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Abstract

A monotone game is a repeated game in which action sets are partially or-
dered and players’ actions over time are non-decreasing with respect to the
partial order. These games represent a variety of strategic situations in which
players are able to commit to certain levels of action.



1 Introduction

Coordination games represent an important class of examples that show how
individually rational behavior may lead to collectively suboptimal outcomes,
even when economic agents have common interests. Game theorists are in-
terested in these games because of their surprising departure from collective
rationality. Macroeconomists are interested in these games because they
provide a paradigm for macroeconomic market failures.

A familiar example of a coordination game is the 2 x 2 game depicted
below.

L R
T1(2,2) | (0,0)
B |(0,0) | (1,1)

For each strategy profile, the two players’ payoffs are identical so they have
completely aligned interests. However, there are two, Pareto-ranked equi-
libria, (Top, Left) and (Bottom, Right). The fact that rational players can
end up choosing (Bottom, Right) despite their common interest in choos-
ing (Top,Left) suggests a surprising limitation of the power of rationality to
guarantee satisfactory outcomes.

Now the existence of multiple, Pareto-ranked equilibria in the static game
does not guarantee that a bad equilibrium will be played. In fact, it can
be argued that the best (Pareto-dominant) equilibrium will be focal in the
sense of Schelling and hence will be chosen by rational players. One way
of making this kind argument more compelling is to cast the game in a
dynamic framework in which one can explicitly analyze the players’ attempt
to “coordinate” on an efficient equilibrium of the coordination game.

Several studies have taken this approach. Auman and Sorin (1989) stud-
ied the repeated play of two-person coordination games when players had
finite memory and were uncertain about the rationality of their opponents.
They showed that the Pareto-dominant outcome would be played in the long
run with high probability. Lagunoff and Matsui (1997) studied the repeated
play of n-person coordination games under the assumption that the players
could only change their strategies at times that were independently and ex-
ponentially distributed. Here too the Pareto-dominant outcome is observed
with high probability in the long run. Gale (1995) studied a game of timing
and delay in which players had to decide when to to exploit an investment
option, the returns to which depended on the number of other players who
chose to invest. This was a dynamic version of a static coordination game,



but not a repeated game. There are many equilibria in this game, but Gale
showed that when the period length became vanishingly short, all equilibrium
outcomes converged to the unique Pareto-dominant outcome.

In all of these studies, the dynamic structure added to the static coordi-
nation game fundamentally changes the analysis and provides an explanation
of why the Pareto-dominant equilibrium should be selected. The aim of the
present paper is to extend and clarify the analysis in Gale (1995). In Gale’s
model, investment is irreversible and players can only invest once, so once a
player has invested he is committed to that decision forever. At any stage of
the dynamic game, the continuation subgames is completely characterized by
the number of players who have already invested. So subgames are ordered
in a natural way and we can analyze the dynamic game by using backward
induction on the ordered family of subgames. The decision to invest trans-
forms a subgame into the next subgame. Once enough players have invested,
it becomes a dominant strategy for the remaining players to invest. Using
backward induction, one can show that there is a limit on the delay that can
exist between successive ordered subgames, since it will always be in some-
one’s interest to precipitate the next subgame, anticipating that someone else
will precipitate the next, ..., until investment becomes profitable.

The model in Gale (1995) is very special but the irreversibility structure,
which is responsible for the optimality properties of the dynamic coordination
game, has a much wider applicability. To study the role of irreversibility in
general, a general class of games with a monotone structure is introduced in
Section 1. These are called monotone games. A monotone game is defined by
a one-shot, n-player game I' together with an irreversibility structure. The
strategy set of player i is denoted by X; and is endowed with some partial
ordering >;. The ordering is extended in the natural way to the strategy
profiles X = X ,X,. Then the game I' is played repeatedly over time,
subject to the following two constraints.

o Sequential Moves: At each date ¢ only one of the players i is allowed
to change his strategy. The other players retain their strategy from the
previous period.

e Monotonicity: If player ¢ is allowed to change his strategy at date ¢
then he must choose x} >; x;, where z; is his previous strategy.

Both restrictions are important. The fact that only one player moves at a
time implies that monotone games are games of perfect information (compare
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Lagunoff and Matsui (1997)). This obviously gives backward induction a
bigger role, though it is not necessary in the game studied in Gale (1995).
The monotonicity restriction is the essential irreversibility condition.

Even without the monotonicity assumption, the assumption that players
move one at a time can ensure efficiency in certain special cases. In Section
2 we study the class of games with common preferences. A game I' has
common preferences if each player has a payoff function u; : X — R and
u; = u; for all ¢, 7 = 1,...,n. Coordination games are a special case of games
with common preferences.

With common preferences and one player moving at a time, a repeated
game is like a dynamic programming problem. At any date, the player who
is allowed to move chooses a strategy to maximize the common payoff antic-
ipating that all future players will do the same. This sounds just like solving
a dynamic program, so it is not too surprising that the outcome is optimal
in the limit as the period length becomes vanishingly small. Nonetheless, it
points to some important features of these games. The “folk theorem” fails
to hold because of the lack of simultaneous moves. If there were simultane-
ous moves, every Nash equilibrium would be a subgame perfect equilibrium.
Discounting is also necessary. If players are not at least slightly impatient,
it is easy to provide counterexamples.

The games studied by Admati and Perry (1991) and Gale (1995) do not
have common preferences. In the contribution game, every player would
like the other players to make larger contributions and his own contribution
to be reduced. In the investment game, no player wants to invest before
the minimum aggregate investment needed to ensure profitability has been
reached. Consequently, in an asymmetric equilibrium, in which some players
invest before others, the early investors would like to switch places with
the later investors. For these games, the irreversibility assumption plays an
important role.

In Section 3, we look at monotone games that satisfy positive spillovers. A
game " has (strictly) positive spillovers if an increase in one player’s strategy
(increases) does not decrease the payoffs of all the other players. This is true
of the contribution game and the investment game. It is also true of many
coordination games. Then we characterize the subgame perfect equilibrium
outcomes of monotone games with positive spillovers.

Again it is possible to show that sequential moves and monotonicity imply
optimality, at least in the sense that the set of subgame perfect equilibrium
outcomes includes a large number of Pareto-efficient outcomes. These are
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not the only outcomes that can be supported by equilibrium play, but the
fact that they can be supported at all with the limited punishments allowed
by monotonicity is surprising.

The structure of these equilibria is quite different from those of repeated
games. In particular, there is no analogue of the “folk theorem”. Instead,
the subgame perfect equilibrium outcomes are precisely the approachable
outcomes, where an outcome is defined to be approachable if it is the limit of
a non-decreasing sequence along which no player can ever guarantee himself
more than the payoff he receives at the desired outcome. In Section 4 we
provide sufficient conditions for an outcome to be approachable. An outcome
is strongly minimal if it is impossible for any coalition to guarantee each of
its members at least as high a payoff by choosing smaller strategies, while
every member of the counter-coalition chooses the minimal strategy. This
condition sounds a bit like the definition of the core of I' and there is indeed
a family resemblence. What this makes clear is that extreme distributions
of utility will be ruled out as subgame perfect equilibria, even though they
may be efficient. In particular, a player can typically be sure of doing better
than his security level in any SPE, so the set of SPE payoffs in a monotone
game is smaller than the SPE payoffs of a repeated game.

Characterizing the set of other SPE outcomes is more difficult, but we
can at least say that the set of pure Nash equilibrium outcomes of the game
I' is always contained in the set of SPE outcomes. The Nash property im-
mediately implies strong minimality in games with positive spillovers.

The results obtained so far obviously leave a great deal unsaid. This
should not be surprising when we recall that some special structure is required
to ensure that monotonicity restricts the set of equilibria. Furthermore, it
is too much to hope that monotonicity always ensures efficient outcomes.
So it will not be possible to deduce interesting characterization theorems
for monotone games in general. Some restrictions are needed if we are to
have any hope of obtaining positive results. On the other hand, the more
economic structure we are prepared to build into these games, the more
interesting results we may hope to derive. This preliminary study suggests
that future research on monotone games may prove to be very fruitful indeed.



2 Monotone Games

2.1 The Game

A monotone game differs from an ordinary repeated game in two respects.
First, the players’ strategies are nondecreasing over time. Secondly, the play-
ers move one at a time according to an exogenously specified order. These
restrictions transform what would have been a repeated game into a sto-
chastic game. The state of the game, which uniquely defines the subgame,
consists of the date and the profile of strategies that were chosen in the last
period

The definition of the monotone game begins with an n-player stage game
I' consisting of a set of players

a set of strategy profiles
X=X X ..x X,
and a payoff function player i’s payoff function is denoted by
u: X — R"

The payoff function u(z) = (uy(z), ..., u,(z)) specifies a payoff u;(z) for each
player i.

The monotone game is played at a countable number of datest = 1,2, ....
The order of play is a sequence m = {m;}°, that specifies the identity of
the player ¢« = m; who is to move at date ¢t. For example, we could assume
that players take turns according to their index i: first player 1 moves, then
player 2 moves, and so on until all the players have moved once. Then they
begin again with player 1, player 2, and so on indefinitely. In that case, 7 is
defined by 7; = t mod n, for any ¢t. The one restriction needed on the order
of play is that every player moves sufficiently often: for some € > 0 and any
date T' > n and any player 1,

#{1 <t <T|my =i} > eT.

The strategy sets X; are assumed to be subsets of some finite-dimensional
Euclidean space Rf. Each strategy set is given the usual partial ordering and
the set of strategy profiles is ordered in the obvious way,

¥ > x <=, > x;,Vi.
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The set of strategy profiles is assumed to be comprehensive in the sense that
for any x, 2’ € R™,

[z € X and 2/ > 2] = 2’ € X.

There is assumed to be an exogenously given initial state 2 € X. Since the
strategy profiles are comprehensive, by a simple translation of the strategy
sets we can set the initial state we can assume without loss of generality that
the initial state of the game is 2° = 0 and the set of strategies available to
player 7 is X; = RY.

Let M(T') denote the monotone game defined in this way.

2.2 Equilibrium

A feasible path for M(T") is a non-decreasing sequence {x;}:°2, satisfying the
order-of-play restrictions that for every ¢ and ¢

I F# Ty = Tipr1 = Ti-

The informations sets of the game consist of the finite initial segments of
feasible paths. Let H be the set of information sets and let H; C H be the
set of information sets at which player ¢ controls the play. A strategy for
player ¢ in M(I") is a function f; : H; — X with the property that for each
information set h € H; the following two conditions are satisfied:

(i) 21 = fi(h) = x4
(i) zjer1 = fis(h) = 20, Vj # 4,
where h = (z1,...,x;) . Let F; denote the set of feasible strategies for player
tand let F'=F] X ... X F,.

For any n-tuple of feasible strategies f = (fi, ..., fn) € F there is a unique
equilibrium path {z;} defined recursively by putting

Ty = fm(o)
,Tt+1 = fm(xt),‘v’t > 1

The payoff to player ¢ is denoted by U;(f). The payoffs can be specified in
various ways. There are two cases that are of particular interest, with and
without discounting. Without discounting, payoffs are defined by

Ui(f) = limtinf u; ().
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In the case with discounting, we assume there is a common discount factor
0 < B < 1 and the payoffs are defined by

Uf) = (1- ) f;ﬁ“uz-m).

A monotone game is a game of complete information and perfect re-
call. Therefore we analyze the subgame perfect equilibria of the game. Let
M,(T",z) denote the monotone game beginning at date ¢ with initial state x,
that is, the stage-game strategies are restricted to the set {#' > z} and the
order of play is {7, 711, ...}. A subgame perfect equilibrium is a strategy pro-
file f € F such that for any history h = (z1,...,2,—1) € H, the continuation
strategies f|h constitute a Nash equilibrium of M;(T",z; 1).

3 Games with Common Preferences

Lagunoff and Matsui (1997) study repeated coordination games under the as-
sumption that players can only change their strategies at exogenous, random
intervals. This assumption of inertia implies that whenever an individual
player has the opportunity to change his strategy, he can assume that all the
other players will hold their strategies constant for some considerable time.
He also anticipates the effect that his choice will have on the next player to
have an opportunity to change his strategy. In this context, subgame perfect
equilibrium implies that eventually they must all coordinate on the Pareto
dominant equilibrium.

The first example we consider is a game with common preferences. For-
mally, a stage game I' has common preferences if u; = u for : = 1,...,n. This
is a slight generalization of the familiar coordination game, in which players
have common preferences and, in addition, prefer the diagonal outcomes to
all others. Even in the very special case of coordination games, there may be
multiple equilibria, some of which are Pareto-preferred to others. From this it
is clear that common preferences do not guarantee good outcomes. Nonethe-
less, for monotone games based on stage games with common preferences,
the results are quite different: in the limit, as the discount rate becomes van-
ishingly small, all subgame perfect equilibrium outcomes are approximately
Pareto-efficient.

The reason has nothing to do with the monotonicity restrictions, but
simply the fact that sequential decision making by the players transforms a
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strategic game into a maximization problem. It should be noted that the
limiting result does not hold in the limit, where there is no discounting. In
this sense, a small amount of discounting acts as a refinement of the subgame
perfect equilibrium.

Let M;(T', z,3) denote the monotone subgame based on the stage game
I’ that begins at date ¢t with initial state . Note that the subgame differs
from M(T', z, 3) because the order of play is given by (7, 7y 41, ...). Let vy (x)
denote the infimum of the payoffs from any subgame perfect equilibrium of
the subgame M, (I",z). We assume that u is bounded on X and hence v;(z)
is bounded for every ¢ and =x.

vi(z) = sup{(l = Blu() + fria(2) - 2 € Si()}
= sup{(1 = B)u(z') + Fsup{(1 = B)u(z") + fui2(") - 2" € Sy ()} : 2" € Si(a)}
= sup{(1 — Bu(z') + (1 = B)Bu(z") + Brvrsa(z”) : 2" € Spya(2'), 2" € Sy(x)}

and so forth, where S;(z) = {2’ € S(x) : a}, = x;,Vi # m;} and S(x) = {2’ €
X|z' > z}.. From this we have

Ut(x) = (1 - ﬂ) SUP{Z ﬁku(ﬁtﬂc) BN RS St+k($t+le—1)7Vk§ Ti—1 = $}
k=0

If u possesses a maximum on X, say z*, and x < z*, then there exists a
sequence {z4,x}3°, such that x; 1 = x, x4 p € Spip(xiip 1) for k=0,1,...,
and z; = z* for all but a fixed, finite number of dates. From this it follows
that limg_,; v;(x) = u(z*) for all ¢ and z*.

Theorem 1 (Lagunoff-Matsui) LetT' = (N, X, u) be a stage game with com-
mon preferences and suppose that u possesses a maximum at x*. Then for
any initial state x < x* and date t,

ﬁl_xl_)fq ve(w; B) = u(x"),

where v(x; B) is the infimum of the payoffs from the subgame perfect equilibria
of the monotone game M(T', x, 3).

Although the proof respects the monotonicity conditions of the game,
they are not used at any point to obtain the result. So the theorem holds
for any dynamic game of this form, even without the constraint that the
states must be non-decreasing over time. This shows that it is only the
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sequential decision making, together with a positive but vanishing amount
of discounting, that ensures optimality in the limit.

An example shows that the result fails if there is no discounting. Suppose
there are two players i = 1,2 with strategy sets X; = [0, 2] and payoffs

u(r) = —(max{x;, z5) — 1)

Clearly the maximum of u(z) is 0 and yet without discounting the outcome
x = (2,2) can be supported as a subgame perfect equilibrium. To see this,
consider the strategies that require each player to set z; = 2, if he has not
already done so, at each date when he has the chance to move. Each player,
anticipating that his opponent will choose the maximum action and ensure
a future payoff of —1 will find it optimal to follow the strategy described.

Discounting makes a difference to this analysis, because even if the player
anticipates a poor outcome in the future, he would still like to postpone it as
long as possible. If both players do this, they end up cooperating indefinitely.

[The common preference game is much simpler than the Lagunoff-Matsui
game, but there is a strong family resemblence between the two. The game
analyzed by Gale (1995) is quite different, because players do not have com-
mon preferences. The n players each have to decide when to exploit an
investment option. The size of the investment is fixed and the investment
can only be made once so effectively the players are deciding to invest at date
t, where t = oo corresponds to waiting forever. Investment involves a fixed
cost ¢ incurred at the date the investment is made and a stream of revenues
after the investment is made. The revenue in each period depends on the
number of of players who have invested to date. Investment is assumed to
be socially desirable and players are impatient, so the unique Pareto-efficient
outcome is the one in which all players invest at the first date.

There are many equilibria and, since players discount the future, any
delay in investment is inefficient. However, as the period length becomes
vanishingly short (the discount factor converges to 1), all subgame perfect
equilibrium outcomes converge to the Pareto-efficient outcome.

Because of the irreversibility of investment, subgames can be grouped
into equivalence classes of strategically equivalent games according to the
number of players who have already invested. There is a natural ordering on
these equivalence classes, since subgames with more invested players follow
those with less. If the number of invested players is large enough, it is a dom-
inant strategy for all to invest. The entire game can be analyzed by backward



induction, starting with the dominance solvable subgames and working back-
wards to the preceding subgames. This backward induction argument can
be used to extend the analysis of games with common preferences to games
with dominance solvable subgames, but monotonicity plays a role here that
is not found in the games with common preferences.|

4 Games with Positive Spillovers

In this section we examine monotone games in which each player’s payoff
is monotonically non-decreasing in the actions of other players. Follow-
ing Cooper and John (1988), we say that a stage game I' exhibits positive
spillovers if, for any player ¢ and any z_;, 2" , € X_;,

wi(xi, x_y) > ui(wy, o’ ) if x_; > ', for any z; € X;.

Analogously, I" is said to exhibit strictly positive spillovers if, for any player
i and any z_;, 2", € X,

wi(xi, o) > ui(zg, 2" ,) if x; >’ ) for any z; € X;.

The assumption of positive spillovers is maintained throughout the rest of this
section. The stage game I' is also assumed to satisfy the following regularity
assumptions:

e The set of individually rational actions for player i is bounded: for
some large number k£ and any x € X,

e For each player i, the payoff function w; is assumed to be continuous
on RY.

Example 2 An example of a game with strictly positive spillovers is the
public goods contribution game. Fach of the players i = 1,...,n contributes
an amount x; > 0 of the numeraire good for the provision of a public good.
The total amount of the public good produced is y = f(>; x;), where f(-) is
a continuous and increasing production function. Fach player i has a utility
function W;(y, m;), where y is player i’s consumption of the public good and
m; = m; — x; is his consumption of the numeraire good. W;(-) is assumed
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to be continuous and increasing in both arguments. Then the payoff function
can be defined by putting

ul(m) = I/Vz(y,m@ - xi)v

where y = f(3; ;). It is clear that the payoff function u;(-) defined in this
way 18 continuous and exhibits strictly positive spillovers.

Admati and Perry (1991) study a similar game in which two players make
successive contributions to the production of a public good. The public good
is assumed to be socially desirable and has a fixed cost K. The players
make contributions alternately, beginning with player 1 in period 1. The
contributions are sunk (non-recoverable) and players incur the cost of each
contribution at the date it is made. The public good is produced and the
players enjoy the benefit of it as soon as the contributions total K. Players
are impatient and discount the future using a common discount factor 0 <
6 < 1. Admati and Perry show that under certain conditions there is an
essentially unique equilibrium. The equilibrium may be inefficient: in the
case of linear costs, the project is completed if and only if each player would
find it optimal to complete the project if he were the only player. This
condition is restrictive. The lumpiness of the project is crucial here. As
we shall see, if the public good is perfectly divisible, it may be possible to
support Pareto-efficient equilibria under weaker conditions.

Another source of inefficiency in the Admati-Perry model comes from
delay in completing the project: since players discount the future, there is a
loss of utility whenever the project is not completed at the earliest possible
date. However, in the case where the project is completed, it can be shown
that as the period length converges to zero (the discount factor converges to
1) the unique subgame perfect equilibrium outcome converges to the Pareto-
dominant outcome. In other words, there is virtually no delay.

Marx and Matthews (1997) extend the model of Admati and Perry (1991)
and provide a thorough investigation of a number of interesting points. In
particular, they suggest that simultaneous moves may improve efficiency by
admitting equilibria in which the public project can be provided even though
neither of the players would be willing to provide it individually. In a simul-
taneous move game, each player is in effect willing to provide part of the cost
on the assumption (validated in equilibrium) that the other player is provid-
ing the rest. This raises the question of equilibrium robustness: if players
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are unable to coordinate their moves perfectly, the efficient equilibrium may
disappear, leaving only the sequential move equilibrium.

In a game with positive spillovers, the worst threat that players j # i can
make against player ¢ is to maintain their current actions. Suppose that the
current state of the game is x € X. Player i’s reservation level at the current
state x is defined to be the best payoff that player ¢ can guarantee by his
own actions in any single period. The reservation level is denoted by u}(z)
and defined by putting

ui(z) = sup {ui(zf, zi)|2} = x;}.
:C,L-EX»L

We note without proof that u; satisfies the same properties as ;.

Lemma 3 u} : X — R is a well defined, continuous function. It is non-
increasing in x; and non-decreasing in x; for j # i. If I' exhibits strictly
positive spillovers, then u! is increasing in x; for all j # i.

Having reached a state x player i can always guarantee himself at least u?(x)
in the continuation game, so in the long run u} is a better measure of his
welfare in state z. In the sequel, we use u! in place of the payoff function v,
in analyzing the game M (T").

A satiation point is a state x € X such that u*(z) = u(z). Satiation
points play a role somewhat like Nash equilibria in the analysis of monotone
games. Once a satiation point has been reached, no player can make himself
better off by unilaterally deviating. Hence it is a subgame perfect equilibrium
to remain at a satiation point forever.

Let 2° be the status quo and let = € S(z°) = {z € X|z > 2°}. The state
x is approachable in S(x°) if there exists a feasible path {z'}$°, starting at
7Y such that (a) u}(z') < u;(x), for every i and ¢, and (b) 2! — z as t — oo.

Note that if x is approachable in S(z°), then the continuity of u* implies
that u*(xz) < u(x). Since u*(z) > u(z), it follows that any approachable
state is a satiation point.

An equilibrium outcome of the game M, (T, x) is the limit of an equilibrium
path for some SPE of M, (I", z). The main result of this section is to show that
the approachable states are precisely the equilibrium outcomes of a monotone
game with positive spillovers.

Theorem 4 Under the maintained assumptions, for any initial state x, a
state ' € S(z) is an equilibrium outcome of My(T',x) if and only if z’ is
approachable in S(x).
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Before attempting the proof of the theorem, it will be helpful to prove
the following simpler result.

Lemma 5 Under the maintained assumptions, for any state x there exists
a state &' € S(z) that is approachable in S(z).

Proof. The proof is constructive. Choose a feasible sequence of states
{z:}$2, to satisfy the following conditions:

xy € argmax{uy ) (2') : @' € Spwy(ze-1)}.

In other words, at each date ¢ let the player m(¢) who controls the play at
that date choose a myopic best response to the current state, subject to
the condition that states be non-decreasing. The feasible path {z;}{2, is
non-decreasing by construction and bounded because u(z;) > u(0) requires
|zit|| < k for some k and all (i,¢). So there exists a limit point z* such
that z; — z*. Also, {u(x;)}{2, is non-decreasing because there are pos-
itive spillovers and the player who moves chooses a best response. That
is, u;(xy) > wi(xy ) for i # w(t) because z; > x; 1 and =y = x4 1 and
ui(xy) = uf (1) > wi(z4—1) for i = m(t). Since {u(x;)}2, is non-decreasing
and uf(x;) = u;(x;_1) infinitely often, for each i, it follows that u*(x;) < u(x*)
for all t. In other words, if w}(x;) > u;(z*) for some ¢ and ¢, there would be
a later date ¢’ > ¢ at which ¢ = 7(t') gets to move and then

wi(ay) = ul(xp 1) > ul(xy) > ug(z"),

a contradiction of what has already been proved. This completes the proof
that z* is approachable in S(z). B

The importance of this lemma is that it allows us to show that certain
states that we want to use as punishments are also approachable.

Lemma 6 Under the maintained assumptions, for any state x and any player
i there exists a state ' € S(x) that is approachable in S(z) and satisfies
u;(z") = ul(2'). In other words, we can use x' to hold i’s payoff down to his
reservation level in the subgame M (T, x).

Proof. For any initial state = and any z; € S;(z), let {(«}) denote the
(non-empty) set of approachable outcomes in S(z_;,x}). It is easy to see

that ( : X — X is upper hemi-continuous and that ¢(z}) = sup{u,(z’) :
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z' € ((z})} is upper semi-continuous. The set {z} € S;(z) : ¢(z) > u}(x)}
is non-empty because ¢(x) > uf(x) by construction; bounded because the
set of individually rational states is bounded; and closed because ¢ is upper
semi-continuous. There exists a maximal element z{ in this compact set and
it clearly satisfies ¢(x?) = u}(z). To see this, suppose to the contrary that
#(x?) > uf(z). Then by u.s.c. there exists =} > x¥ such that ¢(z) > uj(z),
a contradiction. We have now shown that there exists an approachable state
ztin S(z_;,2Y) such that u(z') = u} ().

Now we can show that z! is approachable in S(z) as follows. Construct
a feasible path {z;}$°, by putting

n=xt=1,....,k—1

where k is the first date at which i = 7 (t), putting

o = (25, 77)
and putting
T =T,

for t > k, where {x}}5°, is the feasible path by which x! is approachable in
S(z_;,2?). The path so constructed has all the required properties, so z' is
approachable in S(z). ®

Now we are ready to prove the theorem. Suppose that x is an equilibrium
outcome. Then there exists an equilibrium path {z;} converging to z. To
show that z is approachable, we only need to show that u}(z;) < u,;(x) for
every t and i. Suppose to the contrary that u}(x;) > w;(z). Then at the
next date ¢’ when i gets to move, u}(xy) > u;(z) since {x;} is non-decreasing
and so is uf. Then at this date player ¢ can do better than his equilibrium
payoff since he can attain a state a’ such that u;(z') > w;(x) = U;(f) =
liminf; .. u;(z"). Whatever happens after this his payoff cannot be lower
than wu;(2") since other players cannot reduce their strategies and there are
positive spillovers.

To prove the converse we assume that x is an approachable state and con-
struct a SPE. The equilibrium path consists of a feasible path {z;} converging
to x. Suppose that at some date ¢, player ¢ deviates to a state x}. From that
moment on the play switches to some target state x?, say, which is approach-
able from z} and yields a payoff to i equal to uf(z}) < uf(z;_1) < u;(x). In
other words, the play follows a feasible path approaching z'. If there is a
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further deviation, it is dealt with in a similar way. A complete strategy for
all players is constructed in this way and the result is clearly a SPE since no
deviation will ever earn the player more than his reservation utility, which in
turn does not exceed the utility of x. B

5 Approachability

Although approachability provides us with what we need to characterize
subgame-perfect equilibrium outcomes, it does not provide us with a criterion
stated in terms of the primitives of the model. In this section, sufficient
conditions that are at least more closely related to the primitives of the
model are explored.

A state z is said to be locally approachable if, for any € > 0, there exists
another feasible state z < z within a distance ¢ of z and possessing the
properties that u(z) < wu(z) and u;(z) < wu;(x) for some i. A state z is
positive if x; > 0 for all i and minimal if it is positive and there does not
exist a state 2’ < x such that u*(z’) > u*(x).

Lemma 7 If z* is a minimal satiation point, then x* is locally approachable.

Proof. Fix some small number 0 < £ < 1 and each i define z* by putting

o[ (Q—e)ar ifj=i
A if j £ i,
Since z* is minimal and z* < z*, for each 7, u ;(z*) < u;(z*) for some j.

For fixed ¢, let ‘

K=co{z':i=1,..,n}
and let
Ai = {z € K|uj(z) = uj(2")}.

Since u* is continuous and K is closed, A; is closed for every i. The fact that
x* is minimal implies that N; 4; = 0.

For any x € K let g;(x) denote the distance between = and A;, that is,

() = min [}z — ']
1
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Without loss of generality we can identify K with the unit simplex {¢ >
0] >, t; = 1} and then we can define a mapping T from K to itself by putting

Ti(z) = M
25 9i(x)
Clearly, T is continuous because g; is continuous and 7" is well defined because
NiA; = 0 implies that Y, g;(x) > 0 for every x € K. The conditions of
Brouwer’s fixed point theorem are satisfied, so there exists a point z € K
such that T'(z) =z. Let I ={i =1,...,n|z; > 0} = {i = 1,...,n| g:(x) > 0}.
Recalling that g;(z) > 0 implies that = ¢ A;, we have that u}(Z) < u}(z*)
for all i € I. For all i ¢ I we have Z < z* and Z; = x} so positive spillovers
implies that «/(z) < u}(z*). Then Z is the required state and since ¢ is
arbitrary, x* is locally approachable. B
The role of the property of local approachability is to ensure that we can
get some room to maneuver near to the target state x*. By moving to x*,
at least one of the constraints u}(z) < wuj(z*) is strictly satisfied and so we
can reduce 7; a small amount without violating any of the other constraints.
The next set of properties ensures that this process can be continued without
getting “stuck”.
A positive satiation point x* is said to be strongly minimal if there does
not exist a state 0 < z < z* such that for every i

x; > 0= u;(x) > u(z").
Strong minimality obviously implies minimality.

Lemma 8 Ifz* is a strongly minimal satiation point, then x* is approachable

in S(0).

Proof. From the previous lemma, x* is clearly locally approachable, so
for any small € > 0 there exists £ < z* such that Z is e-close to z* and

Construct a sequence {z*}in the following way. Choose 2! = Z and for
each k = 1,2, ... choose z**! so that:

(a) zF -2l e Z,

(b) xk‘H S xk
() uj(z™) < wuj(a), Vi
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and (d) ||z* — 2*1|| is a maximum subject to the constraints (a)-(c).

Clearly, there is a (possibly non-unique) way of continuing the sequence
at each step. Furthermore, as long as z¥ # 0, we must have zFt! # zF
because the fact that x is strongly minimal implies that u}(x*) < u}(z*) for
some 4 such that =¥ > 0 for each k. Then the sequence ¥ must reach 0 in
a finite number of steps. If not, we can continue the sequence indefinitely
and, by compactness, there exists a subsequence converging to a limit point
x>, say. With a slight abuse of notation, let {z*} denote the subsequence
that converges to x*°. Since ||zF — 2**!|| — 0 along this subsequence, in
the limit we have u*(x*) = u*(z*), contradicting the minimality of xz. This
contradiction implies that ¥ = 0 for some finite k.

What we have shown so far is that for any choice of £ we have a non-
decreasing sequence {z*}£ | with 2% = 7 and u*(z*) < u(x) for every k.
(Note that the ordering of the sequence has been reversed). Now suppose that
we take a sequence {Z"}2° ; of target states converging to = and denote the
corresponding approaching sequences by {{z"*}f" 1> . Using the standard
diagonalization procedure, we can select a sequence {z‘}%°, such that z* is
a limit point of {#™}, for each fixed ¢ and z* — z as £ — co. Then {x'} is
the required sequence. B

5.1 A Public Goods Example

To illustrate the idea of restrictions implied by the concept of approachability,
we can consider an example of the public goods contribution game introduced
earlier. The production technology for public goods exhibits constant returns
to scale: one unit of labor produces one unit of the public good. There are
n players and player i’s payoff function is

u;(z) = aixj — %(mi)z,

where z; is player ¢’s production of the public good and Y, z; is the total
production of the public good.

Since the payoff functions are concave, the Pareto-efficient outcomes of
the game can be characterized as solutions to a problem of maximizing the
weighted sum of the individual players’ payoffs. An admissible set of weights
is denoted by the vector A = (A, ..., A,), where A\; > 0 for each i and 3, \; =
1. We can ignore the possibility that A\; = 0 because that would imply
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x; = 0o. Then an outcome x = (z1, ..., z,,) is Pareto-efficient if and only if it
solves the following problem:

mngzl)\i (aixj - %(x])2> . (1)

for some positive set of weights A. The first-order conditions for the maxi-
mization problem are necessary and sufficient:

ay" A — Nz <0 and (aZM - M) 2 =0, Vi.

j=1 j=1

Since 377 ; A; = 1, the first-order conditions are equivalent to z; = a/\;
for each i. Since the first-order conditions are necessary and sufficient, an
outcome z is Pareto efficient if and only if it satisfies

x; = a/\;, Vi,

for some positive weights summing to one.
For any admissible set of weights A = (A1, ..., A,), the utility of player i
at the solution to (1) can be written as

" a1 /a)\?
M =>-3(5)
;Aj 2 \\,

The same general formula applies to any coalition of players, if we make
the appropriate adjustments for the number of players, on the assumption
that the counter coalition contributes nothing. A coalition is any non-empty
set of players S C N = {1,...,n} and an admissible set of weights for this
coalition is a vector A such that \; > 0 for all ¢ and Y ,cqgA; = 1. The
counter coalition consists of players in N\S and we assume an outcome is
attainable for S if z; = 0 for all ¢ € N\S. An outcome is efficient for S if it
is attainable for S and there is no other attainable outcome for S that makes
some members of S better off without making other members of S worse
off. By the earlier reasoning, an outcome x is efficient for S if and only if it
maximizes a weighted sum of payoffs of players in S for some admissible set
of weights. Suppose that A is an admissible set of weights. Then the efficient
payoff for player ¢ in the coalition S is

. a> 1 /a\?

jes N
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In particular, for a singleton coalition {i} there is a unique efficient outcome,
which is the result of maximizing ax; — l(mi)z. The solution is to put z; = a

and the resulting payoff is a? — $a® = Qlaz. This is the individual player’s

security level and any equilibrium outcorile must give him at least this much.
A coalition S can improve on an outcome zx if there exists an admissible
set of weights A for S such that u}(\;.S) > u,;(x) for every i € S. A feasible
outcome x belongs to the core of the game if there does not a coalition that
can improve on .
The core is non-empty because it contains the equal treatment outcome,
the outcome that gives each player the same payoff. Putting \; = 1/n for

each 7, the equal treatment outcome yields a utility of

“ 1
ui(1/n) = Zazn—§a2n2
j=1

1
= —a*n’
2

For any m-member coalition S, the equal treatment outcome with no contri-
butions by the counter coalition would yield a smaller payoff

1
u;(1/m;S) = §a2m2,

for all © € S. For any other S-admissible weights A,

a

. a2 1 2
u; (A S) = 22—5()\—2)

1 1/1\2
2 RN _ RN
“ (j;gr?gasx{)\j} 2 <)\1> )
1 1 /1\?
— 2 ~1_ (=
= q (mrjr_leagc{)\j 5 ()\Z> >
Now suppose that A\, = min;eg{A;}. Then
1/1\?2
up(\;S) = a ﬂ——(—))

1 1
a*(m?* — §m2) = ianz.

IN

IN
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So for any other weights, at least one member of the coalition does no bet-
ter than the equal treatment outcome for the coalition S, which is strictly
worse than the equal treatment outcome for the grand coalition N. Thus, no
coalition can improve on the equal treatment outcome so the equal treatment
outcome belongs to the core.

Any core outcome is clearly strongly minimal and hence approachable.
In general, the core property is stronger than strong minimality because
strong minimality requires that an “improvement” be made by reducing the
strategies of the coalition members. In this example, we are interested in
the efficient outcomes and it turns out that if an efficient allocation can be
improved on by a coalition, then it can be improved on by reducing the
strategies of the coalition members. So the efficient outcomes that are not
approachable are not core outcomes either.

It is easy to see that not all efficient outcomes are approachable. We have
already noted that an approachable outcome must be individually rational
and this implies that player ¢ cannot receive a payoff lower than %aQ.

In repeated games, the individual rationality constraint is the only one
that needs to be satisfied. The Folk Theorem tells us that any individually
rational payoff vector can be supported by a subgame perfect equilibrium.
By comparison with folk-theorem type results, the set of approachable and
hence equilibrium outcomes is smaller in monotone games. Take, for example,
n = 3 and consider outcome corresponding to the weights A\; = Ay = ¢ and
A3 = 1—2¢z. A single player can achieve %aQ, so individual rationality requires
that

2

ui(e,e,1 —2¢) > —a”.

N —

However, a coalition of players 1 and 2 can do even better. With no help
from player 3, they can achieve u;(1/2; S) = a?2? = 2a?, so coalition {1,2}
imposes the constraint

ul(e,e,1 —2¢) > 2a

ore >

NI
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