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ABSTRACT

Standard treatments of heterogeneity components in typical longitudinal analyses can
result in an incorrect parameterization of the survivor model. As a consequence, estimation
bias is not limited to duration dependence but extends to the structural parameters as well.
One approach to dealing with the heterogeneity components is to use a nonparametric mass
point estimator to specify the marginal likelihood. We propose two additional methods to deal
with this issue: maximum penalized likelihood estimation and simulation based estimation.
Maximum penalized likelihood estimates the mixed joint density while smoothing the
influences of unobserved heterogeneity and maximizing goodness of fit. Simulation based
estimation maximizes the Pearson correlation between the simulated and observed frequencies
of duration times based on axioms that describe the data generating process. It is
computationally efficient for large panel data analyses with arbitrary forms of heterogeneity
because it avoids closed—form expressions for the likelihood function. Monte Carlo
experimental results indicate that these methods are computationally feasible and may provide
attractive alternatives to the mass point estimator.

Keywords: survival model; unobserved heterogeneity; semi-nonparametric estimation;
simulation based estimation.

Journal of Economic Literature classification number(s): 211, 841.



LINTRODUCTION

The presence of an unobservable individual factor in modeling survivor hazards is a
problematic confounding factor when the underlying hazard exhibits duration dependence
[Lancaster and Nickell, 1980; Lancaster, 1979; Neyman and Scott, 1948]). Theoretical
treatments [Simar, 1976; Laird, 1978; Lindsay, 1983a,b; Heckman and Singer, 1984; Manton,
Stallard, and Vaupel, 1986] provided ways to control for unobserved heterogeneity in the
context of a mixture probability density. With the exception of Manton et al., these authors
assumed that unobserved heterogeneity was drawn from an unknown distribution which was
independent of the observed variables. Two estimation approaches have distinguished
themselves in the literature: the nonparametric approach of Heckman and Singer [1984] and
the sufficient statistic method of Andersen [1970]. Heckman and Singer adopted a
nonparametric method to identify an unobserved distribution from a mixed distribution
assuming random effects, while Andersen used sufficient statistics to avoid the incidental
parameters problem in assuming fixed effects. Andersen's application of conditional
likelihood, which estimates structural parameters conditional on sufficient statistics for
unobserved fixed effects, has had limited appeal due to the difficulty in finding the sufficient
statistics for particular applications.

In this paper, we propose two new estimators for the survivor model with heterogeneity:
Maximum penalized likelihood estimation (MPLE) and simulation based estimation
(SIMEST). These and other alternatives recently have been used by Behrman, Sickles, and
Taubman [1988, 1990], Behrman, Sickles, Taubman, and Yazbeck [1990], and Behrman, Huh,
Sickles, and Taubman [1990] in studies of mortality that extended the morbidity studies
outlined in Sickles and Taubman [1986] and Sickles [1989]. MPLE is a semi—nonparametric
method based on the conditional likelihood method which has intuitive appeal and is relatively
easy to compute. SIMEST is a computer intensive method based on the axioms which
presumably govern the system's stochastic behavior and minimizes distance between observed
and simulated sample frequencies.

The focus of our research is on estimators of compound processes. However, a number
of authors have pointed out that focusing attention on the mixing heterogeneity distribution at
the expense of a richly parameterized baseline duration distribution may have serious
spefication error consequences [Behrman, Sickles and Taubman, 1989; Han and Hausman,
1990; Kiefer, 1988; Newman and McCullock, 1984; Ridder, 1986; Trussell and Richards,
1985]. The trade—offs between these sources of possible mispecification is a fertile research
topic not addressed in our paper.

The paper is organized as follows. Section 2 presents the generic properties of the



survivor model in terms of a finite mixture continuous time stochastic process. Because of its
ubiquitous use in applied work and because it is the only baseline distribution that can be
viewed as either proportional hazard or accelerated time to failure model, we use the Weibull
hazard model to motivate our theoretical discussion. Section 3 briefly outlines the mass point
method and section 4 its extension to the finite mixture model considered by Heckman and
Singer. Section 5 presents our alternative maximum penalized likelihood estimator and
outlines algorithms that can be used to implement MPLE in survivor modeling. Section 6
shows how a simulation based estimator can be used to handle mixture densities based on
axioms that govern the behavior of the mixture densities. Variants of this estimator,
introduced by Lerman and Manski [1981] and first discussed in the survivor model context by
Thompson, Atkinson, and Brown [1987], have recently been analyzed in depth by Gourieroux
and Monfort [1989], McFadden [1989] and Pakes and Pollard [1989]. In section 7, we present
the data generation design and results from a set of Monte Carlo experiments that assess the
relative performance of the nonparametric maximum likelihood estimator (NPMLE), MPLE,
and SIMEST estimators for the duration model with heterogeneity. Section 8 concludes.

2. THE WEIBULL PROPORTIONAL HAZARD FUNCTION

We begin with a discussion of the Weibull proportional hazard model incorporating
heterogeneity. The functional form for the conditional hazard that we examine in this paper is
a special case of Heckman and Singer's generalized Box—Cox form and is
-1 h(til _)_(_i,Bi) =exp(YIn ti) cxp(&iﬁ + Gi)
for individual i=1,..,N with the log hazard function given by
(2-2) In h(ti| )_(i,ei) =vIn t + Xig + Bi,
where t is the absolutely continuous time of a completed spell, gi is an m—vector of strictly
exogeneous and (possibly) time varying covariates, and where unobserved scalar heterogeneity

is Bi. Censored observations are given by

Ti = Imn(ti,t c)
di = I(t.<t c),

where t. is the censored time of an incomplete spell and I is a indicator function: di =1lifg <



t and di = 0 otherwise. Assuming independence over individual duration spells, the joint
likelihood of duration times and unobserved heterogeneity can be written as:

N
@3 L=Il ft,8]%),
where

h(t;,6; | X;) exp (=] h(s,.8; | X,)ds), ifd, =1
(2-4) f(ti,ei IX_]) =

t
exp{~/ h(s;6; | X,)ds}, if d, = 0.
0

The joint density is
@-5) 8% = 8] X,8) 16,

and the marginal likelihood of duration times, fit, | X,), is

N
@-6)  L=T | gt X.8)du(®),
i=1'@ -

1=

where 6 € © in R and the conditional density, g(-) is the probability density function
corresponding to (2-1) conditional on the distribution K(6). The likelihood function (2-6) is a
typical form of the statistical mixture model. The problem is how to control for the
unobserved mixing distribution p(8) [Lancaster, 1979; Lancaster and Nickell, 1980; Heckman
and Singer, 1982,1984). Standard approaches to the estimation of (2-6) require a parametric
distribution on 6. However, if the density function (®) is specified parametrically, then
estimation bias due to an incorrect parameterization of K(6) is not limited to duration
dependence effects, but extends to the structural parameters of included variables as well.
Moreover, Heckman and Singer [1984] show that the problem of overparameterization can
lead to the observational equivalence of two different sets of distributions.

A class of nonparametric estimators which can avoid the ad hoc specification of the
mixing distribution p®) in (2-6) is the nonparametric MLE [Robbins, 1964; Laird, 1978;
Lindsay, 1983a,b; Heckman and Singer, 1982, 1984]. The following assumptions will define



the estimation problem of (2-6) in terms of the estimation of a general finite mixture density
over the closed interval [a,b].

Assumption 1. The marginal density of duration times, f(-), is bounded and continuous almost
everywhere.

Assumption 2. The countable set of continuous functions gj(-), j=1,..k, is a linearly
independent set over R.

Assumption 3 The functional form of gj(-) is known and is the same for j=1,..k. Each
91,...,9k is an element of the same parameter space ©.

Assumption 1 allows the function f to be semicontinuous while Assumptions 2 and 3 are
essential for the identifiability of the mixture distribution.

Definition 1. If u(-) denotes the probability measure over © defined by p = (pl’""pk)’ then a
finite mixture density function f is defined as

k
@7y f)=) pg|Xe),
j=1

where pj =Pr(0 = Bj) 20,j=1,..k, Ej pj =1,0e Q.
3, THE MASS POINT METHOD

Suppose there are n independent sets of survival times e with densities

t
n
g(tilel),...,g(tilen), i=1,...,n, where 91""’9n are unknown and regarded as a random sample

from the prior u(8). Then the marginal density of ts i=1,...,n, is (2-7). Robbins used

(tl,...,tn_l) to estimate |(8), and then used ﬁ(e) to estimate the posterior density g(-) of 6 1
given t = Simar [1976] proved the existence and uniqueness of the maximum likelihood

estimator of the mixed Poisson distribution. Laird [1978] extended Simar's and Robbins’
methods to handle a general stochastic process model and proved the existence of a
nonparametric representation under a self-consistency property. Lindsay [1983a,b]
subsequently extended and generalized this to any mixture density and proved the existence of



a consistent estimate based on the optimality of the support of the mixture density.
The general maximization problem of the mixture density has a straightforward solution.
From Definition 1, the maximum likelihood estimates become

n k

3-1) max. In L(W) = 2 log [E P; g(ti|9j)].
P =1 =1

If 6ke © maximizes g(-), then (3-1) can be maximized by having all its mass at ék. Suppose
that 6k has a point mass Py with a mixture density g(-) and that 9*={ Oj, j=1....n, j#k} has a

probability mass (I—pk) with density g*( -). Then the estimates are the solution to

n
A * *
(3-2) max In L{n) = Z log [pk g(ti lek)+(1—pk)g (ti|9 )}.
Py i=1
However, since the solution to (3-2) may not satisfy the condition 0 < p £ 1 [Hasselblad,

1966]1, Laird [1978] and Lindsay [1983a] proposed the mass point method by data grouping.
Lindsay's characterization can be summarized by the following theorem.

Theorem 1. [Lindsay 1983a] Suppose that gg = (g(‘t1 |6),...,g(tk|9)) where T K S, 0

€ ©, are the set of distinct values among sample data trerealpys let G = { gg }, and let ¢(G)
denote the convex combinations of at most (k+1) members of G. Then for any |, 3~1)is a
strictly concave function of f('rj |w), j=1,..k. Furthermore, if G and c(G) are compact, (3-1)

has a unique maximum at Qe on the boundary of ¢(G) and Qe can be estimated by k points of
support.

A
The necessary and sufficient conditions for maximizing gg are provided by the Gateaux
variation.

Theorem 2. [Necessary and Sufficient Conditions; Lindsay 1983a] The estimate ﬁ(e "

maximizes (3-1) if and only if D[ﬁ(en),u(C)] < 0 for all © € © and therefore, 9 » is in the
M N —

support of u(en) only if D[p(en),u(g)] = 0 where D[u(el),u(92)] =lim € 1 {In L[(l—e)u(el) +



(3 u(Bz)] ~In L[u(el)]} for some g, and where L({) denotes the degenerate probability measure
which assigns unit mass to 6.

The EM algorithm is useful in solving the nested maximization problems involved in the

solution to (3~1). From Bayes' theorem, the probability that 9i comes from the yth point of
support is

g(t;16) n(6)
(3-3) P(6.c 1(8)) = =1,k

1u(ej) 8(t; 16)

o~ =

.

J

The MLE of pu(8), which is the expected value of Pl(eie u(Bl)), is thus
n
A -1
(3-4) W@p=n"" Y P8 pB)). 1= 1,k
i=1

Equation (3—4) is the E step. The maximization of the log likelihood (3-1) using the expected
value from (3—4) yields the M step [Dempster, et al., 1977]:

n 0 log gﬁ(tilel)
(3-5) E P|(6.¢ W(B)) =0.
i=1 ap

Then, given identifiability and under regularity conditions given in Lindsay [1983a], ﬁ(B n) isa
consistent estimate of p(6).

4. HECKMAN AND SINGER'S NONPARAMETRIC ESTIMATION (NPMLE)

Heckman and Singer {1984] proposed a nonparametric method for the duration model to
evaluate a mixture defined as (2-7), and, therefore, the integral in the mixture (2-6). Their
approach is semi-nonparametric because the need to specify a parametric functional form for
the mixing heterogeneity distribution [£(-) can be avoided. Their approach was based in part
on work by Kiefer and Wolfowitz [1956], Laird [1978] and Lindsay [1983a,b]. Lindsay's
results are used to estimate a mixture density which is the marginal of t. The nonparametric



characterization of the mixture density f(ti | X, takes the form :

k
@D RGIX) =) 8] X8 Py
j=1

where X P.i =1, Pj 2 0, j=1,...,k, k is the number of point of supports, Pj is a probability mass

point and Bj, j=1,...k, is a locator of Pj such that Pj = Prob(9=6j). The loglikelihood of the
marginal density (4-1) is given by

N &
(4-2) InL = 2 In z 85| X;.0))P;
i=1 j=1

For a given number of points of support k 2 1, the likelihood function may have multiple
local maxima unless p(0) has a unimodal distribution. Theorem 2 provides conditions for a
global solution to the maximization of (4-2). The Gateaux derivative, D(8,n), of the
log-likelihood function (4-2) with respect to 6 is defined as

N
@3  DEew=) —ﬂ:—L-q.
=1 f1Xp

The log likelihood function is maximized iff D(O,u) < 0, for all Bi e®chR
Suppose that for each individual i, the function g(t; |>_<i,ei) has a unique mode Bi € ©.
Let © min be the minimum of [Gi} 1 and 9 max be the maximum of {Bi} o Then g(ti|§i,6i)
. .0 ]. In order to find out what value of 9.
min’ max i
maximizes the joint densities of marginal survival times f(ti|§) for the duration model based

should have its support in the domain [0

t.
on the conditional hazard (2-1), let t’; = Jolsycxp(z(_iﬁ)ds and cxp(Bi) = 1):. Rewrite the

*
conditional survival function with respect to t. as:
* * ok
(4-4) S(t; |X.6,) = exp(- t;v;)

*
and thus the conditional density function of t; will be



vrexpl- 1:3), ifd. =1
,,, i ii i
@5 X8 = .

* - - - -
This implies that v, = 1 if the ith observation is censored and thus if the observation is
censored at the end of the sample period then 6, = 0 and 0 i, =0 On the other hand, for an
uncensored observation, the maximum occurs at

* %*
dg(t, |X..0)/dv; =0
and
* & * ¥ % ok
4-6) exp(-tiui) - uiticxp(—tiui) =0,

By solving (4-6) we have

*
where t, is positive and bounded. Thus,

@-7 0, =-In [1/( [§i s'exp(X;B)ds)],

where

6, <0if j(t)l syexp(zi_iﬁ)ds > 1,

0, > 0 if [fi sTexp(X;B)ds < 1.

Therefore, the range of 0 is defined on [~~, »]. However, the distributional form is unknown.

*
Choosing the largest and smallest value of v, from the uncensored observations gives 6 nax

and emi 0’ which are the upper and lower limits on 8. The more censored are the data we use,
the more problematic may be identification of the tail distribution since the small number of



mass points around clustered observations cannot trace a possibly long-tailed heterogeneity
distribution.

Having defined the interval [emm n ax] the EM algorithm [Dempster, et.al, 1977] used
on (3-5) and (3-6) provides a method for the maximum likelihood estimation of the
parameters in the mixture models. The algorithm is computationally slow. However, it is
attractive in situations where methods for maximizing the likelihood over all parameters jointly
are inadequate. Application to the heterogeneity model is achieved by treating the sequence of

unobservables {Bi} as missing data. Consistency of the Heckman-Singer estimators rests on
the assumption that the mixing distribution must be characterized by a finite number of mass
points. As a practical matter the number of these must be small enough for their identification
to be empirically feasible.

5. MAXIMUM PENALIZED LIKELIHOOD ESTIMATION (MPLE)

Maximum penalized likelihood estimation (MPLE) was introduced by Good and Gaskins
[1971] and developed by de Montricher, Tapia and Thompson [1975], and Silverman [1982].
They consider the piecewise smooth estimation of an unknown density function by adding a
penalty term to the likelihood which penalizes unsmooth estimates. The general form of a
penalized loglikelihood under random sampling is given by

N
(5-1) logL = 2 log f(x;) — & R{f(x))
i=1

where f(x) is an unknown density, R{f(x)} < =, R is a functional, and where o is the
smoothing parameter. The choice of o controls the balance between smoothness and
goodness—of-fit, while the choice of penalty functional R determines the type of behavior in

the estimated density considered undesirablc.4 In this section we will consider the application
of maximum penalized likelihood estimation to the hazard function with a mixing

heterogeneity distribution defined in (2—5).5 We point out that the penalty functional in our
problem has both a classical and Bayesian motivation.

Assumption 4. Suppose that the random variables (91, .0 o) are a subset of 9—(91, 40,
with conditional density for duration given as g(t |X 9) i=1,...,n, j=1,..,m, m < n, where the
density of the random variable u(8) is unknown. Let f( ) be the empirical mixture density,



and let the functional form for the conditional density g(-) be completed by a finite vector of
parameters. The empirical density f(-) is a mixture of a conditional density g(-) and a
contaminating density [1(6).

Definition 2. Let the empirical distribution f(-) be semicontinuous (by Assumption 1) and the
mixing distribution p(8) be a dirac delta function. The modified mixture model is defined as

(5-2) f(ti,)_(i,eji) = g, |§i,eji)p(eji), i=1,..n, j;=1,..,m,

where m < n.

Next consider the joint likelihood of the conditional densities given by

n
(5-3a) L= T f(t,X.0.)u®,),i=l,..n, j=1,.m,
i=1 YTV

with log likelihood function

n n
(5-3b)  logL =) log f(t;X;.0,) -y
. 1 .=

(8, ).
i
i=1 1

1

In order to estimate the parameters that characterize the joint likelihood of the conditional
density g(-) represented in (5-3a) and (5-3b), prior knowledge on p(-) is necessary. The
corresponding optimization problem using the log penalized likelihood function and a

particular choice of the penalty function R, suggested by de Montricher, et al. [1975]6 is

k
2)2

£ af £

=14

It
(5-4) logL = £ log f(t.,X..0. ) —
i=1 . B

where the penalty function is the linear combination of the square of the norm of the second
derivative with respect to the included covariates and which varies according to the correlation
between the unobserved heterogeneity and the observed covariates. The functions (5-4) and

k
(5-3b) converge as X ajH f}z) ]|2 becomes arbitrarily close to the density of heterogenecity
j=1

10



p(®). Since the norm of the second derivative weighted by the smoothing parameter
determines the roughness of densities while estimating the best fitting structural relationship by

MLE, the prior density on unobserved heterogeneity u(ej.) in function (5-3a,b) can be
i
approximated by the penalty term nonparametrically if some degree of roughness is considered

unknown heterogeneity. Furthermore, the smoothing parameter o is a hyper—prior which sets
the degree of roughness which can be interpreted as the prior density of heterogeneity. Thus
MPLE can be regarded as quasi—Baysian estimation with hyper—prior o.. In the rest of this
section, we develop (5-4) to handle the problem of unobserved variables under different
assumptions about temporal and cross—sectional sources of heterogeneity.

Case 1: Correction for Individual Specific Heterogeneity. We begin with a single covariate
and heterogeneity that varies across individuals but stays constant through time. The
maximum penalized likelihood estimates are then given by the solution to

(5-5)

n t; di t; l—di
Max L = II [h(ti,xi,ej) exp(—{ ! hex, )d'c)] [exp(—j h(t.x, 8, )dt)] /
i 0 i 0 i

i=1
2
“h(ti,xi,eji) “ .

With the hazard function specified as (2-1), the loglikelihood function corresponding to (5—4)
is

N

t.
(5-6) J=logL=) [di[ vlog t, +x. + eji ] _Jol ] exp(x.B + eji) dr ]
i=1
m-1
%1[2 212
- Z JJ [d { T exp(ij+9j) }/dx ] dr,
=177
where j = 1,..,m~1 denotes the order of bins evenly spaced in the interval I = [xmin’ xmax] and

m-1 £ N. Equation (5~-6) can be reexpressed as

11



N N
1.
-7 J=logL=Y d logh(tx0) - J " h(s;x;8) ds — log Ih(t,x.0)1%.
. Lo
i=1 i=1

Maximization of (5-7) is carried out subject to h(x)e S, h(x) 20, V¥ x € (a,b), for a given set of

points, {xj}, j=1,..m~1, where S = {v]v is continuous in (a,b), v(a) = v(b) = 0, v(z) € Lz,

v@@) = vOp)=0).

The existence of a unique maximum of MPLE was proved by Tapia and Thompson [1978] in
the Sobolev space. For our problem in (5-7), the following theorems are useful:

Lemma 1. The problem (5-7) has a solution if v is a subset of the Hilbert space.

Proof. Let v, = x™ on [0,1]. vn(l) =1#v 5 = 0. i.e. a sequence of {vn} converges in a
L

particular norm but is not pointwise convergence since the point evaluation functional in L2 is
not continuous.o

Definition 3. A Hilbert space defined on (a,b) is a Reproducing Kernel Hilbert Space (RKHS)
if for all x € (a,b) there exists M such that |v(x)| €M ||v(x)|| for all v € H.

Lemma 2. S is a RKHS.

Proof. [v(0)| = [ v(xdx| € [X [vix)|dx < 2 [vio|dx = [2 1 [veoldx < || 1] [veoll, 2.

by the Cauchy Schwartz inequality. Since || 1 || vl 2 = (-2

172
(b-a) |lvllgo

| v "H’ then |v(x)| <

Lemma 3. Let S be a closed convex subset of a Hilbert space H®. Let J:H-R be continuous
and twice Gateaux differentiable in S and uniformly negative definite in 8. Then J has a
maximizer and is unique.

Proof. See Theorem 7 of Appendix I of Tapia and Thompson (1978).0

Theorem 3. The maximization of (5—7) has a unique solution.

12



Proof. From the definition of the norm induced by the inner product and by the linearity of
the constraints, i.e., integration and the inequality, S is convex. Since integration is continuous,
i.e. linear and bounded such that

|j:v(x)dx| = |x v(x)]izg—jng'(x)dﬂ
|j:xvl(x)dx|

3 3.0
<[] 5 VIl 5= 1(0"=a"¥31 7|Vl
L2 L2 H

and since S is RKHS, S is closed. J:H-R is continuous since point evaluation is continuous
(by Lemma 2.) and the functions such as log, summation and the norm are continuous. Let
¥(t) = J(h+m). Then

Y(t) = J(h+t) = log L(h+m)
2 “ VINE
=3 log [h(x) +m(x)] — T _|h(x)+m(x)dx - I[(h+m) (xi)] dx.

i=1 1=1

The Gateaux derivatives of J at h(x) are given as

n
X
(1) . T] (x) n
I A Jﬂ(*i)d" -J 2 [ rn P [Py o
h(x) +me) I
L 2
@  Entexp) 2
7 (t)=— i=1 x1 _[ Zl:n(Z)(xl)] dx
[h(x;) +m@&))*
n
@  Enfeg) 2 2 |
¥ (O)=— ——————-=2|Inl| <-|n|l ,foralln#0 and are symmetric.
2
[ h(xi) 1

Thus the second Gateaux variation is uniformly negative definite and therefore the maximizer
exists and is unique.n

Theorem 4. The maximization of the normm can be solved by a natural cubic spline

13



interpolating (xl,hl),....,(x m’hm)' where m is the number of bins, subject to constraints such
that

2
Max K(h) = || h(t,x,6) [|2= aJ [dz { h(tx,0) } / dx? ] dt
1

subject to

he Cox

min’ max

M =hPx =0,

max
where C2[a,b] is the normed linear space which posses the second derivatives.

Proof. From (5-8) of Theorem 3, the first Gateaux derivative of K(h) at the direction n is
given by

1)
K (Om =- L 2 h %@, dx

-1
= _rn J 2 h(zzx )n(z)(x ) dx.
i=1 Jx.

Integration by parts reveals that the right-hand-side is

m-1
=- 2 26@mPVec)
1=1

X. m—1 (x.
X, 1=1 X 1 y

If h(3axi) is constant, then the second term vanishes since

X.

Jx1+1 Tl(l)(x-) dx ﬁn(xi_}‘l) - T(x;) =0, and N(x)=0 ¥ i=1,..m~1
m_.

- 26@uen Do)

1-1

X.
= 20 P -2 h(22xm)n(”(xm)
=0, Gince h®x))= n®x )=0).

14



Therefore the solution must be a function where the third derivative is constant and satisfies
the conditions of the problem.n

By Theorem 4, evaluation of the MPLE is computationally straightforward. For the
norm of the second derivative, the function f(-) is in the class of generalized cubic splines.
Therefore the interpolating problem is to fit a curve through the points (x;, f(x ), i=1,...,n, in
the plane. A mesh A = {§1(— Xq) < E<. < § (=x,); m<n} is chosen Wlth thc points é j
= 1,...,m, being the knots. For notational convenience, define the knots &. = x., 5 j=1,. ,m,
such that x. are evenly spaced in the interval (x

min"™max
are the meshes coinciding with x. for j=1,..,m. Then a function may be written as a cubic

) by m bins where tJ and GJ , j=1,...,m,

polynomial with mesh A in the interval (x ) having certain discontinuities shown

14X
min” max
where the polynomials join, and the piecewise polynomial is chosen to minimize the mean
square curvature. Consider now its evaluation in practice. Suppose the piecewise cubic

polynomial interpolating (xj,h(xj)) and (xj +1 h(xj 1 j=1,...,m, is given by

59 h(xj) = aj(x—xj)3 + bj(x—xj)2 + cj(x—xj) + dj

where x is a covariate with {xj}, x € (a,b) and j=1,...,.m~1. Using the methods in calculus of
variation [Reinch, 1967] and by taking various order derivatives and evaluating at the knot

points,

_ =19, 0. x.
(5-10) b =h00x) /2,

610 o= (0D, 18 1%, ) -h P 8,60 171665, - %)),
(5-12) o= h(tjﬂ’ejﬂ’xjﬂ) MY
Xi+1 ~
205, 1) [h(z)(tH, L4154 O0,00)
: ,

where h(z)(tj,ﬁj,xj) is the second derivative at knot points (xj, h(xj)). Thus the solution of
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MPLE reduces to the evaluation of h(z)(tj,ej,xj). With the relations (5-10) — (5-13), the

equations relating h(2)(tj,9j,xj) can be obtained based on the continuity of the first derivative
of the spline. We have

(2) 2
(5-14) (x - x 1)h (t. 1) + 2{(xj - xj—l) + (xj_|_1 —xj)} h (tj,Bj,xj) +

1’]1’

2
*i41 _x)h( ' 4104141 =

X - X. X: — X

j+1 7 j T Ml

The conditions, h(z)(xI)= h(z)(x;) =0, lead the recurrence relation (5-14) to a tridiagonal

system of linear equations for h(2)(x1),...,h(2)(x m—l)' The resulting system can be solved by
Gaussian elimination. It follows from Theorem 3 and 4 that the MPLE (5-7) will have a
unique solution.

The expression (5-7) deals with a single explanatory variable but can be extended to the
multivariate case. In the multivariate case, (5-7) becomes

1.
(5__15) ] =log L= E}II=1 [ dl[ 'Ylog ti + X']l:‘p) + e_]i ] —IOI ‘E’Y CXP(X?B + Gji) dz ]

!

X 2

=) alJ' max [dz (1Y exp(xp + 8,) }/d(xl)z] dr
Xmin !

where x'ir= (x .). The maximum exists and is unique for the multivariate case since

11 k i
Theorem 3 and 4 can be applied to a linear combination of separated penalty functions.

Case 2: Correction of Time Specific Hctcrogcneity—"'. Suppose that the omitted variable varies
through time but remains constant across individuals. For i=1,...,n, x € R and t € (0, ti)’ the
estimates are solutions to
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N N
t.
(5-16)  MaxT=Y d.logh(t,x.0) - ) J Fhetx,8) dt — || hx,0) |2,
. 4o
i=1 i=1

subject to h € S = { h e H, h20, 1% 1201, h'P0)=h®(T)=0 } or, with the hazard
function specified as (2-1),

N
t.
(5-17)  MaxJ=) [di[ Yiog t; + x.B + 6 ] —JOI oY exp(xB +0,) dt ]
i=1

T 2
-a JO [dz { ‘c}y exp(xi[.’) +6) ) /d‘t2 } dr,

where T = max{ ti}. The penalty function uses the second derivative of the hazard function
with respect to t. The second Gateaux variation at h in the direction of 1 is given by

n
@ k) 2 2
5-18) ¥ (O=- ———-2n}| <-|n| ,foralln=0.
[ h(t;) ]

The second Gateaux variation is negative definite and therefore a unique maximum exists for
this problem.n According to Theorem 4, (5-17) is the solution of the cubic spline function of
time t.

Case 3: Cormrection of Individual and Time Specific Heterogeneity. Suppose that the omitted
variable varies through time as well as across individuals. The application of MPLE in this
case has the same intuition as Generalized Least Square estimation does in the linear model.
where i=1,..,n, t € (0,T), x € {a,b). In this case the MPLE estimates are solutions to

N N

t:
(5-19)  MaxJ=logL=) d.logh(t,x.0,)-) Jol h(z,x,,8;) 4t — || h(t.x.0) I

i=1 i=1

subject to h € S = { h e H, 20, h{Pe L%@b), 1P@=nPm=0, h®e 120
h2)(0)=h@)(T)=0). With the hazard function specified as (2-1), the MPLE are solutions to
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N 5
620 MaxJ=] [dviogy; +xB+8,] Jo o exp(xB +0,) dr |
i=1

2

_ -1 [Ti+] Y 2

oy ]—IJ' [d { t! exp(xB+9,t)]ldx ]dt
X

—GZJ [d2 ( Tyexp(x B +9 ) }/d1:2 ]zda;

where T = max{ ti}, x e (x min™™ max)’ m-1<n. The penalty function uses the second

derivatives of the hazard function with respect to t and x.
Theorem 6. The problem (5-19) has a unique maximum.

The second Gateaux variation at h in the direction of (nl;nz) is given by

n n
@) Imx) Iy 2 2 2
G20 ¥ Omny =~ - = 2yl - 2l <= fingmyl- for
[hx) P [ h(rp)]

all n # 0. Then the unique maximum exists.o

For these three classes of models with unobserved heterogeneity, MPLE avoids the
problem of overparameterization of heterogeneity associated with parametric approaches
because a parametric specification of the heterogeneity distribution is not needed. It also
avoids the computational problem of alternatives such as the finite point of support probability
estimator (mass point estimator) employed by Heckman and Singer because the heterogeneity
distribution under MPLE is defined by the norm of a certain function. MPLE does not require
a finite mass point. The basic idea in MPLE is to smooth heterogeneity from the likelihood by
including penalty terms which take into account the degree of roughness or local variability
which has not been controlled for by the covariates. MPLE is a versatile method for our
purpose because the functional form of the penalty term R can be chosen according to various
assumptions about the covariance structure of the unobserved heterogeneity whose parametric
distribution is not specified. There has been very little work on the asymptotic properties of
MPLE. However, it is clear that MPLE for our Case 1 problem considered in the Monte Carlo
experiments below is consistent as o/yn - 0 for bounded «, if the mixing distribution can be
characterized by a finite number of supports and if the joint density in (5-4) is characterized
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by (4-1). The reason is that the NPMLE and the MPLE converge to the same function for
large N since the penalty term becomes negligible as estimates of unobserved heterogeneity
become less and less rough.

For our numerical experiments, we have used the discrete minimization routine
(ZXCGR) in the IMSL library since a step function approximation was employed in the

interval (x ) divided by (m—1). The time interval was divided by a natural time unit

. X
min’ max
for Case 2 and 3. When the subjective choice method for the hyper—prior a was introduced,
we increased or decreased ¢ until there was no significant pattern in {Bj} and/or ( Gt} since if

roughness in the function is not smoothed out, estimates of 8 will exhibit wide fluctuations.
6. SIMULATION BASED ESTIMATION (SIMEST)

Monte Carlo approaches to probability calculations are well known in the area of
computer simulation and have received recent interest in econometrics [Gourieroux and
Monfort, 1989; McFadden, 1989; Pakes and Pollard, 1989]. As computing technology
advances to handle bigger inputs with shorter processing time, computer intensive statistical
methods have been introduced and developed to solve more complicated problems in
stochastic process modeling. Simulating methods have many potential values but have not
been widely used in econometric applications since approaches are based on frequency or
density simulation [Lerman and Manski, 1981; Diggle and Gratton, 1984]. For example, the

A
sequence of observations {x} is used to construct an estimate of the true density, f, and then as
A
many independent realizations as required can be drawn from f. However, the construction of
A » -
f is not a easy task, especially with stochastic process models. Thus it may be desirable to

simulate not from t itself but from the underlying true structure of the observed data.

In this section we will apply simulation based estimation (SIMEST) to our heterogeneity
problem. It is a computationally efficient method to estimate stochastic processes since it does
not require direct calculation of the probability densities. The probability density function is
essential for any stochastic process model and its specification is problematic when there is no
closed—form solution for the density functional. Thus it is a common practice to use ad hoc
models though more formal stochastic process models are appropriate. SIMEST is based on
axioms which presumably govern the data generating process and does not require closed form
expressions for the likelihood. The concepts of the simulation based estimation method used
herein were introduced by Atkinson, et al. [1983], Diggle and Gratton [1984] and Thompson,
et al. [1987] and are summarized in Thompson [1989]. Here we will review the work by
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Thompson, et al. and extend their procedure to a multivariate framework.

6.1. UNIVARIATE SIMULATION BASED ESTIMATION FOR THE WEIBULL
PROPORTIONAL HAZARD MODEL

Suppose that we wish to estimate only duration dependence (y) without covariates. The
hazard function is

=t
A= t; exp(8,),
where v is the duration dependence parameter, Bi, i=1,...,n, is an unknown heterogeneity
component and ts i=1,...,n, is time until failure.
Suppose the transition of states follows the Poisson process. According to the Poisson
axioms, the probability that failure can occur in the time interval [ O,ti) is
Pr[x{(t+At)=1] = Pr[x(t)=1] Pr[x(At)=0] + Pr[x(t)=0] Pr[x(At)=1] + o(At).
Let the probability that one failure takes place in {t, (t+At)) be AAt for every t in [0, t) and the
probability that more than one failure happens in [t,(t+At)] is given by o(At) where lim A
o(At)/At = 0. Then
Pr{x(t+At)=1] = Pr{x(t)=1] (1-AAt) + Pr[x(1)=0] AAt + o(At),

and

Pr{x(t+At)=1] — Pr{x(t)=1]}

= A { Pr[x(1)=0] - Pr[x(t)=1] } + oAv/At.
At

Let At-0. Then
dPr[x(t)=1] / dt = A { Pr[x(1)=0]} — Pr{x()=1] }
and thus

(6-1) Prix(t)=1] = At exp(-At)
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(6-2) Pr(x(t)=0] = exp(-At).
The cumulative distribution function for at least one failure on or before t becomes
(6-3) F(t) = 1 — Pr{x()=0] = 1 — exp(-At).

A common practice is to use maximum likelihood with a parametric specification for the
heterogeneity distribution and the probability density function of failure, f(-). An alternative
approach is nonparametric specification of the heterogeneity distribution but with the form of
the density function f(-) required. We wish to estimate the parameter y without specifying the
probability density function.

For the univariate case, we can assume that time to failure for each individual is
recorded as t = ( tls t2$ .....Stn). Using this data we can divide the time axis into k bins, the

mth of which contains n. observations. Having an initial value for the parameter ¥, the
simulation mechanism is employed to generate a large number of simulated failure times s =
(sls szs ....... SsN), where N > n. The simulation mechanism here is the cumulative distribution
function (6-3). From (6-3), we can assume the probability of failure for a certain duration of
time lies within [0,1] by the nature of the cumulative distribution. Then a random number u,,
i=1,..,N is generated from the uniform distribution. Using the generated numbers, the
simulated time to failure s, can be generated by equating u; to (6-3). Let the number of

simulated observations which fall into the mth bin be ka Then the simulated probability of
the mt™ bin becomes B,_(yy) = ¥, / N. If the probability of the data at the corresponding

fa)
bin is Prn =10, /N, the natural criterion function is to minimize the distance between Pkm("(o).
and P This turns out to be Pearson's goodness of fit. Thompson et al. suggest three possible

criterion functions under the equal binning schemc:.8 However, Pearson's function is the only
criterion that remains unchanged when, e.g. two cells are combined into a single cell. The
goodness of fit is defined as

A
@y - P
64 Syp=K = g :
j

where k is the number of bins, f’kj('yo), k2j is the simulated probability of jth bin with

estimated parameter Yo The function (6—4) is minimized when lgkj(l')\r) = Pj, j=1,....k. Once the
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- - . A
criterion function (6—4) converges to a value ¥, confidence intervals for the true value of Y can
be derived using a modified bootstrap method. Let '? be the value 7y that minimizes S(y). The

- A . - 3
estimate Y 1s used to generate M simulated data sets of size n . Having simulated data S ('y)
i=1,..,n, j=1,.,M, we then calculate the criterion function (6—4) for each simulated data set.

Let Sj(y,sn) be the value of (6-4) for the j th simulated data set. The bootstrap mean and
variance can be determined by

E(S(ss,) = —_2 a1 Si0)

Var(S(y.s ) _—2 Hap (S0 ~EGSHs ) ).

A 95% confidence interval for Sj&’sn) is given by

A A A
8,0sp) = E(S(r,s ) + Var(S(y.s ).

Using 'y as the center of a rotatable design, S, (y,s ) can be expressed as the quadratic curve

such that S. ('y,s ) =A + By +Cyy. Then the 95% confidence can be approximated by

6-5)  E(SGs) - Var(S(y.s,)) < A + By +Cyy

<E(S(s)) + var(S(y.s ).

SIMEST can be an attractive method for the multivariate stochastic model. In
Thompson's algorithm, the equal binning procedure is essential to establish asymptotic
properties and is a necessary condition for minimizing the criterion function (6-4) without
defining properties regarding the choice of bin width (k) as well as the number of simulated
observations (N). His equal binning scheme sets the number of observations to be equal in
each bin such that P.i = 1/k, j=1,....k. This equal probability binning is particularly important to

N
dampen the sensitivity of estimates to small perturbations of ¥ from the true value Y. When
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equal probability binning is not possible, we need to define both the bin width and number of
simulated observations in the light of Min Max var{ Pj}, j=1,...k.

6.2 MULTIVARIATE SIMULATION BASED ESTIMATION FOR THE WEIBULL
PROPORTIONAL HAZARD MODEL

Next, suppose that the probability of failure follows the Poisson axioms and is
conditional on a set of exogenous variables and duration time. Then the parameter A of the
Poisson process is given by

=17 i
(6-6) A= t; exp(giﬁi + Bi), i=1,...,n.

We wish to estimate the parameters 8=(,y) by SIMEST. This multivariate sitnation raises
some complexity in simulation procedures. Due to the presence of heterogeneity, it is possible
that A in (6-6) is not monotone in X and t. The nonmonotonicity prevents us from using the
equal probability binning procedure. If we cannot use the equal probability binning procedure,
some modification is needed. First, it is necessary to introduce a robust procedure 10 minimize

the variance of each bin probability (ﬁkj’ j=1,..,k) due to small changes in the value of
estimates of 8. At the same time, we need enough bins to secure the identifiability of the
SIMEST procedure. Second, we need a procedure to avoid empty bins which make the
criterion function uninformative because S(8) - = if Pj=0. Alternatively, the criterion function
(S(8)) has to be modified. Third, it is important to set a criterion to decide how many
simulated observations, more precisely, how many replications for each fixed exogenous
observation, are required. Because of the presence of fixed values of the exogenous variables,
we need to decide the number of replications of simulated failure times (for each set of
exogenous observations) by which the population distribution can be reflected. As a result,
since the first and second problems are essentially the problem of bin width, multivariate
SIMEST has to be considered in a multi-dimensional space with an appropriate bin width and
a proper set of simulated observations.

Suppose we know the proper number of bins in terms of minimizing Mean Square Error
(MSE) and have also decided on a number of replications to reflect the underlying population
distribution. Without loss of generality, we will consider the three dimensional case (i.e. one
covariate(X) and a duration time(t)). Lett = {ti(gi)}, i=1,...,n, be failure time data conditional
on exogenous variable X i=1,...,n, and let k1 and k, be the number of bins dividing the time
axis and the covariate axis, respectively. Then the set of vectors Z = { (tl’xl)’
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(t2,x2),....,(tn,xn)} lies on the real space R? Let m be the number of repeated simulations.
Then simulated time to failure in the time axis will be 0 £ sll(Xl), SIZ(XZ)’ s sln(Xn) .
s21(X1) , 522(X2) y e s s2n(Xn) s eerens ,sml(Xl) , smz(Xz) s seeny smn(Xn) with the
corresponding value of exogenous variable X = {X.} in the covariate axis. The number of

these simulated times and values of a covariate which falls into (El,ﬂz)th bin will be denoted
by V El 6’ where t'l = 1,...,k1, &2 = 1,...,k2. If & is close to the true value, then the simulated

bin probability
v
L4

mxn

6-7) 1’551 L, ® -

should approximate the corresponding portion of data (time and a covariate) in the same bin,

"ot
1
(68 P = .
) fl’ﬁ n

A . -
Therefore Pfl 6 = Pﬂl 5(8)’ fl = l""’kl‘ 22 = 1,...,k2 if & is close to the true value. However,

the asymptotic value of P ¢ 32(8) can only be achieved by increasing the number of
1

observations, n. Since V El 6= m(n 51 a) if 8 is close to the true value, where Bl = 1,...,k1, {é =

1,...,k2, then

v In, ,) n
b _ "45_ 4h
1(n) 1{n) n

(6-9) 1’5,?1 L® -

Equation (6-9) indicates that the number of replications has no effect on the asymptotic value
of f’g ,;2(8). Rather ﬁg 6(8) has a limiting value as the number of observations n goes to
1 1

infinity (McFadden, 1989).

Another unsolved question is how to decide the number of bins, k1 and k2, to prevent
outlier sensitivity. Although a number of data—based density estimators exist, the histogram
method is picked here because of its wide—spread use and its asymptotic efficiency. Scott
[1979] proposed an optimal histogram method in terms of minimizing integrated mean square
error (IMSE). Following Scott's approach, the sum of integrated variance(IV) and integrated
bias(IB) is defined as integrated mean square error (IMSE)
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IMSE = II( ){Var fk(x) + E(fk(x)) - fk(x)] dx
X

where x € I(x), k is the number of bins, fk(x) is the probability in the k th bin. IV can be

approximated by
e 2 Pk(l - Pk)
k nh
k
1 ; P
- Lk
nhk nhk

since Pk is the probability of the k th bin such as szjlk(x) 1f(s)dsand X Pk-:l, hk is the kth

bin width. By the Taylor series expansion of P,
1 . f flzc(x) dx

nhk n

1

+o(n

)

and Integrated Bias is expressed by

P
B=), !

- f(xk) }.

hy

By the generalized mean value theorem, if f is Lipschitz continuous, the integrated bias
becomes

IB = (1/12) h? | (@fxydx)%dx.

Then the minimization of IMSE gives us the optimal bin width, h' = [—& 1(173),

1 *
where R(.) is the roughness of f. In multidimensional spaces, h is approximated by
h’; =35 s;n ~(1/ (2+d)),

where i denotes each axis in the multidimensional space, s is the standard deviation, n is the

%
number of observations. Scott and Thompson [1983] suggest to choosing hi = 2 s; 0

v (4+d)), which has the convergency rate o(n_zl 3), by minimizing the frequency polygon.
Finally we need a minor modification of the criterion function since the presence of
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empty bins will make Pearson's goodness of fit criterion (6—4) uninformative. To prevent this,
the modified Pearson goodness of fit using the results of (6-8) and (6-9) is given by

( ﬁ 6) -P )2
ok 6L 4G

2 ] ]
Sm® = 2[

k
=] ztzzl
] p
45

A 2
B, -p,,)
2 (flé() 4o

itP, , (G).P,, #0
LT 4G

A
ifP, , (5)#0,P, , =0
B,  (5) 4o 4o
46

0, otherwise.

The modified minimization criterion substitutes the observation probability with the simulated
probability when the observed probability of a certain bin is zero. This may be possible since
the simulated probability should approximate the observation probability if the estimate of

A
parameter 9 is close to the true value. The criterion is also minimized when P ), ',2 =P , 6(8),
1 1

(,'1 = 1,...,k1, 6 = 1,...,k2. Once the parameter 3 estimated, confidence intervals for the true
value of the parameter & can be derived as in (6-5). Consistency and asymptotic normality of
the simulation based estimator for large N and M are proven in Lerman and Manski [1981].
McFadden (1989) and Pakes and Pollard (1989) prove similar results for alternative simulation
estimators when the number of simulations (M) is finite.

7. MONTE CARLO RESULTS
7.1 DESIGN OF EXPERIMENTS AND DATA GENERATION

We consider the Weibull proportional hazard model defined in (2—-1) in which observed
data are generated as realizations of the stochastic process

=7  —
hi =t cxp(B0+_X_i§ + ei), i=1,..,n,
where 2 0, X.=(x ;. X5.), B = ([30,131,[32) and where 8.is an unobserved stochastic process

defined on a complete probability space. Heterogeneity, Gi, need not be ii.d., but for our
experiments we assume that it is. The artificial samples are generated by the following
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procedures. First, we draw a uniform random variable u in the interval [0, 1] and generate
heterogeneity Bi according to the implicit function, u , where

—ul ‘=
Bi =H (ui), i=1,..n

and where u—l is inverse of an appropriate cumulative probability function. Next, we draw
values of two exogenous variables §i=(x1i, X2i) from a standard normal random number
generator. Another uniform random number in the interval [0, 1] is drawn for the survival
function Si = (1-F(.)). We then solve for the implied duration t from the survival function
with given values of parameters,  and v. Thus

1
(7-1) t, = exp [{ln(—ln §;) + In(y+1) = By + Byxq;+ Byxop+ 6))) Z),:i“ ]

Different mixing distributions for the heterogeneity are drawn to compare the performances of
the different estimators. We use the standard normal as our unimodal contamination. In
addition, a bivariate normal distribution representing a bimodal heterogeneity distribution, and
a multinomial distribution representing multimodal distribution are also employed. Given the
duration t, from (7-1) with true parameter value BO=0.1, B1=B2='y=l, the right censored times
Tr are set to ensure that about fifteen percent of observations are censored. We increase the
censoring rate to twenty percent. When left censoring is allowed, censoring times Tl are
arbitrarily set to be 1 time-unit since the mean duration of t is 3.43 time units. As a result,
about 25% were censored. Samples of 100, 500 and 1000 are used. These are in the range of
sample sizes for the bulk of empirical duration studies.

Computing algorithms were developed in Fortran77. In addition to the computing
source codes, STEPIT of Chandler [1969] is employed as the maximization method for
SIMEST. STEPIT is useful for the SIMEST procedure because when the steps oscillate it
detects the fashion of zigzags and shortcuts the optimizations. The minimization routine
ZXCGR in the IMSL library was used for MPLE. We also use the computer code of CTM
documented by Yi, et al. [1987] for Heckman and Singer's NPMLE, which is based on the EM
algorithm of Dempster, et al. [1977].

The basic logic of the simulation based estimator in this context is rather
straightforward. Suppose that sample observations for 2 covariates and duration variable t are
given by the data generation procedure described above. The simulation algorithm in each
replication is as follows:
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Input initial values for the parameters [30, [31, BZ’ A

% *
Repeat until t i > 0, where t; is a simulated time,
Generate 9i from U(0,1),

E 3
Generate a simulated time t through the survival function,

if t: > 0, then discard,
End repeat,

*
Return ti.

The simulation algorithm can be easily adapted for more complicated models. Finally, the
method employed to choose the smoothing parameter o of MPLE is the subjective choice
method [Bartoszynski, et al., 1981]. We attempted to adapt the cross—validation method by

minimizing
n
2
CV(a)=n_12 (-t ),
=1 O
where t8 is the inverse function of the hazard function, h, such as F_l(gc_i,h ; 0, @) and where
o

X = (xl,xz), S = (Bl’ [32, Y). However, the evaluation of CV(e) is too computationally
burdensome even for pseudodata sets of size 100 because to find a maximum it requires no
less than: the number of function evaluations x the number of observations x the number of
function evaluations with new ¢. In a typical case, about 14700 iterations were needed for
pseudodata sets of size 100. The adaptation of cross—validatory methods to our model merits
further investigation.

7.2 COMPARISONS AMONG DIFFERENT ESTIMATORS

Typical outcomes of our Monte Carlo experiments are shown in Tables 1-13. These
results are suggestive of some possible discrepancies among the different estimators in
different cases but also suggest substantial comparability between them when the underlying
stochastic process is not too complicated and has been correctly modeled. Table 1 presents
results based on the three estimators when there is no censoring and heterogeneity is drawn
from a standardized normal distribution. Both the duration parameter and structural
parameters are estimated well for all three estimators. We began to estimate NPMLE using 2
points of support to identify the heterogeneity distribution. Since the standard normal
distribution has a mass point at 0.0, one point of support locates at -3.0 with cumulative
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probability 0.0 and the other point is set to locate at 0.0 with the expected cumulative
probability 0.5. However, the sampling distribution of the NPMLE appears to be much less

biased when 4 points of support are used [(8,u(0)) = { (.012,.276), (.232,.343), (1.22,.760) ]]9.
Standard deviations from SIMEST are calculated by the bootstrap method with 30 replications.
The bin width for SIMEST is based on the expression introduced by Scott [1979] which
chooses an optimal bin width by minimizing the integrating mean square error (IMSE) of the
multidimensional histogram. In this case with the sample size of 500, the number of bins is

sixlo. Samples of size of 1000 and 100 require seven bins and four bins for each dimension,
respectively. However, SIMEST continually converges to a local optimum when starting
values quite different from the true values are used. For example, when starting values are
([31,[32,7) = (.4,.4,.4), our estimates are (.532, .613, .276). Results for SIMEST in Table 1 are
based on starting values of (.8,.8,.8). For MPLE, the smoothing parameters, o, i=1,2, are
chosen by the subjective choice method [Bartoszynski, et al., 1981]. We start from ai=10 for

i=1,2. For the purpose of comparison, || h(2)(x)||, the norm of the second derivative of hazard
function with respect to X, was used as the penalty functionll. After searching seven times

for the optimal value of a* using the starting value of o = 10, we found the o for which the

12. When ¢ was chosen between .6 and .4,

{Bj}, j=1,..,m, do not exhibit significant fluctuations
there were no significant differences in both estimates and values of {Bj]. It is possible to
choose the different values for each smoothing parameter but the same value (.5) was chosen
since we generated the pseudodata for X from the same distribution. Finally, the number of
bins to calculate derivatives was 10 in the interval [Emi nma x]‘

We next assume that there is right censoring after 5 time—units, which censors about
15% of the sample observations. As seen in Table 2, NPMLE and MPLE slightly
underestimate the true values. However, the degrees of underestimation for the structural
parameters is greater with NPMLE than MPLE. On the other hand, SIMEST overestimates the
duration dependence parameter, but estimates the structural parameters very well.

The principal findings of our experiments are reported in Tables 3-13. First, both
MPLE and NPMLE perform poorly in small samples while SIMEST performs relatively well.
As the number of observations increases to 500 and more, both MPLE and NPMLE begin to
track the underlying stochastic model, in contrast to SIMEST whose stochastic axioms are at
variance with the data generation process and thus should not be expected to perform well
asymptotically (see Tables 1,3,4).

Second, as we increase the proportion of censored observations NPMLE looses any
advantage over MPLE. Of the three methods, SIMEST appears to be quite robust. However,
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when left and right censoring coexist, SIMEST also becomes unstable (see Table 2, 5 and 6).
Unfortunately since our version of the CTM program - the computing source codes for the
NPMLE - does not appear able to handle left censored data, comparisons with NPMLE are not
available.

Third, Table 7 reports how the choice of the smoothing parameter affects parameter
estimates from MPLE. Two smoothing parameters are chosen subjectively and are used to
estimate MPLE. One is chosen to be 0.2, which is smaller than o =0.5. With this choice of «,
estimates tend to be biased downward. The result is expected because the estimates of MPLE
should be the same as those of QMLE if o = 0. Furthermore, when we select @ to be 1.0,
which is greater than the best choice of o, estimates are also underestimated due to
oversmoothing.

Fourth, the choice of the bin width for SIMEST is quite essential, especially for the
multivariate nonlinear function—fitting problem, because the estimates become unstable as the
chosen bin width differs from the optimal bin width (Table 8).

Fifth, Table 9 and 10 demonstrate the results when the heterogeneity distribution is
drawn from a bimodal and multimodal distribution. MPLE and NPMLE performed well when
actual heterogeneity is not unimodal. However, NPMLE has mass points at (.274, .783, .823)
for a bimodal distribution and shows all negative directional derivatives. For the multimodal
distribution, 4 points of support appear adequate. These results, as well as those with the
unimodal distribution, suggest that the mass point method employed by NPMLE has difficulty
reflecting the true distribution of heterogeneity and that the choice of optimal supporting points
requires further research.

Sixth, we investigated the predictive power of NPMLE, MPLE and SIMEST with
different true parameter values under the complete data with 500 observations. Tables 11, 12
and 13 summarize the results of three different cases. Evidence indicates that these three
estimators have substantial predictive power.

Finally, we repeat the same experiment as many as 100 times for different seed values
and then use the pseudodata set for each estimator under different censoring schemes and true
values. The results are shown in Table 14 to 19. The Monte Carlo results are quite stable,
except those for SIMEST, and support the outcomes of typical experiments shown in Tables
1-13.

8. CONCLUSIONS

This paper has investigated the inherent problems of the duration model in longitudinal
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data analyses where the data are contaminated by individual specific heterogeneity. We have
furthermore outlined and studied several methods well-suited to measure the mixture
distribution. Until the work of Heckman and Singer (1984), few in the field of econometrics
had paid attention to semi—nonparametric estimation methods for the identification of mixed
unobservables. We have proposed two additional estimators which also address the existence
of an unobserved mixing distribution in the sample density. MPLE smooths out roughness
while maximizing goodness of fit. SIMEST is an estimator based on the axioms on which the
structural relationships are based. Our Monte Carlo results suggest that NPMLE has some
disadvantages relative to MPLE when censoring exists but that the two estimators often are
quite comparable. SIMEST appears to out perform NPMLE and MPLE when the censoring
rate grows. However, SIMEST has a serious problem of locating local maximum. It would
appear that the application of SIMEST to the multidimensional model needs more
investigation. Finally, although MPLE performs well in most cases, the choice of smoothing
parameters is an open question when the multiterm of different norms is used for the penalty
function,
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FOOTNOTES

1For the mixture distribution, the likelihood function is often unbounded as oL/06==. See
Hasselblad [1966).

2'For the M-step, we can get the following first—order condition from (2-1):

n d log gﬁ(xi|el)
2 h(8,) =0.
i=1 3

3Hcckmzm and Singer suggested the steps to find a global maximum. For the first step, start

to maximize with one point of support (k=1) with initial value for S(m). Let 8(m+1) denote
the estimated parameter. Divide interval [0 IEI}I)I’ Bé]:u)(} into a representative mass of points of
support (k=1) and find the points which have the Gateaux derivative of the loglikelihood
function, D(B,pl) > @, for all 8 ¢ 8. If there is no point showing the positive Gateaux

derivative, a global solution has been found. If D(B,u1)> 0, add more points of support and

divide the interval. Proceed to the subsequent step until there is termination by the criterion
D(@,p) <0, for all B ¢ 8. Trussell and Richards {1985] suggest that one more point of support
be added until no improvement in the likelihood value is achieved.

4For example, if R is defined as the norm of the first derivative, then a penalty functional R
will smooth the slope of the density f(x) which is semi-discontinuous. If R uses the norm of
the second derivative, the curvature will be smoothed as well. Therefore, this smooth
estimator is an application of the spline function.

5’I'he problems we pursue here are quite different from previous applications which were
limited to univariate modeling under the assumption that the functional form for the density is
unknown. For example, Bartoszynski, et al. [1981] applied this method to estimate Cox's
[1982] proportional hazard function. However, their analysis concerned a smoothed pointwise
estimate of an unknown hazard distribution which is characterized as a dirac delta function.
Other writers who were concerned with the parametric curve—fitting problem discussed the
possibility that the method could smooth out the random error component in the linear least
squares regression model [Kimeldorf and Wahba, 1970a,b; Anselone and Laurent, 1968].

6Good and Gaskins [1971], the first authors who applied this method, based the penalty
1/2

function on the first derivative R(f)=/(f). Since then, a different penalty functions have

been introduced by de Montricher, et al. [1975] and Silverman [1982] such as

{(/dx)>log(x)))? [(£)?

7It should be noted that in the case of no individual specific heterogeneity, the time—specific
heterogeneity and the baseline hazard could be factored out and partial likelihood could be
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maximized [Cox, 1972], resulting in consistent, inefficient and asymptotically normal
estimates. We would like to thank Siu Fai Leung for pointing this out to us.

8Two other criteria to assess the deviation of the simulated probabilities from the actual
probabilities are defined by maximizing the multinomial likelihood such as
k k

A A . ..
Max SI(YO) = E njlnij(yo) or Max Sz('yo) = 2 In ij(yo) depending on the binning scheme.
j=1 j=1
This estimated cumulative heterogeneity distribution could not produce the theoretical
distribution as well as the observed distribution, a phenomenon that was also reported by
Heckman and Singer [1984]. Therefore, for the rest of our study, we give an additional point

of support until no directional directives show positive values and no improvement in the
likelihood value is shown.

10Sincc: the use of 5 bins produced less biased estimates than that of 6 bins, we use 5 bins for
the 500 observation experiments.

11'lT'he second derivative with respect to X was applied because our heterogeneity problem was
defined as Case 1 of Section 5.

12Othf:r estimations took more than a seven—fold increase in search time.
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TABLE 1

(n=500, uncensored)

MPLE! SIMEST NPMLE?
y 934 1.154 967
(.084) (.016) (.070)
By 3243 2.877 2.656
(.379) (.125) (.309)
B, 988 983 971
(.075) (.078) (.041)
B, 956 934 961
(.065) (.024) (.009)
L 685 887% 702

NOTE: True parameter values are y = BI = [52 = 1.
Values in ( ) denote standard errors,
Heterogeneity is specified to be standardized normal.

1Smoothing parameters &, =a,=.5, bin width (BW) = 0.6.

2N umber of simulated observations (SN) = 50000; number of bins for Xps X5 and t is five.

[P ]

Four points of support were used to identify heterogeneity.

4Valuc of the criterion function.
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TABLE 2

(n=500, 15% right censored’)

MPLE2 SIMEST> NPMLE?
¥ 902 1.136 896
(.126) (.037) (.138)
i 7.23 157 10.45
(1.37) (.173) (1.98)
B, 912 1.021 811
(.105) (.056) (.267)
B, 899 1.001 845
(.192) (.034) (.293)
InL 710 1.036 771

See note in Table 1.

178 out of 500 observations are censored.

2Thc smoothing parameter a = 0.55.
3SN=5000(); Number of bins for Xr X9 and t is five.

“Four points of support were used to identify heterogeneity.
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TABLE 3

(n=100, uncensored)

MPLE!  SIMEST? NPMLE>
y 656 823 753
(.299)  (.107) (.145)
ﬁo 3.653 2.111 3.997
(166)  (.198) (.198)
B, 775 1.140 798
(.397)  (.10D) (.487)
B, 718 877 757
(.425)  (.088) (.396)
nL 224 678 295

See note in Table 1.

1Smc»othing parameters 0 = 0, = 1.2,
2SN = 10000; number of bins for X1> X and t is four.

3Four points of support were used to identify heterogeneity.
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TABLE 4

(n=1000, uncensored)

MPLE!  SIMEST? NPMLE>
y 931 752 1.057
(.068)  (.087) (.035)
By 8.271 3.997 9.221
(220)  (.363) (317)
B, 956 812 937
(.043)  (091) (.062)
B, 965 799 958
(.088)  (.071) (.097)
InL 1377 2.07 1540

See note in Table 1.

1 . o
Smoothing parameters 6.y = &, = 0.3.
2SN=10()000; number of bins for X s X and t is seven.

3Four points of support were used to identify heterogeneity.
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TABLE 5

(n=500, 20% censored’)

MPLE?  SIMEST> NPMLE?
y 834 1.165 842
(.239)  (.043) (.210)
Bo 8.611 4.55 12.97
(1.86)  (.327) 2.36)
B, 859 1.199 731
(.237)  (.042) (.296)
B, 862 1.099 720
(.218)  (.037) (.309)
InL 743 1.15 806

See note on Table 1.

11()2 of the 500 observations are censored
2Smoothing parameters are 0.; = @, = 0.6.
3SN= 50000; number of bins for X{» Xg5 and t 1s five,

4Four points of support were used to identify heterogeneity.
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TABLE 6/

(n=500, Right and left censorcdz)

MPLE> SIMEST?

y 697 1.223
(.367) (.134)

By 13.481 8.54
(4.37) ( .56)

B, 766 1.205
(.342) (.097)

B, 733 1118
(.366) (.110)

InL 987 1.46

See note in Table 1.

INPMLE is not available

15% right censored and left censored.

2
3'Smoothing parameters are @; = 0, = 0.7.
4

SN = 50000; number of bins for X» X5 and t is five.
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TABLE 7

MPLE with Different Smoothing Parameters
(n=500, uncensored)

Smoo t hing e=.2 a=.5 a=1.0
parameter
Y 123 934 355
(.156) (.084) (.011)
BO 12.005 3.243 5.811
(3.899) (.379) (3.68)
|31 .661 988 .602
(.423) (.075) (.365)
B2 612 956 .623
(.477) (.065) (.275)
-InL 1079 685 776

See note in Table 1.
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TABLE 8

SIMEST with Different Bin widths
(n=500, uncensored)

Case 11 Case 22 Case 3
Y .435 1.154 .240
(.176) (.016) (.232)
BO 8.243 2.87 13.566
(2.987) (.125) (2.87)
Bl 234 983 .399
(.175) (.078) (.198)
B2 431 .934 356
(.099) (.024) (.101)

See note in Table 1.

1SN=5()000; number of bins for X|s %o, and t is two.

2GN=50000; number of bins for Xp» %, and t s five.
3SN=500()O; number of bins X| =Xy = t = 10.

44



TABLE 9

Bimodal Hetcrogeneityl
(n=500, uncensored)

MPLE? SIMEST? NPMLE*
Y 921 965 .954
(.179) (.046) (.122)
BO 5.753 4.547 4.885
(.366) (.047) (.288)
Bl 923 976 928
(.087) (.038) (.039)
B, 922 955 921
(.071) (.076) (.021)
-InL 743 876 799
See note on Table 1.
Heterogeneity is generated by
2,712 2,2 2 7172 2, 2
du(®)=p (21c01) exp{—0 /201)} + (1—p)(27c02) exp{-(0 /202)] d® where p = .5, Gy = 1,
Gy = 2.
2

Smoothing parameter @ = .65
3SN=50000; number of bins for x;, x,, and t is five.

4Four points of support were used to identify heterogeneity.
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TABLE 10

Multimodal He terofr,(:m:ity1
(n=500, uncensored)

MPLE?  SIMEST® NPMLE?*
y 992 1.002 986
(.005) (021 (.002)
Bo 3,43 2.14 3.16
(.138)  (.015) (.016)
B, 981 977 983
(.012)  (.033) (.001)
B, 966 978 968
.009)  (.019) (.003)
“InL 673 904 676

See note in Table 1.

1Heterogo:m:ity was generated from

du(Gi) =P for i = 1,..,7, where Py =P3=P5=DPy= .1, Py =Py =Pg = 0.2.
2Smoothing parameter o = 0.3,

>SN=50000; bin(x,) = bin(x,) = bin(t) = 5.

4Four points of support were used to identify heterogeneity.
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TABLE 11

The Predictive Power of Estimators
(n=500, vy = 2, [31 = B2 = 1)

MPLE! SIMEST? NPMLE>
y 1.876 2.019 1.941
(.197) (.034) (042)
By 7.453 2.866 5.456
(.254) (.033) (.208)
B, 956 945 968
(.016) (.028) (.007)
B, 947 965 976
(.015) (.024) (.011)
InL 907 998 887

See note in Table 1.

1Smoothing parameter o = (.6,

25N=50000, bin(x,) = bin(x,) = bin(t) = 5.

3F0ur points of support were used to identify heterogeneity.
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TABLE 12

The Predictive Power of Estimators

MPLE!  SIMEST? NPMLE?
y 975 987 992
(113)  (047) (.042)
By 6215 3.664 5.757
(097)  (.012) (.022)
B, 1.831 1.883 1.929
.065)  (.020) (.007)
B, 2772 2.688 2.977
(.069)  (.018) (.010)
InL 861 1.127 837

See note in Table 1,

1Smc»othing parameter o = (0.45.
2

3

SN=50000, bin(xl) = bin(xz) = bin(t) = 5.

Four points of support were used to identify heterogeneity.
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TABLE 13

The Predictive Power of Estimators
(n=500, vy = .5, [31 = [32 =1)

MPLE ! SIMEST? NPMLE>
y 483 510 491
(.066) (015) (.025)
By 6.13 2.443 3.545
(.023) (.018) (013)
B, 971 982 992
(.012) (.014) (.003)
B, 973 985 995
(.008) (.012) (.004)
nL 703 1.307 681

See note in Table 1.

1Smoothing parameter o = (.6,
25N=50000, bin(x ) = bin(x,) = bin(t) = .

3Four points of support were used to identify heterogeneity.
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TABLE 14

Comparison of Estimators with Uncensored Data

(Standard Normal Heterogeneity)

Sample MPLE SIMEST NPMLE

Size

n=100 Y .661(.017)1 .818(.062) .748(.011)
[31 .781(.015) 1.112¢.061) 799(.012)
B2 721(.009) .869(.070) .760(.007)

n=500 Y .933(.005) 1.127(.034) 970(.004)
Bl 983(.010) 941(.063) 973(.007)
[32 950(.009) .932(.056) .960(.009)

n=1000 ¥ .936(.006) T71(.045) 1.054(.004)
Bl .961(.008) .833(.061) 975(.008)
[32 .969(.005) 907(.064) .970(.004)

1V::)Jucs in ( ) represent standard deviations.
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TABLE 15

Comparison of Estimators with Censored Data
(Standard Normal Heterogeneity, 15% Right Censored)

Sample MPLE SIMEST NPMLE

Size

n=100 Y .632(.01 8)1 .796(.043) .622(.018)
Bl 766(.017) .898(.043) .689(.013)
[32 707(.010) .849(.052) 667(.011)

n=500 Y 901(.012) 1.158(.038) .804(.006)
Bl 913(.011) 1.014(.039) .812(.007)
B2 902(.015) 992(.031) .851(.012)

n=1000 Y 921(.005) 886(.022) .916(.003)
|31 927(.009) .805(.034) .799(.004)
|32 933(.007) .847(.031) .815(.005)

1Valuc:s in () represent standard deviations.
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TABLE 16

Comparison of Estimators with Censored Data
(Standard Normal Heterogeneity, 20% RlIght Censored)

Sample MPLE SIMEST NPMLE

Size

n=100 Y .612(.019)1 .788(.148) .621(.013)
Bl 762(.016) .877(.039) .686(.015)
B2 .699(.016) .845(.044) .661(.016)

n=500 ¥ 836(.013) 1.164(.038) .844(.007)
Bl .856(.012) 1.194(.029) JT732(.007)
[32 859(.017) 1.096(.028) 722(.013)

n=1000 Y .865(.006) 891(.027) .887(.005)
B 1 .907(.008) .815(.029) 769(.005)
[32 J913(.008) 837(.038) .809(.007)

IValucs in ( ) represent standard deviations.
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TABLE 17

Comparison of Estimators with Uncensored Data
(Bimodal Heterogeneity)

Sample MPLE SIMEST NPMLE

Size

n=100 ¥ 757(.009) 1 .813(.025) .788(.007)
Bl 843(.011) .872(.031) .854(.007)
B2 .838(.007) .865(.029) .853(.006)

n=500 Y 922(.003) 967(.039) 953(.002)
Bl 921(.005) 958(.021) .929(.005)
|32 921(.006) 947(.024) 921(.004)

n=1000 Y 945(.004) .878(.021) .954(.003)
Bl .970(.004) .874(.034) .975(.002)
[32 975(.006) 905(.035) 977(.003)

1Valucs in () represent standard deviations.
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TABLE 18

Comparison of Estimators with Uncensored Data
(Multimodal Heterogeneity)

Sample MPLE SIMEST NPMLE

Size

n=100 Y .812(.007')1 .832(.019) .828(.005)
[31 .839(.012) .859(.025) B47(.009)
B2 842(.011) .857(.030) .836(.008)

n=500 Y .992(.002) J989(.017) J985(.002)
Bl J980(.003) 971(.020) .985(.003)
B2 .964(.003) J958(.028) .969(.002)

n=1000 Y .994(,002) B877(.024) 985(.002)
[31 J985(.002) .892(.027) J988(.002)
[32 971(.002) 912(.032) 972(.002)

1Valuez:s; in () represent standard deviations.
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TABLE 19

Comparison of Estimators with Uncensored Data

(Standard Normal heterogeneity, B, =B,=1,y=2)

Sample MPLE SIMEST NPMLE

Size

n=100 Y 1.412(.013) 1.542(.037) 1.558(.014)
fil 783(.012) 1.198(.043) .810(.010)
32 771(.013) .852(.042) .801(.012)

n=500 Y 1.872(.005) 2.202(.027) 1.940(.002)
Bl 955(.004) 939(.014) 967(.002)
[52 948(.006) 956(.014) 975(.003)

n=1000 Y 1.883(.003) 1.556(.031) 1.953(.002)
Bl 962(.003) .843(.032) 971(.002)
B2 .956(.002) .889(.037) 976(.002)

1Valucs in ( ) represent standard deviations.
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TABLE 2

Comparison of Estimators With Uncensored Data
(Standard Normal Heterogeneity, Bl =1 ,B2=2,‘y=3)

Sample MPLE SIMEST NPMLE

Size

n=100 Y .728(.018)1 707(.033) 734(.011)
Bl 1.576(.021) 1.576(.049) 1.635(.010)
B2 2.213(.028) 2.478(.062) 2.502(.015)

n=500 Y 973(.002) 982(.019) .991(.003)
[31 1.829(.006) 1.878(.030) 1.928(.003)
BZ 2.774(.005) 2.665(.037) 2.976(.004)

n=1000 Y 982(.002) .835(.025) 992(.001)
Bl 1.838(.006) 1.646(.039) 1.935(.002)
[32 2.778(.004) 2.466(.051) 2.987(.001)

Values in () represent standard deviations.
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