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By Juan Dubra†

Department of Economics, New York University
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Abstract

In a standard search model I relax the assumption that agents know the distribution

of offers and characterize the behavioral and welfare consequences of overconfidence.

Optimistic individuals search longer if they are equally stubborn and high offers are

good news. Otherwise, the pessimists search longer. The welfare of unbiased individ-

uals is larger than that of overconfident decision makers if the latter’s biases are large

and searchers stubborn. Otherwise, the overconfident may be better off. Finally, I give

a testable implication of overconfidence and discuss applications and policy issues.

1 Introduction and Motivation

“Dozens of studies show that people generally overrate the chance of good events,

underrate the chance of bad events and are generally overconfident about their

relative skill or prospects. For example, 90 percent of American drivers in one

study thought they ranked in the top half of their demographic group in driving

skill” Camerer (1997)1

Despite the substantial evidence that overconfidence is pervasive, it has not received much

attention in economic modeling. Given the wide applicability of search models, I study the

implications of overconfidence in the search behavior of rational agents. To do so, I relax the

∗I am indebted to Charles Wilson for his guidance. I am grateful to Jean Pierre Benoît, Alberto Bisin,

Federico Echenique, Néstor Gandelman and Efe Ok for helpful comments.
†jmd228@nyu.edu
1I will not discuss this evidence here. See Carmerer (1997) for experimental and psychological references.
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usual assumption that the searchers know the true distribution of wage offers and suppose

only that agents’ beliefs are derived from a prior over a set of possible distributions. Several

other authors have also studied search behavior when the distribution is not known. For

example, Kohn and Shavell (1974) proves the existence of an optimal policy for a very general

class of beliefs. Rothschild (1974) shows that, for a limited class of beliefs, the optimal policy

has the same properties as that in standard search models. Burdett and Vishwanath (1988)

proves that, if search costs are large, the reservation wage of workers decreases over time.

Bikhchandani and Sharma (1996) give sufficient conditions for searchers to follow reservation

wage policies. I address a different set of issues.

This paper has three objectives. The first is to establish the behavioral implications of

optimism. Bikhchandani and Sharma (1996) have shown that when there is learning, the

order of static optimism of two individuals may be reversed after observing the same informa-

tion. Thus, they say that one individual is more optimistic than another if he assigns higher

probabilities to high offers after all sequences of observations. I adopt this definition of opti-

mism and show that it fails to predict optimistic behavior. That is, optimistic searchers may

accept offers that pessimists reject. Thus, I find conditions that guarantee that optimistic

individuals search longer than pessimists. Offers have informational value because, as search

evolves, individuals learn about the unknown distribution. Suppose then that a low offer

has a higher value than a high offer, violating what I will call Monotonicity. In that case,

optimism may lead to a lower expected value of searching than pessimism. This, in turn,

yields shorter search times for the optimistic agent. The main result on behavior is that an

optimistic searcher samples longer than a pessimist, whenever one of them has monotonic

priors.

The second objective is to study the welfare implications of overconfidence. I find condi-

tions under which overconfident agents are worse off than unbiased searchers when welfare

is computed using the true wage offer distribution. In this paper, an individual is overconfi-

dent if he believes that the distribution that generates the offers is better than it really is. I

show that when searchers are not too patient, there are some overconfident individuals who

obtain higher expected payoffs than some unbiased searchers. If agents have a degenerate

prior, being unbiased means knowing the true distribution. In that case, unbiased searchers

must be weakly better off than overconfident decision makers. However, if priors are non-

degenerate, the comparison is not between an overconfident individual and a searcher who

knows the truth, but between two searchers who are uncertain about the true distribution,

one of whom happens to be unbiased. Thus, at least in principle, there is the possibility

that an unbiased individual is worse off than an overconfident searcher. In fact, there should

2



be an unbiased decision maker who is worse off than an overconfident individual. Along the

search process high offers are accepted, so sampling continues only if offers have been low.

Consequently, because priors are updated in each period, there is a tendency for beliefs to

become pessimistic. Therefore, searchers who were initially unbiased and continue sampling

today are likely to wrongfully accept a low offer tomorrow. Slightly overconfident searchers

are more immune to this kind of mistake. Since they are not too biased, they do not mis-

takenly reject offers and, because they were originally optimistic, downward updating is not

so harmful.

My third objective is to study the conditions under which the behavior and welfare con-

sequences of overconfidence diminish over time. Since behavior and welfare are derived from

beliefs, this amounts to finding conditions under which the overconfident individual’s true

average posterior approaches the true distribution. I show that, while unbiased priors remain

unbiased on average, overconfident individuals may become pessimistic. If the true distrib-

ution allows only offers that are “too” low according to the overconfident decision maker’s

beliefs, he may become pessimistic after all offers. This cannot happen with unbiased priors.

To ensure that overconfident beliefs diminish over time and never become pessimistic, it

suffices to assume that there is an unbiased belief that is more pessimistic than the overcon-

fident. The condition is not trivial because it requires that the overconfident prior remains

more optimistic than the unbiased after all sequences of draws. Then, the result follows

because unbiased priors are a martingale and a lower bound for more optimistic beliefs.

I conclude with a discussion of the testable implications of this model and of some appli-

cations and policy issues.

There are three kinds of theoretical works related to the notion of overconfidence studied

in this paper. The first class analyzes the effects of trader’s overconfidence in financial

markets in a static context. For instance, Benos (1998), Kyle and Wang (1997) and Odean

(1998) show that increased overconfidence leads to greater expected trading volume and

greater price volatility. The second class studies the emergence of trader’s overconfidence in

financial markets. For instance, Gervais and Odean (1997) study, in a dynamic setting, how

biases in learning generate overconfidence. In their model, individuals attribute good trades

to their ability and bad trades to chance. Thus, although overconfidence reduces expected

payoffs, rich traders tend to be overconfident. A third class studies the consequences of

entrepreneurs’ overconfidence. For example, Manove (1995) shows that increased optimism

leads to lower expected utility and inefficient allocation of resources in a growth model.

Manove and Padilla (1998) show that the coexistence of optimistic and realistic entrepreneurs

generates a screening problem for banks and leads to inefficient allocation of credit.
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There are models that study optimism and other notions of overconfidence, but they are

unrelated to my work. One notion of optimism is that in Beaudry and Portier (1998). In

their model, agents observe a signal about an unknown productivity parameter and, if the

signal is high, the individual is optimistic. However, he knows the distribution of the signal.

In my model, the searcher is biased about the distribution. The second notion is that of self

fulfilling optimism, as in Kiyotaki (1988). In his model, if firms are optimistic about demand

and invest, demand is high in equilibrium, so there is no over-optimism. In my model, the

searcher is overly optimistic about the distribution. Another notion of overconfidence that

has been studied can be defined as underestimation of volatility. For example, Alpert and

Raiffa (1982) document how people systematically construct too narrow confidence intervals

for random variables.

2 The Model

For any topological space (X, T ) let C (X) denote the set of all bounded continuous

functions from X to R endowed with the sup norm. Also, let P (X) represent the set

of all probability measures on the Borel sets of X, endowed with the topology of weak

convergence. Let W ≡ {w1, w2, ...wn} ⊂ R+, with 0 < w1 < w2 < ... < wn, and define

P 2 (W ) = P (P (W )). I will represent any g ∈ P (W ) by (g1, ..., gn), where gi = g (wi).

At each date t the individual receives independent and identically distributed wage offers

from W and must decide whether to accept the current proposal or continue sampling. His

objective is to maximize the expected discounted value of the offer he accepts. Thus, his

decision depends on what he believes about future proposals. In most search models, it is

assumed that the searcher knows the exact distribution from which offers are drawn. In this

paper, I relax this assumption and assume only that the individual has beliefs over the set of

possible distributions. Consequently, his beliefs are a distribution over probability measures,

which can be represented by a prior π ∈ P 2 (W ).

As offers arrive, the individual updates his priors according to Bayes’ rule. Let Ω = W∞

be the set of infinite sequences of offers. Also, for any offer path ω ∈ Ω let ωt stand for the

first t elements of ω and ωt for its tth element. Starting with beliefs π and after a history

ωt, the probability of any measurable set C ⊂ P (W ) is

B
(
ωt, π

)
(C) =

∫
C

Π
i≤t

g (ωi)∫
Π
i≤t

g (ωi) π (dg)
π (dg)

If ωt is a zero π-probability event, B (ωt, π) is arbitrary.
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2.1 Optimal Search Behavior

In this section I find the optimal policy for the searcher’s maximization problem. In order

to use dynamic programming to find the optimal rule, I need to specify a state space and the

transition probabilities. In usual search models, the state space is the set of wage offers and

the transition is given by the known distribution. Here, the state space must be extended to

account for varying beliefs, and the transition function will depend on the history of draws.

At each date in which search continues, the searcher has some beliefs, belonging to

P 2 (W ), and is faced with an offer inW . If he has accepted a proposal, he receives offers of 0

thereafter. Thus, let S ≡ P 2 (W )×{W ∪ {0}} be the state space of the searcher’s problem.

Any prior π induces a measure mπ over W , through

mπ (w) ≡

∫
P (W )

g (w) π (dg)

Since, π is a probability over distributions, mπ is the average distribution that an agent with

beliefs π expects to face. If beliefs are π and search continues, the only conceivable states

tomorrow are of the form (B (w, π) , w), with w ∈ W ⊂ R++, and their probabilities are

given by mπ (w). Analogously, if an offer has been accepted, the only possible state is (π, 0).

Then, the following measures over S describe the transitions:

Cπ [s] =

{
mπ (w) for s = (B (w, π) , w)

0 otherwise
and Dπ [s] =

{
1 for s = (π, 0)

0 otherwise

Cπ gives the subjective probability of each state tomorrow, given that beliefs today are π

and search continues; Dπ gives the probabilities if an offer has been accepted. Let A = {a, r}

be the action space, where r means that an offer is rejected, and a indicates that an offer is

accepted. For any state (π,w) and action c, define the transition q ( · | (π, w) , c) by

q ( · | (π,w) , c) =

{
Cπ if w ∈ W

Dπ if w = 0 or c = a

Given state (π, w), if the searcher chooses an action c, q (s | (π,w) , c) gives the subjective

probability of state s in the following date. In the next period, an offer is drawn, beliefs are

updated, the searcher chooses an action, and the process is repeated.

Define Ht = (S ×A)t−1×S. A policy is a sequence p = {pt}
∞

1 of functions such that pt :

Ht → A. For each policy p and ω ∈ Ω, let τ (p, ω) stand for the date when an offer is accepted

if p is followed. Then, for a discount factor δ ∈ (0, 1) and beliefs π the payoff of policy p is

Eπ

[
δτ(p,ω)ωτ(p,ω)

]
and the value function v : S → R is v (s) =sup

p

Eπ

[
δτ(p,ω)ωτ(p,ω)

]
. The
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following lemma states that Ky (π, w) = max
{
w, δ

∫
S
y (s,) q (ds, | (π,w) , r)

}
, y ∈ C (S), is

a well defined function K : C (S) → C (S). All proofs can be found in the appendix.

Lemma 1 For any y ∈ C (S), Ky ∈ C (S).

Since K is a contraction, it has a unique fixed point in C (S). Moreover, the fixed point

is the value function v.2 Define V (π) ≡
∫
v [B (w, π) , w]mπ (dw), the maximum value of

searching when beliefs are π. Then, in any state (π, w) ∈ S, accepting an offer if and only if

w ≥ δV (π) (Optimal Policy)

is optimal. The optimal rule states that offers greater than the maximum expected con-

tinuation value of searching, should be accepted. To see that the policy is in fact optimal,

recall from Corollary 2 in Denardo (1967) that an optimal policy exists. Then, let x (s)

be the expected return of following the above policy for one period and then following an

optimal policy, when starting in an arbitrary state s. Since x (s) = v (s) and s was arbitrary,

following the rule in every period is optimal.

Note that this rule does not imply a reservation value rule. Assume, as in Kohn and

Shavell (1974), that a searcher believes that there are only two possible distributions. One

that assigns probability one to $1 and another with prob($2) = 1 − prob($3) = .01. If the

first draw is w = 1, the individual is certain that he will receive no higher offers and accepts

the proposal. On the other hand, if he is patient and the first draw is w = 2, he will reject

the offer and wait for a draw of $3.

3 Dynamically Consistent Optimism and Behavior

In this section, I derive conditions that guarantee that optimistic searchers obtain a

higher subjective expected value of searching than pessimists after any history of draws.

This ensures that the optimal strategy is to search longer. As was shown by Bikhchandani

and Sharma (1996), a static definition of optimism is not sufficient to ensure longer search

times for the optimist. Because pessimists may have priors that are less affected by updating

than optimists, downward updating can lead the initially optimistic searcher to stop sampling

before a pessimistic decision maker. I adopt their definition of optimism which ensures that

the optimistic individual assigns higher probabilities (than the pessimist) to high offers after

2See Theorem 3 in Denardo (1967). The result is for bounded functions, but his proof, as well as the one

of Corollary 2 to be used later, applies to bounded and continuous maps.
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any sequence of draws. Next I show that even this restriction does not necessarily yield

longer search times. Since individuals learn about the true distribution as offers arrive,

proposals have informational value. If the total value of a low offer exceeds that of a high

offer, assigning high probabilities to high proposals may lead to a low value of searching.

To rule out this possibility, I define a property called Monotonicity which ensures that the

informational value of offers is ordered in the same way as their monetary value. Finally, I

show that an optimistic searcher samples longer than a pessimist, whenever one of them has

monotonic priors.

For g, h ∈ P (W ), g first order stochastically dominates h, denoted g � h, if and only

if
∫
u (w) g (dw) ≥

∫
u (w)h (dw), for all non decreasing functions u (Dubins and Savage,

1965). For static decision problems, � captures the idea of optimism. The following example,

which is similar to Example 1 in Bikhchandani and Sharma (1996), illustrates how different

propensities to update may lead an optimistic individual to stop sampling before a pessimistic

searcher.

Example 1: LetW = {1, 2} and 1
2
≥ q ≥ 0. Define f, g, h ∈ P (W ) by h = (1, 0) , f =

(
1
2
, 1
2

)
and g = (0, 1). Also, define priors π, υ by υ (f) = 1 and π (g) = 1

2
+ q, π (h) = 1

2
− q.

The posterior of the optimistic prior π is degenerate in h after receiving a draw of 1.

Thus, the optimistic searcher accepts the offer of 1 in the first period. Since he also accepts

a draw of 2 in any date, he stops sampling in the first period in every offer path. On the other

hand, the pessimistic searcher (with prior υ) never revises his priors and, for δ > 2
3
, continues

sampling until a high draw occurs. Since the size of q indexes the degree of optimism, for all

levels of optimism and all offer paths, the optimistic individual never samples longer than

the pessimistic searcher and sometimes samples less.

This result is driven by the fact that π is affected by updating and υ is not, which causes

the order of optimism to be reversed with the arrival of information. In a sense, π is more

“stubborn” in the face of new information.

Equal Stubbornness: π, υ ∈ P 2 (W ) are equally stubborn if and only if, mπ � mυ implies

mB(ωt,π) � mB(ωt,υ) for all t and all ω ∈ Ω.

Equal Stubbornness states that if one prior is statically more optimistic than another, the

relationship is maintained after receiving the same information. For example, two Dirichlet

priors3 (π1, ..., πn) and (υ1, ..., υn) are equally stubborn if
∑n

1 πi =
∑n

1 υi.

3A Dirichlet with parameter π = (π1, π2, ...πn), with πi > 0 for all i, is a probability measure over P (W ).

Let S (π) =
∑n

1 πi, and µi =
πi

S(π) . Then mπ (wi) = µi and B (wi, π) is a Dirichlet with parameter π + ei

(where ei is the ith canonical vector). See De Groot (1970).
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To say that one prior is dynamically more optimistic than another, we need to restrict

attention to priors for which static optimism is preserved when the same information is

observed. The following definition is essentially the same as that in Bikhchandani and

Sharma (1996). Define the partial order � on P 2 (W ) by π � υ if and only if mπ � mυ for

equally stubborn π, υ ∈ P 2 (W ). If π � υ, I will say that π is more optimistic than υ.

The next example shows that even Equal Stubbornness is not sufficient to ensure that π

will search longer than υ when π � υ.

Example 2: Let W = {2, 4, 5, 6} and 1
4
≥ ε ≥ 0. Define gε, jε, hε ∈ P (W ) by: gε =(

3
4
− ε, 0, ε, 1

4

)
, jε =

(
1
4
− ε, 0, ε, 3

4

)
and hε = (0, 1− ε, ε, 0).

Fix δ = .99 and suppose ε = 0. Assume also that a searcher is certain that the distribution

is j0 =
(
1
4
, 0, 0, 3

4

)
. Because δ is close to 1, he samples until w = 6 is drawn and obtains an

expected payoff of approximately 6. The same is true for g0 =
(
3
4
, 0, 0, 1

4

)
. If the distribution

is h0 = (0, 1, 0, 0) however, the searcher accepts the first offer of 4 and obtains an expected

value of 4.

Define πε, υε ∈ P 2 (W ) by υε (gε) = 1 − υε (hε) = 4
5
and πε (jε) = 1 − πε (hε) = 1

2
. If

priors are π0, whenever w = 2 or w = 6 occur the searcher knows that the distribution

is j0. If w = 4 is drawn, the distribution is h0. Thus, the value of searching when priors

are π0 is V (π0) ≈ 6+4
2

= 5. Analogously, V (υ0) ≈ 4
5
6 + 1

5
4 > 5 ≈ V (π0). That is, π0 is

more optimistic than υ0 and yields a smaller value of searching. This result is driven by the

fact that a draw of 4 signals a distribution with a value of 4, whereas w = 2 informs the

individual that the value of searching is close to 6.

Note that because 5 ∈ (δV (π0) , δV (υ0)), if w = 5 is drawn and priors are not up-

dated, the searcher with prior π0 accepts the offer and the one with υ0 does not. However,

w = 5 is a zero probability event for both priors, so I will slightly modify them to ensure

that searchers can use Bayes’ rule. For any ε, when w = 5 is drawn, updating does not

change πε or υε. Then 5 ∈ (δV (π0) , δV (υ0)) guarantees that 5 ∈ (δV (πε) , δV (υε)) =

(δV (B (5, πε)) , δV (B (5, υε))) for small enough ε. Therefore, when w = 5 is drawn the op-

timistic searcher (with priors πε) will accept the offer and the pessimistic individual (with

beliefs υε) will reject it. Moreover, since V (πε) < V (υε), an optimistic searcher obtains a

lower subjective expected value of searching than a pessimist.

In this example, an optimistic searcher stops sampling before a pessimist because a low

offer has high informational value. That is, it is not true that high offers are good news. I

now define a concept that formalizes this property.

Monotonicity: π ∈ P 2 (W ) is monotonic if and only if, for all ω, κ ∈ Ω and t, ωt−1 = κt−1
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and ωt ≥ κt imply mB(ωt,π) � mB(κt,π).

That is, after observing high offers, posteriors are statically more optimistic than after

receiving low offers. Monotonicity ensures that the informational value of offers is ordered in

the same manner as their monetary value. Dirichlet priors over multinomial distributions and

arbitrary priors over binomial distributions satisfy Monotonicity. This condition is similar

to those used by Bikhchandani and Sharma (1996), Burdett and Vishwanath (1988) and

Milgrom (1981). Unless otherwise stated, I will restrict attention to monotonic priors.

In Example 1 searchers have monotonic beliefs. Nevertheless, the failure of equal stub-

bornness allowed the statically optimistic agent to stop sampling before the pessimist. Ex-

ample 2 shows that if Monotonicity fails, the optimistic searcher may stop sampling before

the pessimist, even if they are equally stubborn. However, the following theorem shows that

Monotonicity and Equal Stubbornness ensure that the statically more optimistic searcher

samples longer in all offer paths.

For any prior π and ω ∈ Ω, let τπ (ω) be the acceptance time, the date when an offer is

accepted if the optimal policy is followed.

Theorem 2 Assume that π � υ and that either π or υ are monotonic. Then, for all ω ∈ Ω,

τπ (ω) ≥ τ υ (ω).

Notice, again, that the theorem is not about average acceptance times, but about what

happens along all offer paths. The idea behind this result is that the optimistic searcher be-

lieves that the future is good and thus reject offers that the pessimist does not. Monotonicity

guarantees that high offers are better than low offers and Equal Stubbornness ensures that

the order of optimism is not reversed.

Corollary 1 in Bikhchandani and Sharma (1996) proves that, if priors satisfy the same

assumptions as in Theorem 2 and searchers follow a reservation wage policy, optimistic

searchers sample longer. However, since they concentrate on problems with no discounting,

Theorem 2 is not a generalization of their result.

4 Welfare Implications

In this model, the optimal search rule calls for accepting high offers, so sampling continues

only if offers are bad. Since searchers have non-degenerate priors and they update their beliefs

in each period, this feature of the model makes them become more pessimistic over time. In

this section I analyze the welfare consequences of this fact.
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Throughout, let f ∈ P (W ) be the true measure that generates the offers. I will say that

prior π is unbiased if and only if mπ = f and overconfident if and only if mπ � f . Let ℘ be

the measure on Ω obtained by extending the probabilities that f induces on W T for all T .4

For the welfare criterion I use the true expected value of searching,

V ℘ (π) =

∫
Ω

δτπ(ω)ωτπ(ω)℘ (dω) , π ∈ P 2 (W )

As in standard search models, the rule that maximizes the true expected value of search-

ing is a stationary reservation wage policy. In addition, if a searcher is going to deviate from

the optimal policy just once, the longer he follows the optimal policy, the higher is his ex-

pected payoff. Since there is a tendency for searchers to become pessimistic (and pessimistic

searchers accept low offers) slightly overconfident individuals follow the truly optimal policy

longer than unbiased searchers. As a consequence, in the following example an overconfident

individual obtains a higher payoff than an equally stubborn unbiased searcher.

Example 3: Let W = {1, 2}, 8
11
> δ > 2

3
and f =

(
1
2
, 1
2

)
. Then, the policy that maximizes

the true expected value of searching is to reject offers of 1 and accept the first offer of 2.

Define g, h ∈ P (W ) by g =
(
3
4
, 1
4

)
and h =

(
1
4
, 3
4

)
. Also, let π(h) = 1 − π(g) = 3

4

and υ(h) = 1− υ(g) = 1
2
. I will now show that the optimal search rule in this case calls for

rejecting offers of 1 until the expected value of the next draw falls below 1
δ
and then accepting

any offer. If the continuation value of searching falls below 1
δ
the agent accepts the current

offer, so it suffices to show that whenever the expected value of the next draw falls below
1
δ
, it is equal to the continuation value of searching. Suppose that the continuation value

of searching after an offer of 1 is less than or equal to 1
δ
. If the offer is rejected and w = 1

is drawn in the next period, the continuation value will be weakly smaller than it is today

which implies that the optimal strategy calls for accepting any offer tomorrow. Therefore, if

the continuation value today is below 1
δ
, it is equal to the expected value of the next draw.

Also, for enough draws of 1, the continuation value is close to that of a prior which assigns

probability one to w = 1. Thus, the continuation value eventually falls below 1
δ
. Finally,

since the expected value of the next draw is decreasing over time, whenever it falls below 1
δ

it must be the continuation value.

SincemB(1,υ)(1) =
5
8
, the expected value of the next draw after observing w = 1 is 11

8
< 1

δ
.

Thus, the unbiased searcher stops sampling in the first period in any ω ∈ Ω and obtains

a true value of searching of 3
2
. Since mB(1,π)(1) = 1

2
the expected value of the next draw

after the first bad draw is 3
2
> 1

δ
. Therefore the overconfident searcher rejects the first low

4See the Kolmogorov Extension Theorem in Shiryayev (1984) p. 161.
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offer, but because mB((1,1),π)(1) =
5
8
he accepts it in the second. This yields a true value of

searching of 1 + δ 3
4
> 3

2
.

In this example, the overconfident searcher uses the true optimal strategy in period 1

whereas the unbiased does not. As a consequence, the overconfident searcher is better off

when the true distribution is used to compute welfare. Note that it is not the case that for

some states of the world the overconfident is better off (i.e. that he rejects a high offer and

by chance he gets a higher offer in the next period). His expected payoff is larger than that

of the unbiased searcher.

4.1 The Benefits of Overconfidence and Costs of Underconfidence.

This section provides a generalization of the last example. Consider the following three

features of the search model. First, the truly optimal search rule is a constant reservation

wage policy. Second, searchers become pessimistic as search evolves, so there is a tendency

for reservation wages to decrease. Third, overconfident searchers tend to have higher reser-

vation wages than unbiased individuals. These features ensure that one can always find

overconfident searchers whose initial reservation wage is optimal and that, as search evolves,

make fewer mistakes (relative to the truly optimal search rule) than equally stubborn unbi-

ased searchers. This suggests that, when these conditions hold, overconfident searchers are

better off than unbiased individuals. However, the following example shows that this is false

in general.

Example 4: Let W = {1, 2, 100}, f =
(
1
3
, 1
3
, 1
3

)
and δ = 58

1000
. The truly optimal strategy

is to accept only offers of 100. A searcher who follows the optimal strategy in period 1 and

then accepts any offer obtains an expected payoff of 100
3

+ 206
9
δ. Rejecting only offers of 1 in

the first period and accepting any offer in the second yields a payoff of 34+ 103
9
δ > 100

3
+ 206

9
δ.

Therefore, following the optimal strategy in the first period is harmful. In the reminder of

the example I show how the above behavior can be derived from overconfident and unbiased

priors.

Let j =
(

1
1000

, 1
1000

, 998
1000

)
and g =

(
999
2000

, 999
2000

, 1
1000

)
. Define the overconfident prior π by

π (k) = 1 − π (g) = . 98569 and the unbiased prior υ by υ (j) = 1 − υ (g) = . 33266. If

w = 100 has not occurred in periods 1 or 2, the expected value of the next draw is lower

than 1
δ
for both searchers, so they stop sampling. Therefore, the searchers know in period 1

that offers that yield a value smaller than the discounted expected value of the next draw

must be accepted. Since δEB(2,π) [w] > 2, the overconfident searcher only accepts offers of

100 in the first period. Since 2 > δEB(2,υ) [w] = δEB(1,υ) [w] > 1 the unbiased searcher only

11



rejects offers of 1 in the first period.

The example illustrates the point that if the optimal policy is not going to be followed

tomorrow, it may not be optimal to follow it today. Therefore, although overconfident

searchers may follow the optimal strategy more often than unbiased searchers, they are not

always better off. To ensure that overconfident searchers will be better off, it suffices to

assume that searchers are not too patient. If they are impatient, the truly optimal policy is

to reject all offers but the lowest. Then, because the individual receives in each period only

the worse news he could imagine, reservation wages are decreasing. This, in turn, ensures

that the only possible deviation (for a searcher who starts off with the optimal reservation

wage) is to accept any offer. Consequently, when searchers are not too patient and start

off with the optimal reservation wage, they deviate from the optimal policy just once. This

guarantees that overconfident searchers make exactly the same mistake as the unbiased

individuals, but in a later period, in which case overconfident searchers are better off.

To formalize these arguments I first show that, if an individual would accept the next to

lowest offer to which he assigns positive probability, his reservation wage is decreasing.5

Lemma 3 Suppose that a searcher with prior π follows a reservation wage policy and that

w2 > δV (π). Then, δV (B (ωt−1, π)) ≥ δV (B (ωt, π)) for all ω ∈ Ω and all t.

Suppose that the optimal search rule calls for accepting w2 and rejecting offers below

that. Assume also, that π in the previous lemma is overconfident. Then, whenever π’s

search rule differs from the optimal one, he is accepting offers that he should not. Consider

an unbiased searcher with equally stubborn priors. By Theorem 2, the unbiased searcher

makes a mistake before the overconfident and this makes him worse off. A similar reasoning

applies to show that underconfident individuals are still worse off. This is summarized in

the following theorem. For any υ ∈ P 2 (W ), any ε > 0 and metric d, define Nε (υ) ≡

{π ∈ P 2 (W ) : d [π, υ] < ε}.

Theorem 4 Define the prior υ0 by υ0 (f) = 1. Then, there exists δ such that, if δ > δ

i) for any ε > 0 there is an unbiased υ ∈ Nε (υ
0) and an equally stubborn overconfident π

for which V ℘ (π) ≥ V ℘ (υ). Moreover, if f ([0, δV (υ0))) > 0, V ℘ (π) > V ℘ (υ)

ii) there exists γ > 0 such that for all unbiased ν ∈ Nγ (υ
0) that follows a reservation wage

policy, if ϕ is an equally stubborn underconfident prior, V ℘ (ν) ≥ V ℘ (ϕ)

5Bikhchandani and Sharma (1996) provide sufficient conditions on priors to ensure that searchers follow

reservation wage rules.
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Theorem 4 says that there exists an unbiased searcher who is almost certain about the

truth and an overconfident searcher with equally stubborn priors who is better off. Second,

it is overconfidence, and not an arbitrary bias, that makes the overconfident searchers better

off. Underconfident searchers are still worse off.

4.2 The Costs of Overconfidence

Theorem 4 shows that overconfident searchers are sometimes better off than unbiased

decision makers. In this section I examine the reasons why the converse may hold. The first

reason why overconfidence can be harmful is the one illustrated in Example 4: following the

optimal policy more often than not, is not always beneficial. The second is the obvious one:

overconfident searchers may reject high offers that they should accept. However, since it

is easy to construct examples where overconfident searchers with large biases are better off

than unbiased searchers, the condition that searchers are stubborn (and keep making their

original mistakes) needs to be added.

Consider an individual with priors υ close to the degenerate υ0. By continuity of V (see

Corollary 10) one can make sure that, for almost any discount factor, the search rule of υ

resembles that of υ0 for a long period of time. Therefore, discounting ensures that V ℘, the

true value of searching, is continuous at υ0. Then, for υ and π close to the degenerate υ0 and

π0 respectively, V ℘ (υ0) > V ℘ (π0) guarantees V ℘ (υ) > V ℘ (π). The result is summarized in

the following theorem.

Theorem 5 Fix any degenerate priors π0 and υ0. Assume f (δV (υ0)) = 0, f (δV (π0)) = 0

and V ℘ (υ0) > V ℘ (π0). Then, there exists ε such that for all π ∈ Nε (π
0) and υ ∈ Nε (υ

0),

V ℘ (υ) > V ℘ (π).

The third reason why overconfident searchers may obtain lower payoffs than unbiased

searchers is that reservation wages may be increasing for some offer paths. When reservation

wages increase, even slightly overconfident decision makers will reject offers that they should

accept. Although in general reservation wages do not increase, the following example shows

that for some offer paths, reservation wages may be increasing.

Example 5: Let W = {1, 2, 3, 4}, δ = .99 and define g, j ∈ P (W ) by g =
(
0, 5

12
, 1
2
, 1
12

)
and

j =
(
1
3
, 1
3
, 1
3
, 0
)
. Also, for 1 ≥ ε ≥ 0, define priors πε by πε (g) = 1− πε (j) = ε.

Since δ is close to 1, a searcher with beliefs π0 accepts only offers of 3 and 4. Thus, for

ε sufficiently small, the same is true for a searcher with beliefs πε. Suppose that some offer

path ω starts with t draws of w = 2. Because g (2) > j (2), for sufficiently large t, B (ωt, πε)
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assigns probability close to 1 to g. Consequently, for sufficiently large t, the searcher accepts

only offers of 4.

Therefore, the searcher with priors πε accepts offers of 3 at the beginning of the search

process, but after enough draws of 2, he only accepts proposals of w = 4. The reservation

wage increases because an offer that is rejected at the start of the search process (i.e. a low

offer) signals a good distribution.6

Adding an appropriate true distribution to this example, it is easy to show that overcon-

fident searchers may be worse off than some unbiased individuals.

5 Evolution of Beliefs

In this section I give conditions that guarantee that true average posteriors diminish over

time for overconfident priors. I first show that, although unbiased priors remain unbiased,

overconfident beliefs may become pessimistic. Then I show that, if there is an unbiased belief

that is equally stubborn than the overconfident prior, the bias diminishes over time and the

overconfident does not become pessimistic on average.

Suppose that υ is unbiased. Then, by the law of iterated expectation, Ef

[
mB(w,υ)

]
= f .

That is, on average, unbiased searchers remain unbiased. The following example shows,

however, that an overconfident prior may become pessimistic on average.

Example 6: Let W = {1, 2, 3}, define g, f, j ∈ P (W ) by g =
(
3
4
, 1
4
, 0
)
, f =

(
1
2
, 1
2
, 0
)
,

j = (0, 0, 1). Define priors π by π (g) = π (j) = 1
2
. Since only offers of 1 and 2 will occur,

the posterior of π is always g =
(
3
4
, 1
4
, 0
)
. Thus, although π is overconfident, he becomes

underconfident with probability one. This implies that f � Ef

[
mB(w,π)

]
.

In the example, there does not exist an unbiased belief that is equally stubborn than

π. For any unbiased belief υ, Emυ

[
mB(w,υ)

]
= mυ implies that mB(2,υ) � mυ =

(
1
2
, 1
2
, 0
)
�(

3
4
, 1
4
, 0
)
= mB(2,π), violating equal stubbornness. That is, while 2 is good news for υ, it is

“very” bad news for π, and that causes their order of optimism to be reversed. If there was

an equally stubborn unbiased belief, π would remain optimistic on average. The reason is

that the average posterior of the unbiased belief is a lower bound for the average posterior

of π. Since the unbiased prior remains unbiased on average, the overconfident remains

overconfident. The following theorem is a generalization of the previous argument.

6In Burdett and Vishwanath (1988) this possibility is ruled out assuming that the cost of search is large,

which ensures that only “very” low offers are rejected.
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Proposition 6 Fix any prior π such that there exist an equally stubborn unbiased belief. If

π is overconfident mπ � E℘

[
mB(ωt−1,π)

]
� E℘

[
mB(ωt,π)

]
� f , for all t. If π is underconfident

f � E℘

[
mB(ωt,π)

]
� E℘

[
mB(ωt−1,π)

]
� mπ, for all t.

Proposition 6 states that, for overconfident priors for which there is an equally stubborn

unbiased belief, the true average posteriors decrease but never fall below the truth. They

decrease because updating is, essentially, averaging priors and the information received and

offers are generated by a distribution that is lower than beliefs in first order stochastic sense.

The overconfident beliefs do not fall below the truth because they are bounded below by the

unbiased priors, which are a martingale.

A corollary of Proposition 6 is that beliefs are a martingale for unbiased priors. That

is, the agent’s true average beliefs about the distribution that generates the offers does not

change over time. This is not the usual “beliefs are a martingale” claim of the literature

on learning as, for example, in Kalai and Lehrer (1993). In that literature, the relevant

distribution with respect to which the expectation is taken is mπ. Hence, in that context,

“beliefs are a martingale” means that one can not expect any change in his beliefs. Here,

the distribution with respect to which the expectation is taken, is the true measure f . Thus,

the result is a statement about the true, and not subjective, evolution of beliefs.

6 Concluding Remarks

One can apply the results on behavior and evolution of beliefs to obtain a testable impli-

cation of overconfidence. Suppose that the search problem was to be repeated a number of

times, called spells, and that each problem were solved myopically. Assume, also, that the

searcher starts each spell with equally stubborn priors. In addition, following Proposition 6,

suppose that the overconfident’s prior at the beginning of today’s spell are dominated by his

beliefs at the start of the last spell. Then, Theorem 2 ensures that the expected search times

decrease from spell to spell. On the other hand, an analogous construction for unbiased

searchers yields constant spell lengths. Hence, one may be able to test whether people are

overconfident through the analysis of search behavior of unemployed workers.

The results on welfare may also have implications for social policy. For example, consider

the case of an unemployment insurance office. Since the welfare loss in Theorem 5 is derived

exclusively from beliefs, policymaking only makes sense if the government knows more about

the true distribution than searchers. The unemployment insurance office observes the same

characteristics of the worker as the firm does and has been continuously receiving information
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about job offers for a long time. Then, if it can be assumed to know the distribution that the

unemployed worker will face, inducing workers, for example, to take jobs they do not want

to accept, may be welfare enhancing. In traditional information economics models, where

the individual knows more about himself than the office, inducing workers to take jobs is

welfare decreasing.

The results on welfare also suggest that one can build models where the pervasiveness

of overconfidence is the consequence of evolutionary selection. In pre-agricultural societies

subsistence depended on search activities, such as hunting and gathering. Thus, if overconfi-

dent searchers were better off than unbiased searchers, and that favored their reproduction,

their progeny should tend to be overconfident.

In closing, I note that all the results of the paper, except those on welfare, can be easily

extended to the case of arbitrary W ⊂ R.

7 APPENDIX

Measures µn over X converge weakly to µ, denoted µn ⇒ µ, iff
∫
y (x)µn (dx) →∫

y (x)µ (dx) for all y ∈ C (X). For µ ∈ P (X) and measurable h : X → R, define

µh−1 (C) = µ (h−1 (C)) for all measurable C. The following is a corollary to theorem 5.5 in

Billingsley (1968)

Lemma 7 Let {µn} , µ ∈ P (X), h : X → R be continuous and hn : X → R, converge

uniformly to h as n → ∞. Then, µn ⇒ µ implies µnh
−1
n ⇒ µh−1

Lemma 8 B (w, ·) : P 2 (W ) → P 2 (W ) is continuous.

Proof : Fix any y ∈ C (P (W )). I have to show that πn ⇒ π implies∫
P (W )

hn (g)πn (dg) ≡

∫
P (W )

y (g) g (w)

mπn (w)
πn (dg) →

∫
P (W )

y (g) g (w)

mπ (w)
π (dg) ≡

∫
P (W )

h (g)π (dg)

The range rn of each hn is bounded. Then, since
∫

P (W )

hn (g) πn (dg) =
∫
rn

yπnh
−1
n (dy) it

suffices to show that πnh
−1
n ⇒ πh−1. Since hn converges uniformly to h, continuity of h and

Lemma 7 will complete the proof.

By finiteness of W , for arbitrary wi, gn ⇒ g implies gn (wi) → g (wi). This, and con-

tinuity of y guarantee that |y (gn) gn (w)− y (g) g (w)| → 0. Noting that |h (gn)− h (g)| =

|y (gn) gn (w)− y (g) g (w)| [mπ (w)]
−1 completes the proof.
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Lemma 9 For {πn}
∞

1 , π ∈ P 2 (W ),
∫
W

y (B (w, πn) , w)mπn [dw] →
∫
W

y (B (w, π) , w)mπ [dw]

if y ∈ C (S) and πn ⇒ π.

Proof: Lemma 8 and finiteness of W , guarantee that hn (w) ≡ y (B (w, πn) , w) converges

uniformly in w to h (w) ≡ y (B (w, π) , w). In addition, mπn
⇒ mπ, so Lemma 7 completes

the proof.

Proof of 1: Proofs of continuity when search has stopped and of boundedness are trivial

and will be omitted. Assume πn ⇒ π. Since
∫
S

y (s)Cπn
[ds] =

∫
W

y (B (w, πn) , w)mπn
[dw],

Lemma 9 completes the proof.

Using continuity of v, we obtain the following trivial corollary.

Corollary 10 V : P 2 (W ) → P 2 (W ) is continuous.

Lemma 11 Assume that π � υ and that either π or υ are monotonic. Then, for all t and

ω ∈ Ω, V (B (ωt, π)) ≥ V (B (ωt, υ))

Proof : I will say that y ∈ C (S) is non decreasing if y (π,w) ≥ y (υ, w) whenever π � υ and

either π or υ are monotonic. Let N (S) ⊂ C (S) be the set of non decreasing functions on S.

Since K maps N (S) into itself and N (S) is closed, the value function v is non decreasing.

If υ is monotonic, V (π) ≥
∫
v [B (w, υ) , w]mπ (dw) ≥ VT (υ). The first inequality follows

from equal stubbornness and non decreasingness of v. The second, because v [B (w, υ) , w]

is non decreasing in w for monotonic priors. The result follows because monotonicity and

equal stubborness are preserved by updating. For monotonic π the proof is symmetric.

Proof of 2: Given the optimal policy, V (B (ωt, π)) ≥ V (B (ωt, υ)) for all t and ω ∈ Ω will

complete the proof. The result follows from Lemma 11.

Proof of 3: Given that w2 > δV (π), in the first period, search continues only if the first

draw is w1. Since priors are monotonic and mπ = Emπ

[
mB(w,π)

]
, π � B (w1, π). Since

π and B (w1, π) are equally stubborn, Lemma 11 ensures that δV (π) ≥ δV (B (w1, π)).

Then, w2 > δV (π) ≥ δV (B (w1, π)). Hence, in period 2, search continues only if w1,

occurs. Again, B (w1, π) � B (w1, w1, π) and they are equally stubborn, so δV (B (w1, π)) ≥

δV (B (w1, w1, π)). Continuing in this manner, the result follows.

Lemma 12 For any Dirichlet π = (π1, π2, ..., πn), w1 = δV (π) implies V (π) =
∫
wmπ (dw)
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Proof : Since w1 > δV (B (w1, π)) implies that V (π) =
∫
wmπ (dw), it will suffice to

show that V (π) > V (B (w1, π)). Then, V (π) ≥
∫
max {w, δV (B ((w1, w1) , π))}mπ (dw) >

V (B (w1, π)). The first inequality follows from B (w, π) � B ((w1, w1) , π), equal stubborn-

ness and Lemma 11. The second, because max {w, δV (B ((w1, w1) , π))} is strictly increasing

and π � B (w1, π).

Proof of 4: Trivially, for any f there exists δ such that for all δ > δ, w2 > δV (υ0). Then,

ii) follows directly from Theroem 2, Corollary 13 and Lemma 3.

To prove i) I will find Dirichlet priors for unbiased and overconfident searchers. For s > 0,

let υs be a Dirichlet prior with parameter
(
f1
s
, f2

s
, ..., fn

s

)
. For small γ > 0, let fγ ∈ P (W )

be defined by fγ = (f1 − γ, f2 + γ, ..., fn) and let αγ be degenerate in fγ. For all γ > 0,

V (αγ) > V (υ0), so continuity of V guarantees that for small γ, δV
(
αγ

)
∈ (δV (υ0) , w2).

Define π0 ≡ αγ and, for s > 0, let πs be a Dirichlet prior with parameter
(

f1−γ

s
, f2+γ

s
, ..., fn

s

)
.

Then, continuity of B and of V guarantee that there exists an S such that for all s < S,

δV (B (w2, π
s)) ∈ (δV (υ0) , w2). Hence, for all s < S, πs satisfies the conditions of Lemma

3. This implies that πs will never reject an offer that he should not. Thus, for all t, all

ω and s < S, δV (B (ωt, πs)) ≥ δV (B (ωt, υs)). So, to show that some overconfident is

strictly better off than some unbiased, it suffices to prove that for some history with positive

probability, the searcher with priors υs accepts w1 and πs rejects it.

Let wt
1 denote a sequence of t draws of w1. Then, for all t, ℘ {ω : ωt = wt

1} > 0. It will

suffice to show that for some s and some t, δV (B (wt
1, υ

s)) ≤ w1 < δV (B (wt
1, π

s)).

Fix s1 < S. Since, for large enough t, B (wt
1, υ

s1) is close to a degenerate belief in a

distribution that is degenerate in w1, continuity of V implies that δV (B (wt
1, υ

s1)) < w1.

Then, δV (B (wt
1, υ

0)) > w1 and continuity of V and B guarantee that for some s2 < s1,

δV (B (wt
1, υ

s2)) = w1. Then, by Lemma 12, w1

δ
=

∫
wm

B(wt
1
,υs2) (dw) <

∫
wm

B(wt
1
,πs2) (dw)

≤ V (B (wt
1, π

s2)). Letting π = πs2 and υ = υs2 completes the proof.

For each r ∈ [0, 1], let rx denote the true value of following the policy “in time t, if in

the dyadic expansion of r the tth element is a 1, accept w iff w ≥ x. If the tth element is a

0, accept iff w > x”. If r has two expansions, the choice between them is irrelevant.

Lemma 13 For degenerate π0 ∈ P 2 (W ), V ℘ is continuous at π0 iff 0δV (π0) = 1δV (π0)

Proof : I will first show sufficiency. Assume that 1δV (π0) = 0δV (π0). It is easy to see, by

induction, that for all T , that if q, r ∈ [0, 1] have a constant string of 0’s or 1’s after T ,

qδV (π0) = rδV (π0). By continuity of V , for fixed γ > 0 and T < ∞, I can choose ε > 0 so

that for all π ∈ Nε (π
0), all t ≤ T and ω ∈ Ω, V (B (ωt, π)) ∈ Nγ (V (π0)). Then, for every
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ω ∈ Ω there exists some r (ω) ∈ [0, 1] with 1δV (π0) = r (ω)δV (π0), such that the choices made

by a searcher with prior π who follows the optimal strategy are the same as those dictated

by r (ω) for t ≤ T . Note that for all ω and ω’, the r’s chosen are such that r (ω)δV (π0) =

r (ω’)δV (π0) = 1δV (π0) ≡ rδV (π0). Then, I get |V
℘ (π0)− V ℘ (π)| =

∣∣rδV (π0) − V ℘ (π)
∣∣ ≤ δTwn.

Noting that T was arbitrary completes the proof of sufficiency.

Assume 1δV (π0) �= 0δV (π0) and let π0 be degenerate in (q1, q2...qn) ∈ P (W ). Since qi =

δV (π0) for some i < n, let πs be degenerate in (q1..., qi − εs, ..., qn + εs) for εs ↓ 0. Then, for

all s, V (πs) > V (π0) and for large s, |V ℘ (π0)− V ℘ (πs)| =
∣∣1δV (π0) − 0δV (π0)

∣∣ �= 0

Proof of 5: {V (υ0) , V (π0)} ∩ {w : f (w) > 0} = φ ensures that the condition for Lemma

13 is met, so V ℘ is continuous both at π0 and υ0.

Proof of 6 : The part of overconfidence will be proved by induction. The other is analogous

and will be omitted. Monotonicity and mπ � f guarantee that
∫
W

x∫
−∞

mB(w,π) (dt)mπ (dw) ≤

∫
W

x∫
−∞

mB(w,π) (dt) f (dw) and thus, mπ � Ef

[
mB(w,π)

]
. By assumption, there exists υ, such

that
∫
mB(w,π)f (dw) �

∫
mB(w,υ)f (dw) =

∫
mB(w,υ)mυ (dw) = mυ = f .

AssumingE℘

[
mB(ωt−1,π)

]
� f , E

E℘

[
mB(ωt−1,π)

] [mB(ωt,π)

]
= E℘

[
mB(ωt−1,π)

]
andMonotonic-

ity guarantee that E℘

[
mB(ωt−1,π)

]
� E℘

[
mB(ωt,π)

]
. Finally, for unbiased υ equally stubborn

than π, E℘

[
mB(ωt,π)

]
� E℘

[
mB(ωt,υ)

]
= f .
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