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This paper develops a political economy model that is consistent with
the fact that democracies have a preference for increasing marginal tax
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function. Each party decides whether or not to present a candidate for
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1. Introduction

A common feature of tax systems in all industrial democracies is the progressivity
of statutory income taxation; that is, in these countries, the amount of income
tax paid as a proportion of income rises with income. More surprisingly, in an
overwhelming majority of these countries the statutory income tax schedule is
progressive at the margin; not only the average tax rate increases with income,
but so does the marginal tax rate (this is so for all OECD countries; see OECD,
1997).
Marginal rate progressivity can be justified from a normative perspective

through its connection with inequality aversion (cf. Le Breton, Moyes, and Tran-
noy, 1996) and the principle of equal sacrifice (see Mitra and Ok, 1997).1 While
the normative approach may be viewed as a compelling one, it is unclear whether
its influence on the actual practice of tax design is significant. Moreover, it is
natural to suppose that in a democracy the choice of a tax schedule should be
related to the preferences of a majority of citizens. Yet a general positive theory
of progressive statutory income taxation has proven elusive. A major reason for
this is that modeling income taxation as the outcome of some voting mechanism
suffers from the well-known multidimensionality problem of voting theory. In-
deed, choices of tax schedules from general sets of admissible functions result in
situations that are entirely unstable in nature. In general, voting over tax sched-
ules leads to “gross instability and cycling over tax structures, with new majority
coalitions perpetually emerging and overturning the existing tax code in favor of
a new one which favors them” (Kramer, 1983, p. 226).
Consequently, the models in the related literature typically restrict the shape

of the tax functions to achieve low dimensions. Romer (1975), Roberts (1977),
and Meltzer and Richard (1981), among others, restrict the set of feasible tax
schedules to linear functions. Cukierman and Meltzer (1991) and Roemer (1999)
analyze models in which the tax functions are quadratic in income. Snyder and
Kramer (1988) place fewer restrictions on the shape of allowable tax schedules
but assume that parties may only propose tax functions that are ideal for some
voter. The results in these studies run into serious difficulties when nonlinear
tax schedules with increasing marginal rates are viewed as admissible members of

1Other normative results, however, contradict marginal progressive income taxation. Among
them is the famous end-point theorem from the theory of optimal income taxation, which states
that, under quite general conditions, the optimal marginal tax rate at the top of the income
distribution should be zero (Seade, 1977).
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political agendas. In fact, once marginal rate progressive tax schedules are taken
into consideration, voting cycles become inescapable. The result is a highly coun-
terfactual picture of perpetual chaos. This is dampened by a result in Marhuenda
and Ortuño-Ortín (1995), which says that if the median voter’s income is be-
low the mean income and voting is self-interested, any marginal rate progressive
(convex) tax schedule defeats any marginal rate regressive (concave) one under
pairwise majority voting. However, this result provides only a partial account of
a possible connection between democracy and marginal rate progressive taxation,
since, given any tax schedule, it is always possible to design an alternative one
that hurts a minority of agents, benefiting the rest of the population, therefore
beating the first tax schedule in pairwise majority voting.2

While nonexistence of equilibria seems to be inescapable in models of direct
democracy, this is not the case in models of representative democracy.3 In the
context of income taxation, a model of representative democracy features citizens
that do not vote directly on alternative tax schedules. Rather, they vote for
representatives, and delegate decisions on taxation to these elected delegates, who
will have different attitudes toward taxation and redistribution.
In this paper, we adapt a model of representative democracy developed by

Feddersen, Sened, and Wright (1990) to a taxation environment in which the
policy space contains virtually any statutory tax function. This model provides a
political framework friendly to stable equilibria, even though it was not especially
built to solve taxation problems. We argue that general sets of admissible tax
schedules are compatible with existence of equilibrium. What is more, we find that
only tax functions with increasing marginal tax rates (i.e., convex functions) are
implemented in any equilibrium under some qualifications. This is consistent with
the observed stability of tax schedules and demand for progressivity in developed
democracies.
Essentially, the model in Feddersen et al. (1990) proposes a game of electoral

competition in which political parties choose a policy location and whether or

2In a second paper, Marhuenda and Ortuño-Ortín (1998) find that this instability problem
can be solved by adding small amounts of uncertainty to the tax schedule proposed against the
status quo. Their main result is that a flat-rate tax policy is a majority winner status quo.
Therefore, the explanation of the attraction of tax schedules progressive at the margin remains
open.

3See Lindbeck and Weibull (1987) for an example of a model of representative democracy
that resolves the multidimensionality problem in the context of balanced-budget redistribution
with two exogenously given political parties. Besley and Coate (1997) provide a more general
discussion of this point.
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not to present a candidate; each citizen then chooses a candidate and the winner
is determined by the plurality rule. In our model, there is an exogenous set of
political parties with lexicographic preferences over the set of tax functions. Their
main concern is to implement tax schedules whose corresponding post-tax income
distributions are desirable in terms of their own ideology.4 Whenever this criterion
yields indifference between two tax functions, preference is determined by the
‘simplicity’ of each tax structure.5 Each party decides whether or not to present
a candidate for election. There is a fixed cost of running, while the only benefit
is that, if elected, a candidate imposes one of her preferred tax policies. The bulk
of society consists of citizens that are not ideologically motivated; rather, each
citizen is egoistical and votes for some candidate who is expected to implement, if
elected, tax schedules that minimize this citizen’s tax liability (the voting is thus
modeled through sincere voting). Like Osborne and Slivinski (1996), we compare
the results under the plurality rule with those under a two-ballot runoff system.
The main results of the present article provide conditions under which a Strong
Nash Equilibrium exists. Furthermore, a tax schedule with increasing marginal
tax rates is always implemented in some Nash Equilibria and in any Strong Nash
Equilibrium. The latter concept is relevant in our framework since it is related to
the formation of coalitions by political parties.
The idea of income distribution as a pure public good was first developed by

Thurow (1971) and used in the context of income taxation by Hamada (1973).
In our paper, in contrast to Hamada’s, only political parties (not the rest of the
agents) derive utility from the income distribution of the society. This captures the
idea that, in a representative democracy, it is not the whole society, but politically
and socially active individuals, who are willing to sacrifice some of their own
resources to decide on national policies. The idea that politicians regard simplicity
of a tax system as important is discussed in Shall and Rabushka (1983, ch. 2)
and Atkinson (1995, ch. 1) for the cases of the U.S. and England, respectively.
In the next section we present the model in further detail. In Section 3, we

solve for the set of tax schedules that are preferred by each candidate. In Section
4 we provide conditions under which an equilibrium exists. Our main results are
stated in Section 5. We conclude in the last section. The Appendix contains the

4Feddersen et al. (1990) assume that candidates are interested solely in winning. Here,
following Osborne and Slivinsky (1996) and Besley and Coate (1997), we assume that political
parties’ preferences are defined over the policy space. See Wittman (1990) for a good discussion
of this topic and a survey of the literature.

5The simplicity of a tax schedule will be measured by the number of brackets; that is, the
lower the number of brackets, the simpler the tax.
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proofs of some of the results stated in the paper.

2. An Endowment Economy Model

2.1. Preliminaries

We consider an endowment economy with a continuum of agents, each of which is
identified by an exogenous pre-tax income level in [0, 1]. An income distribution
is defined as a distribution function F : R+ → [0, 1] with F (1) = 1; given an
income level x in [0, 1], F (x) measures the proportion of income recipients with
incomes of at most x. The initial income distribution of the economy is denoted
by F and is assumed to be continuous and strictly increasing. Define µ and
med as the mean and median income of F respectively, that is, µ =

R 1
0
xdF and

med = F−1(1/2). We assume throughout that the pre-tax income distribution is
right skewed, i.e., µ > med.
AB-bracket tax schedule is defined as a tuple (α1, ...,αB; b1, ..., bB+1), where

B ∈ N, αi ∈ [0, 1] and αi+1 6= αi for every i, and 0 ≡ b1 < b2 < ... < bB < bB+1 ≡
1. We will often use the term tax schedule in place of B-bracket tax schedule.
A tax schedule (α, b) ≡ (α1, ...,αB; b1, ..., bB+1) uniquely determines a function
tα,b : R+ → R given by

tα,b(x) =


α1x if b1 ≤ x ≤ b2,
α2(x− b2) + α1b2 if b2 < x ≤ b3,

...
...

αB(x− bB) + αB−1(bB − bB−1) + ...+ α1b2 if bB < x.

An agent x is required to pay tα,b(x) units of income. Henceforth, we will treat
each tax schedule (α, b) and its corresponding function tα,b as identical objects.
We restrict attention to the set of all tax schedules (α, b) with αi ∈ (0, 1) for every
i that satisfy Z

tα,b(x)dF = R, (2.1)

where R ∈ (0, µ). Let T denote this set.
A number of observations about T is in order. First, notice that for any t in T

we have t(x) < x for all x; that is, the tax payed by any agent is less than her pre-
tax income. Second, every tax schedule in T has slope less than one everywhere
on its domain. This is a natural condition that rules out situations in which the
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agents’ post-tax income is negative at the margin. Finally, equation (2.1) requires
that the total tax collected meet the target R.6

Note that the set of feasible tax functions achieves a significant level of general-
ity, compared with the policy space in all previous related literature. T contains
all linear and two-bracket tax functions. Moreover, any quadratic, concave, or
convex function can be uniformly approximated by an element of T . We should
also mention that personal income taxes of all OECD countries except Germany
do belong to T (OECD, 1997).

2.2. Political Parties’ Preferences

Let P ≡ {1, ..., p} be the set of political parties in the society. Political parties are
policy-motivated; their preferences depend on certain features of tax schedules
and their corresponding post-tax income distributions. In order to present the
politicians’ preferences in detail, we need to introduce the following definitions.
For each tax schedule t in T , define

Ft(x) = F (r
−1
t (x)), x ≥ 0, (2.2)

where rt(x) = x − t(x) for all x. We call Ft the net income distribution of the
economy after taxes have been payed in accord with t. Let

F = {Ft : t ∈ T }.
In words, F is the set of all possible net income distributions given the set of
feasible taxes.
The Lorenz curve associated to income distribution G, denoted by LG, is a

real function on [0, 1] such that

LG(q) =
1

µG

Z q

0

G−1(s)ds, (2.3)

where µG ≡
R 1
0
xdG.7 LG(q) is interpreted as the share of total income that is

6There are two assumptions regarding the set of feasible taxes that, under some conditions,
can be relaxed without affecting any of the forthcoming results. We implicitly assume that t(0) =
0, but we could allow for redistribution of income as well. Also, the revenue constraint condition
can be relaxed to

R
t(x)dF ≥ R. We choose not to adopt these more general specifications here

to avoid unnecessary notation (see Mitra et al. (1998) for a discussion on this matter).
7The definition provided here is suitable for income distributions G whose inverse mapping

G−1 is well-defined on [0, 1). The definition can be extended to incorporate cases where the
inverse mapping may fail to exist. However, since G−1 exists on [0, 1) for all G ∈ F , the above
definition will be enough for our purposes.
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held by the poorest cumulative share q of the population under distribution G.
For any two income distributions G and G∗, we say that G ºL G∗ (or, in words,
distribution G Lorenz dominates distribution G∗) if

LG(q) ≥ LG∗(q) for all q ∈ [0, 1].
The asymmetric part of ºL, ÂL, is defined as usual: G ÂL G∗ if G ºL G∗ but
not G∗ ºL G.
An inequality measure I is defined as a real map on the set of all income

distributions that is continuous (with respect to the sup metric) and satisfies the
following property:

(S-concavity) G ÂL G∗ ⇒ I(G) < I(G∗) ∀G,G∗.
I(G) is interpreted as the degree of inequality associated to distribution G. The
notion of continuity on an inequality measure says that small perturbations of an
income distribution do not cause drastic movements of the corresponding degree
of inequality. The latter condition says that when a ranking between two distri-
butions can be derived by the Lorenz criterion, this ranking will be agreed by all
S-concave inequality measures. Henceforth, I will denote a fixed inequality mea-
sure such that I(F) = (infG∈F I(G), supG∈F I(G)). Without loss of generality, we
set I(F) = (0, 1) for convenience.
Each political party i is endowed with an ideal inequality point mi in (0, 1).

Ideal points are permanent attributes of parties, in the sense that they cannot be
changed at will. One can show that I is not injective, and that the same degree
of inequality as evaluated by I can be obtained from a number of net income
distributions. Therefore, associated with any mi there may be several feasible tax
schedules t such that I(Ft) = mi. It turns out that these tax schedules will often
be numerous and very different from one another. One differentiating attribute is
the complexity of a tax schedule, which is naturally measured by the number of
brackets; i.e., the bigger the number of brackets, the more complex the tax.8

Party i’s preferences over tax schedules are described by means of a binary
relation ºi on T such that

t ºi t∗ ⇐⇒
 |I(Ft)−mi| < |I(Ft∗)−mi|
or
|I(Ft)−mi| = |I(Ft∗)−mi| and B ≤ B∗,

(2.4)

8Hettich and Winer (1999, p. 90) provide the same characterization of the complexity of a
tax schedule.
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where B and B∗ are the number of brackets of t and t∗ respectively.
Several aspects of this preference relation are worth noting. The adoption

of lexicographic preferences allows us to differentiate between two aspects of a
political party’s attitude towards taxation; while simplicity is a desirable property
of a tax schedule, higher priority in determining the preference ordering is given to
‘ideology’. Since a party may be indifferent among a large number of tax schedules
in terms of the latter concern, the preference for simplicity is nothing but a tie
breaker.
We contend that the idea that politicians regard simplicity of a tax system

as important is reasonable in the environment considered here. Moreover, it is
supported by the fact that all tax reforms in OECD countries since the early
1980s have reduced the number of brackets of the statutory income tax schedule.
We should also note that our results remain valid even without assuming that
political parties have a preference for simplicity, if we restrict the set of feasible
taxes to concave and convex functions.

2.3. The Game

Following Feddersen et al. (1990), Osborne and Slivinski (1996), and Besley and
Coate (1997), we consider a model of electoral competition in which each political
party must decide whether or not to present a candidate that runs for office. Each
party is allowed to run, although there is a fixed cost c > 0 of candidacy. After all
parties have made their entry decisions, all members of society cast their votes.
Under the plurality rule the winner of the election is the candidate who obtains
the most votes. Under a runoff system the winner is determined as follows. If
some candidate obtains more than half of the votes, she is the winner. Otherwise,
the winner is the candidate who obtains a majority in a second election between
the two candidates who obtained the most votes in the first round. In both cases,
ties are broken by an equal-probability rule. An elected candidate implements a
tax schedule from T . We assume that, if none of the political parties presents a
candidate, the payoff of each party is dominated by any other entry profile.
For each i ∈ P , let Ti be the set of tax schedules t ∈ T such that t ºi t∗

for all t∗ ∈ T . Clearly, an elected candidate i will implement a tax schedule
from Ti, the set of those tax schedules from T that are preferred by i; any other
promise is not credible. Although citizens realize that party i’s optimal set is
Ti, they are uncertain about their disposable income regardless of the elected

8



candidate, because in general Ti is not a singleton.9 It is assumed that citizens have
prior beliefs on an elected candidate’s final choice and that candidates are unable
to affect citizens’ perceptions through campaigning.10 Thus, voting behavior is
governed solely by prior beliefs. Let πi be a probability measure on the Borel
σ-algebra on Ti describing the beliefs citizens have on an elected candidate i’s
final choice from Ti. According to πi, candidate i assigns probability πi(T 0) to
collection of tax schedules T 0. Citizens’ voting behavior is assumed to be driven
by purely egoistical motivations. A citizen x votes for a candidate who would
minimize, if elected, x’s expected tax burden. To be concrete, let

Ti(x) =

Z
t(x)πi(dt), 0 ≤ x ≤ 1, i ∈ P. (2.5)

Note that the image of each x under Ti is agent x’s expected tax liability if party i
is elected. It is natural to refer to each Ti as the expected tax schedule conditional
on party i’s victory. Given a candidate set C ⊂ P , citizen x will vote for some
j ∈ C such that Tj(x) ≤ Tk(x) for all k ∈ C.11,12
Entry decisions by political parties are described by tuples in {0, 1}p. Specifi-

cally, entry decision a = (a1, ..., ap) describes the situation in which each political
party i with ai = 1 decides to present a candidate and each party i with ai = 0
decides otherwise. For each i ∈ P with ai = 1, let Ei(a) be the set of all agents x
that vote for candidate i under profile a (according to the rule specified earlier).
The number of votes that accrue to party i under profile a is

ωi(a) =

Z
Ei(a)

dF. (2.6)

Thus, the set of parties that obtain the most votes under a is

W (a) =
n
i ∈ P : ωi(a) = max

k∈P
ωk(a)

o
.

9We are departing here from Besley and Coate (1997) and Osborne and Slivinski (1996),
where, by assumption, each candidate’s set of preferred policies is a singleton.
10Admittedly, the inability of candidates to influence voting behavior may seem somewhat

unnatural. Yet the case in which candidates can commit to a tax schedule in their optimal set
is compatible with all the results obtained in this paper.
11If more than one candidate satisfies this requirement, x chooses one at random.
12The voting is thus modeled through sincere voting. Assuming strategic voting does not

change our results for the game under the plurality rule.
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Let c and θ be positive reals and define χi : {0, 1}p → R by

χi(a) =

½
1 if ai = 1,
0 otherwise

for each i ∈ P . We study two strategic games, one for the plurality rule, denoted
by GPR, and one for a runoff system, denoted by GRS. In both games, the set of
players is the set of political parties and the action space for each party consists
of entry decisions in {0, 1}. Under the plurality rule, party i’s payoff given an
entry profile a ∈ {0, 1}p is

ui(a) = − θ

|W (a)|
X

j∈W (a)

|mj −mi|− cχi(a)

if a 6= 0, ui(a) < −c− θ otherwise.
In words, each party i evaluates an entry profile a in terms of i’s expenditure

under a (0 if i does not run, c otherwise) and the expected gap between i’s
ideal inequality point and the winners’ ideal points, θ being the marginal rate of
substitution between the two. If no party presents a candidate, the outcome is
dominated by any other entry profile. The payoff function for the game under a
runoff system is defined similarly.13 The solution concepts that we use are Nash
Equilibrium and Strong Nash Equilibrium.

3. Political Parties’ Ideal Tax Schedules

In this section we identify the set of preferred tax schedules of each party. To
do so, we first introduce a critical cut-off value of the inequality measure. This
value helps us classify political parties as equality lovers or equality averse. We

13Let WJ(a
0) = {i ∈ P : ωi(a0) = maxk∈J ωk(a0)} be the set of most popular parties within

J ⊂ P under entry profile a0 6= 0. Party i’s payoff under entry profile a for the game under a
runoff system is

vi(a) =


−θ|mi −mj |− cχi(a) if W (a) = {j} and ωj(a) > 1/2,

1
|WP\j(a)|

P
k∈WP\j(a) ui(a

k,j) if W (a) = {j} and ωj(a) ≤ 1/2,
2

|W(a)|(|W(a)|−1)
P
{k,l}⊂W(a) ui(a

k,l) if |W (a)| ≥ 2,

and vi(a) < −c− θ if a = 0, where, for each pair k, l ∈ P , ak,l denotes the action profile where
only parties k and l present candidates.
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conclude the section by showing that the expected tax schedule of each party is
either concave or convex. The proofs of the three lemmata are in the Appendix.
Note that T contains a unique linear tax schedule, tl, given by

tl(x) = (R/µ)x, x ≥ 0.

This particular tax defines a unique cut-off value Il ≡ I(Ftl) in the image of I.
The importance of that specific value is shown in the following

Lemma 1. For every political party j ∈ P , if mj < Il (mj > Il), there exists
a nonlinear convex (concave) tax schedule tj ∈ T such that I(Ftj ) = mj.

The following lemma provides a crucial finding, according to which the set of
preferred tax schedules of each party is composed by either convex or concave
functions, depending on the party’s ideal inequality point.14

Lemma 2. For every political party j ∈ P , if mj < Il (mj > Il) all the
elements in the set of preferred tax schedules for party j, Tj, are nonlinear convex
(concave) functions. If mj = Il, then Tj = {tl}.

According to this lemma, parties can be classified into three categories: a party is
egalitarian, neutral, or inegalitarian as its ideal point can be reached by a convex,
linear, or concave tax schedule respectively. As a consequence of Lemma 2, the
expected tax schedule of each political party is either concave or convex.

Lemma 3. For every political party j ∈ P ,

(i) 0 ≤ Tj(x) ≤ x for all x,
(ii) Tj is continuous and nondecreasing, and

(iii)
R 1
0
Tj(x)dF = R.

14Although not stated in Lemma 2, it turns out that each party’s set of preferred tax schedules
consists only of two-bracket tax schedules. As this may be regarded as an awkward feature, we
would like to mention that one can derive a generalization of the preferences in (2.4) such that
the corresponding optimal sets need not contain only two-bracket tax schedules (see Carbonell-
Nicolau, 2000). The results in this paper would remain unaltered if this generalization were
used in the present setting.
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Moreover, if mj < Il (mj > Il), then Tj is a nonlinear convex (concave) function,
and mj = Il implies Tj = tl.

Lemma 3 implies that actual competition among candidates depends on functions
that are either concave or convex, even though the set of feasible tax functions T
is fairly unrestricted.
The following section analyzes existence of equilibrium.

4. A Note on Existence of Equilibrium

While the model presented so far is fairly general, existence of Nash Equilibrium
can not be guaranteed without imposing some restrictions. Indeed, there are
instances in which the configuration of ideal points leads to voting cycles and an
equilibrium fails to exist.15 In this section, we provide sufficient conditions on the
distribution of political parties’ ideal inequality points and the cost of presenting
a candidate under which an equilibrium exists.
On the one hand, we require that the cost of presenting a candidate over the

value of the political parties’ ideology (c/θ) be sufficiently high (greater than Il/2).
This excludes situations where two parties with a similar orientation engage in
competition to hold office, even if one could win the elections for sure if it would
present a candidate.
On the other hand, it is assumed that the distribution of ideological tendencies

is sufficiently rich in the sense that ideal points are dispersed all along [0, 1]. To
express this idea formally, we introduce the following definitions. For ε > 0, let
0 ≡ N1(ε) < N2(ε) < ... < Nn(ε) ≡ 1 be a finite partition of [0, 1] such that
Nk+1(ε) −Nk(ε) = ε for all k ∈ {1, 2, ..., n − 2}. We shall say that {mi : i ∈ P}
covers a ε-partition of the ideological space if, for each k ∈ {1, ..., n − 1},
(Nk(ε), Nk+1(ε)) contains at least one element of {mi : i ∈ P}. In what follows, it
is assumed that there is at least one party in P whose ideal point is greater than
Il. This ensures that the following definitions are not meaningless. Let

ε∗ ≡ 1
2
min

½
m∗ − Il, c

θ
− Il
2

¾
, (4.1)

15The Condorcet paradox may arise, for example, if there are only three political parties with
ideal inequality points smaller than Il. Notice that the existence of a Condorcet cycle is a
necessary but not a sufficient condition for nonexistence of equilibrium. Given that there is a
positive cost of presenting a candidate, an equilibrium may exist even in the presence of cycles
among winners.
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where
m∗ ≡ min{mi : i ∈ P and mi > Il}. (4.2)

In formal terms, the above condition is expressed by requiring that {mi : i ∈ P}
cover a ε∗-partition. This condition is plausible if we think as the elements of P
not just as political parties, but also as organizations of individuals with a certain
ideological tendency that may incur the cost of having an active participation in
the electoral system.
The following proposition states that, under the aforesaid conditions, the game

under the plurality rule has not only a Nash Equilibrium, but also a Strong Nash
Equilibrium.16

Proposition 1. If µ > med, Il/2 < c/θ, and {mi : i ∈ P} covers a ε∗-
partition, GPR has at least one Strong Nash Equilibrium (and so at least one Nash
Equilibrium).

This proposition is based on a result first obtained by Marhuenda and Ortuño-
Ortín (1995). Therefore we find it worthwhile to recapitulate it here as an adap-
tation to the present setting.

Lemma 4 (Marhuenda and Ortuño-Ortín, 1995). Let entry profile a be
such that only political parties i and j, with ideal inequality points mi < Il ≤ mj,
present candidates. If µ > med, then ωi(a) > ωj(a).

According to this lemma, whenever citizens are voting over two different ex-
pected tax functions Ti and Tj , one convex and the other concave, more than half
of the population will prefer the former to the latter. While this is an important
result, it remains silent with respect to the equilibrium outcome of the games
introduced in Section 2.3. The following Corollary (which will be useful in what
follows) extends Lemma 4 in that it also considers profiles with more than two
entries. It simply says that the share of the votes obtained by candidates favoring
marginal rate progressivity must be greater than one half.

Corollary 1. Let a be an entry profile, C = {i ∈ P : ai = 1}, and
J = {i ∈ C : mi < Il}. If µ > med and J is nonempty,

P
k∈J ωk(a) > 1/2.

16An entry profile a∗ is a Strong Nash Equilibrium of GPR if for no coalition J ⊂ P and entry
subprofile aJ ,

ui(aJ , a
∗
−J) > ui(a

∗) for all i ∈ J,
where a∗−J ≡ {a∗i }i 6∈J .
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Proof. See the Appendix. ¥

We are now ready to proceed with the

Proof of Proposition 1. If c/θ > Il any entry profile such that only one party
i with mi < Il enters is a Strong Nash Equilibrium. Suppose that c/θ ≤ Il. By
Lemma A.2 (see the Appendix), there exists i∗ ∈ P such that

mi∗ ∈
·
Il − c

θ
,min

½
m∗ − c

θ
,
Il
2

¾¸
,

where m∗ is as in (4.2).
Consider entry profile a∗, where a∗i∗ = 1 and a

∗
i = 0 for all i ∈ P \ {i∗}. Take

any nonempty coalition J ⊂ P and let aJ be an entry subprofile for coalition J .
It will be shown that there exists j ∈ J such that uj(aJ , a∗−J) ≤ uj(a∗). Two cases
will be considered.
Suppose first that aj = 1 for some j ∈ J \ {i∗} with mj ≤ Il. If mj = mi∗, it

is clear that uj(aJ , a∗−J) ≤ −c < 0 = uj(a∗). Suppose that mj < mi∗. We have
0 ≤ mj < mi∗ ≤ c/θ (recall that mi∗ ≤ Il

2
and, by assumption, Il

2
≤ c

θ
). Hence

θ(mi∗ −mj) ≤ θ( c
θ
− 0) = c, and so uj(aJ , a∗−J) ≤ −c ≤ −θ(mi∗ −mj) = uj(a

∗),
as desired. Next, suppose that mj > mi∗. Then θ(mj − mi∗) ≤ θ(Il − mi∗) ≤
θ[Il − (Il − c

θ
)] = c (the last inequality follows from the relation mi∗ ∈ A∗), and

so the same result follows.
Next, suppose that aj = 0 for all j ∈ J \ {i∗} with mj ≤ Il. Either i∗ /∈ J or

i∗ ∈ J . If i∗ /∈ J , it follows from Corollary 1 that W (aJ , a∗−J) = {i∗}. Take j ∈ J .
If aj = 0 then uj(aJ , a∗−J) = uj(a

∗), and if aj = 1 then uj(aJ , a∗−J) < uj(a
∗). If,

on the other hand, i∗ ∈ J , we have ui∗(aJ , a∗−J) ≤ ui∗(a∗). In fact, this is clearly
the case if ai∗ = 1. Otherwise (if ai∗ = 0), observe that ui∗(aJ , a∗−J) = ui∗(0) <
−c−θ < −c = ui∗(a∗) if (aJ , a∗−J) = 0 (the first inequality is true by assumption).
It remains to show that ui∗(aJ , a∗−J) ≤ ui∗(a∗) whenever aj = 0 for all j ∈ J with
mj ≤ Il, i∗ ∈ J , and (aJ , a∗−J) 6= 0. Note that, in this case,

ui∗(aJ , a
∗
−J) = − θ

|W (aJ , a∗−J)|
X

k∈W (aJ ,a
∗
−J )

(mk −mi∗)

≤ −θ(m∗ −mi∗)

≤ −θ
·
m∗ −

µ
m∗ − c

θ

¶¸
= −c
= ui∗(a

∗).
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This establishes the result. ¥

Note that in this proof existence is shown by constructing the simplest kind
of equilibrium, a one-candidate equilibrium. Since for entry profiles with a single
entrant the payoff functions of GPR and GRS coincide, a Strong Nash Equilibrium
of the game under a runoff system exists as well.
The following section analyzes equilibria with different numbers of candidates.

5. Equilibrium Tax Schedules

Given the results of the previous sections, we are now ready to analyze the equi-
libria of the political game. Results are first provided for Nash Equilibrium under
the plurality rule and a runoff system, and then for Strong Nash Equilibrium.

5.1. Nash Equilibrium

Different numbers and configurations of candidates can arise under the plurality
rule. In the following proposition, however, we state that when a mild condition is
satisfied ( c

θ
< Il−mi for some i ∈ P ), the implemented tax schedule in any Nash

Equilibrium with one or two candidates is a nonlinear convex function. This
condition says that the most egalitarian party in P will always prefer to incur
the cost of candidacy and choose a tax schedule over saving the cost and facing
regressive taxation.

Proposition 2. Suppose that µ > med. If c
θ
< Il −mi for some i ∈ P , then

a nonlinear convex tax schedule is implemented in any Nash Equilibrium of GPR
with one or two candidates.

Proof. Let a be an entry profile. If a = 0 (that is, action profile a is such that
no party presents a candidate), the assumption that ui(0) < −c− θ for all i ∈ P
implies that a is not a Nash Equilibrium. Suppose that a 6= 0 is a profile such
that at most two parties propose a candidate and there exists a winner in W (a),
denoted by j, that implements a concave tax schedule. By Lemma 2, mj ≥ Il.
If ak = 1 for some k with mk < Il, Corollary 1 implies W (a) = {k}. Therefore,
ak = 1 implies mk ≥ Il. By assumption, there exists i ∈ P such that cθ < Il −mi.
Let a∗ be a profile with a∗k = 1 if k = i, a

∗
k = ak otherwise. Corollary 1 implies

W (a∗) = {i}. Therefore, ui(a∗) = −c > −θ(Il −mi) ≥ ui(a), whence a is not a
Nash Equilibrium. ¥
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0 Il 1

m1 m2 m3

Figure 5.1: Example of a multiple candidate Nash Equilibrium consistent with
regressive taxation.

When the number of candidates is greater than or equal to three, there may
exist equilibria in which some candidates are sure to lose. The reason why such
parties decide to pay the cost of presenting a candidate, as Osborne and Slivinski
(1996, p. 74) explained it for the three-candidate case, is that they prefer the
resulting equal-probability lottery over their rivals’ positions to certain victory by
the candidate who would win if they withdrew. In our framework, Corollary 1
implies that, in any equilibrium with three or more candidates, at least two of
them must have ideal points below Il. Still, Nash equilibria leading to regressive
taxation are possible when there are more than two candidates. As an example,
suppose that there are three political parties with ideal points m1,m2 < Il ≤ m3

that are located along the unit interval as in Figure 5.1. Take the entry profile
in which all three parties present a candidate. Suppose that according to this
profile the first and third candidates win with equal probability and the second
candidate loses for sure. Suppose further that if candidate 3 withdraws from the
competition, 1 wins for sure. It is easy to see that there is a range for the ratio c/θ
such that the aforesaid profile constitutes a Nash Equilibrium. Take, for example,
party 2. If this party withdraws, it will save the cost of candidacy. However, we
know that withdrawal by candidate 2 benefits candidate 1, who will then defeat
party 3 by Lemma 4. If the cost of candidacy is sufficiently low, party 2 will
not have incentives to withdraw. A similar argument works for the rest of the
candidates.
If one is willing to impose a certain condition on the cost of candidacy, the con-

clusion in Proposition 2 can be generalized to any number of candidates, provided
that at most two candidates have ideal points smaller than Il. This observation
is formalized in

Proposition 3. Suppose that µ > med. If Il/2 ≤ c/θ < Il −mi for some i ∈
P , then a nonlinear convex tax schedule is implemented in any Nash Equilibrium
of GPR with at most two candidates i and j such that mi,mj < Il.
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Proof. Let a be an entry profile. If a = 0, the assumption that ui(0) < −c− θ
for all i ∈ P implies that a is not a Nash Equilibrium. Let C = {i ∈ P : ai = 1}
and J = {i ∈ C : mi < Il}. Suppose that a 6= 0 is a profile such that at most
two progressive parties enter the electoral competition and there is a winner in
W (a) that implements a concave tax schedule. By Lemma 2, this winner must
be in W (a) \ J . It will be shown that a is not a Nash Equilibrium. If there is
one single party k in J , Corollary 1 implies that k obtains more than half of the
votes. Therefore, if there are at most two parties in J and W (a) \ J is nonempty,
either J is empty or J contains exactly two parties. If J is empty, we can use
the assumption that there exists i ∈ P such that c/θ < Il −mi as in the proof
of Proposition 2 to see that a is not a Nash Equilibrium. Also, it is clear that a
cannot be a Nash Equilibrium if J contains exactly two parties with the same ideal
point (one of the parties in J is unambiguously better off by withdrawing from the
competition). So suppose that J contains exactly two parties i and j with distinct
ideal points. Say mi < mj and let a∗i = 0. Note that if i /∈ W (a), party i has
incentives to withdraw, since ui(a) ≤ −θ(mj−mi)−c < −θ(mj−mi) = ui(a

∗
i , a−i)

(the last equality follows from Corollary 1), so a is not a Nash Equilibrium. If
i ∈W (a), the same conclusion is obtained. To see this, we distinguish two cases.
Suppose first that i ∈W (a) and j /∈W (a). Then

ui(a) < −θ

2
(mj −mi)− c ≤ −θ(mj −mi) = ui(a

∗
i , a−i),

where the last inequality holds because, by assumption, Il/2 ≤ c/θ. If, on the
other hand, i, j ∈W (a), suppose that k is a winner inW (a)\J such thatmk−Il =
minl∈W (a)\J ml − Il and let m0 = (mi +mj +mk)/3. Note that

ui(a) ≤ −θ

3
(mj −mi) +

θ

3
(mk −mi)− c = −θ(m0 −mi)− c. (5.1)

Since mj < Il and (as is easily verified) mj =
3
2
(mj −m0) + 1

2
(mi +mk), we have

3
2
(mj−m0) < Il− 1

2
(mi+mk). The right hand side of this last inequality is less than

or equal to Il/2 because Il ≤ mi+mk. It follows thatmj−m0 < Il/3 ≤ c/θ (recall
that Il/2 ≤ c/θ). This and (5.1) imply ui(a) < −θ(mj −mi) = ui(a

∗
i , a−i). ¥

Nash equilibria leading to regressive taxation with positive probability are
possible when there are three or more candidates favoring marginal rate progres-
sivity, even when the ratio c/θ satisfies the condition in Proposition 3. In fact, an
entry profile may be such that withdrawal by any candidate may end up favor-
ing ideologies that are more unpleasant (for the party that withdraws) than the
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ideology induced by the initial distribution of votes. Nevertheless, a Nash Equi-
librium leading to regressive taxation may not be regarded as self-enforceable if it
is possible for some coalition of parties to engage in some collective strategy that
improves the payoff of all the members of the coalition. This idea is exploited in
the next section.
Under a runoff system, the set of equilibria featuring marginal rate progressive

taxation is expanded. In fact, if the conditions in Proposition 2 are satisfied,
regressive taxation cannot be the outcome of a Nash Equilibrium of GRS with less
than five candidates. This result is

Proposition 4. Suppose that µ > med. If c
θ
< Il −mi for some i ∈ P , then

a nonlinear convex tax schedule is implemented in any Nash Equilibrium of GRS
with less than five candidates.
Proof. Let a∗ be an entry profile. If a∗ = 0, the assumption that vi(0) < −c−θ

for all i ∈ P implies that a∗ is not a Nash Equilibrium.
Suppose that a∗ 6= 0 is such that at most four parties propose a candidate.

Define C = {i ∈ P : a∗i = 1} and J = {i ∈ C : mi < Il}. By Lemma 2, any
winner in C who chooses a tax schedule that is concave must belong to C \ J .
By Corollary 1, all parties in C \ J obtain less than half of the votes. Thus, if
a∗ is to be consistent with the implementation of a concave tax schedule under
a runoff system, at least one party in C \ J makes it to the second round and
wins. Since a party in C \ J loses in the second round against a party in J by
Lemma 4, a party in C \ J makes it to the second round and wins only if the
two parties that make it to the second round belong to C \ J . If there is only
one party j in J , j obtains more than half of the votes in the first round by
Corollary 1. If there are exactly two parties j and k in J , more than half of
the citizens vote for either j or k by Corollary 1, whence at least one of them
obtains more than one fourth of the votes. Hence, if there are exactly two parties
in J , at least one of them reaches the second round. Since at most four parties
enter under a∗, we conclude that the two parties that reach the second round
belong to C \ J only if J = ∅. Thus, a∗ is consistent with the implementation of
a concave tax schedule under a runoff system only if J is empty. Suppose that
J is empty. It will be shown that a∗ is not a Nash Equilibrium. Suppose that
i ∈ P satisfies mi < Il − c/θ (such a i exists by assumption), and let ai = 1. By
Corollary 1, W (ai, a∗−i) = {i} and ωi(ai, a

∗
−i) > 1/2. It is then easy to verify that

vi(ai, a
∗
−i) = −c > −θ(Il −mi) ≥ vi(a∗), and so a∗ is not a Nash Equilibrium. ¥

In a similar fashion, it can be shown that regressive taxation is not compatible
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with any Nash Equilibrium of GRS with at most two candidates favoring marginal
rate progressivity, regardless of the number of candidates with ideal points greater
than Il.

5.2. Strong Nash Equilibrium

While the Nash best-response property is certainly a requirement for stability, one
can argue that the present setting favors the formation of coalitions by political
parties, which are likely to arrange plausible and mutually beneficial deviations
from Nash agreements. The notion of Strong Nash Equilibrium captures this idea
from a noncooperative angle. We strengthen the results obtained in the preceding
section by applying this concept to the games being analyzed. The following
proposition states that no Strong Nash Equilibrium of either the game under the
plurality rule or the game under a runoff system is compatible with regressive
taxation, regardless of the number of candidates.

Proposition 5. If µ > med, c
θ
< Il −mi for some i ∈ P , and {mi : i ∈ P}

covers a ε∗-partition, then a nonlinear convex tax schedule is implemented in any
Strong Nash Equilibrium of either GPR or GRS.
Proof. We shall only provide an argument for GPR, the game for the plurality

rule. The argument for GRS is similar and available from the authors upon request.
Let a∗ be an entry profile. If a∗ = 0, the assumption that ui(0) < −c− θ for all
i ∈ P implies that a∗ is not a Strong Nash Equilibrium.
Define C = {i ∈ P : a∗i = 1} and J = {i ∈ C : mi < Il}, and suppose that a∗

is consistent with the implementation of a regressive (concave) tax schedule. By
Lemma 2, this means that there is at least one winner in C \ J , or, equivalently,
W (a∗) \ J 6= ∅. We shall show that there exists an entry subprofile for a certain
coalition (a subset of P ) that improves the payoff of all its members, which implies
that a∗ is not a Strong Nash Equilibrium. Let m be the expected inequality point
induced by a∗; that is,

m =
1

|W (a∗)|
X

l∈W (a∗)

ml.

Observe that

|m−mk| =
¯̄̄̄
¯̄ 1

|W (a∗)|
X

l∈W (a∗)

(ml −mk)

¯̄̄̄
¯̄
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≤ 1

|W (a∗)|
X

l∈W (a∗)

|ml −mk| ∀k ∈ P. (5.2)

We consider four cases.
First, suppose that J = ∅. Let j ∈ P satisfy mj < Il − c/θ (such a j exists

by assumption) and let aj = 1. Since J = ∅, c/θ < Il −mj, and (by Corollary 1)
W (aj, a

∗
−j) = {j}, we have

uj(aj , a
∗
−j) = −c > −θ(Il −mj) ≥ − θ

|W (a∗)|
X

l∈W (a∗)

(ml −mj) = uj(a
∗),

and so a∗ is not a Strong Nash Equilibrium.
Next, suppose that J 6= ∅ and m ≥ Il. Let aJ be an entry subprofile for

coalition J such that ai = 1 for some i ∈ J with mi = maxk∈J mk and ak = 0
for all k ∈ J \ {i}. By Corollary 1, W (aJ , a∗−J) = {i}. Take any k ∈ J \ {i} and
observe that

uk(aJ , a
∗
−J) = −θ(mi −mk) > −θ(Il −mk)− c

≥ −θ(m−mk)− c ≥ − θ

|W (a∗)|
X

l∈W (a∗)

|ml −mk|− c = uk(a∗),

where the last inequality follows from (5.2). Moreover,

ui(aJ , a
∗
−J) = −c > −θ(Il −mi)− c

≥ −θ(m−mi)− c ≥ − θ

|W (a∗)|
X

l∈W (a∗)

|ml −mi|− c = ui(a∗),

where the last inequality follows from (5.2). Thus, uk(aJ , a∗−J) > uk(a
∗) for all

k ∈ J , whence a∗ is not a Strong Nash Equilibrium.
Suppose now that J 6= ∅, m < Il, and there exists an element of C, say i∗,

such that mi∗ ∈ (m − c
θ
,m + c

θ
). Let aK be an entry subprofile for coalition C

such that ai∗ = 1 and ak = 0 for all k ∈ C \ {i∗}. Then W (aK, a∗−K) = {i∗}. Pick
any k ∈ C \ {i∗} and note that we can write mi∗ = m+ γ, where |γ| < c/θ. We
have

uk(aK , a
∗
−K) = −θ|mi∗ −mk| = −θ|m+ γ −mk| ≥ −θ(|m−mk|+ |γ|)

> −θ|m−mk|− c ≥ − θ

|W (a∗)|
X

l∈W (a∗)

|ml −mk|− c = uk(a∗),
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where the last inequality follows from (5.2). Further, ui∗(aK, a∗−K) > ui∗(a
∗).

Indeed, if i∗ ∈ J , we have
1

|W (a∗)|
X

l∈W (a∗)

|ml −mi∗| > 0 (5.3)

since W (a∗) \ J 6= ∅ by assumption, and if i∗ ∈ C \ J , (5.3) also holds because
W (a∗) ∩ J 6= ∅ by the inequality m < Il. Therefore

ui∗(aK, a
∗
−K) = −c > −

θ

|W (a∗)|
X

l∈W (a∗)

|ml −mi∗|− c = ui∗(a∗).

Hence uk(aK , a∗−K) > uk(a
∗) for every k ∈ K, and so a∗ is not a Strong Nash

Equilibrium.
Finally, suppose that J 6= ∅, m < Il, and mk /∈ (m− c

θ
,m+ c

θ
) for all k ∈ C.

Either |W (a∗) ∩ J | ≥ |W (a∗) \ J | or viceversa. Say |W (a∗) ∩ J | ≥ |W (a∗) \ J |.
Since {mi : i ∈ P} covers a ε∗-partition, there exists a party in P , say j∗, such
that mj∗ ∈ [m,m + c

θ
). Let a ≡ m − c

θ
, b ≡ m + c

θ
, N1 ≡ |W (a∗) ∩ J |, and

N2 ≡ |W (a∗) \ J | and observe that mk /∈ (m− c
θ
,m+ c

θ
) for all k ∈ C impliesX

l∈W (a∗)

|ml −mj∗| ≥ N1(mj∗ − a) +N2(b−mj∗).

Because b− a = 2c/θ, this equation impliesX
l∈W (a∗)

|ml −mj∗| ≥ (N1 −N2)(mj∗ − a) + 2N2c/θ.

Noting that mj∗ − a ≥ c/θ and N1 +N2 = |W (a∗)|, we obtainX
l∈W (a∗)

|ml −mj∗| ≥ |W (a∗)|c/θ. (5.4)

If this equation holds as an equality, it must be mk = a for every k ∈ W (a∗) ∩ J
and mk = b for every k ∈W (a∗) \ J . Let aJ be an entry subprofile for coalition J
such that ak∗ = 1 for some k∗ ∈ J and ak = 0 for all k ∈ J \ {k∗}. Since mk = a
for every k ∈W (a∗)∩ J , mk = b for every k ∈W (a∗) \ J , W (a∗) \ J 6= ∅, and (by
Corollary 1) W (aJ , a∗−J) = {k∗}, we have

uk(aJ , a
∗
−J) ≥ −c > −c−

θ

|W (a∗)|
X

l∈W (a∗)

|ml −mk| = uk(a∗)
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for every k ∈ J , which implies that a∗ is not a Strong Nash Equilibrium. If the
inequality in (5.4) is strict, let K ≡ C ∪ {j∗} and take the entry subprofile aK for
coalition K, where aj∗ = 1 and ak = 0 for all k ∈ K. Then W (aK , a∗−K) = {j∗}.
Noting that we can write mj∗ = m+ γ, where |γ| < c/θ, we have

uk(aK, a
∗
−K) = −θ|mj∗ −mk| = −θ|m+ γ −mk| ≥ −θ(|m−mk|+ |γ|)

> −θ|m−mk|− c ≥ − θ

|W (a∗)|
X

l∈W (a∗)

|ml −mk|− c = uk(a∗)

for any k ∈ K, where the last inequality follows from (5.2). Moreover,

uj∗(aK , a
∗
−K) = −c > −

θ

|W (a∗)|
X

l∈W (a∗)

|ml −mj∗| = uj∗(a∗)

because the inequality in (5.4) is strict. Thus uk(aK, a∗−K) > uk(a
∗) for every

k ∈ K, whence a∗ is not a Strong Nash Equilibrium. ¥

6. Conclusion and Extensions

This paper analyzes the relationship between a representative democracy and
marginal rate progressive income taxation. Essentially, in our model there is an
exogenous set of political parties with given preferences over tax schedules. The
model proposes a game of electoral competition in which political parties decide
whether or not to present a candidate; each citizen then chooses a candidate.
There is a fixed cost of running, while the only benefit is that, if elected, each
candidate imposes one of her preferred tax policies. We analyze the cases where
the winner is determined under the plurality rule or a two-ballot runoff system.
While defining the set of feasible taxes as virtually any non-decreasing and

piecewise linear continuous function, we provide conditions under which Nash
and Strong Nash Equilibria exist. Moreover, in some Nash Equilibria and in
any Strong Nash Equilibrium, a tax schedule with increasing marginal tax rates
(i.e., a nonlinear convex tax function) is always implemented. While the related
literature seems to suggest that rich sets of admissible tax schedules generate
serious instability problems that are highly counterfactual, we argue that, on the
contrary, general sets of admissible tax schedules are compatible with existence of
equilibrium. What is more, equilibrium outcomes favor marginal rate progressive
taxation and are thus consistent with the observed demand for progressivity.
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As an interesting extension of our model we would like to conduct a similar
analysis when agents experience disutility from labor. Also, we would like to see if
there is a relation between the initial distribution of income and the progressivity
of the income tax schedule; this could allow us to conduct comparisons among
countries. Finally, allowing for a benefit of being elected (besides the right to
choose the implemented tax function) seems a more realistic way of modeling the
political parties’ preferences. These tasks (by no means trivial) are left for future
research.
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Appendix.

In order to prove Lemma 1 we first introduce a preliminary result.

Lemma A.1. Let t, t0 ∈ T and suppose that there exists x such that t0 < t on
(0, x) and t0 > t on (x, 1). Then Ft0 ÂL Ft.
Proof. Let t, t0 satisfy the conditions of the lemma. Since

R 1
0
t(x)dF =R 1

0
t0(x)dF = R, it follows from Proposition 5.2 in Le Breton et al. (1996) that

Ft0 ºL Ft. Since t0 < t on (0, x) implies F−1t0 > F−1t on (0, Ft(x)), Ft0 ÂL Ft. ¥

We can now proceed with the

Proof of Lemma 1. Take j ∈ P and suppose that mj < Il. Because I(F) =
(0, 1), there exists t∗ ∈ T such that I(Ft∗) = mj. Let

g(x) =

Z 1

x

(z − x)dF (z) =
Z 1

x

zdF (z)− x(1− F (x))

for all x in [0, 1]. By continuity of F , g is continuous. Also, g(0) = µ > R and
g(1) = 0 < R. By the Intermediate Value Theorem, therefore, there exists x ∈
(0, 1) such that g(x) = R. Since F is strictly increasing, g is strictly decreasing.
Therefore, there exists a unique such x. For every β ∈ (0, R/µ], let

ϕ(β) =
R− β

£ R x
0
zdF (z) + x(1− F (x))¤R 1
x
(z − x)dF (z) .

Define tax schedules t = (0, 1; 0, x, 1) and tβ = (β,ϕ(β); 0, x, 1). It is readily
observed that tβ ∈ T for each β and limβ→0 tβ = t (where the limit is defined
with respect to the sup metric). Further, for some x∗, t < t∗ on (0, x∗) and t > t∗

on (x∗, 1). It follows that there exist β 0 and x0 such that tβ0 < t∗ on (0, x0) and
tβ0 > t

∗ on (x0, 1). By Lemma A.1, then, Ftβ0 ÂL Ft∗, whence, by S-concavity of
I, I(Ftβ0 ) < I(Ft∗) = mj.
Define f : [β 0, R/µ] → R by f(β) = I(Ftβ). It will be shown that f is

continuous. Choose β ∈ [β0, R/µ] and let {βn} be a sequence from [β 0, R/µ]
converging to β. We shall only consider the case in which βn ≥ β for all n, for the
other cases are handled similarly. Suppose then that βn ≥ β for all n. Fix ² > 0.
Since F is continuous on a compact set, it is uniformly continuous. It follows that
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there exists δ > 0 such that |F (y) − F (z)| < ² for all y and z with |y − z| < δ.
Since βn → β and ϕ(βn)→ ϕ(β), we can find N such that

|βn − β|, |ϕ(βn)− ϕ(β)| < min
½
δ(µ−R)
2µ

,
δ(1− ϕ(β 0))

2

¾
∀n ≥ N (A.3)

and
(1− βn)x

1− β
> x− δ

2
∀n ≥ N. (A.4)

To simplify notation, let t = tβ and tn = tβn . Take n ≥ N and x ∈ [0, 1], and let
y = r−1t (x) and yn = r−1tn (x). Three cases are possible: y, yn ∈ [0, x], y, yn > x,
and y ∈ [0, x] and yn > x.17 If y, yn ∈ [0, x], we have

|yn − y| =
¯̄̄̄
(βn − β)y

1− βn

¯̄̄̄
≤ βn − β

1− (R/µ) < δ/2,

where the last inequality follows from (A.3). If y, yn > x,

|yn−y| = |βn − β|x+ (y − x)|ϕ(βn)− ϕ(β)|
1− ϕ(βn)

≤ max
©|βn − β|, |ϕ(βn)− ϕ(β)|ªy

1− ϕ(β 0)
,

where the last inequality holds true because ϕ is decreasing. By (A.3), therefore,
|yn − y| < δ/2. Suppose that y ∈ [0, x] and yn > x. Then y > (1−βn)x

1−β , for

y ≤ (1−βn)x
1−β implies yn − y = (βn−β)y

1−βn ≤ x− y. Therefore y > x−
δ
2
by (A.4). Let

xn = r
−1
tn (x − t(x)). Since z − t(z) is increasing and y ≤ x, y − t(y) ≤ x − t(x).

Since r−1tn is increasing, we obtain

yn = r
−1
tn (y − t(y)) ≤ r−1tn (x− t(x)) = xn.

Hence yn−y ≤ x−y+xn−x. Since yn−y ≥ 0, |xn−x| < δ/2, and |x−y| < δ/2,
we have |yn − y| < δ. Thus |yn − y| < δ in all cases. It follows that

|Ft(x)− Ftn(x)| = |F (y)− F (yn)| < ².

We conclude that, given ² > 0, there exists N such that, for all n ≥ N ,

|Ft(x)− Ftn(x)| < ² ∀x.
17The case yn ∈ [0, x] and y > x cannot occur because we are assuming βn ≥ β for all n.
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This implies Ftn → Ft. By continuity of I, therefore, I(Ftn)→ I(Ft), or, equiva-
lently, f(βn)→ f(β). Thus, f is continuous.
Since f(β0) < mj < f(R/µ) = Il and f is continuous, the Intermediate Value

Theorem implies the existence of β∗ ∈ (β0, R/µ) such that f(β∗) = mj. Because
tβ∗ is nonlinear convex and belongs to T , the desired conclusion follows. The
argument for the case mj > Il is analogous. ¥

Proof of Lemma 2. Take j ∈ P and suppose that mj < Il. Clearly, (2.4)
implies that any tax schedule in Tj is nonlinear. It will be shown that if t ∈ Tj
then t is convex. Suppose that t ∈ T is not convex. The proof of Lemma 1 makes
it clear that there exists a two-bracket convex tax schedule in T , say t∗, such that
I(Ft∗) = mj. It is therefore sufficient to prove that t∗ Âj t, that is, t /∈ Tj. By
(2.4), it is plain that this is the case if t has more than two brackets. If t has
one bracket, that is, t = tl, we have I(Ftl) = Il > mj, and so t∗ Âj t. Suppose
that t has two brackets. We claim that in this case we also have I(Ft) 6= mj. By
S-concavity, it suffices to show that Ft∗ ÂL Ft. Since t has two brackets and is
nonlinear concave, there exists x such that t∗ < t on (0, x) and t∗ > t on (x, 1). It
follows from Lemma A.1 that Ft∗ ÂL Ft, as desired. The case mj > Il is handled
similarly. That Tj = {tl} whenever mj = Il follows directly from (2.4). ¥

Proof of Lemma 3. Take j ∈ P . Condition (i) follows from the fact that every
t in T satisfies 0 ≤ t(x) ≤ x for all x. Tj is nondecreasing because each t in T
is nondecreasing. To see that Tj is continuous, take any x ∈ [0, 1] and let {xn}
be a sequence from [0, 1] converging to x. For each y ∈ [0, 1], let τ y be a real
function on T such that τ y(t) = t(y), and let τ y,j be the restriction of τ y to Tj.
Because each t in T is continuous, the sequence {τxn} converges to τx pointwise.
Further, since |t(x)| ≤ 1 on [0, 1] for each t ∈ T , τxn is uniformly bounded for
each n. By the Lebesgue Convergence Theorem, therefore, {R τxn,jdπj} converges
to
R
τx,jdπj, or, equivalently, {Tj(xn)} converges to Tj(x). Thus, Tj is continuous.

To establish (iii), let µ0 be the (unique) measure on the Borel σ-algebra B on (0, 1]
such that µ0((a, b]) = F (b) − F (a). We have R Tj(x)dF = R R τx,jdπjdµ

0. Define
φ : Tj × (0, 1] → R by φ(t, x) = t(x). It is easily seen that φ is measurable with
respect to the σ-algebra of subsets of Tj × (0, 1] generated by rectangles T 0 × A
with T 0 ∈ Aj and A ∈ B. It follows from Fubini’s Theorem that

R R
τx,jdπjdµ

0 =R
τdπj, where τ is a map on Tj such that τ (t) =

R
tdµ0. Thus,

R
Tj(x)dF =

R
τdπj.

Noting that τ(t) =
R
tdµ0 = R for each t ∈ Tj (see (2.1)), we obtain (iii).

It remains to show that if mj < Il (mj > Il), then Tj is a nonlinear convex
(concave) function, and mj = Il implies Tj = tl. If mj = Il, we have Tj = {tl}
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by Lemma 2, and so (2.5) yields Tj = tl. Let mj < Il. Suppose by way of
contradiction that Tj is not convex. Then there are x, y ∈ [0, 1] and λ ∈ (0, 1)
such that Tj(λx+ (1− λ)y) > λTj(x) + (1− λ)Tj(y). This is equivalent toZ

t(λx+ (1− λ)y)πj(dt) > λ

Z
t(x)πj(dt) + (1− λ)

Z
t(y)πj(dt).

Therefore Z
t(λx+ (1− λ)y)πj(dt) >

Z
[λt(x) + (1− λ)t(y)]πj(dt).

It follows that there exists a finite measurable partition {P1, ...,Pn} of Tj such
that

nX
k=1

h
inf
t∈Pk

t(λx+(1−λ)y)
i
πj(Pk) >

nX
k=1

h
inf
t∈Pk

λt(x)+ (1−λ)t(y)
i
πj(Pk). (A.15)

By Lemma 2, every element of Tj is convex. Thus, t(λx + (1 − λ)y) ≤ λt(x) +
(1− λ)t(y) for each t ∈ Tj. It is readily observed that this implies

inf
t∈Pk

t(λx+ (1− λ)y) ≤ inf
t∈Pk

λt(x) + (1− λ)t(y) ∀k,

which contradicts (A.15). It remains to show that Tj is nonlinear. Since Tj is a
subset of T whose elements are nonlinear convex tax schedules (see Lemma 2)
there exist y0 and y1 in [0, 1] such that t(y0) < tl(y0) and t(y1) > tl(y1) for all
t ∈ Tj. It follows that Tj(y0) < tl(y0) and Tj(y1) > tl(y1), so Tj is nonlinear. The
case mj > Il is handled similarly. ¥

Proof of Corollary 1. For simplicity, we provide the proof for the case where
J is a singleton. The general case is proven similarly. Take any entry profile a
such that J = {i}. If C \ J is empty, there is nothing to prove, so let C \ J 6= ∅.
By hypothesis, mk ≥ Il for all k ∈ C \ {i}. By Lemma 3, Tk satisfies conditions
(i) to (iii) for each k ∈ C, Ti is convex, and Tk is concave for each k ∈ C \ {i}.
Therefore, there exists a unique xk ∈ (0, 1] such that Ti(xk) = Tk(xk) for each
k ∈ C \ {i}. Say 1 ∈ C \ {i} and x1 = min{xk : k ∈ C \ {i}}. By Lemma 4,
ωi(a

0) > 1/2, where a01 = a
0
i = 1 and a

0
k = 0 for k ∈ P \ {1, i}. This inequality

can be rewritten as
R
Ei(a0)

dF > 1/2 (see (2.6)). Since Ei(a0) = [0, x1] = Ei(a), we
have Z

Ei(a)

dF =

Z
Ei(a0)

dF > 1/2,
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and so ωi(a) > 1/2. ¥

Lemma A.2. If {mi : i ∈ P} covers a ε∗-partition, there exists i∗ ∈ P such
that mi∗ ∈ [Il − c

θ
,min{m∗ − c

θ
, Il
2
}].

Proof. Let

A∗ ≡
·
Il − c

θ
,min

½
m∗ − c

θ
,
Il
2

¾¸
and define k = minA, where

A ≡ {k : [Nk(ε∗), Nk+1(ε∗)] ∩A∗ 6= ∅}

and ε∗ is as in (4.1). We have Nk(ε∗) ≤ Il − c
θ
, for Nk(ε∗) > Il − c

θ
implies

the existence of k0 ∈ A with k0 < k. Since {mi : i ∈ P} covers a ε∗-partition,
Nk+1(ε

∗)−Nk(ε∗) ≤ 1
2
min

©
m∗ − Il, cθ − Il

2

ª
for all k. Therefore, Nk(ε∗) ≤ Il − c

θ

implies

Nk+1(ε
∗) ≤ Il − c

θ
+
1

2
min

½
m∗ − Il, c

θ
− Il
2

¾
and

Nk+2(ε
∗) ≤ Il − c

θ
+min

½
m∗ − Il, c

θ
− Il
2

¾
.

Arranging terms, we obtain

Nk+1(ε
∗) ≤ 1

2
min

½
m∗ − c

θ
,
Il
2

¾
+
1

2

µ
Il − c

θ

¶
(A.16)

and

Nk+1(ε
∗) ≤ min

½
m∗ − c

θ
,
Il
2

¾
. (A.17)

Further, Il− c
θ
≤ Nk+1(ε∗) by definition of k. This, along with (A.16) and (A.17),

implies [Nk+1(ε∗),Nk+2(ε∗)] ⊂ A∗. By assumption, there exists an element of
{mi : i ∈ P} in (Nk+1(ε∗), Nk+2(ε∗)), and so there exists i∗ ∈ P such that mi∗ ∈
A∗. ¥
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