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Abstract;

This paper examines the many equilibria that arise in a family of linear models in which the
production parameters vary among models. The equilibria are analyzed as points in a graph. The
points constitute a region of the graph with a robust and significant shape. The analysis shows
that the classical linear model of international trade contains within it inherent conflict in the
interests of trading partners. An analysis of various productivity levels in two trading countries
shows that the set of productivity levels best for one country invariably yields poor outcomes for
the other. The conflict entails rivalry over the share of the world’s industries in which a given
country predominates as producer.
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This paper shows that the classical linear model of international trade contains within it
inherent conflict in the interests of trading partners. A systematic analysis of the possible
productivity levels in two trading countries shows that the set of productivity levels in the two
countries that are best for one country invariably yields poor outcomes for the other. This
conflict arises even if there are no attempts, such as tariff wars, to interfere with free trade, and
entails rivalry over the share of the world’s industries in which a given country predominates as
producer. Our results also offer systematic insights on an issue long debated among economic
historians and the general public. When Germany and the U.S. surpassed British productivity did
the U.K. necessarily benefit? Today, is the comparable emergence of Asia good for the Western
countries?'

Manyv Equilibria; Their Di Welfare Effects

As is well known, multiple equilibria arise in trade models with scale economies --
indeed it transpires that there can be very many.? This paper deals with a second case in which
very many equilibria can arise: that of a family of /inear models. Here, the parameters of the
production functions vary from one model in the family to another, each choice of parameters
producing an equilibrium.

Families of Linear Models In our linear model, the quantities g, i produced of each good i in
Country j are determined by linear production functions e; /;;. Each of the two countries
participating in trade has a given utility function of Cobb-Douglas form with demand parameters
d, i We fix the labor-force sizes L; of the two countries as well as n, the number of industries. A
single model is then completely specified by the vector of productivity coefficients e={e;,}.
However, instead of dealing with just one model we will discuss the equilibrium outcomes of the
Jamily of models obtained by considering all productivity coefficients € subject only to a maximal
productivity condition ¢;; < €™,,. This will enable us to analyze the effect of different
productivities on the welfare of the two countries.

Each equilibrium of a family of linear models is represented as a point in a utility versus
relative national income graph, described below. The region of that graph that contains all the
stable equilibrium points for a family of linear models has a definite and characteristic shape.
This shape has its own economic implications. Notably it shows that:

(1) The equilibrium points that yield the highest utility for one trading partner invariably
yield relatively low utility to the other.

'Although our approach on this issue is quite different, our results are completely consistent
with the pathbreaking work of Johnson and Stafford (1993, 1995) and Hymans and Stafford
(1995).

*Gomory (1994), and Gomory and Baumol (1994b) have shown that the most traditional of
scale-economies trade models yields a set of stable equilibria whose number actually grows
exponentially with the number of traded goods.



(2) A country is generally better off with a less developed trading partner than with a
developed one.’

(3) While there are parts of the region where increased productivity in Country 2 yields
improvement in welfare in both Country 2 and Country 1, there are also substantial parts of the
region where generally one country can gain only at the expense of the other.

Relation to Scale Economies: We also show that there is a surprisingly tight connection
between the scale economies and linear cases. Indeed, we will see that, in a wide variety of
circumstances, the multiple equilbria from a single scale economies model are identical with a
set of equilibria from a family of linear models. Thus, what can be described as “the new scale-
economies slant” on trade theory, to which recent writings have contributed so much (see, e.g.,
Ethier (1979), (1982), Helpman and Krugman (1985), Krugman (1979), (1990), and Grossman
and Helpman (1991), Gomory (1994) also casts light on the mechanism of the more traditional
models. We will see that novel constructs from the scale-economies analysis, -- the regions of
equilibrig with their robust and economically significant shape, the critical role of a nation’s
share of real world output, -- are also present where production is linear.

Let us turn now to the analysis that leads to these conclusions.

I1 ic Gr. he Equilibrium Condition

For any given vector of productivity parameters e={e;;} of our family, satisfying
€ <&, there is a stable equilibrium giving a national income Y, and a utility U; for each
country. From the Y; we can compute relative national income Z=Y /(Y +Y,). We can then plot
this equilibrium as a point p,(€) in a (Z,,U,) diagram, which displays Country 1's utility, or as a
point p,(€) in a (Z;,U,) diagram which displays Country 2's utility.

Each € gives us one point in each diagram. The 10 dots in Figure 1a represent 10 such
p,(€) from one of our models. Z, is measured horizontally from O to 1. Utility is measured
vertically with the with the scale chosen so that unity represents Country 1's utility in autarky
using the maximal productivities e™; ;. In Figure 1b we have the p,(€). They have the same Z,
values as the p,(€) but different utility. The unit value of utility now represents Country 2's
utility in autarky using the e™,,.

By combining the two diagrams we can see when equilibria that are good for one country
are, or are not, good for the other. We do this in Figure 1c. The equilibrium of each € is now

*The analysis that leads to this result is not trivial. However the possibility that a country can
be better off when its trading partner is less developed can be shown by the following very
elementary example. Consider two countries with productivities e;; and e, , respectively. Let us
suppose that Country 1 is more productive in every industry, so that ¢; >, for all i.
Nevertheless Country 1 gains by trade, so its utility in equilibrium U, is greater than its utility in
autarky U;*. Next suppose that Country 2 improves its productivity so that for all industries,
¢;1=¢;,. Now the productivities are the same in both countries, there is no comparative
advantage, and no gain from trade. Thus the utility of Country 1 at this new equilibrium is U",.
The improvement in productivity in Country 2 has lowered Country 1's utility from U, to U',.
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represented by both p,(€) and p,(€). The black p, points represent Country 1's utility in Country 1
autarky units, and the gray p, points represent Country 2's utility in Country 2 autarky units. In
the (randomly chosen) example in Figure lc, we see that the equilibria that yield the most utility
for Country 1 tend to yield a low utility for Country 2 and vice versa.

Stable Equilibria: Next we describe the equilibrium conditions that yield these equilibria.. For
this we need some notation. Z; just defined, is Country j' s (relative) national income (Country
J’s share). We normalize analogously all our pecuniary expressions, so p; the price of good i, and
w;, the wage in Country j, are also divided by total income Y.+ Y,. * Country j’s consumption of
good i is denoted by y;; and its production of good i by q;; Country j's production share or
market share of world output of good i is represented by x; =q;;/ (q;;+q;,), so that the vector
x={x;;} describes the pattern of production. We can now describe our equilibrium conditions,
noting that, henceforth, the term “equilibrium” will mean stable equilibrium.

First, (relative) national income of Country j must equal the total revenue from domestic
and foreign sales of that country’s products. Since with a Cobb-Douglas utility function Country
i’s expenditure on good i will be d,;Z; , this condition’ is:

2.1) Ei A Zyvd ) = Z,
Second, we have a zero-profit condition. World expenditure on Country j's output of good
i all goes into the wages of the labor /;employed in that industry, so:
(2.2) w; by = %0, Z,+d, ) Z)).
Third, is the full-employment requirement for each country. This is expressed as the
condition that the wage rate times the country's total labor force equals national income:®
23 w L = Z,

Fourth, we have the requirement that, for cach good, quantity supplied equals quantity
demanded, or equivalently, that the value of the output of good i at the equilibrium price equals
the amount consumers are willing to spend on it

2.4) Plgiy*q;) = 4 Z2+d 2, or  pg = w

where the second form of (2.4) follows directly from the first by multiplying through by x;; and
using (2.2).

*For example, let Y,=Z;p;q;, with the p’; , the prices of the goods q,, given in some arbitrary
units. We divide through by Y,.+Y, and obtain Z, = Z;p, g ; Both Z, and the normalized prices p,
=p’; /(Y ,+Y,) will now be unaffected by the original units of price.

*There are of course two equations, one for each j value. However since Z+Z,=1 and
X; 1 +x;,=1 the two equations are dependent. If one is satisfied the other is too.

® This also implies that the exchange rate w,/w, is proportional to Z,/Z,.



Finally we have the stability conditions that make entry by non-producers unprofitable.
These require producers not to have higher unit costs than non-producers For example if
Country 1 is the producer in industry i and Country 2 is a non-producer, we must have e /w2
e;,/W,. More generally:

if x>0 and x;,=0 then e, /w ze, ,/w,
2.5) if x,,>0 and xu:O then el.,]/wlsel.'zlw2
if x>0 and x>0 then €, 1/w1=€,/w,.

The third condition in (2.5) requires that, if both counties produce, neither can have lower unit
costs than the other. The conditions (2.5) are, of course, a form of the familiar comparative-
advantage criterion.

In our model then, equilibrium is determined by the relative national income relation,
supply-demand equality for each good, zero profit in each industry, full employment in each
country, and the stability conditions. It is easily shown that when these conditions hold trade
must also be in balance.

ilibri iti =(2.4): If any x and Z, satisfy (2.1) then together
with any € they immediately determine wages w=(w,,w, ), prices p, , labor quantities /, i
production quantities q;;, and consumption y;; that satisfy (2.2) (2.3) and (2.4). To see this we
note that if x and Z, are chosen, they determine wages w; through (2.3), then labor quantities L
through (2.2). With the /;; known the quantities produced g; j are calculated from q;=e;; /;; and
then the prices p, from (2.4). The consumption quantities y;, are found by dividing the known
Cobb-Douglas spending, d;,Z; by the prices p;.

Equivalent Equilibria. To make visible the market shares and the Z, of equilibria, we adopt the
notation (x,Z,,€) for the equilibrium determined by the productivity parameters €={e;;} and
having market shares x={x;;}, and relative national income Z, for Country 1.

Generally a large € means high productivity and high utility, and therefore produces
points high up in the either diagram. When the e; | are large relative to the e;,, Country 1 is the
producer in most industries so Country 1's share is large. (x,Z,,€) will have a large Z,, and pi€)
is near the right edge in both diagrams. Large e, , relative to the e, , yields points near the left
edges.

One point in a (Z;,U;) plane can correspond to many quite different equilibria. The
following definition reduces this duplication somewhat. Two equilibria (x,Z,,€) and (x,Z,€’) are
equivalent if they differ only in the productivities of industries in which the country is nof a
producer. Equivalent equilibria have the same quantities of labor employed in each industry and
have the same outputs, the same Z, the same x, and the same utility. They correspond to the same
point in the (Z,,U;) plane.

It is sometimes useful to have a normal form for equilibria in the same equivalence class.
For this we set e;;=0 whenever Country j is a non-producer of good i. The normal-form
equilibrium is the most stable member of the class in the sense that it most strongly fulfills the
stability requirements (2.5)



Structure of the Region, We describe the region of equilibria by means of a curve Ui=B*(Z)),
which we call the supremum curve of the equilibrium points. The supremum curve B*(Z))
traverses each diagram completely from left to right, and every point below B*(Z,) (and no point
above it) is an equilibrium point of the family. B¥(Z,) then completely defines the region of
equilibria.

The first step in showing this regional structure is:

Lemma 2,1 There are equilibria for every Z,, 0<Z<1.
Actually there are many equilibria for each Z,, but one suffices for our purposes.

Proof: To construct the desired equilibrium choose any x satisfying (2.1) for the given
Z,. That is, choose any production pattern x that produces the given national income Z, Ifx; =1
and x;,=0, choose any ¢, ,>0 and e, ,=0. If x;,=1 and x;,=0, choose e,,>0 and ¢;,=0. If both
variables are positive for some industry i, choose e;, =w, =Z /L, and ¢,, = w, = Z,/L,,. These
choices clearly satisfy the stability condition (2.5). By Property 2.1, the wages, prices, etc. that
they generate satisfy the remaining equilibrium conditions, so this is an equilibrium.

Lemma2.2 If (x,Z,€) is an equilibrium of the family, so is (x,Z,,A€) for all positive A such that
Ae, ce™*

Prt;of: Cldearly the equilibrium conditions (2.1)-(2.5) remain satisfied and the parameters do not
exceed e™;,

Thus, given an equilibrium (x,Z,,€) on Z,, if we steadily decrease the e,; by multiplying
them by a A<1, the new equilibria have the same x and Z,, and consequently the same w and the
same /;;. However the quantities produced, the g;; will decrease because the g; =Ae; ;hjand A is
decreasing. Therefore U, and U, decrease and the point in either diagram moves steadily down,
tracing out a vertical line of equilibrium points with decreasing utility. This shows:

Lemma 2.3 If (x, Z,€) is an equilibrium on the Z, vertical line with utility U, all the points
below (Z,,U,)) on that vertical line are also equilibria.

Now we can establish our theorem:

Theorem 2.1- (Regional Structure Theorem): There is a curve U=B *j(Zl) such that every point of
the (Z,,U,) diagram under U;=B*(Z,), and no point above that curve, is an equilibrium point.
Proof: There are equilibrium points on any vertical line by Lemma 2.1. These points are bounded
above because the ¢;; and the /;; are bounded, and therefore the q;; and U; are also. Define
B*,(Z,) to be the supremum of the equilibrium points on Z,. Suppose there is a point p
somewhere below the supremum curve that is not an equilibrium point. Suppose p has horizontal
coordinate Z,. Since B*,(Z)) is the supremum, there are equilibrium points on Z, between it and
p- But then Lernma 2.3 asserts that p must also be an equilibrium. This contradiction proves the
theorem.?

The supremum curves B¥,(Z,) are usually quite jagged, even discontinuous, especially
for models with a very small number of industries. Even for larger problems they can be quite
jagged in detail. Fortunately, the B*(Z,) can be approximated very well by an upper frontier

"That there are (many) such x follows from ¥’ (d;,Z,+d;,Z,)x, ;=1 when x; =1 all i, and
Y (d,\Z,+d;,Z,)x, ;=0 when x;,=0 all i.

3All points on the curve B*(Z,) itself can also be shown to be equilibria.



curve B,(Z,) that is both well behaved and easily calculated, to which we turn next.
We show first that the frontier curve is obtained by a simple linear programming

calculation, and then, that it is close to the supremum curve. Then we can analyze the shape of
the equilibrium region.

Utility and Linearized Utility. We can, in principle, obtain a particular value U=B*(Z,) by
maximizing utility over the equilibria for any given national income Z,. We can obtain the entire
boundary curve by repeating that process for each Z,, or approximate the curve by many
repetitions. We will come quite close to this. However, the task is eased considerably by use of a
simplified but equivalent maximization problem that for each Z, is linear in the x.

This requires two steps. (1) We modify utility, the maximand, to make it linear in x for
fixed Z, , and (2) we confine ourselves to equilibria with share Z, using constraints linear in x for
Jixed Z,.

Step 1. Linearizing Utility: Utility is a function of y;;, consumption of good i in Country j. The y;
are determined at equilibrium by the equilibrium Z, and x as described in Property 2.1.
Specifically, y;; is obtained by multiplying world output of good i, which is (q; ;+g;,), by the
fraction of world spending on good i by Country j, F,(Z,) = d;, Z,/(d; ,Z,+d; ,Z,).

Consumption at equilibrium can be expressed entirely in terms of the equilibrium x and
Z, by:

¥:;~Fi (2} {qi,l(xi.l’zl’e)+qi,2(xi,2’zl’€)}

(2.6a) d Z+d Z, d,Z,+d Z)L
where g, (x,,Z,.€)=e, 1, =e, (x, J.¢--w—-'-’~—) =e, (%, — Z = =7y,
J i

(2.6a) enables us to express Cobb-Douglas utility for Country j, U;(x,Z,,€), or its logarithm
w(x,Z;,€), in terms of the equilibrium x and Z,:

(2.6b) In l]j('x’zae) = uj(x,Z,E) :Ei d;"]ln yj‘l :Z!‘ di,]lnFjui(Z){qi,l(xi’liz’e) +q¢',2(x,~,2aZ,E)}-

To linearize the nonlinear utility (2.6b), just as in Gomory 1994 and Gomory and Baumol 1994b,
we define the linearized utility for any triple (x,Z,, €} whether or not it is an equilibrium, by:

(2.7) Luy(x.Z,.€) = Ei{ X, (d | InF, (Z))g;,(1.Z,€)+x;, (d;,InF; (Z))q,(1.Z.€)) 1.

This expression is linear in the x;; for fixed Z. The x;; have moved out of the q;;(x;;.Z,,€)
which have become the q;,(1,Z,,€), the quantities that would be produced if Country j were the
sole producer. (2.7) deals with a weighted sum of outputs of sole producers rather than with the
quantities actually produced. Nevertheless we have:

Theorem 2.2: The utility u,(x,Z,,€) and the linearized utility Lu,(x,Z,,€) are equal at every
equilibrium point.

Proof: The proof is straightforward but tedious. It proceeds by comparing the ith term in
each utility expression for the three cases: x; ,>0 and x;,=0, x;,=0 and x;,>0, and x; >0 and x;,>0.
They are equal in all cases.



An Upper Boundary for the Region Using Linear Programming. The next step is:
Step 2 -Linearizing the constraint: We adopt as a linear constraint the equation (2.1) which

requires total revenue to equal Z,. This is satisfied by any equilibrium x and Z, as well as by
many non-equilibrium x,Z, pairs. We are now ready for the maximization problem.

Let €,,,,={e™,; } represent the vector of maximum productivities. Consider the curve
B,(Z,) obtained by solving, for each Z, the problem of maximizing the linearized utility subject
to the linear constraint:

In B(Z)=Max_Lu (x,ZI,emax)

(2.8) subject to E d Z+d,Z) %, = Z, and x,,+x,,=1

The resulting curve B, (Z,) lies above the supremum curve U;=B*,(Z,) because: (1) all equilibria
(x,Z,,€) with relative national incomes Z, satisfy the constraint (2.1) and were included in the
maximization, and (2) at those equilibria u,(x,Z,,€)= Lu,(x,Z ,€) < Lu,(x,Z,,€.,,). S0 we have
proved:

Theorem 2.3; The supremum curve lies below the upper frontier curve: B*,(Z,)<B,(Z,).

B,(Z) is produced by solving the very simple linear program (2.8), so it is easily and
rapidly computed and its shape can be analyzed. This analysis uses the fact that the optimizing x
of a one-equation linear programming problem has at most one index i for which x;, and x; , are
both positive. Therefore, the optimizing production pattern of (2.8) has at most one shared
industry. We will use this property in showing that there are always equilibria near B,(Z,), so the
curves B, and B * are close.

Theorem 2.4 - (Nearby Equilibrium Theorem): The production pattern x that maximizes (2.8)
for some Z, value always has a (nearby) equilibrium e =(x,Z,,€,) with the same x and Z, and with
e;;=¢"*;; in every producing industry except the one shared industry.

Proof: From Property 2.1 we know that since x satisfies (2.1) it also satisfies equations
(2.2)-(2.4) for any choice of €. We can easily choose e={¢;;} to make x satisfy the stability
conditions (2.5). Start with e=€,, and modify it as follows :(1) In single-producer industries, if
the non-producer has lower unit cost, lower the productivity of the non-producer until its unit
costs are higher than those of the producer. (2) In an industry where both countries produce,
lower the productivity of the country with lower unit cost to produce equal unit costs in both
countries. With this e=¢, comparative advantage is satisfied and e,=(x,Z,,€,) is the (nearby)
equilibrium required by the theorem.

In step (1) above we changed the productivity of a non-producer. Such a change has no
effect on utility. Therefore the utility change from B(Z,) to e, must come entirely from the one
shared industry. That change is easily estimated®. Since e, must lie under the supremum curve

’The largest change in the utility that this can produce is, (letting k be the shared industry)

B.(Z e"‘a" s e™ w, %
~—1( % < (max{ WEAe
U (x.Z.€) e 2Iw2 e, lw




B*,, B¥/(Z,) is even nearer to B,(Z,) than ¢ is. This leads to the:
Approximation Corollary: The ratio B,(Z, )/ B,*(Z,) is always < (max(R,/(w/w,),R,/(w/w))".
Here D=max; d, ,, Rj=max; (¢™; ,/e™, ), and R, = max;(e™™, ,/e™, ).

The Nearby Equilibrium Theorem and the Approximation Corollary suggest that in large
problems, where the one shared industry is likely to be only a small slice of the total economic
effort, we can expect the two curves to be very close. To prove this we need some preliminaries.
Convergence in Large Problems: Any one family of equilibria is completely characterized by the
number of industries n, the labor force sizes L, and L,, the demand parameters d. . ;» and the
maximal productivity vector €,,,,={e™; .}. We will say that a family has extremeness bounded
by Kif

€ . :
LJ/L<K, LJLsK d <K (3, aeg, 2y
=2 1 ij n o M ¢ Max

i2 i1
K restricts the extremeness of the variation in country size, productivity advantage, or in the case
of the restriction on demand, the amount by which the demand for one good can exceed the
average demand 1/n. If we restrict the extremeness of our models, their boundaries B, and B*,
converge as they become large:

Theorem 2.5 (Convergence Theorem): For any sequence of models with extremeness bounded by
K the curves B *(Z,) and B,(Z,) of the nth problem approach each other as n-ce,

Proof: The formula in the Approximation Corollary shows that the nth model in the sequence
has its By(Z,)/ B,*(Z,) bounded by:

s (max (R/(w /w,), RJ(w,/w)) ¥ < (K*max (Z/Z2,Z/Z, Y" which approaches 1 as n—o

So for models with large numbers of industries the region of equilibria becomes almost identical
with the region under the frontier B,(Z,).

II1 ha f ion an nt Confli

Next, using frontier B, (Z,) as the upper boundary, we study the region of equilibria for
Country 1. Figure 2a shows the characteristic regional shape. It also contains a vertical mark to
show the Z, value of the equilibrium obtained when both countries attain maximal productivity
(e=€,,,). We call this equilibrium the “classical point” and its Z, value the “classical level” Z.
Gomory and Baumol 1994a show that B,(Z,) always starts from a zero utility level at Z,=0, rises
steadily to a point that is always to the right of the classical level Z., and then declines to the
autarky level.'” Later we will explain the econoinic reasons for this characteristic regional shape.

Obviously, the best outcomes for Country 1, those with greatest utility, are at or near the

‘°Our theorems actualy assert that the Z, value of the peak Z,, is >Z and equality is possible.
However it takes a very special choice of {¢™;} to get Z, even near Z..



peak of frontier B,(Z) and to the right of the classical level. Figure 2b shows the corresponding
region for Country 2, with the best equilibria for Country 2 to the left of the classical level.
Figure 2¢ combines Figures 2a and 2b.

Figure 2¢ makes it clear that, because of the position of the peaks, the cutcomes best for
Country 1 are always poor for Country 2 and vice versa. A country that is successful in
maximizing its utility does so at the expense of its trading partner. Thus there is inherent conflict
in the interests of trading partners in this classical trade model.

Irading with a Developed Country: We can see what happens to Country 1 if its trading

partner is what we will call “fully developed”, i.c., if e; ;=™ ,.

Theorem 3.1 (Fully Developed Country Theorem): If Country 1 trades with a fully developed
Country 2, the resulting equilibrium will always have Z,<Z,.. This means that Country 1 is
confined to the relatively poor outcomes shown in the left half of Figure 2a.

Proof: Suppose that there is an equilibrium e* with Z,;> Z and with e;,=e™ ,. At this
equilibrium (by 2.3) since w=Z/L,, we have a higher wage for Country 1 and a lower wage for
Country 2 than at the Classical Equilibrium In every industry we have e, /w,=e; L /Z, <
€™, 1La/Z¢ so Country 1 unit costs have gone up compared to the Classical Equilibrium. Country
2 unit costs, e, ,/'w,= ™, L/(1-Z,)>e™, ,L,/(1-Z.) have gone down. Therefore at e* Country 1
produces only in a subset of the industries in which it produced at the Classical Equilibrium.
Furthermore, in each of those industries, the higher C ountry 1 wage means that the amount of
labor employed, /; ,=(d; ,+(Z,/Z,)d; ,)L.,, has strictly decreased. Therefore the full employment
condition can not be fulfilled at e*. This contradiction ends the proof.

If trading with a developed Country 2 yields relatively poor outcomes for Country 1, what
kind of a trading partner is good for Country 1? We discuss this question next.

The Ideal Trading Partner. We define Country 2 to be Country 1's ideal trading partner when
Country 2's productivity parameters ¢;, are those that permit Country 1 to achieve its largest

possible utility. We will sce that this ideal trading partner produces few of the world’s goods, but
produces those goods very efficiently,

Finding the Ideal Trading Partner. Without loss of generality we can assume that Country 1 has
attained maximal productivity, i.e., ¢; =™, for all i. We calculate the regional frontier B,(Z,)
and locate the Z, value Z, of its peak. As noted, Z, always lies to the right of the classical level.
Then for Z, we find the maximizing x of (2.8). We then convert x into the equilibrium ¢, using
the Nearby Equilibrium Theorem. We assert that the e, of €, are the parameters of the ideal
trading partner.

While we will not prove this here, we will try to make it plausible. Actually the result
seems plausible from what we already know about the nearby equilibrium point e, For e, does
give an equilibrium very near the peak, which is what the ideal trading partner is intended to do..
However there is one problem; in creating the equilibrium e, from the maximizing x and Z, we
changed the e™; to stabilize the equilibrium. We must make these changes in the e, to stabilize
the equilibrium and define the ideal trading partner. But we can’t change the e, because the

—rMax

e;;=¢"";, are the given characteristics of the Country 1 whose ideal partner we are seeking.
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Fortunately, to the right of Z, the e™, | do not change in constructing e_.!1!?
Characteristics of the Ideal Trading Partner. Figure 3 shows the result for a 22 industry model.
The equilibrium point for Country 1 is the dot at the peak. Country 2's corresponding equilibrium
point is also plotted. In this case 15 of the 22 goods in the model are produced in Country 1, 6in
Country 2, and one is shared. This fits with Country 1's Z, value of 0.73.

In models run with Z near 0.5, shares of roughly 0.7 for Country 1, and 0.3 for its ideal
trading partner, are typical. For two identical countries an explicit formula can be obtained for
B,(Z) (see Gomory 1994). It shows that for identical countries” Z is always 0.5, and Z, is 0.76.

The productivities of its ideal trading partner allow Country 1 to make most of the
world’s goods. Country 2 also is at its maximum productivity in its smaller share of industries
except possibly in the one shared industry (Nearby Equilibrium Theorem). A high-technology
country making most things for itself but trading for a few goods with an agricultural country
can be an example. We emphasize that this outcome, while very desirable for Country 1, is not a
good one for Country 2.

Departure from the Ideal. Any departure from the ideal trading partner production parameters
by Country 2 has a detrimental effect on Country 1. If Country 2's production parameters
increase, this hurts Country 1, if Country 2's parameters decrease, that too hurts Country 1. For
example, if the ideal trading partner becomes very highly developed so that all its parameters e;,
are increased to €™, ,, the result is the classical equilibrium.The dots directly above Z_ in Figure
3 show this equilibrium. It clearly represents a loss of utility for Country 1 and a gain for Country
2.

Economic historians have long debated such questions as whether the U.K. lost out or
benefitted from the relative rise in productivity since the 19th century in countries like Germany.
Our analysis shows that the effect cannot be determined simply from the change in German
productivity, but requires knowing whether Germany, for example, moved closer to or further
from being an ideal partner for the U.K. given U.K. productivities at that time.

"'t is plausible, and also provable (see Gomory (1994), or Gomory and Baumol (1994b)),
that to the right of Z,, the maximizing solution x from (2.8) assigns to Country 1 all the
industries in which it does have a cost advantage, in addition to some others in which it doesn’t.
In symbols, for Z,>Z, x; =1, x,,=0, whenever e™, /w, > e™*,,/w,. In constructing the nearby
equilibrium, stability only required us to change Country 1's parameters when Country 1 was the
lower cost producer in an industry in which Country 2 produced, i.e., x;,>0. As we have just
seen, Country 1 is never in this situation, so its parameters never have to be changed.

“To determine the ideal trading partner for Country 1 when the e; , are not the e™ | it is
sufficient to recalculate the regional boundaries treating the actual e, ; as if they were a new set of
€™, ;, and then compute the e, near the peak of this new diagram.

“More precisely for identical regions, i.e., €™, =e™*,,.
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ic Explanation of the Regi In most of our work'* we derive the shape of

the equilibrium regions rather rigorously. Here, we describe in a more intuitive way the
fundamental economics behind the regional shape.

For simplicity assume that both countries have the same Cobb-Douglas demand
parameters, so that d; ;=d, ,.=d,. Both countries then have utility U; = I, (y, J-)di where y;; is Country
j’s consumption share of Q,, the world production of the ith good. Consumption y; ; in turn is
determined by each country’s spending d; Z; on the ith good. With symmetric demands,
consumption is y;; = (dZ;/ (dZ,+d.Z,))Q, = ZQ,.

We first discuss world economic outcomes rather than outcomes for the individual
countries, so we will need some measure of world economic outcome. World consumption of
each good is y;, +y;,=y;=Q, so that it is natural to measure world utility U, by U, =IL y%
=ILQ.%. With this measure of world utility, Country j’s utility simply equals world utility
multiplied by Country j’s share U=II, (Z,Q)" = ZU,,.

Next we plot for each equilibrium the world output point (U_,Z, ) and examine the
resulting region of world outcomes. We assume that the region of world outcomes has an upper
frontier that can be approximated by a reasonably smooth curve," It is the shape of this curve
that interests us.

At the extreme right edge of the diagram, near Z,=1, we can easily see what world utility
is. There Country 1 makes almost everything and Country 2 almost nothing, so the world output
is very close to what Country 1 makes in autarky. Similarly, at the left end, the value of the world
output is near Country 2's autarky value. This explains the two low end points of the boundary
curve. Next we seek its highest point.

As a promising option we set all ¢;; = €™, and find the resulting classical equilibrium.
At this equilibrium (1) all producing industries operate at maximum possible productivity, and
(2) each county that produces in a given industry is the lower cost , or, at worst, the equal cost
producer. This seems hard to exceed. This intuition is roughly correct; the highest point of the
boundary is usually at or near this point, so the maximum is located at or near the classical level.

Putting together what we know about the highest point and the left and right hand ends
we obtain the dome shaped region of world outcomes shown in Figure 4a. The dome shaped
boundary is low at either end and peaks near the classical level. This shape is intuitively
appealing, when either country is held back world output is low, and when both operate at full
potential we get the best world outcomes.

Next comes the critical step, generation of the individual-country frontiers. Since
Country 1's utility is simply its share Z, times world utility U,,, Country 1's utility at Z, =0.25 is
0.25U,, at Z,=0.5 itis 0.5U,,, at Z;= 0.75 it is 0.75U,, etc. Plotting all such points we get the
familiar frontier for Country 1. This is the second curve in Figure 4a. We can repeat this for
Country 2 yielding the curves in Figure 4b. We see that the shape of the countries’ boundary
curves, and the location of their peaks, is the unavoidable result of the dome shape of world

"See for example Gomory and Baumol (1994b),

"“This can be shown by redoing the preceding analysis using world utility instead of country
utility.
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output, and of taking each country’s share of it.

This intuitive argument'® relies heavily on symmetric Cobb-Douglas utility. However any
world output measure that produces a dome-shaped world output region and bears the same
relation to individual country outcomes will do. An important example is national income. If we
were using national incomes Y, and Y, as measures of individual country output, we would use
Y=Y, + Y, for world output. Since Y, = Y(Y,/(Y,+Y,)), we have Y,=Z,Y, and similarly Y,
=Z,Y. Careful analysis of our model then shows this world outcome region to be dome-shaped.
This dome-shaped world output region then yields the same familiar shape for the individual
country regions."’

IV. Maxim ivity Equilibria and the Subregion of Maxim roductivit

A maximal productivity equilibrium is one at which the producing industries in each
country are all at their maximal productivities, i.e., ;>0 implies e;;=e™",;. We will show that the
maximal productivity equilibria all lie in and tend to fill up a crescent shaped subregion of the
region of equilibria which we call the subregion of maximal productivity.

There are several reasons for special attention to this subregion of maximal productivity.
(1) It is the part of the region of equilibria with most-direct conflict between trading partners, (2)
its equilibria are the limit points of of learning-by-doing models, (3) it contains all the efficient
equilibria of the family, and (4) it bears a special relationship to economies of scale models. All
these attributes are now explained in turn below.

A Lower Boundary for the Subregion Using Linear Programming. If we increase

parameters of a maximal productivity equilibrium (x,Z,,€) from € to €,,,, we do not change the
(already maximal) parameters in the producing industries. Consequently the linearized utility of
the new triple (x,Z,,€,,,,), is the same as that of (x,Z,,€) because only productivity parameters in
non-producing industries have increased. Therefore, for maximal productivity equilibria,
Lu,(x,Z,,€)=Lu,(X,Z,,€,,,,)- This enables us to prove:

Theorem 4.] (Subregion Theorem): All maximal productivity equilibria lie within the subregion
bounded above by the upper frontier B\(Z,), and below by a lower boundary BL,(Z,) defined by
the minimization problem:

In B\(Z))=Min_Lu,(x,Z.€_. )

@.1) subject to E,- d, .z, +d,Z V%, = Z, and x, +x,,=1.

(4.1) is exactly the same as (2.8) except that it is a minimization rather than a maximization

'*The Appendix revisits this intuitive material and illustrates our analytic methods, showing
that the world outcome boundary is quasi-concave. It therefore ascends monotonically to a peak
and then descends monotonically. We conjecture that this behavior holds for a much wider class
of utility maximums.

""This analysis is available from the authors.
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problem.

Proof: If (x,Z,,€) is a maximal productivity equilibrium, its x and Z, satisfy the equation
in (4.1) and was considered in the minimization problem. Therefore Lu, (x,Z,.€,,,) 2 In BL,(Z)).
However for a maximal productivity equilibrium Lu,(x,Z,,€,,,)= Lu,(x,Z,,€)=InU,(x,Z,€). This
gives us U,(x,Z,,€)> BL(Z,) which proves the theorem.

The properties of the lower boundary BL,(Z,) are similar to those of the upper frontier
B,(Z,) and can be established by similar analyses. To the left of the classical level BL,(Z,) is
monotone increasing with Z;; it eventually rises above the autarky level and then descends again
to the autarky level at Z,=1. The region of maximal productivity for Country 1 is shown in Figure
5a, Figure 5b shows it for Country 2, and the regions for both countries are shown together in
Figure 5c.

Location of the Maximal Productivity Equilibria in the Subregion: In the proof of the Nearby

Equilibrium Theorem we constructed an equilibrium point p close to B,(Z,) and having the same
Z,. Atp all the industries except the one shared industry were at maximal productivity, and, in
fact, one of the two sharing producers was also. This construction can be slightly modified to
yield a true maximal productivity equilibrium p’ very near p but with a slightly different Z,. This
indicates that there are maximal productivity equilibria near every point of the upper boundary.
This approach also applies to the lower boundary and, with further modification, to any point
lying between B (Z,) and BL,(Z)). This indicates that there are maximal productivity equilibria
near any point of the subregion.'

This suggests that under the assumptions of the Convergence Theorem there will be
maximal productivity equilibria arbitrarily close to any point in the region as n, the number of
different industries, increases. This fill-in effect is already clear with fairly small n, such as the
n=13 model of Figure 6, and then strengthens very rapidly from there.

Almost all of these maximal productivity equilibria will turn out to be perfectly
specialized, with any good produced only in one country.” So the subregion actually fills up
with specialized equilibria. Each has the form x=(1,0,0,1,1,0......,) with ¢, j~¢™; foreach 1 and
e,;=0 for cach 0. There are 2"-2 of them.

Economic Interpretation and Consequences. In equilibria below the region of maximal

productivity there are always producers who can improve their productivity. In almost all cases
they can do this without changing either x, the pattern of production, or relative national income

"*This is an intuitive sketch of the proof in Gomory (1994) that specialized equilibria “fill up”
the region defined by (2.8) and (4.1). Although that proof was for economies of scale it includes
the results described here.

% For the ith industry to be shared between producers we must have e/ e =W fw,=
Z\L,/L, L= Z,1,/(1-Z,)L, which is possible for only one value of Z,. We repeat this reasoning for
each industry, and reach the conclusion that, outside of n special Z, values, shared industries in
maximal productivity equilibria are not possible.
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Z,.* Such changes are quite benign, providing more output with fixed x and Z,, benefitting both
countries.

Within the region of maximal productivity such benign changes are scarcer. At maximal
productivity equilibria they are unavailable. There, increases in productivity are only possible for
non-producers. These increases generally have no effect at first, yielding only equivalent
equilibria; but if the increase is sufficiently large a new equilibrium can emerge with the former
non-producer becoming the producer. Then x and Z, must change, entailing migration of
industries and change in relative national income.

These shifts can have different effects depending on circumstances. Figure 5¢ shows that
if Country 1 can increase its share Z, anywhere within the region of maximal productivity to the
left of its peak it will generally increase its utility and do so at the expense of its trading partner.
On the other hand, in the region on the right of Country 1's peak, increases in Country 1's share
generally decrease utility for both countries since the regions of both countries are descending.
Similarly, decreases in Country 1's share through loss of industries to Country 2 generally benefit
both countries.

The subregion of maximal productivity, then, separates the region of equilibria into two
parts: the part below the subregion, where increases in productivity generally benefit both
countries, and the subregion itself where increases in productivity cause shifts in industries,
utility and relative national income. Within the subregion itself we have a region of conflict
between the two peaks, where gain in one country usually comes at the expense of the other, and
aregion of potential cooperation outside the two peaks, where changes either benefit both
countries or harm them both.

Motion in the Region of Equilibria. It is natural to consider productivity parameters that vary

over time and therefore produce motion through a series of equilibrium points in the region of
equilibria (see Gomory and Baumol 1994a). A natural model entails learning by doing in which
the parameters of the producing country or countries in each industry steadily rise toward e™>; i
while the non-producing country improves less or not at all. Almost any model of this type yields
a trajectory of equilibria tending toward a maximum productivity point as the producers
approach &™,*' Even from an initial point below the region of maximal productivity the
economy will move into it.

In economic terms this describes the evolution of industries from an early stage, where

“The lone exception is an equilibrium where production in all single-producer industries is at
maximal productivity, and in the shared industry one country is at its maximum and the other
isn’t. Then increased productivity of that one non-maximal producer will change both x and Z,.

*' In such a model we may want the maximal productivities themselves to evolve. In the
Cobb-Douglas model this can be done very simply. It is only necessary to introduce for each
industry an underlying maximal productivity €™, (t) that evolves over time. We can then
reinterpret the ¢;; and the €™, as fractions of that productivity. The results of the present model
are changed only via multiplication of utilities by a single factor that grows steadily.
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competition may well hinge on the rapid evolution of capabilities, to a later stage where, with
productivity approaching its limits, competition is more a matter of wage levels and of that
ultimate manufacturing capability.

Efficient and Inefficient Equilibria. With so many maximal productivity equilibria one may
wonder which are efficient and which are not. We call an equilibrium efficient if no other
assignment of labor to industries, using the productivities e™;;, can outproduce that equilibrium.

Certainly all efficient equilibria are maximal productivity equilibria. At any other
equilibrium there is some producing industry in which productivity can be increased, so the same
labor assignment produces more. Efficient equilibria, therefore, ail lie in the subregion of
maximal productivity. However, maximal productivity equilibria need not all be efficient. Many
entail an apparently “wrong” assignment in terms of efficiency, for example, assigning Country 1
an industry in which Country 2's maximal productivity is larger.

Which of the maximal productivity equilibria are efficient? The complete answer
emerges from Baumol and Gomory (1996). Even though that paper focuses on of economies of
scale, its results apply to linear production functions in a particularly simple form. Applying
these results® to the linear model we obtain:

[heorem 4.2 (Efficiency Theorem): The efficient equilibria form a single string of 2n+1
equilibria stretching all the way across the region of maximal productivity, and always includes
the classical equilibrium® (Figure 7).

This means that efficiency is not confined to the region near the classical equilibrium
where the resources of both countries are used in balanced fashion. There are efficient equilibria
in which Country 1 produces most goods, while Country 2 produces large quantities of a few, as
well as the other way around. There are also efficient equilibria that are poor for both countries
from a utility standpoint, as well as the classical equilibrium which is always efficient and
provides substantial but not maximal utility for each country.

Relati le- i Is. This paper has repeatedly referred to studies of scale

econoimies. One direct connection is that equations (2.6) and (4.1), delimiting the region of
maximal productivity, are special cases of the equations that delimit the region of all specialized
equilibria under scale-economies in Gomory (1994), and Gomory and Baumol (1994b). This
suggests a fundamental connection between the region of maximal productivity and economies of
scale models. We now define that connection.

“Especially Theorem 4.2 and the subsection on Productivity Ratios That Do Not Depend On
he Oi

*The efficient equilibria are obtained by transferring industries in turn from Country 2 to
Country 1 in the order of Country 1's comparative advantage. In the case of the classical
equilibrium a partial transfer is also possible.
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Th nce Principl

The Correspondence Principle, indicating that the same equilibrium can arise in both a
linear and a scale-economies model, suggests itself in the following way. A given specialized
equilibrium can be stable for two very different reasons. In a model with linear production
functions, it can be stable because the e satisfy the stability conditions (2.5), with the producing
industries the low-cost producers. Alternatively, an equilibrium can be stable because its
production functions have scale-economies. These stabilize the specialized equilibrium by
preventing new producers from entering industries on a small scale, where there is an established
large-scale producer.

This suggests that the same specialized equilibrium with the same assignments of
industries and perhaps even the same output of goods can be obtained from a linear model and
from a model with scale economies. To show this we must define our scale-economies model
and its equilibria.

T'he Scale-Economies Model and its Equilibrium Conditions. We say that a scale-economies

model M(f, ;) corresponds to a linear family model if it has the same labor-force sizes L, and L,
and the same country demand values d;;. However, instead of linear production functions e; j; ,
the model M(f;;) has production functions f;;(7} with economies of scale, defined as non-
decreasing average productivity, f; ()/l. We assume that there is a well defined derivative
df; ;(D)/d at I=0, and that £, ;(L,)/L;, which is the largest productivity value that f, O/ can attain in
the model, is e™, i

We adapt the equilibrium requirements (2.1)-(2.5) for this model. The conditions (2.1)-
(2.4) can be retained unchanged; we need only remember that q; ;, the quantity produced, now
equals f,;(1; ) not e, ;/;; . The conditions (2.5} that stabilize the equilibria also translate easily. If
there are two producers of good i, we require them to have the same average cost, and we do not
allow a non-producer to have an average cost on entering lower than the current producer. The
average productivity for small scale entry is df;;(0)/d!, so (2.5) becomes:

ne df, ,(0)/dl.
l:fxi,l>0 and xf,2=0 then f;'l( l’]) > f;’z( ) 1,2

Lyw W,
df. (0)/dl. nes
(5.1) if x,50 and x,,=0 then If, 1(0)/dl, | < fiali)
' Law,
(1 e
if x,,>0 and x>0 then fullin = fial '-2)_
' ’ Lawy LW,

Conditions (2.1)-(2.4) and (5.1) are equilibrium conditions for a stable zero-profit equilibrium.
The equilibria (x,Z,) of such an economies of scale model M(f; ;) can be very numerous.

An important special case occurs when all the production functions f; ({) entail startup
costs. With output zero for small / values, the production functions have df;;(0)/d/=0. Using this
in (5.1) we see that any specialized x automatically satisfies the conditions (5.1). In economic
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terms, startup costs stabilize any specialized production pattern.
Now we relate the many equilibria that arise in M(f;)) to the linear equilibria.

Corresponding Equilibria, We say that a specialized equilibrium point from the linear family
and a specialized equilibrium of a corresponding scale-economies model are corresponding
equilibria if the Z, , the market share variables x;; the wages, the quantities of labor /, ; employed
in each industry and the prices and the quantities produced are the same in both equilibria.
Clearly, any two corresponding equilibria are represented by the same point in our graph. We
assert that for each equilibrium of the economies model there is a corresponding equilibrium of
the linear family:

T I Theorem): From any specialized equilibrium (x,Z,) of the scale-
economies model we can construct a corresponding equilibrium (x,Z,,€) of the linear family
having the same x and Z, and an € given by: (1) the e;; for producers is average productivity at
the economies equilibrium, so e;;=f, ,(J; )/1;;, and (2) the ¢;; for non-producers is average
productivity at output zero, so e;;=df; (0)/d/;; .

Proof: We can verify directly that the x and Z, with this € satisfy the equilibrium
conditions (2.1)-(2.5) so (x,Z,,€) is a linear equilibrium. Since &= (/L ;< 1L )L, = e™,; this
is one of the equilibria of the linear family. Since the x and Z, are the same in both equilibria they
yield the same labor quantities through (2.2) and then, because of the choice of the ¢;;, the same
quantities are produced at both equilibria. Since the demands are the same, so are the prices.
Therefore (x,Z,) and (x,Z,,€) are corresponding equilibria.

Many Corresponding Equilibria: If the economies model has many equilibria, each will clearly
correspond to a different equilibrium (x,Z,,€) of the linear model. One economies model is
therefore a way of looking at a large sample of the equilibria of a family of linear models. Figure
8 shows the equilibria corresponding to one rather small economies model.

The location of the equilibria corresponding to M(f, ;) in the region of equilibria of the
linear family depends on the nature of the scale economies. If the production functions ;D
have productivities f;;(/)/I that go on increasing until /=L, , the corresponding equilibria tend to be
low in the region of equilibria of the linear model. This is because equilibrium labor quantities / i
are generally small compared to the entire work force L;. Therefore the ¢; =f; (/; M4; they produce
in the corresponding equilibria will tend to be small compared with e™*, = f, (L, /L, ; This results
in equilibria with relatively low productivity and low utility. On the other hand, if the production
functions have already reached full economies of scale when each country is supplying its own
needs in autarky, the corresponding equilibria are high up in the region. In fact they are all
maximal productivity equilibria, because e;=f,({; )/l;; = £, (L;;/L; ;=¢™>,;. Figure 8 is a case with
mild scale economies.

Next we look at the correspondence in the other direction, given a set of equilibria of the
linear model, when do these all correspond to equilibria from ore economies model?

Any one linear equilibrium (x,Z,,€) has well determined labor inputs l;; and the resulting
outputs q;;=e; ;.. There is therefore a well determined input-output pair (J; di;) for each industry
in each country. Any m linear equilibria provide m such pairs. We refer to each collection of m
pairs as the set S;;.

Given an S;; with kth element (/*,q*) we say that S, is an economies set if there is a scale-
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economies production function f(Z), such that f(7*)=q* for all m of the (/*,q%) pairs. From Figure 9a
it is clear that the points (/*,g*) can have a single economies curve passing through all of them,
(and therefore have such a production function), if and only if the slopes from the origin (average
productivities) of successive points, when they are arranged in order of increasing /, are non-
decreasing.

heor i-Equilibri Theorem): m specialized equilibria of a family
of linear models will correspond to m equilibria of a single economies of scale model M(f; )) if
and only if each §;; is an economies set.

Proof: If there are m corresponding equilibria in some economies model M(f; ), each one
has the same input and output as its corresponding linear equilibrium. Therefore, together these
equilibria generate the same set S;;. However, they produce each S;; by assigning the various
input quantities /* of the m equilibria of M(f, ;) to a single production function f,;(/*) and
obtaining the corresponding outputs ¢*. This is only possible if S, ; s an economies set. So the
condition is clearly necessary.

To show it is also sufficient, we will construct an M(f;;) that satisfies Theorem 5.2. To do
this we add (see Figure 9b) to each of the given S;; the pair (0,0), (if it not already included), and
also a pair (£*;;, 0) which lies on the [ axis halfway between the origin and the first pair that is
not (0,0). Then we will add the pair (L;, €™;;L;) which lies further to the right than any existing
pair. The pairs we have added on the left have zero slopes and are to the left of any successive
pairs with positive slopes. The new pair on the right has a larger / than any of the other pairs and
also a larger slope. This augmented set of points has increasing slopes with increasing [ and is
therefore an economies set. Any production function f; (/) that passes through this augmented set
not only has economies of scale but also zero derivative at /=0, and £, (L;/L=e™, i+ We will use
these f;; in our economies model M(f; ).

Now take (x,Z,,€), one of the set of m linear equilibria, and use its x and Z, as a candidate
equilibrium for the economies model M(f;)). With (x,Z,) in the economies model we will get the
same demand and hence the same labor inputs as at (x,Z,,€). Because of the construction of the
f,; we will have the same outputs from those inputs, and hence the same prices. Furthermore, the
candidate equilibrium is stable. This is because it is specialized, and the f;; have been constructed
with setup costs. So we have df;;(0)/d/= 0 and (5.1) is satisfied. This shows that (x,Z,) is a stable
equilibrium and that it corresponds to (x,Z,,€). This ends the proof.

If we apply this theorem to the maximal productivity equilibria we get:

i ctivit LI nce Theorem) The 2°-2 specialized maximal
productivity equilibria always correspond to the equilibria of a single economies model.

Proof: Each §;; cotain points of the form (/,e™ ;) when Country j produces in industry i,
and also the point (0,0) when Country j is a non-producer. These points give us a constant slope
e™1,] forevery [, so §,;is an economies set. Theorem 5.2 then gives the result.

This theorem shows the tight connection between families of linear models and
economies models with startup costs. The region of maximal productivity and its equilibria are
virtually identical with the equilibria of such an economies model. This tends to explain why we
obtain such similar economic results, such as conflict in the interests of trading partners, in both
settings.
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mmar lusion:

We have shown that the equilibria of a family of linear models form a well defined region
with a robust shape. One implication of the shape is that the best possible equilibrium for one
country is a poor one for its trading partner, so that a policy that succeeds in attaining or retaining
such a position inherently involves conflict with the interests of the other country. This conflict,
which occurs under unhampered free trade, is driven by each country’s share of industries and
income.

We have introduced the notion of the ideal trading partner for Country 1, and have shown
how the productivity parameter values of a country’s ideal trading partner can be determined.
Any departure from these values, whether through increases or decreases in productivity of
Country 2, the partner, will harm Country 1. Thus the welfare of a country is sometimes
enhanced and sometimes reduced by a rise in productivity of its trading partner, but these
outcomes follow a systematic pattern that is easily understood.

Within the region of equilibria there lies a maximal-productivity subregion. Below this
subregion improvements in productivity of the producing nation tend to benefit both countries.
Within the region the interests of the two countries are in conflict over a wide range, but there is
also a smaller range where there are opportunities for mutually-beneficial change. The maximal-
productivity region also contains all the efficient equilibria, and we have been able to find which
of the many maximal productivity equilibria are efficient.

We have shown the close ties between these regions of maximal productivity, their
defining equations, their regional shapes, their equilibria, and the equations, regional shapes and
equilibria obtained from scale-economies models. So the patterns of multiple equilibria and their
regional shape that emerge in the presence of scale economies are not peculiar to that state of
affairs, but have direct counterparts in the linear models that characterize the classical theory of
international trade.

This correspondence has direct implications for both theory and policy. It implies, for
example, that the welfare effect of the acquisition of an industry by a country in a world of scale
economies, whether through natural evolution or government intervention, can be similar to the
welfare effects of a rise in that country’s productivity in that industry in a linear world.

Appendix. The Shape of the World Upper Utility Boundary.

To derive the shape of the world’s upper utility frontier assume for simplicity d, ;=d, ,=d,
which gives us a world utility U, = IT, (Q)* = II, (q; ,+q;,)®. The analogue of the linearized
utility Lu, of (2.7) is linearized world utility Lu (x,Z,,€,,,,) which is:

(A.1) Lu,(x.Z,.€ ) =Max, Ei{ x,4(din g, )+x;,(dIn ;) ).
To obtain the world boundary B, (Z,) we have the analogue of (2.8). Since the equation in (2.8)
is simplified by d, ;=d,,=d; the analogue of (2.8) is:

InB (Z) = Max_ EI. b, (dln g, )+x,,(dIn g,,))

A2) subject to Zi 4:1!'ixl.’l =Z, and x;+x.,=1.
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If x*(Z,) is the maximizing solution to {A.2) we have
e dL e dL
(A.3) inB (Z)=Y, dixx, In g, +x* In qi,z}zzi djxx; In :,12: ~tx *;2ln l'zzl 2,
1 2

Differentiating (A.3) we have the slope of the world utility boundary. In this differentiation we
are helped by the fact that the maximizing solution x*(Z,) always has x*, ;=1 or 0 except for the
one shared industry where x,; and x, , can both be positive. When Z, changes, only x, , and x,,
change, except at a finite number of exceptional points.?* Therefore:

dxx, . e d dex, . e, .d —dxx.. dxx
(A4) d (Lu(Z)) = dJ kly €k i . k2, 2 kLZ) . E;{ K, 4 2y
dzl le Z] le 22 Zl 22

From (A.2) we have L, (d;x*;,)/ Z,=1. Similarly Z; (d; x*;,)/ Z,=1 so the sum term in (A.4) is -
1+1 = 0. Differentiating %, dx*;, = Z, and Z, dx*;, =Z, we have:

dx* dx*

d—2"1=1 and d—Fl=-1
A-5) ¥ dz, o ¥ dz,
so (A.4) becomes
d il e 24,
— (Lu_(Z.)) = ln— - In— .
(A.6) — (Lu,Z)) = In 2

1 1

We differentiate this to obtain the second derivative:

d? 1 1
AT — s @) = -
(A7) E z, z,

(A.T) shows that the second derivative of log world utility is negative. This means that log world
utility is concave. It follows that world utility itself is quasi-concave and therefore rises
monotonically to its highest point and then descends monotonically.

*Analysis of these points shows that they do not affect the conclusions reached here.



21

References

Baumol, William J. and Gomory, Ralph E., “On Efficiency and Comparative Advantage in
Trade Equilibria Under Scale Economies,” Kyklos, 1996, forthcoming.

Ethier, W. J., “Internationally Decreasing Costs and World Trade,” Journal of International
Economigs, 1979, 1-24.

, 1982, “Decreasing Cost in International Trade and Frank Graham’s Argument for
Protection,” Econometrica, 50, 1243-1268.

Gomory, Ralph E., April 1994, “A Ricardo Model with Economies of Scale,” Journal of
Economic Theory, (62),394-419.

Gomory, Ralph E. and Baumol, William J., [1994a] October 1994, “Shares of World Output,
Economies of Scale, and Regions Filled with Equilibria,” C. V. Starr Economic Research
Report RR #34-29, New York University.

» [1994b] October 1994, “A Linear Ricardo Model with Varying Parameters,”
Proceedings of the National Academy of Sciences, Vol. 92, 1205-1207.

Grossman, Gene M. and Helpman, Elhanan, November 1994, “Technology and Trade,”
National Bureau of Economic Research, Inc., Working Paper No. 4926.

Grossman, Gene M. and Rogoff, Kenneth, Editors, 1995 (forthcoming), “Technology and
Trade”, Handbook of International Economics, Vol. 3, North Holland Press.

Helpman, Elhanan and Krugman, Paul R., Market Structure and Foreign Trade, Cambridge,
Mass.: MIT Press, 1985.

Hymans, Saul H. and Stafford, Frank P., 1995, “Divergence, Convergence, and the Gains
from Trade,” Review of International Economics, 3, 118-123.
Johnson, George E. and Stafford, Frank P., May 1993, “International Competition and Real
Wages,” American Economic Review Papers and Proceedings, 83, 127-130.
,» January 1995, “The Hicks Hypotheses, Globalization and the Distribution of Real
Wages,” Econometric Society Meeting, (unpublished).
Krugman, Paul R., "Increasing Returns, Monopolistic Competition and International Trade,"
Journal of !g:g;manggal Economics, (9), 1979, 469-479,
Rgthmk]ug_lm_ematgmﬂ[a@; Cambridge, Mass: MIT Press, 1990.
Marshall, Alfred, The Pure Theory of Foreign Trade, Privately Printed 1879, Reprinted

London School of Economics 1930.



Figure la

Figure Ib

10 Equilibria Showing Country 1 Utility

10 Equilibria Showing Country 2 Utility

Z;

Z;



Figure 1c

Combined Plot: 10 Equilibria Showing Both Utilities
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Figure 2¢ Boundaries of Both Countries
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Figure 4b

World Utility and its Relation to Couintry | Utility

Country 1

U

World Utility, Country 1 Utility, and Country 2 Utility

U

Z1



Figure 5a

Figure 5b
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Figure 5¢ Region of Maximal Productivity, Combined Plot
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Figure 7 21 Efficient Points and 1 Classical Point
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Figure 9a The (1,q) Diagram
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