In each period, the manager must make two
decisions. First, he must decide which projects to discard, and second, he
must choose between evaluating one existing project or evaluating a new
project for possible adoption. The expected (observed) return to any project
depends only upon its age since its last evaluation, but it can be restored to
a "renewed" project of age 1 with some probability each time it is evaluated.

The state of the system can be characterized by the number of current
projects of each age. Upon evaluation, a project of age i is restored to a
project of age 1 in the next period with probability P;. If a new project is
evaluated, it is adopted in the next period with probability Py. The
objective of the decision maker is to maximize the sum of discounted returns.
Denoting the expected return of a project of age i by r,, the problem is then
completely characterized by the discount factor, B, the sequence of expected
returns to projects of each age, (ri);q, and the sequence of probabilities
with which an evaluated Project of age i can be restored to a new project,
(py) -

Depending on the values of these parameters, we show that the optimal
policy takes one of two forms. If, upon evaluation, the probability of
adopting a new project is large relative to probability of restoring any
current project, then the optimal decision rule is a "discard" policy. 1In
this case, each adopted project is maintained for a fixed number of periods d
and then discarded. A new project is evaluated each period. Otherwise, the

optimal decision rule is an "age inspection® policy. 1In this case, the firm



maintains each current project until some age c at which point it is
reevaluated. (Because only one project can be evaluated in each period, there
will never be more than one project of age ¢, starting from an initial state
with no current projects.) A new project is evaluated only if there is no
current project of age ¢ to be evaluated.

Much of the literature on inspection and repair models derives from
the work of Barlow, Hunter and Proschan (1963, 1965). The basic model
consists of a single project which at any time is either functioning or
failed. A functioning may deteriorate in any moment, but a failed project
remains failed unless explicitly renewed. 1In any time, the state of the
project can be observed at a cost whereupon a failed project may be renewed at
an additional cost. The problem is to determine the age at which a project
should be inspected, given the history of past inspections since the last
renewal. For the case where failure frequency is a Polya frequency function
of order 2 and assuming the objective is to minimize the average costs per
unit time, they derive an algorithm for determining the optimal sequence of
inspection dates.

Assuming the objective is to minimize the sum of discounted costs,
Ross (1971) shows that the optimal policy can be characterized by at most four
intervals of time in which the Project is either unattended, inspected, or
renewed without inspection. Luss (1976) and Rosenfield (1976) further extend
the model to allow the Project to take on a finite number of states which are
ordered so that an unattended Project can only move to a worse state. The
decision to inspect reveals the current state of the Project and the decision
to renew restores the project to the best state. Rosenfield shows that the

optimal policy is similar to the four region policy defined by Ross except



that the regions depend on the state of the system at its last inspection.
Wappanapanom and Shaw (1979) further modify the model to allow for inspection
to affect the rate of deterioration of the project. Starting with Eckles
(1968), a number of authors have analyzed various versions of the model where
the current state is imperfectly observed upon inspection (see e.g. Smallwood
and Sondik (1973), White (1977), Sendik (1978), Albright (1979), and Lovejoy
(1978)).

In the model analyzed in this paper, the inspection and repair
decisions are effectively combined. The main point of departure from the
literature cited above is that, although only a single project can be
evaluated in any period, new Projects can be introduced so that the number of
projects is endogenous. Consequently, the opportunity cost of evaluating any
specific project may depend on the entire menu of currently operating
projects. The simplicity of our characterization of the optimal policy
derives from the fact that, despite the endogeneity of the opportunity cost of
evaluation, the existence of younger projects at any menu actually attained by
the optimal policy does not affect the optimal inspection or discard age of a

current project.

2, The Problem

Time is discrete and indexed by the nonnegative integers. Projects
are indexed by the number of periods since their last evaluation. A project
last evaluated i periods ago has age i and earns a current return r,. Future
returns are discounted by the factor g per period, 0 < 8 < 1,

Let Q denote the set of Sequences (qi):,=1 defined over {0,1} with a

finite sum, and let q and q' denote typical elements. In each period, the



agent possesses some menu of Projects q € Q vwvhere q, denotes the number of
projects of age i. From this menu, he chooses to maintain a submenu of
Projects q' = q from which the firm earns a current return R(q') = E;qq;ri.
All other projects are permanently discarded from the menu.

Simultaneously, either ome maintained project or ome new Project is
selected for evaluation. If a project of age i is evaluated, then with
probability p;, it is restored and appears in the next period as a restored
Project of age 1. Otherwise, it is immediately and permanently discarded, If
4 new project is evaluated it is "restored"” with probability p,.

Let I denote the nonnegative integers. For each q € Q, let
Alq) = ((q',i) € QxI: 9" =q and i >0 implies gq/ = 1) denote the set of
2-tuples consisting of a retained menu and an evaluation choice. A history h
is an 2n+l-tuple of an initial menu and n menu-choice pairs for any nonegative
integer n. A Policy u is a pair of functions (pq,pl) defined on the set of
histories for which (po(h),pl(h) € A(q,) for any history h =
(qn,ql,il,...,qn,in). Given history h, pQ(h) denotes the menu of projects to
be retained by the agent and u;(h) denotes the project to be selected for
evaluation.

Let e; denote the menu q for which g, =1 and 9; =0, j =i, For
qeq, i=1,2,..., let q.; denote the menu g’ such that g =0 and
95 = 4qy, j = 1, and let 99 = q. Let S:Q + Q denote the shift operator
defined by (89), = 0 and (8q), = 4;4,» 1 =1,2,.... For any menu initial
menu q and any policy u, let Pﬁ(q,q’) denote the probability that menu q’ is
realized in period t when policy u is applied to menu q. Similarly, let
R;(q) = R(pQ(q,t)) denote the current return to the retained menu when policy

# is applied to menu q in period t. Then Pz(q,q) =1, and, if q' = Bq(q,0)



and i = u;(q,0), then Rﬂ(q) = R(q’), P;(q,e1+Sq;) =p, and Pﬁ(q,Squ) = 1-
Py

For any policy s and any bounded function G:Q@ » R, let Pz(q)G =
Zwequ(q,q')G(q') denote the expected value of ¢ with respect to distribution
Pz(q). Then W{g) = Z;mﬂtﬂﬁﬁ defines the function on Q which gives the
value of a firm using policy pu. Letting M denote the set of policies, the
maximal value of the firm with an initial menu q is then V(q) =
Sup,u{(W(p) ().

For two real valued functions F,G defined on Q, we write F < G if
F(q) = G(q), g€ Q. A policy p is optimal if W(p) = W(p') for all policies
#'. A policy is stationary if it depends only on the current menu of
Projects. We denote a typical stationary policy by A:Q - QxI.

We assume that Z:;Glrt[ < o and suptzl[z:goriﬂi] > 0. Then, since
A(q) is finite for any menu q, it follows Theorem 7(b) of Blackwell (1965)

that there is an optimal policy A which is stationary.

3. The Main Result

Our objective is to characterize an optimal stationary policy over the
domain of menus which could be realized from an initial menu with no projects
when that policy is adopted. As we shall see, this policy may take one of two
forms. 1In one case, a new Project is evaluated every period and current
Projects are discarded without evaluation upon reaching a critical age. 1In
the other case, each current project is evaluated periodically and a new
project is evaluated only if no current pProject requires evaluation. Which
policy is adopted depends on whether the benefit of evaluating an existing
Project at the prescribed date exceeds the benefit from evaluating a new

Project instead and maintaining the existing project until some later date.



The idea behind the proof is to calculate the value of a project
assuming that the only opportunity cost to evaluating a project is the
foregone evaluation of a new project. That is, we do not consider the
opportunity cost of foregoing the evaluation of some alternative project.
Given this assumption, we calculate the optimal age at which a project should
either be discarded or evaluated.

To calculate these values, consider a project of age 1. 1If it is
maintained until some age t and then dropped for the following period, its
value is ufl‘ = ):Llriﬂi"l. Let u, = supt:_,l{uil. Alternatively, let v: denote
the value of a project of age 1 which is maintained and evaluated after every
t periods as long as it is restored. Since evaluating the project at age t
implies an opportunity cost of foregoing the evaluation of a new project, we
have v{ = Ziﬂriﬂbi + ﬂt”(pt—po)vi which implies that
vi = [Eiqriﬂrﬂ]/[l-ﬂt(pt—po)]. Let v, = supt{vﬁ]. Then, assuming that it may
be discarded immediately, w, = max{w,,v,,0}) is the maximal value of acquiring
a successful project of age 1.

The form of the optimal policy depends on the relative size of u; and
vy. Let u, = uf and v, = v]. That is, c denotes the optimal age at which a
maintained project should be evaluated and d+1 denotes the age at which a
maintained project should be discarded if it is not to be evaluated. Recall
that Q, is the set of menus containing projects no older than k. Then our

fundamental characterization may be stated as follows.

THEORFM 1: (a) If W, = u,, there is an optimal policy X such that, for
q € Qyyy, (1) Aglq) = Q(a+1y» and (ii} X (q) = 0,
(b) If W, = vy, there is an optimal policy X such that, for q € Q,,

(1) AQ(q) = g, and (ii) A;(q) = ¢ if 4. = 1, and A;(q) = 0 otherwise.



Letting a stand for ¢ or d+l as v, is greater or less than u;, Theorem
1 may be summarized as follows. Assuming that the firm has maintained no
projects older than a, the firm should maintain any project of age a or less
and drop any project of age a+l. Its evaluation policy depends on the
relative size of v, and uw,. If v, 1Is less than u;, the firm should evaluate a
new project in each period. We will refer to this policy as the discard
policy. 1If v, exceeds u;, the firm should evaluate a new Project only if
there is no maintained project of age a. Otherwise, it should evaluate the
project of age a. We will refer to this policy as the age inspection policy.

Notice that we have not defined the policy for all possible project
menus. However, starting from an initial menu contained in Q,, all following
menus will also be contained in Q, as long as a policy satisfying the
conditions of Theorem 2 is followed. Therefore, for a firm starting with a
menu in Q,, say q = 0, Theorem 2 completely specifies the actions an agent
should take,

In general, an optimal policy may take a much more complicated form
for project menus containing older projects. First, even if a discard policy
is optimal, it may be optimal to maintain and perhaps even evaluate projects
older than age a if the (r,) sequence is not monotonic. Second, if an age
inspection policy is optimal, it may be optimal to maintain and evaluate
projects older than age a, depending on the current menu, even if both the

(r,) and the (p,) sequences are monotonic decreasing.

4. Proof of the Main Result
Recall that u, and v, are the values of following respectively the

optimal discard and age inspection rules for a project of age 1 assuming that

o

o

o

o

o



the only opportunity cost of reevaluation is forgoing the evaluation of a new
project. In this section, the analogous values are calculated for projects of
any age. We then establish that, for any menu q, the sum of the component
values forms an upper bound to V(q). Finally, we establish that for q €q,,
this value is attained by the policies defined in Theorem 1.

Suppose X is a stationary policy. Then, letting R, = Rg and P, =
Pi, we let T, denote the operator on the set of functions from Q to R defined

by T,G =R, + AP,G. We will use the following monotonicity property.

LEMMA 1: Let G be a bounded real valued function on Q. If, for all

stationary policies A, T,6 £ G, then V =< G.

PROOF: We show first that ¢ > E;mﬁiPﬂg + ﬂtHPf”G for t=1,2,.... For
t = 0, the result follows from the hypothesis that G = T,G and the
definition of T,. Suppose the property is true for i =0,...,t-1. Then
G = )iLA'PR, + B'PiC = TUIgiplR, + B'BYT,G =~ Y ,B'PIR, + gP*Ipt*Ig,

Therefore, since G is bounded and B <1, letting t - o, we obtain
G = ;wﬂiPiRA. In particular, Theorem 1 above implies the existence of an
optimal policy A' such that G > Z;wBiESR)“ But Theorem 6(f) of Blackwell

(1965) implies that J7 A'B'R,, - v. Q.E.D.

Our next step is to construct an upper bound for V., As before,
suppose that there is no opportunity cost to foregoing the evaluation of
existing projects so that w, is the value of a newly evaluated project. Then
the value of a firm with no projects is just the expected discounted value of
the firm in the following period after it evaluates a new project, W, =

Blpgwy+w,] . Solving for Wy, we may define w, = pw,[8/(1-8)].



Next, consider the value of a project of age k. If it is maintained
until age t and dropped for the following period, its value is u;‘ = zz‘,kriﬂi_k.
Let uy = supt{u:}. Alternatively, if it held until ape t and then evaluated,

ik, (pt_po)ﬂtﬂ.-kwl. Let v, = sup,(vS}. Then,

X : t _ Tt
its value is v = 1= B
assuming that it may be discarded immediately, W, = max{u,,v;,0) 1is the

maximal value of a project of age k.

LEMMA 2: (a) w 2 1, + pw,,, k=0,1,2,.... (b) If w, = u,, then
W = YiaFiB 5, k= 0,...,d, and Var = 0. (e) If w, = v, then
W = ZLRriﬂi"k + ﬂ”l—k(Pc‘Po)Wl, k=0,...,c.

PROOF: (a) By definition, either (i) wy, = 0, or there is a

t € (ktl,k+2,...,@) such that either (ii) wy, = }' . r,8™* ! or (iii) Wipy =
t;,k,driﬁi'k_1 + Bt"k(pb-po)wn. In case (i), we have, by definition of W, W =1,
=1, + fw,,,. In case (ii), we have w, =1 + Zi;kﬂriﬁi_k = I + fw,,. In
case (iii), we have w, 2 r + z;":kﬂriﬁi’k + ﬁt‘_kﬂ(pt-po)wn = 1 + fu,,.

(b} Fix k e (1,...,d}. By definition, there is a t > k sueh that

W, = z’i;kriﬁi'k + ,Bt*kﬂwlmax{O,pt-pn} > Zf=kriﬂi_k. Suppose w, > Zikriﬁi_k. Then,
W, = Ef,lriﬂi_l < Z'i::lriﬁi_l + ﬁtwlmax{o,pt-pu}, contradicting the definition of
w;. Similarly, suppose there is a t > d such that w,,, = Z:,dﬂriﬂi"d_l +
ﬁt_dwlmax{o,pt-po} > 0. Then w, = Zf,lriﬂi'l < z:=1riﬂi_1 + ﬂt'wlmax[o,pt-po}, again
contradicting the definition of W .

The proof of Part (c) is similar. Q.E.D.

LEMMA 3: For all q € Q, V(q) < Wy + Z:=1wiqi‘



-10-

PROOF: For each q € Q, let U(q) = w, + Ezllwiqi. If we can show that, for
any stationary policy A, T,U < U, the result will follow from Lemma 1. Note
first that, since w; > 0 by definition, it follows immediately that
U(q') = U(q) for q' =< q.

Now consider any stationary policy A and menu q. Let g’ = Aq{q) and
k = A;(q). Then T,U(q) = R,(q) + BP,(qQ)U = R(q') + ﬁ[pﬁU(el+Sq1k) +
(1-p)U(Sq,)]. If k = 0, then, using the definitions of U and w, and Lemma

2{a), we obtain

o ]
T,U(q) = Zi=1qi ry + Blpgw, + w, + leq{"fm}

S Wy + Yieaiw, = U(q’) < U(q).

Similarly, if %k > 0, then, using the fact that W Z I + B(py-pylw,, we

obtain

o [} o F)
T,U(q) = }imqy Iy + Blpgw, + wy + Zi=1,i#kqiwi+1]

S T+ (PRI BV + Wy + Y1 aqiw < wg + YT qlw, = U(q') < U(q).

PROOF OF THEOREM 1: (a) Consider first the case where w, = u, and the firm

adopts a policy A satisfying Part (a). Then

(1) W) (q) = R(q_44;,) + BlPoW(A) (e1+8(q_(441,)) + (1-PIW(A) (S(q_(g41))) ]

We will show that, for q € Quys W(A)(q) = W, + Ziﬂwiqi. The theorem will

then follow from Lemma 3. Theorem 5 of Blackwell (1965) implies that W(X) is
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the unique solution to equation (1). All that remains is to verify that, for
q € Qquq, WA (q) = w, + Ziﬂqiwi is the solution.
Suppose it is. Then, since Lemma 2(b) implies that W = Zi*riﬁrk,
: d d i-k
k=1,...,d, and W4y = 0, it follows that WA (q) = w, + _1qk[2k*riﬁ ].
Substituting this expression inte the right hand side of equation (1) and

using the definition of w, then yields

WA (@) = R(q_(44qy) + Blpgwy+w,] + ﬁZi=1Wi+1qi = zcii=1riqi + Blpow,+w,]

+ Zg=1[z:=1+1rkﬁk-i]qi =W, t Zfallzgzirkﬁk-i]qi =W, + Zf=1wiqi'

(b) If w, = v, and a policy X satisfying the conditions of Part (b)

is adopted, then W{X) must satisfy, for q ¢ Q..

(2) WA (q)
W{A)(q)

R(q) + B[pW(X) (e, +Sq) + (1-py)W{A)(Sq)] if q. - 0.

R(Q) + BIpW(A) (e1#5(q_.)) + (1-pIW(A)(S(q.))] if 9. = L.

Similar arguments then establish that W) (q) = W, + z;ﬂqiwi is the unique

solution over Q.. Q.E.D.

5. Conclusion

The main result of the paper demonstrates that, over the relevant
domain of menus, the optimal policy takes one of two forms. It is either a
discard policy in which the firm evaluates a new project in each period and
discards any project reaching a critical age d, or it is an age inspection
policy in which case the firm evaluates a new project only if all current

Projects are younger than some critical age ¢. In general, the form of the



-12-

optimal policy may depend in a complicated way on the sequences (r.) and (py).
However, by suitably parametrizing these sequences, it is possible to
establish some detailed comparative statics results as in Gifford (1989).

She uses the model to analyze the factors which determine the optimal
size and innovativeness of an entrepreneurial firm. The firm may maintain an
arbitrary number of projects. In any period, each current project is either
functioning, in which case it earns a positive return g, or is failed, in
which case it earns a negative return -b. The actual status of a project
cannot be observed, but the manager knows that in each period a good project
tends to fail with probability 4. Consequently, the expected return to a
project of age i is r, = (1-¢)ig — ¢'b. Upon evaluation, a new project is
adopted as a "renewed" project with probability p,. If a current project
which has failed is evaluated, it is restored with probability p.
Consequently, upon evaluation, a project of age i is renewed with probability
P = (1-6)" + 4%p.

One important insight is that the propensity for a firm to innovate
may change discontinuously with small changes in its environment. When Py 1is
large relative to p, the firm will adopt a discard policy so that the firm is
characterized by continual innovation. In this case, the rate of innovation
is independent of g/b, ¢, and the expected size (number of current projects)
of the firm. On the other hand, expected firm size increases with g/b and p,,
and decreases with .

When p, is small relative to p, the firm will adopt an age inspection
policy in which case the firm is characterized by much less innovation. New
Projects are introduced only when the firm has been unable to restore an

existing project at some point in the past. Consequently, in this case, the
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rate of irmovation decreases with firm size. Gifford also shows that it is
increasing in g/b and p,. On the other hand, the bound on firm size, given by
the age at which projects are reevaluated, is increasing in g/b and Pg., and

decreasing in p.
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