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Abstract
This is a one-agent model of learning by doing and technology choice. The more the agent uses a
technology, the better he learns its parameters, and the more productive he gets. This expertise is a
form of human capital.

Any given technology has bounded productivity, which therefore can grow in the long run only
if the agent keeps switching to better technologies. But a switch of technologies temporarily reduces
expertise: The bigger is the technological leap, the bigger the loss in expertise. The prospect of a
productivity drop may prevent the agent from climbing the technological ladder as quickly as he might.
Indeed, an agent may be so skilled at some technology that he will never switch again, so that he will
experience no long run growth. In contrast, someone who is less skilled (and therefore less productive)
at that technology may find it optimal to switch technologies over and over again, and therefore enjoy
long-run growth in output. Thus the model can gtve rise to overtaking.
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1. Introduction

This paper explores a one-agent Bayesian model of learning-by-doing and technological choice. In the
model, experience yields information, which improves decisions and raises productivity. Once the
productivity gains on a given technology are exhausted, further growth can occur only by switching to
a better technology. How transferable is the previously acquired knowledge in the new activity? This
will depend on how similar the new activity is to the old, and this depends on how correlated their
unknown parameters are. In this sense, transferable information is general human capital, and
nontransferable information is specific human capital.

In its focus on the choice between sticking to a "current" technology and switching to a better
one, our model is closest in spirit to that of [10]. Our paper adds to the literature by analyzing the full
dynamics. Parente, as well as [4], had looked only at constant growth paths, and did not ask whether
these were reachable from arbitrary initial conditions. Globally stable long-run growth can arise in our
model too: For some values of the parameters, the agent switches to a new technological grade infinitely
often. But for other parameter values, an agent will stick to an old technology for ever, and experience
long run stagnation. Moreover, the long-run value of the growth rate may depend on initial conditions.
In particular, "overtaking" may occur -- an agent may be so skilled at a technology that he will refuse
to switch to a better, but unfamiliar one. Such an agent may in the long run be overtaken by an agent
who initially is less skilled and less attached to the technology at hand, and who therefore is more

willing to try a new one.

2. Technological Deepening and Opening
We now model first technological deepening, by which we mean learning more about a given grade of

a technology, and technological opening, by which we mean learning about a new technology.

2.1. Learning a Technology
A risk-neutral agent can produce a good with one of several grades of a technology indexed by

n € [0,). If he uses grade n at date t, a decision z yields net output via the production function?

(la) q=y11-u-2'L y>1




where

(Ib)  yu =0, +w,

is a random target that fluctuates around a grade-specific parameter 0, , and where w, is an i.i.d.
normal variate with mean zero and variance 6,2. The agent knows y and knows the distribution of w,,
. The agent does not know 0, but has some prior beliefs about it. Let E(.) denote the conditional
expectation at t, and Var(.) the conditional variance. Then the optimal decision and the resulting
expected output are’

(2a)  z=E(y.)=E(0,), and

(2b) E(q@) = y'[1- Var(8,)-0,’].

Equation (2b) allows us to think of the posterior precision on 0, as an index of human capital: If the
agent uses grade n, he also observes y,, and learns more about 0,, which allows him to make a better
decision z. This reduces the posterior variance, Var(0,), and raises his expected net output. The
learning process is bounded -- using grade n of a technology forever allows the agent to learn 9,

completely so that E(q) - y"[1 - 6,°], which is finite for fixed n.

2.2. The Transfer of Human Capital across Grades of Technology

There is no direct cost of switching to a different grade of technology, and no cost to adjusting
z. The link between grades is informational: We suppose that the relation between 0, and 0,,, for any
nand k > 0 is:
(3)  0..=a0, +e, wheree, ~N(0,p02) and  p,= {(1'“k)/(l'a) when a1

k when o =1

and where 0_ and e, are independent. (Eq. (3) generalizes the AR-1 process fork=1, 0,,, = Va0,
+ €, ,to adiffusion process). A feature of (3)isthatif a« =1 and q?=0,then@, =8, for
all k, so that human capital is general and freely transferable across grades of technology. If a =0,
human capital is grade-specific.

We assume that the prior over 0, at date 1 is normal. eq. (3), and the normality of w , imply that
the posterior belief at each date over the parameter of any grade, 0,, will also be normal. We define the

following functions of x and portray them in fig. 1:
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h,(x) = 6,x/(0,2 + Xx); (updating)
h,(x,k) = a*x + p,0.2; (transfer of knowledge)
h(x,k) = h,(h,(x,k)). (transfer followed by updating)

Figure 1 around here.

These functions have the following interpretations: Suppose that grade n is the highest grade
that the agent has worked with at the end of date t and suppose his posterior distribution over 0, is
normal with variance x,,, = var,(0,). Ifhe uses grade n at date t+1, he will then see y, ,,, after which
his posterior variance over grade n becomes, via Bayesian updating, h,(x,,). If instead at date t+1 he
chooses grade ntk, h,(x,,.k) is his prior variance at date t over 0,,, ; he will then see y,., ., and his
posterior variance over 0,,, will be h(x, k).

Let x,"”" be the fixed point of the h(.,k) map. Since h(0,k)>0 and h is continuous, bounded and
concave (see Figure 1), X, exists and is unique. Suppose that at each date the agent chooses a jump
size of k. Then the posterior variance over the most recent grade chosen at date t, x,, will be given
by the t-th iterate of the h(.,k) mapping from x=x,. The sequence {x,}"., converges monotonically
to x, .

Throughout we shall assume that the agent is myopic: The agent maximizes current period
return in each period. Define G(x,k) to be the expected net output from initial posterior variance x when

a jump of size k is chosen and the status quo grade is grade 0. Then

4) G(x,k) = y¥[1-0,*-0*x-p,0.7] .

Define x* to be the value of x such that G(x,0)=G(x,1). Since G(.,0) and G(,,1) are linear in x with
slopes 1 and ay respectively, x" is well-defined whenever ay=1 (which, for ease of exposition, we

assume throughout). Throughout, we impose a "No Recall" constraint: Once a grade has been passed

over for a higher grade, it is never recalled. Moreover, we constrain k < 1: any jump size k in [0,1]

is feasible.




3. Case A (Overtaking; Beliefs affect long run growth catastrophically)
We define Case A by the following requirements:
i ay<l; ii. G(0,0>G(0,1) and* iii. x7 < x,".
Even though any jump size k in [0,1] is feasible, Proposition 3.1 will state that in Case A, only k=0 or
k=1 will be chosen. This permits the representation in fig. 2, which shows the expected payoff from

choosing k=0 (the action "STICK") and from k=1 (the action "SWITCH").

Figure 2 around here.

If the initial belief has variance x less than x’, fig. 2 shows that the action STICK dominates
SWITCH. Hence when x<x" the agent will choose to STICK at each date, with the variance going to
zero. If the initial variance X exceeds x* the action SWITCH dominates the action STICK. When
SWITCH is chosen the variance moves toward x,” and therefore stays in the interval (x’,) Hence the
agent chooses the action SWITCH at each date, and the variance converges to x,”. This is a bifurcation
or a catastrophe situation: radically different long-run behavior occurs depending on whether initial

variance is less than or greater than x’. In particular we have the following:

Proposition 3.1. (Qvertaking): Assume Case A. Suppose two agents, I and II, are using the same
grade n and have initial posterior variance, x,' and x,," respectively, withx,’ <x'<x,". Then there
will be overtaking in the following sense: Agent I (who has lower x) initially has a higher expected
output. From some date onwards, Il will surpass I in expected output. In particular, the high human
capital agent, Agent I, will STICK forever, and the low human capital agent, Agent II, will SWITCH

forever.

3.2. Could case A arise in the presence of competition?
The answer is "Yes", although an agent who always chooses to STICK would eventually be
driven out of business by those who chose to always SWITCH. Assume a continuum of farmers that

grow corn, each facing the structure in Section 2. Now add a fixed resource for which farmers must

compete: To plow his land, a farmer needs a bullock. Bullocks live for one period, and they are supplied




by another sector where there is no technical progress: The technology for raising them is fixed through
time, and their price in terms of corn is P(Q), where Q is the aggregate supply of corn. With usual
assumptions on preferences, P(.) would be monotonically increasing in Q without bound.” At t=0,
suppose the status quo for all farmers is n = 0. Farmers ate of 2 types, 1 and 2, having measure p, and
1L,. Suppose that the initial beliefs of type 1's are x =0, while those of type 2's are x =x,”. Then type
1's always STICK, hence their x equals 0 always. Type 2's always SWITCH, hence their x equals
x,”" always. If no one were to exit, aggregate output at t would be Q, =p,(1-0,)+ wy' (1 -x,"-0,?)
. But for a type 1, expected profit, 1- o,> - P(Q), turns negative after some date, and he will
optimally plan to exit then. In short, the strategy "always STICK" may be optimal even when others are
switching, although it drives the stagnating type 1 out of the market and gives him a long run payoff of

zero.®

3.3. Is Case A robust to informational spillovers?

One should distinguish the purely informational effect of spillovers from their implications for
strategic behavior. Concerning the latter, [13], [3] and others have established that the ability to free
ride on the results of experiments performed by others leads players to delay experimentation. But for
myopic agents the incentive to delay in order to free ride is absent, and so in this case at least, strategic
considerations do not matter. On the other hand, the purely informational effect of spillovers acts to
change the one-period payoffs. One may well ask: Can any agent ever get stuck if he can see the
signals of other agents who are upgrading?

The following example shows that the answer is "Yes". Suppose farmer 1 has used method n
=0 for so long that his x = 0. One day, farmer 2 moves next door. He knows nothing about {0,,0,},
and presumes that they are drawn from the steady state distribution implied by (3). Assume first that
o =0 (which satisfies condition (i) defining Case A) . Then for farmer 2, Var 8, =Var 0, =o¢.2 In
the first period, 1 will STICK to n =0, and 2 will SWITCH to n = 1. Suppose farmers 1 and 2 can see
each other's signals. Seeing 2's signal in the_next period raises 1's payoff to choosing SWITCH in
the following period from y(1 - 6.-6,%) to y[1-h(c2)-0,]. Ifthisislessthan 1-0,2 1 will again
STICK to n= 0. But 2 will again SWITCH, this time to n =2. Because a = 0, 2's signals will from

this point on be uncorrelated with 0,, and so 1's payoff to switching to n = 1 remains unchanged. Hence

1 will STICK to n = 0 forever. By continuity, this logic remains intact for the case in which « is positive




but small: For informational spillovers to induce the laggard to SWITCH, they must do so early on,
before the leader pulls so far away that his signals cease to have any significant effect on the laggard's

payoffs.’

4. Case B (Positive long-run growth from all initial conditions)
Case B is defined by the reversal of inequalities (i) and (ii) of case A, but with no restrictions on x"

and x,”":

i. ay>l and ii. G(0,0)<G(0,1).

Proposition 4.1 (Case B). Suppose that Case B holds. Then

(i) (Positive long-run growth) There exists an m>0 and an integer J such that in every J

consecutive periods a jump in grade of size m or higher is chosen at least once. Hence for all
dates t>J, if k, denotes the grade at date t under the optimal policy then k/t > m/(2J).

(ii) (The policy functions). Define k’(x) to be the set of optimal jumps from x: i.e., k'(x) is the set
of maximizers of G(x,k) over ke [0,1]. Then (a) I x>0and x >0 with x < x<e such that
k'(x)=1 for xe [0, x) and k'(x)=0Vx2x and, (b) either O<x<xand k {x) is single-valued and

strictly decreasing inx on (x,x) or 0<x=x and k' (x)={0,1}.

5. A Comparison of Cases A and B

5.1. The role of experience in the two cases

The accumulation of experience with a technology -- i.e., a lowering of x -- in case B promotes
upgrading, whereas in Case A it creates a resistance to it, and can cause a subset of agents to experience
stagnation in the long run. This difference is highlighted in figure 3, which shows that the policy
functions have opposite slopes in each case. The growth literature [7] and [10] emphasizes the growth-
enhancing role played by experience, and neglects the possibility Case A raises, i.e., that specialization
in a technology can kill long-run growth. The parameters & and o, are especially important in

determining whether Case A or Case B will arise. If human capital is very technology-specific (small




o and/or big 6.”) we will have Case A. But if human capital is fairly general (big o and small 6.%), we

are likely to have Case B..

Figure 3 around here

5.2. Do both cases apply in fact ?

With its implication of occasional upgrading, Case B seems to characterize the bulk of the
upgrading behavior of firms -- data on investment in plants show "spikes" at fairly regular intervals,
indicating periodic upgrading of technology in these plants [S]. But overtaking behavior is also
observed: First, [6] and [9] show that (after controlling for observable characteristics) workers with
lower initial wages have higher lifetime wage growth. And second, Korea, Taiwan, Hong Kong, and
Singapore have overtaken many slower-growing countries, and their growth rates continue to be above

average. Thus Case A also seems relevant.

6. Conclusions

Our paper makes two points. First, human capital accumulation on a given activity, eq. (2b), is
linked to how it depreciates when switching to a different activity, eq.(3). The literature [7, eq.s (4.2)
and (4.7)], [10, eq.s (2) and (4)]., and [16, eq.s (1) and (2)] models them separately, but we show that
these two processes are likely to have some common determinants, because a, 6.2, and ¢,2 enter both
equations.

Second, an abundance of knowledge can impede long run progress.®*”>  This happens in Case
A. On the other hand, Case B is like the periodically-upgrading (s, S)-type equilibrium that [10} looks
at. In focusing on steady state growth, however, [10], as well as [4] miss the trap of case A. And,

unlike the [14] and [1] lock-in, say, in which there is less than a critical mass of human capital, here

there is too much.




7. Technical Appendix and Proofs
We define the following

©)) X =0.%/(1-e) whena#1 and ¥ = 1-0,2-X .
For a#1, X is for each k is the fixed point of hy(x,k). The term ¥ will be important in the proofs.

Lemma 7.1. oG (x,k)/0k = y"P[iny] + (ay) (In ay)(*-x) wheno # 1 and
= y*ny[l-0,’- ko2 - (0. /lny) - x] wheno = 1.
Proof: Easy calculus. Q.ED.

Proposition 7.2: (i) x," increases monotonically in k to x,” where x,”=h,(x) when a<1 and
x."'=0,? whenax1. (ii) Theset [0, x,”] is stable (i.e., regardless of the sequence of jump sizes over
time, once the posterior variance enters this set it never leaves it) and is absorbing (i.e., for all >0 and
for all initial posterior variances x, the posterior variance will enter the set [0, x,”+E] in finite time).

_ Proof of Proposition 7.2: First suppose that a<1, so X € (0,°). One may check that for each k>0,
h(x,k) is increasing and concave in x. Since for all k>0, h(X,k)=h,(h,(X,k))=h,(X)<& and h(0.k)>0, we
conclude that x,"*¢ (0,X). However, for any x in (0,X), one may check that for all k’'<k”,
h(x,k")<h(x,k”). It is easy to see that this implies that x,."" <x,.”". Next, for each k, h(0,k)<x,""<h(X.k).

Part (i) of the proposition then follows by noting that both the right and left hand sides of this inequality
converge to h,(X) as k-e. Part (ii) follows almost immediately from part (i). Next suppose that a>1.

Then h,(x,k) is easily seen to be monotonically increasing in k to +e for each x. Since h increases

monotonically to @ .2, the proposition then follows for a>1. Q.ED.

Lemma 7.3: Suppose a<I and W=0. Then the optimal grade is either k=0 or k=1.

Proof: From Lemma 7.1,
6) 3*G(x,k)/0k? = y<[Iny]*¥ + (ay)(In ay)*(X-x).

When P20, 8°G(x,k)/ok? > 0 for each x in [0,X], so G(x,k) is convex in k for all such x. For each

such x, the function G(x,k) therefore attains its maximum over k in [0,1] at one (or both) of the corners




k=0 or k=1.

Next, fix an xe (X,°). When ay<l, we may use Lemma 7.1 to conclude that 0G(x,k)/0k>0
for all k, so the unique optimal jump size is k'(x) = 1. So suppose ay>1 and e<l. Then one may check
that (1/y)0G(x,k)/0k is increasing in k. Hence 0G(x,k)/0k is either everywhere positive, so k'(x)=1;
or 0G(x,k)/0k is initially negative then is positive, in which case the optimal grade is at a corner, 0 or

1; orelse dG(x,k)/ok is everywhere negative in which case k’(x)=0. Hence the lemma holds(. E.D.

Proof of Proposition 3.1: From the discussion preceding the statement of Proposition 3.1 and
Lemma 7.3 it suffices to show that in Case A a<l and ¥>0. However a<1 follows from the fact that
ay<1 and y>1. From Proposition 7.2, x," < h,(X) <X. InCase A x'<x,"", sox'<®.  In Case A this

implies that G(X,1)-G(%,0) is positive . Since G(X,1)-G(X,0)=(y-1)¥ the lemma follows.  Q.E.D.

Lemma 7.4. Suppose we are in Case B and that
(7) when o<I then ¥<0.
For each x>0, there exists a k(x)>0 such that 0G(x,k)/0k is positive, zero or negative according to as
k is less than, equal to or greater than k(x). Hence k'(x)=argmax,. ,,,; G(x,k) is well-defined and
uniquely defined.

Proof of Lemma 7.4: Fix any x>0 and k’>0 and suppose that
) 0G(x,k")/ok < 0.
We will show that this implies that for all k” > k',
C)) 0G(x,k")yok <0 .
It should be clear that showing that (8) implies (9) proves Lemma 7.4.
Suppose that ¢=1. Then from Lemma 7.1, [y*ny]'6G(x,k)/0k = [1-0,%- (6 /Iny)-X] - ko 2.
Since the right hand side of this inequality is strictly decreasing in k, we see that (8) implies (9) when

o=1. Next suppose that a#1. From Lemma 7.1, (1/y*)0G(x,k)/dk = [Iny]¥+ o (In ay)(X-x) . By
hypothesis, the first term [Iny]¥ is negative when a<l. To prove that (8) implies (9) it therefore




suffices to show that

(10)  o*(In ey)(X-x) \

is either strictly decreasing in k or, when a<I, that it is non-positive. In Case B (where ay>1) (10) is
strictly decreasing in k when (i) o<1 and x<X or (ii) o>1 (since thenx <0). Also, (10) is non-
positive when (iii) &<l and x>X. One then checks that (i) - (iii) are exhaustive of the cases where o #1

for Case B. Q.ED.

Proof of Proposition 4.1: (i) When <1 and P>0 we conclude from Lemma 7.3 that k'(x)=1
for x € [0,x"), k'(x)=0 for xe (x",») and k'(x) contains both k=0 and k=1 when x=x". Hence setting
x=x=x" proves all of part (ii) of the proposition for this situation. So we shall now suppose that
whenever a<l1, ¥<0 (i.e., (7) holds). We may use Lemma 7.1 to show that

(11)  whenever ay > 1, 0G(x' k)/ok| ., <8G(xx"k)/okly VX'>x"20 .

When Case B holds, G(0,1)>G(0,0) so k’(0)>0. Fix any x">0 and suppose that dG(x’,k)/dk|,-, > 0.
Then (11) implies that 0G(x",k)/0k|., >0 for all x"<x’. Hence k'(x')>0 implies that k'(x")>0 for all
x”"<x’. Lemma 7.4 therefore implies the existence of an x in (0,] such that part (iia) of this
Proposition holds. For x very large it is easy to check that 0G(x,k)/dk <0 for all k when ay>1, so we
also conclude that X € (0,%). Hence we have an x € (0,e) such that k*(x)>0 for x in [0,x") and k"(x)=0
otherwise.

G(x’,0)=G(x",1) so Lemma 7.4 implies that k’(x") >0 so x'<x. Eq. (7) implies that when a<I,
0G(X,k)/0k |, <0 sox>x. For any x such that k*(x)>0, k’(x) is the solution to dG(x,k)/6k=0 unless the
boundary k=1 is reached. From Lemma 7.1 it is easy to check that this solution is strictly decreasing
in x on (0,x) whenever ay>1, (Where we use the fact that when o<1, X>X, and the fact that when o>1,
x<0).  Hence there will exist an x>0 such that for x in [0,x) the boundary k=1 is the optimal solution
and for x in (x,x), k'(x) is strictly decreasing in x. This completes the proves of part (ii).

(i) We shall prove this for the situation depicted in Fig. 4 where 0=x<x. The situation where x>0

and/or x=x proved similarly with obvious modifications.

Figure 4 around here
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Define the function D:[0,1] - R, by D(k)=x *.  This function is increasing in k (from
Préposition 7.2) and so its inverse function D"'(x) is increasing in x. Also D(0)=0. From the proof
of part (ii) of this proposition, when (7) holds the optimal policy function k'(x) is decreasing in x with
k’(0)>0 and k’(x)=0 for x>x. Hence (see fig. 4) there exists an intersection point (x,, ,M) for these
functions. Fix any m such that 0<m<M. Define x,, to be such that k’(x,,)=m.

From Proposition 7.2 there exists an x_<e such that the posterior variance process enters the set
[0,x.] in finite time and stays there forever after. Hence without loss of generality we may suppose that
the initial posterior variance lies in this set. From any x in (x,,,X.] a grade less than m is chosen. Since
iterates of the function h(x,m) converge to x,,”", and since x,,""<x,,, we may choose an integer J such
that the J-th iterate h'(x.,m) € [0,x,,]. From any x in [0,x,] a grade of m or higher is chosen. Hence

the agent will not choose grades less than m for any J or more consecutive periods. Q.ED.
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FOOTNOTES
"We thank the C.V. Starr Center for Applied Economics at New York University for technical and
financial help, and Chung Tse for help with the research. We are grateful for comments from the editor
and two anonymous referees.
2 Prescott (1972) and Wilson (1975) analyze this type of production function.
* The information that the agent gets depends on n, but not on z. Hence (2a) and (2b) remain valid
even in a multiperiod maximization problem.
4 If i. and ii. hold, but if iii fails, we get the uninteresting conclusion that there is no long run growth
from any initial condition: After finite time the agent chooses k=0 at each date.
> This would occur if, for instance, bullocks could instead be slaughtered for meat, and there was
diminishing marginal utility of consuming corn and meat. A
¢ Att=0, a type 1 is better off than a type 2, and there are real-world examples of that. Think of a type
1 as today's Intel corporation. Despite making a slower computer chip (than the rival RISC chip), Intel
still holds more than 90% of the chip market for desktop PC's, because popular software is largely
available only for Intel-compatible machines (Markoff, 1994). If it doesn't switch to faster chips,
however, Intel will eventually lose its market.
7 From (3), Yo+ =00, + Y, " &€, 1i.j + Wayy . If & is small, the signal's informativeness about
0, decays rapidly as k grows.
8 This is not so in the Multi-Arm Bandit model (Berry and Fristedt, 1985) in which there is just one
decision: which arm to pull -- which is like choosing n in our model. The essential differences are
three: (1) in our model, there is a second decision: how to operate the chosen grade, and (2) learning

is not about the grade's quality (which is known), but about how to operate the grade. (3) the Bandit

model says that, under discounting, the agent may end up on an inferior arm, but (in contrast to our Case
A) it does not imply any tendency for an uninformed agent to overtake an informed one.
® Radner and Stiglitz (1984) show that there may be a noncavity in the value function in a neighborhood

of zero information. Our results do not rely on such nonconcavities.
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FIGURE 1 - The Functions h;, h, and h.
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FIGURE 3 - Policy Functions in Cases A and B




