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The "Types" of a Bayesian Equilibrium
Yaw Nyarko

Abstract

In this paper I formally define and compare the various notions of a "fype" and the associated
concept of a Bayesian Nash equilibrium, I discués re-parametrizations of the basic model and
indicate which of the concepts of a type become equivalent under various re-parametrizations of the
model.  This paper will use the framework developed in Nyarko (1993b) which is itself a
generalization of the papers of Ambruster and Boge (1979), Boge and Eisele (1979), Mertens and
Zamir (1985), and others. The framework will be a model where agents have imperfect information
over both the underlying fundamentals of the economy (or game) and the strategies being used by
the other agents. Agents will also have imperfect information about the beliefs of others, about the
beliefs about other agents beliefs, etc.
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1. Introduction

1.1. Consider a multi-agent model where agents have incomplete information over both the

underlying fundamentals of the economy (or game) and the strategies being used by the other agents.
The decision-theoretic or "Savage-Bayesian” framework for this incomplete information problem
would model each agent as being characterized by her utility parameter and her belief over the both
the fundamentals gnd the strategies of other agents. The agent is also characterized by her belief
about other agents’ beliefs; and her belief about their beliefs about other agents beliefs, etc. We
will define a Savage-Bayesian type of an agent to be a specification of her own utility parameter and
her hierarchy of beliefs over the fundamentals and the strategies of others. This is the concept of
a type that would be used in decision theory (of the kind in Savage (1954) for example).

A game-theoretic formulation of the incomplete information problem would model agents as
being characterized by some arbitrarily specified "type.” An equilibrium would then specify how
each agent would choose strategies as a function of her type. For example, in the Harsanyi (1968)
Bayesian equilibrium concept an agent’s type specifies her utility parameter and her hierarchy of
beliefs over the utility parameters of others (and in particular does not specify beliefs about the
strategies of others). Most of the work in applied game theory defines an agent’s type to be her
utility parameter. Aumann (1987) studies the correlated equilibrium concept and implicitly defines
a type to be a Savage-Bayesian type.

In this paper I formally define and compare the varibus notions of a type and the associated
concept of a Bayesian Nash equilibrium. I discuss re-parametrizations of the basic model and
indicate which of the concepts of a type become equivalent under various re-parametrizations of the

model.  This paper will use the framework developed in Nyarko (1993b) which is itself a



generalization of the papers of Ambruster and Boge (1979), Boge and Eisele (1979), Mertens and

Zamir (1985), Tan and Werlang (1988), Brandenberger and Dekel (1993) and Heifetz (1990).

1.2. A Motivating Example. The following model of competitive firms facing an unknown

demand curve is studied in much greater detail in Nyarko (1991):  Suppose that there is a set of
agents indexed by the unit interval I=[0,1] and uniformly distributed along that interval. (For
technical reasons suppose also that there are finitely many classes of agents within that interval with
all agents of the same class identical in all respects.) Fix any date n. At that date agent i must
choose an output level y,,. The aggregate output is theny, = { lgy,di. The price of that output
is determined via a linear demand curve p, = o-fy, +¢,, where o and § are fixed parameters, "the
fundamentals,” and ¢, is the date n shock to the demand curve - a zero mean unobserved random
variable. We suppose that the parameter 8 of the demand curve is "common knowledge"” among the
agents. However there is imperfect information over the parameter ««. The cost to firm i of
choosing the output y, is c(y,)=0.5y,>. The profit of firm i is then p,y,-0.5y,2. Let E,, denote
the date n "expectations operator” of agent i. The profit maximizing output of firm i is then
Y =EpD, =E;o-8E,y,. Notice that to choose an optimal action agent i must form a belief over both
the fundamentals, o, and the (aggregate) actions of other agents, y,.

Given any "random variable" x let G x denote the "average opinion” of x, i.e., the average
of the date n expectations of agents over x, Gx= [ J(E_x)di. If agents do not know the beliefs of
others then in general there will be uncertainty over expressions like E, G, x, agent i’s expectation
of the average opinion of x, and G,’x, the average opinion of the average opinion of x. Inductively,
we may defined G,’x to be the r-times average opinion of the average opinion ... of x, If there is

maximizing behavior of firms (which we write as (MB)) or 1-level knowledge of (MB) (i.e., if



agents know that other agents engage in (MB)); 2-level knowledge of (MB) (i.e., if agents know
that other agents know that other agents engage in (MB))} or R-levels of knowledge of (MB) or

common- or oo -level knowledge (the latter with the added assumption that 0 <8 < 1) then we obtain:

(MB) Vu=E,o-BE.y, so by integration over i, V.=G,a-G,y..

(1-level knowledge of (MB)): Vi =Ep0-BE, G0+ 8E,.G.Y,.

(2-level knowledge of (MB)): Vin=Ep0-BEu Gy + 2B G, 0-6°EG. 2

(R-level knowledge of (MB)): Vi =Lem1t (-0 E(G, ) + (-8)*E, G, }y (where GPa=).

(common knowledge of (MB) and 0<8<1): y,=L% (-8)"'E.(G, o).

In Nyarko (1993b) a framework was provided to represent the model above. In this paper
we will discuss various definitions of a type and the resulting definition of a Bayesian Nash
equilibrium (BNE). For example, a Savage-Bayesian type will specify an agent’s preferences and
that agent’s belief hierarchy over both actions and unknown parameters. If we assume (MB) then
each agent will choose actions as a function of their Savage-Bayesian type. If we assume knowledge
of (MB) by all agents then each agent can compute the other agents’ actions as a function of their
Savage-Bayesian type. We will then be in a Savage-Bayesian BNE. Another example of the concept
of a type that will be studied is that of a Harsanyi type. An agent’s Harsanyi type will be defined
to be that agent’s belief hierarchy over the "fundamentals”, which in the example above will be the

parameter . Expressions like E, (G, '«) are determined by agent i’s Harsanyi type. If we assume



common knowledge of (MB) and 0 << 1, then we saw above that each agent’s action is a function
only of that agent’s Harsanyi type. Further, each agent will be able to compute the actions of others

as a function of their Harsanyi types. We will then be in what wiil be defined as a Harsanyi BNE.

2. Some Terminology and Mathematical Preliminaries

2.1. 1is the finite set of economic agents. Nature is agent 0, and is not a member of I. Given

any collection of sets {X;},5, we define X=IL X, and X;=IL_ X; unless otherwise stated; (given
X, and {X;};s, we shall sometimes state that X;=XxIL_.X). Given any collection of functions
fuX; = Y, for iel, :X; = Y, is defined by fi(x;) = IL.f(x). The cartesian product of metric
spaces will always be endowed with the product topology. Let X be any metric space. P(X) denotes
the set of probability measures on X (with X endowed with its Borel o-algebra, generated by the
open sets of X). The set P(X) will be endowed with the weak topology of measures; (see
Billingsley (1968) for more on this). The following fact will be used repeatedly: If X is a complete
and separable metric space then so is (X). (See, e.g., Parthasarathy Theorems I1.6.2 and I1.6.5.)
For ease of exposition, wherever the intent is obvious we shall assume, without mentioning this, that
generic sets and functions are Borel-measurable and generic conditional probabilities are fixed regular

versions. R denotes the real line.

3. The Basic Model

3.1. In this section I summarize the basic model. All of the details appear in Nyarko (1993b).

3.2. Belief Hierarchies. Recall that I is the set of agents and nature is referred to as agent

0 (not a member of I). Suppose we are given a collection of complete and separable metric spaces
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Y, and {Y;},;. We shall consider Y; to be the set pertaining to agent i; this will have the meaning
that i "knows" her own value of yeY,, We consider Y, to be the parameters of "nature.” We
proceed to construct the space of hierarchies of beliefs over the space Y=Y xIL,Y;. Construct the
sets {B;"}*,., inductively as follows:

B! = P(Y,) where Y=Yl Y;; (3.3)

and given {B;"};; for some r=1, define

Bir-!—l = T(Br_iXY_ i)' (3.4)

An element b;'eB;' represents agent i’s beliefs about y; €Y; and shall be referred to as agent i’s first
order belief. An element b%B;? specifies agent i’s belief about the first order beliefs of others and
shall be referred to as agent i’s second order belief. An element b eB; is i’s r-th order belief and
it specifies agent i’s belief about the (r-1)-th ordér beliefs of other agents. The set of hierarchies of
beliefs of agent i is a subset B; of the Cartesian product II*,_,B; obeying a certain "probabilistic
coherence condition," requiring that lower order beliefs be a "projection” of higher order beliefs;
e.g., the first order belief of an agent should be equal to the marginal on Y of that agent’s second
order belief.

There is a mapping P;: B; -~ P(B.xY_) which associates with each hierarchy of beliefs
b;=(b;',b?,...) €B; an associated probability P,(b) ¢ P(BxY.) with the property that for each integer
r, the marginal of Pi(b;) on BxY; is equal to b*'. In particular, P(b,) is the belief that agent i with
hierarchy of beliefs b; has about the beliéf hierarchies of other agents. The mapping P, is a

homomorphism between B; and P(B_xY.) .



3.5. The Economic Model. Time is discrete and has dates n=1,2,3,... . At each date n

agent 1 chooses an action a,, in an action space A;. Let z, ¢ Z; denote the vector of all observations
of agent 1 during the course of date n. We assume that agents observe their own actions, so z,, is
a vector which includes a specification of a,,. Just before choosing the date n action a,eA,, agent i
would have information on the date n partial history zN' = {z,...,zp,} € Z¥'. (2° is the null or

empty history.) We suppose Z; and A, are complete and separable metric spaces for all icl. Define

Fp={f:ZN"' - A, with fy Borel-measurable}, F,=II"y_,;Fyand F=IIF.. (3.6)

A behavior strategy for agent i is any feF;,. We assume that for all i and N, Fy is endowed with
a metric which makes it a complete and separable metric space.

We let O=6xIL,0; denote the space of "fundamentals” or attribute vectors of agents.
0,66, will denote nature’s attribute vector; this parameter will determine any underlying randomness
of the economy. 6,0; denotes the utility parameter or attribute vector of agent i. Agent i’s utility
or payoff function is some function u;:0,xOxFxF_~R which depends upon nature’s attribute vector,
8y, agent i’s attribute vector, 6,, agent i’s strategy vector, f, and the strategy vector of the other
agents, f;,. It will be assumed that the functional forms of the utility functions are common
knowledge; however agents will have imperfect information over the attribute vectors and the
behavior strategies of other agents. 6, and ©, for each iel are assumed to be complete and separable
metric spaces.

We may think of agents actions or behavior strategies as resulting in certain physical
outcomes which in turn result in utility to the agents. Following Harsanyi (1968 pt. I p. 167) we

shall think of the utility attribute vectors of agents, 8¢, as being broadly defined and in particular



as specifying (i) the physical outcome function produced by any given tuple of behavior strategies;
(i) the utilities of agents following any physical outcome; (ii) the strategy spaces available to the -
agent. Harsanyi (1967, pt. I) also argued that any private information signal received by an agent
may also be included in a specification of the utility attribute vector. Incomplete information on any
of the above three items may therefore be represented as incomplete information over the agents’

attribute vectors. We shall refer the this loosely as the Harsanyi Principle. We shall from time

to time consider the implications of very broad interpretations of the "Harsanyi Principle.”

We shall suppose that sequence of observations and actions of the economy, {z,}*,_, € Z*
has a probability distribution P, which depends upon the true date 0 vector -y =(6,,{f;},,) of nature’s
attribute vector and the behavior strategies of agents. We may without loss of generality suppose

that this probability distribution as a function of vy is "common knowledge" among the agents in the

economy. We shall assume that P, is a regular conditional probability on Z=. (Of course, by
assuming that 6, includes a specification of the utility parameters of all agents, we may model the
situation where agent i’s utility function and P, are functions of agent j’s attribute vector (for some

or all jel), as in some formulations of adverse selection models in economics).

3.7. The Savage-Bayesian Types of Agents. At date O there is imperfect information

over space of attribute vectors ©=0,xI1,,0;, and over the space of behavior strategies, F=IL4F,.
Let Q;” be agent i's space of belief hierarchies over OxF defined and constructed as in section 3.1.
(In that construction set Y,=0, and Y;=O;xF, for all je; what we refer to here as Q,* is the same
as what was referred to in that construction as B;.) Any ¢,=(ql,q2,...)eQ,” is a possible belief
hierarchy for agent i over OxF. At date O each agent i will be characterized by some attribute

vector, 0,0;, and some belief hierarchy q,"eQ,”. We refer to the tuple q,;=(6,,q;®) as agent i’s



Savage-Bayesian type and we define Q,=0xQ,” and Q=IL_Q;. An agent’s Savage-Bayesian type,
q;=(8,,q,), contains all the information for that agent to engage in decision-making: preferences are

specified by 8, and beliefs specified by q;~.

3.8. Behavior Strategy Choice Rules and Expected Utility Maximization. We

define a behavior strategy choice rule to be any (measurable) function u;":Q+P(F) which

determines agent i’s (possibly randomized) behavior strategy as a function of that agent’s Savage-
Bayesian type, q;. Define U(q;,f) to be the expected utility function of agent i of Savage-Bayesian
type ¢;=(0:,q',q,q>,...) obtained by integrating out the coordinates 6, and F; from the utility
function u; with respect to the measure q;':

Ul(qnfn) = Sui(ﬂmai;fi’f-i)dqil- (3'9)

Conditional on any q; an expected utility maximizer will choose a behavior strategy to maximize the
expression in (3.9). If there is more than one solution to this maximization problem the agent could
in general randomize over the set of maximizers. Expected utility maximization will therefore under
fairly general conditions result in a behavior strategy choice rule. We suppose that each agént i has
a behavior strategy choice rule which determines how that agent will choose beh;wior strategies as

a function of her Savage-Bayesian type.

3.10. The State Space {}. We define the state space to be the set @=QxO,xFxZ>. Any

@=({q:}ia,00,{f;}:1,27)e€) specifies the Savage-Bayesian types of agents, {q;},;, nature’s attribute
vector, 8,, the vector of agents’ behavior strategies, {f;},;, and the sample path of actions and

observations, z%e¢Z"~,



3.11. The Ex Post Beliefs of Agents over . In Nyarko (1993b, (2.2)) the following

"product” operation & was introduced: Let X and W be two complete and separable metric spaces.
Suppose we are given a ("marginal”) distribution, ¥’, over X; i.e., ¥'¢éP(X). Let G:X - P(W) be
any function mapping X into the set of probability measures on W. Let G(.;x) denote the value of
G at x (so G(.;x)eP(W)). Then each x defines a probability G(.;x) on W ("conditional” on x). We
may therefore "integrate” the conditionals with respect to the marginal to obtain a joint distribution,
¥, over XxW. This joint probability, ¥, will have a marginal over X equal to ¥’ and a conditional
over W given x equal to G(.;x). We shall use the notation ¥'&G or ¥'®G(.;x) to denote this joint
probability and refer to it as the "product of ¥’ and G(.;x)". (For this "product” operation we will
require the measurability of G(.;x) in x; in Nyarko (1993b) this is shown to be equivalent to the
requirement that G(.;x) be a regular conditional probability.)

Each Savage-Bayesian type q; of agent i induces a unique measure p{.;q;) over Q representing
that agent’s belief over { under the following conditions: (i) agent i knows her own Savage-Bayesian
type q;; (ii) agent i knows her behavior strategy choice rule u;”:Q~P(F); (iii) agent i’s belief over
the space Q. xO,xF,; of Savage-Bayesian types of others, nature’s attribute vector and the behavior
strategies of others is obtained via the measure P{q;*) defined in (3.2) where ¢;=(6,,q;,°); and (iv)
agent i’s belief over the action and observation space Z* is computed via the measure P, of section
(3.5). Let 1(q) be the probability over Q; which assigns probability one to the given q;. Then using

the notation just introduced we may write the measure u(.;q;) just defined as follows:

#(39) = [[1(q®p"1OP()ISP,. (3.12)

3.13. Ex Ante Subjective Beliefs. We assume that each agent i has an ex ante subjective

10



belief u; over the state space {). The interpretation is that at date 0 agent i is "born" and realizes her
Savage-Bayesian type q;. The ex post belief of that agent over the state space is then represented by
the conditional probability pi(. | q;) of ; given q;, and must agree with the measure p(.;q;) of (3.11)
for pu; almost every q,eQ;. A probability u € (Q) is a common prior for the agents if for all iel, u

is an ex ante subjective belief for agent i.

3.14. Condition (GH). We shall say that the collection of subjective ex ante beliefs of agents,

{p}ia, obey condition (GH) if p; and p; are mutually absolutely continuous Vi,jel; (i.e., for all
measurable D SQ and vi,jel, u(D)>0 if and only p(D)>0). Condition (GH) requires that agents
agree ex ante about the events which have zero probability. Condition (GH) does not require the
ex post probabilities, p(. | q) and (. | ), to be mutually absolutely continuous. It should be clear
that if u;=p for all i so that u is a common prior then condition (GH) holds. Condition (GH) is
therefore weaker than the common prior assumption. We therefore name this "condition (GH)" for
"Generalized Harsanyi" common prior condition. To avoid unnecessary "probability zero”

complications we shall impose condition (GH) in the remainder of this paper.

4. A T-based Pseudo Bayesian-Nash-Equilibrium

4.1. We shall first present the "intuitive” definition of a Bayesian Nash equilibrium. We will take
as given a collection of (complete and separable) metric spaces, {T/},,. Define for each i,
T,;=OxT/. Then any 7,=(8;,7)eT; specifies agent i’s attribute vector 6, and possibly some other
parameter 7¢Tf. We will refer to a T, as a space of agent i’s "characteristics.” Define

T=0xIL,T;, the cartesian product of the space of nature’s attribute vectors and the T,’s. We will

11



take as given a collection of probability measures {m};, where for each il = is a probability measure
over the space of characteristics. ~'We may interpret 7, as an ex ante belief for agent i over the
characteristic space T; the conditional probability x;(. | ;) will then be the ex post belief of agent
i with "characteristics” 7,T,.

A T-based decision function for agent i is any (measurable) mapping D;:T~P(F):; it
represents a (possibly randomized) decision rule for agent i, used in choosing a behavior strategy as
a function of agent i’s characteris;tics, 7;¢T;. Suppose that each agent i knows that agent j uses some
T;-based decision function D;. Let D (7)) =II,.,D,(r;) be the measure over F equal to product of the
measures {D(7)};.i. Recall that the utility function of agent i is the function u;:0,x0xFxF ~R.
We may denote, with obvious abuse of notation, the following (which is equal to the utility of agent

i when agents use the decision functions {D,(7)};4):

(60,0, D:(7),Di(7.)) = E

i

J' . w00,0,5,£)dDy(r)dD.(7.), 4.2)

where dDi() (resp. dD.(7.)) denotes integration over F; (resp. F.) with respect to the measure D7)
(resp. D(7)). The ex ante expected utility of the agent is then obtained by integration of (4.2)

over 7¢T with respect to agent i’s ex ante belief x;. We denote this by
wWD;,D) = § u;(65,0, D7), D (r.))d;, (4.3)

where the integral is with respect to «; over the variables 8,,6,,7, and 7,. A collection of decision

functions {D;*},, is said to be a T-based pseudo Bayesian-Nash-Equilibrium (BNE) for {x.).,, if

for each iel and for all T;-based decision functions D; for agent i,

12



Wi(D*,D*)) = Wi(D,,D*)). 4.4

The above should really be referred to as a BNE without common priors. If the ex ante beliefs

{7:}iq are common (i.e., x;=m; Vi,jel) then we have a T-based pseudo BNE with common priors.

4.5. Some Problems with the Definition of a Pseudo BNE. Since we wish to

interpret the state space as consisting of all reIevanti variables it seems natural to require
characteristics to be random variables on the state space. This also helps resolve some problems.
To begin with, it is possible that a characteristic has an "intrinsic definition.” Our definition of a
pseudo BNE may not respect any such "intrinsic definition” of a characteristic. = For example
suppose that one of the agents, Agent A say, may have one of two possible characteristics, "LEFT"
or "RIGHT." Suppose also that agent A has two actions "left” and "right.” It is easy to design a
pseudo BNE where the agent of with characteristic LEFT chooses action right, and the agent of
characteristic RIGHT chooses action left. Of course by relabelling we may get around this problem
- and indeed this is essentially the "revelation principle.” However, we may want our equilibrium
to have such consistency embedded into it. The situation where an agent’s characteristic is her
"suggested” action or behavior strategy occurs in the study of correlated equilibria.

The above mentioned problem occurs in a slightly different context in our model with
hierarchies of beliefs. In the definition of a pseudo BNE we make no restrictions on agent i’s ex
ante belief 7;. Suppose for example that the space of characteristics is the space of Savage-Bayesian
types. There are two ways of computing the beliefs of agent i of Savage-Bayesian type q; over the
types of others. First, we may use the conditional of m; given q;, (. [ @); alternatively, each

¢;=(0;,q;™) defines a probability over the types of others given by Pi(q;*) as described in section 3.2.

13



Since the prior belief x; is arbitrary there is no a priori reason why the conditional, 7(. | ¢y should
agree with P,(q;") over the space of Savage-Bayesian types of others.

Another related issue is the following: In principle an agent’s characteristic may reveal
information about the future which has not yet occurred. For example, we may have an agent’s
characteristic equal to the outcome of the toss of a coin which the agent is yet to flip. The potential
for self-referencing problems in this case should be obvious.

To handle the above issues in the next section we shall require the characteristics to be
random variables on the state space {2 and we shall impose some measurability conditions. We will
in that case refer to a characteristic as a type. Bayesian Nash equilibria will be defined to be
measures on the state space obeying properties analogous to those in the definition of a pseudo BNE

- in which case we drop the qualifier "pseudo.”

5. The Types of Agents

5.1. Recall that q; denotes agent i’s Savage-Bayesian type and it may be considered a random

variable on the state space 0. Let $,,=o0({q;}) denote the o-algebra generated by q,. This represents
agent i’s information at date 0. We define a type space for agent i to be the same as a space of
characteristics for agent i: i.e., any T;=0xT;® where T/ is a complete and separable metric space.
We refer to T=0,xIL,T; as a type space (where, recall, 6, is the space of nature’s attributes). We
shall define a type for agent i 10 be any §;;-measurable random variable on Q of the form r,=(4,,7")
taking values in T,. Hence 7:0—T;. By an abuse of terminology we shall also refer to any
realization of this random variable as agent i’s type. The rationale for the measurability conditions

on the definition of a type should be straightforward: At date zero the only information that agent

14



i has is encoded in the vector ¢;=(#,,¢4;).

5.2. Savage-Bayesian Types. The belief of agent i is completely specified by that agent’s

hierarchy of beliefs, q,”, and the utility function is completely specified by the attribute vector 6.
Hence the decision problem facing the agent i is completely specified by the vector q;=(8;,q,*). For
example the expected utility maximization problem of (3.9) is completely characterized by q,. It

is for this reason that we refer to q; as agent i’s Savage-Bayesian type. By construction g; may be

considered a random variable on Q. It also is also trivially o({q;}) measurable and hence satisfies
all the requirements to refer to it as a type.

By assumption (see (3.8)) agents use behavior strategy rules p;”(df; | q) which are,
conditional on q;, independent of the Savage-Bayesian types or realized behavior strategies of other
agents. This implies that the notion of a Savage-Bayesian type is "rich" enough so that conditional
on their types agents choose behavior strategies independently of each other. Hence implicitly, and
following the Harsanyi Principle, we have modelled the attribute vector as specifying any correlation

signals or private information the agent recent receives.

5.3. Harsanyi Types. Nyarko (1993b, section 9) showed how to construct a date n hierarchy
of beliefs over any random variable. We may consider 8, the attribute vector, to be a random
variable on {}; indeed, @ is the projection from 2=[IL;0xQ;”1xO,xFxZ> onto O =0OxILO,. Let
h;” denote agent i’s hierarchy of beliefs over © at date 0 (i.e., conditional on ,=0({q;})). The
vector h;=(6;,h;”) is a random variable on Q which is $;,-measurable, so is a type for agent i. We
refer to h;=(8,h;*) as agent i’s Harsanyi type. An agent’s Harsanyi type specifies that agent’s

belief about 8; that agent’s belief about other agents’ beliefs about @; that agent’s beliefs about other

15



agents’ beliefs about other agents’ beliefs about 8; etc. Define H;* to be the space of hierarchies
of beliefs over the space of attribute vectors, ©. The space H;=06,xH,™ is the Harsanyi type space
of agent i and H=0IL H, is the Harsanyi type space.

In Harsanyi (1967, Pt. I) a vector c; was identified. This vector specifies in the Harsanyi
framework both the utility.parameters of agent i and the subjective belief Ry(. | ¢} of agent i over
the vectors ¢ of other agents. On p. 170 Harsanyi writes "R, ... is a function whose mathematical

_ form ... is known to all n players.” Harsanyi continues on p. 171 "... the rules of the game as such
allow any given player to belong to any one of a number of possible "types,” corresponding to
alternative values his ... vector ¢; could take and so representing alternative payoff functions U; and
the alternate subjective probability distributions ... that player i could have in the game. Each player
is always assumed to know his own actual type but to be in general ignorant about the other players’
actual types.”

In the Harsanyi setup c; does not specify beliefs about the strategy vectors of others. We
therefore interpret the vector c; of Harsanyi (1967) to be what we have referred to above as the
Harsanyi type h;=(8;,h;"). This vector of course specifies agent i’s utility parameter, ,, and agent
i’s beliefs about the vectors of other agents, h;, which recall is specified by the measure P,(h,;”) of
section (3.2). Hence we feel jusﬁﬁed in referring to h; as a "Harsanyi type." (The vector c; was
also referred to by Harsanyi (1967) as an "attribute vector;" this should not be confused with our

use of the term in referring to §;, which should really be referred to as a utilify attribute vector).

5.4. Attribute Types. Agent i’s attribute type will be defined to be the same as agent i’s

attribute vector. It should be obvious that 8, satisfies the definition of a type.

One may also be looking for the notion of a "sunspot" type. One may argue thus: shppose
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that the utility parameters are common knowledge. Suppose however that each agent observes some
private but payoff irrelevant variable; "sunspots.”  Should we not model this as a type different
from the attribute vector? The answer is no! All opportunities for correlations and private
information via the receipt of exogenous information signals should be considered a part of the
attribute vector. This is a possible interpretation of what we referred to as the Harsanyi Principle

in (3.5).

5.5. The Relationship Between the different notions of Types. We have a partial

ordering on the "informativeness" of the various notions of a type. The most "informative" of
course is a Savage-Bayesian type and the least "informative” is the attribute type. If 7, is a type for
agent i and o({r;}) denotes the o-algebra generated by r; then o({6;}) S o({r;}) S a({q;}) in the sense

that o({q;}) is the finest o-algebra and a({6;}) is the coarsest with everything else lying in between.

6. T-Based Bayesian Nash Equilibria (BNE)

6.1. Some Terminology. We shall use the notion of a pseudo Bayesian Nash equilibrium to

motivate our definition here of a Bayesian Nash equilibrium. There will be two differences: Where
previously we had "characteristics" we now have "types” defined on the state space; and second our
definition will be in terms of ex ante beliefs over the state space (as opposed to decision functions
and prior beliefs over types). So fix a collection of types {r;},; as in (5.1) taking values in a
collection of type spaces for the agents {T;};; and set T=0OxII;T,. The definition below will use
the following terminology: given any random variable x on Q taking values in a set X we let

p{. | x) denote (any fixed regular version of) the probability u; conditional on x. Also, given any
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probability » on Q@ we let »(dx) denote the induced distribution of x by ». Further, if for all j in
some finite index set J v, is a probability measure on some metric space X; we let IL;»; denote the

product of the measures »; over ILX;.

6.2. Definition (BNE). The collection of ex ante subjective beliefs of agents over Q, {u;}..,

will be referred to as a T-based Bayesian Nash equilibrium (BNE) if there exists a subset Q' of {2

such that u;(2)=1 for all iel and such that at each w=(q,0,,f,z*)ef}’ and for each i,jel,

i. fie Argmax U(g;,.) (agent i is maximizing, see (3.8));
il p(df, | g,m)=p(df; | 7) (agent i uses a T;-based decision function);
iiii. w(df; | q,7)=pdf; | ) (i knows j’s true decision function); and

iv. w@f; | G {7}0=IL.pn(df | q;,7) (i believes that each agent’s behavior strai:egy choice

is independent of the types of others).

6.3. A BNE with Common Priors. The definition in (6.2) should really be referred to as

a T-based BNE without common priors. If y, =y, for all i,jel in (6.2) then we have a T-based BNE

with common priors.

6.4. From a BNE to a Pseudo BNE. Fix a collection of ex ante subjective beliefs over
Q, {u}ia- Recall that a type is a random variable on the state space Q. | Define m; to be the
probability distribution over the type space T induced by u,. Then = is agent i’s ex ante belief over
the type space T. For each icl, define D;*(7) to be the marginal distribution on F; of u(. | 7), i’s

ex ante belief conditional on i’s type 7,. We verify in appendix A that if {u};; obey the conditions
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in (6.2) then {D*};; is a T-based pseado BNE for {r},. To avoid tedious and uninteresting
problems with the appropriate choice of versions of the conditional probabilities, we impose
condition (GH) of (3.14) in this verification. Hence we see that the definition in (6.2) yields the

"intuitive" definition of a Pseudo BNE of section 4.

6.5. From a Psendo BNE to a BNE. Fix a characteristic space T. Suppose we are given

ex ante beliefs over the characteristic space, {=.};,, and suppose that {D;},, is a T-based pseudo BNE
for {r;},;. In appendix B we will construct an associated ex ante belief, g, for each iel, over the
cartesian product of the characteristic space and the state spéce, TxQ. The measure y; will have the
property that agent i’s beliefs about the items in the state space @ under the pseudo BNE agrees with
the value of the conditional, p(. | 7,), over Q. Hence we may indeed interpret g to be the ex ante
belief of agent i in the pseudo BNE. We will also verify that the marginal of g, over 2, which we
denote by pu;, is an ex ante subjective belief for agent i in the sense of (3.13). Implicit in the
construction will be an assumption that the beliefs {;},; and the decision rules {D},; are "common
knowledge;" further, to avoid irrelevant questions about versions of conditional probabilities we
assume that the beliefs {x;};; are mutually absolutely continuous.

In section 4.5 we mentioned that a pseudo BNE does not necessarily respect the "intrinsic*
definition of a characteristic. The above construction illustrates this problem. Suppose that the
characteristic has an intrinsic definition. Then there exists a (measurable) function m:Q—T which
specifies the "intrinsic meaning,"” m(w), of the characteristic at each we). The measure ; will not
necessarily respect this "intrinsic meaning” and in particular it will not necessarily be the case that
1 ({(7,0)eTxQ: m(w)=7})=1. Therefore, if y, is the marginal of g; over ©, in general the measures

{pi}ia over © do not constitute a T-based BNE (where here we are referring to a BNE with types
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given by m(w) at each wefl). On the other hand if we suppose that g,({(7,w)eTx(:: m(w)=7})=1 so
that the pseudo BNE respects the definition of a characteristic, then g; is a T-based BNE. (This is
. verified in the appendix B.) In summary "a T-based Pseudo BNE which respects the intrinsic

meaning or definition of a characteristic induces a T-based BNE."

7. Some Special Cases of a BNE

7.1. A Savage-Bayesian BNE. Consider each agent i’s type space to be Q,, her space of

Savage-Bayesian types. A Savage-Bayesian BNE is a T-based BNE with T=0,xI,Q.. One may
ask: What does the assumption of Savage-Bayesian BNE provide us with that we do not already
have by construction of the ex ante subjective beliefs? Well, suppose that the type is indeed the
Savage Bayesian type so that 7,=q;,. Since by assumption agents choose actions conditional on q
6.2(ii) will hold for any ex ante subjective probability u;,. Condition 6.2(i) holds if i is maximizing
expected utility; conditions 6.2(iii)-(iv) will hold when i knows that j is maximizing expected utility
and 1 can solve j’s maximization problem to determine j’s behavior as a function of j’s Savage
Bayesian type q;=(6,,q,")). Hence the assumption that a collection of ex ante subjective beliefs
constitutes a Savage-Bayesian BNE equilibrium is equivalent to (a) "maximizing behavior (b)
"knowledge of maximizing behavior” and (c) in the event of a player having a non-unique optimal
behavior strategy from a given Savage-Bayesian type, all agents know the selection rule she uses.
The concept of a Savage-Bayesian BNE otherwise provides no restrictions on behavior. (As regards
condition (c) above, one may want to assume that the selection rule for choice among optima is
encoded in the attribute vector. This could be an interpretation of the Harsanyi Principle of (3.5).

Alternatively, a re-parametrization of the model which achieves this effect is studied in (8.2).
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Under such an assumption (or model re-parametrization) maximizing behavior (MB) and knowledge

of (MB) is equivalent to the assumption of a Savage-Bayesian BNE.)

7.2. A Harsanyi BNE. Recall from (5.3) that {H,},; is the space of Harsanyi types for the

agents and H=0xIL;H,; is the Harsanyi type space. A Harsanyi-Bayesian Nash equilibrium is any

H-based BNE. The Harsanyi BNE is the version of a BNE that Harsanyi (1967) modelled.

7.3. An Attribute BNE. This is nothing other than an Attribute-based Bayesian Nash

Equilibrium; i.e., a T-Based BNE where the type space T is equal to the space of attribute vectors,
O. Due to its simplicity the notion of an Attribute BNE (with common priors) is the BNE most

used in the applications in the game theory and economics literature.

7.4. A Partial Ordering of BNE’Ss. The partial ordering over types discussed in (5.5) implies

an analogous partial ordering over equilibria. For example, suppose we are given an attribute BNE.
Then each agent’s behavior strategy choice is a function of that agent’s attribute vector. This
defines a Harsanyi BNE for example by requiring each agent i of Harsanyi type h,=(f,,h,") to
choose a behavior strategy equal to that which would be chosen in the Attribute BNE when agent
i’s attribute vector is 6. More formally, note from the definition in (6.2) that a T-based BNE is
requires each agent to be maximizing utility and requires that "everything" (an in particular all
decision-making) can be stated in terms of the T-types. If decision-making can be stated in terms
of 6;, then decision-making can also be stated in terms of 7,=(0,,7;) by making the parameter 7/
redundant. This argument shows that if {g.},; is an attribute-based BNE then it is also a T-based
BNE for all type spaces T. A similar argument implies that if {g.},, is a T-based BNE, for any type
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space T, then it is also necessarily a Savage-Bayesian-Nash-equilibrium.

More generally, suppose that for each agent il we have two types 7, and #; taking values in
the spaces T, and T, respectively. (In particular, 7:Q~T; and 7:T-0Q.) Suppose further that T
contains more information than #; in the sense that the o-algebra generated by 7, is finer than that
generated by # (i.e., o(§#}) S o({7})). Define T=0xIL,T, and T=0,xI,T. Thenit may easily
be shown that if the collection of ex ante beliefs {u.},; is a T-based BNE then it is also a T-based
BNE. The partial ordering of types in (5.5) therefore induces an analogous ranking of T-based

BNE’s.

7.3. A (complete information) Nash equilibrium. In defining a Nash equilibrium we
take as given the attribute vectors of agents, 0= (50,{Ei}id)ee, say. A Nash equilibrium for the given
vector of attribute vectors is then typically defined to be a collection of (possibly randomized)
behavior strategies with respect to which each agent i with attribute vector Ei is best-responding to
the behavior strategies of others. Now suppose that {u;},; is an Attribute-based BNE such that each
#; assigns probability one to the vector 6. Then it should be clear that the (possibly randomized)
behavior strategies, {Di(E,-)}id, defined by the decision functions at 0 constitute a Nash equilibrium
for the game with attribute vector profile 0. In particular, we may define a Nash equilibrium for 8

to be an attributed Based BNE, {u;},., where u({6})=1 for all iel.

8. Is there any Real Difference Between the Notions of a Type?

8.1. Re-Parametrizing the Original Model. In our analysis the "primitives” are made

up of two parts: the economic primitives < LA,0,Z*,P,> from which the space of hierarchies of
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beliefs, Q, and the "state” space {}=Qx0xFxZ* are constructed, and the ex ante subjective beliefs
of the agents {u;};s. Fix such a set of primitives and call this the original model. We now study
the consequence of re-parameterizing the model. In particular, we construct from the original model
a new model (which we index by a hat, * ). In the new model the definition of agent i’s space of
attribute vectors is expanded from the space ©, in _the original model to some augmented space ©,
which specifies some additional variables. The space of behavior strategies ahd nature’s space of
attribute vectors remain the same. This will define in a natural way a new "state" space
{t = QxOxFxZ> where Q=IL,Q, and where Q, specifies agent i’s hierarchy of beliefs over the
augmented space of attribute vectors and space of behavior strategies of others -é_ixF_i. The
subjective ex ante beliefs of the old model, {u;},;, will then generate in the obvious manner a
collection of ex ante subjective beliefs {fi;};; over the "state space” of the new model, . The
original model and the new model will be different parametrizations of each other will not result in

any change in the decision-making of agents or the "economics” of the problem.

8.2. The Re-Parametrization with 8,=OxF,. For our first re-parametrization let us

define the new model by indexing each agent by both her attribute vector of the original model gnd
the behavior strategy she chooses. In particular suppose that we set éiEGixFi. Let us focus our
attenti})n on the new model. Any attribute vector 9j=(0j,fj) of agent j specifies a behavior strategy
for that agent. Agent i=] should therefore be able to "read” off the attribute vector éj=(6j-,fj) to

infer the behavior strategy of agent j, f,. Let us refer to agent i as being literate if, when forming

a belief over the set éijj agent i does indeed "read”; i.e., if for all jel agent i’s (first order) belief
assigns probability one to the set {(Q,ﬁ)s((ﬂj,fj),fj)eéjxﬁj: t}=?j}. Suppose that this literacy

condition is common knowledge. Then it should be clear that any belief hierarchy §; for agent i over
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OxF under which the literacy condition is common knowledge will induce a unique belief hierarchy
over © (and vice versa). In particular, when agent i is forming a belief (hierarchy) over OxF, her
belief (hierarchy) over the second coordinate, F, is redundant since it is encoded in the attribute
vector space ©. Hence in the new model, belief hierarchies over OxF (and in particular Savage-
Bayesian types) and belief hierarchies over 6 (and in particular Harsanyi types) are essentially one
and the same thing. By re-parametrizing the model in this way we are able to eliminate any
distinction between Harsanyi and Savage-Bayesian types! (In appendix C this argument is made
formally. In particular we construct there the new model. The common knowledge of literacy
condition will be implicit in the construction. We then show that there is a homomorphism between
the space of Savage-Bayesian types and Harsanyi types.)

Notice however that an attribute type 3i=(6i,fi) in the new model merely specifies the original
utility parameter 8; and the behavior strategy f;; it does not specify any beliefs. Hence an attribute
type need not be the same as a Harsanyi or Savage-Bayesian type in this re-parametrization. As
regards BNE’s the above argument shows that a Savage-Bayesian BNE is the same as a Harsanyi
BNE; that is, if {fi;};s is a Savage-Bayesian BNE then it is also a Harsanyi BNE. (The vice-versa
is of course always true - see (7.4).)

Even more is true! From our common knowledge of literacy condition each agent can "read"
the behavior strategy from the attribute vector. Notice that this is the principal requirement for an
attribute BNE.  Indeed, suppose that {ji;},; is a Savage-Bayesian BNE in the re-parameterized
model.  Then there is "maximizing behavior” and agents know other agents’ behavior strategy
choices as a function of their attribute vectors (by "reading” it off the attribute vector). Hence if
the collection {#;},; is a Savage-Bayesian BNE then it is necessarily an attribute BNE. In (7.4) we

argued that all BNE’s "lie between" a Savage-Bayesian BNE on the one hand and an attribute BNE
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on the other. We may therefore conclude that under the above re-parametrization all notions of a
BNE are equivalent; that is, in the re-parametrized model, if {/i;}.; is a T-based BNE then it is also

a T'-based BNE for all type spaces T and T'.

8.3. The Re-Parametrization with 8,=0xQ,”. Now let us suppose instead that in the

new model we index each agent by both her attribute vector of the original model ard her hierarchy
of beliefs, ¢;”. Hence agent i’s attribute vector in the new model is the same as her Savage-Bayesian
type in the original model. In particular, we set 8,=0xQ"=Q, Let the space Q,> denote the
space specifying agent i’s hierarchy of beliefs over OxF. Now, the space Q,” is a space of
hierarchies of beliefs over OxF; and the space Oi“ is a space of hierarchies of beliefs over the space
OxF = Qx0O,xF which itself involves a space Q of hierarchies of beliefs. It is well-known that there
is a homomorphism between a space of hierarchies of beliefs and a space of hierarchies of beliefs
over hierarchies of beliefs. In particular, there is a homomorphism ¥;:Q, &_’in between the spaces
Q.” and Q,*, where §,>= ¥.(q;*) may be interpreted as the hierarchy of beliefs over OXF of the agent
i with hierarchy of beliefs q;* over OxF. (See e.g., Brandenberger and Dekel (1993);) The space
of Savage-Bayesian types of agent i in the new model is by definition Q,=8xQ,>=06xQ,x0).*.
However, the only Savage-Bayesian types we should be worried about are those which respect the
homomorphism above; i.e., those in the set Q,*= {(Bi,q;",qi")eﬁi | 4==¥(q;>)}. This requirement
is analogous to the "common knowledge of literacy” condition used in (8.2). It should be clear that
the spaces ©,=6xQ,” and Q;* are homomorphic. In particular, in the new model knowledge of the
attribute vector 9i is equivalent to knowledge of the Savage-Bayesian type ;. In the ne;w, re-
parametrized model an attribute type is the same as a Savage-Bayesian type!

From (5.5) we argued that a type must contain at least as much information as the attribute
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vector and no more information than the Savage-Bayesian type. Hence we may conclude that in this
re-parametrization of the model gl notions of a type are equivalent. This in turn implies that in this
new model an attribute BNE is the same as a Savage-Bayesian BNE and indeed that all notions of

a T-based BNE are the same, regardless of the notion of a type used in its definition.

8.5. It all depends upon the definition of an attribute! Given the results of the

previous sub-section one may now ask why so much fuss was made in section 5 about the distinction
between Savage-Bayesian types on the one hand and the Harsanyi, the attribute and other types on
the other hand.  After all, can we not re-parametrize away any distinction between the varicus
notions of a type and the notions of a type-based BNE? The answer of course should be
straightforward to see. If the type space is modelled to be a very "simple" space then the
requirement of a BNE imposes a lot of restrictions. When the type space is a very "complex" space
then the requirement of a BNE imposes few restrictions on the model. Hence in some sense the
"less complex” is the definition of a type the "better" is the resulting concept of a BNE.

A Savage-Bayesian type is that which completely specifies beliefs and hence the decision-
making problem of the agent. It is the "most complex” notion of a type. In section (7.1) we argued
that a BNE based on Savage-Bayesian types imposes no restrictions other than the requirement that
each agent should be maximizing utility and should know that others are maximizing utility. This
very complex notion of a type results in a "bad” equilibrium concept since it results in few
restrictions on behavior.

Consider next the notion of a Harsanyi type. Harsanyi types, recall, are belief hierarchies
over the attribute vector ©. The Harsanyi BNE concept is one which results in a relationship

between Harsanyi types and the behavior strategies chosen by the agents. The "less complex"” is
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the definition of the attribute vectors, the "less complex” will be the notion of a Harsanyi type. The
greater then is the restriction imposed by the equilibrium concept. When we define, as in (8.2), the
attribute vectors of agents’ to include a specification of their chosen behavior strategies then we have
in some sense a very "complex" definition of attribute vectors; this then results in a very "complex”
definition of a Harsanyi type and therefore a "bad" equilibrium concept. Indeed in this case we
argued earlier that a Harsanyi type then becomes equivalent to a Savage-Bayesian type and so is the
"most complex” possible. The resulting concept of a Harsanyi BNE therefore results in verylfew
restrictions.

Finally consider the restrictions of an attribute BNE. When the attribute vector is "simple"
this equilibrium notion will provide a lot of restrictions. Suppose however we consider, as we did
in the previous section, a re-parametrization of the model where an agent’s attribute vector in the
new model also specifies that agent’s Savage-Bayesian type in the original model. We argued in this
case that in the new, re-parametrized model, an agent’s attribute vector is essentially the same as the
agent’s Savage-Bayesian type. This re-parametrization therefore results in the "most complex”
definition of an attribute vector, and therefore a very "bad" equilibrium concept.

In summary we may conclude thus: "the less you put into the definition of a type the more

you get out of the definition of a Bayesian-Nash-Equilibrium."

9. BNE’s and Correlated Equilibrium

9.1. Correlation. One may ask whether or not our definition of a BNE allows for the

correlations in the standard definitions of a correlated equilibrium of Aumann (1974). (See also

Forges (1993).} One may argue as follows: First, we modelled each agent iel as choosing behavior
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strategies, p;"'(df; | q;), as a function of q;, agent i’s Savage-Bayesian type. Therefore agent i’s
behavior strategy choice is independent of the behavior strategies that will be chosen by others. So,
one may conclude, no correlation is allowed in the behavior strategies of agents.

Well, this conclusion argument is incorrect! We are free to broadly interpret the meaning
of the attribute vector, 8;, which, recall, is specified in the Savage-Bayesian type q;=(0;,,"). ltis
through this parameter that correlations may be introduced. In particular, an agent’s attribute vector
may specify not only that agent’s utility parameters but may also specify some extraneous (i.e.,
payoft irrelevant) parameters that are used by agents to coordinate their behavior strategies at date
0. (Correlations over time may be modelled through the observation process {z.} “u=1.} Indeed,
from the previous section we know that we may re-parametrize the model so that agent i’s attribute
vector also specifies a "suggested” behavior strategy which may used in correlating agents’ actions.

Hence our definition of a BNE encompasses the standard definitions of correlated equilibrium.

9.2. Independence. We now ask the following question: What is the nature of the

independence assumptions we need to exclude correlations in a BNE. Well, let {p:}iq be a T-based
BNE and let ; denote the distribution over T induced by g,. I claim that the following assumption

on the ex ante subjective beliefs of agents over the type space, {x;}.;, suffices:

9.3) for each iel, =, is a product measure over OxIL,T;.

To see this notice that the conclusion in (6.4) was that in a T-based BNE agents’ behavior is the
same as in a T-based pseudo BNE and in particular agents choose behavior strategies via decision

functions which are a function of their own type and is, conditional on own type, independent of the
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types and behavior strategies of others. If those types are themselves "independent,” and in
particular if (9.3) holds then the agents’ behavior strategies must be independent of the types and
behavior strategies of other agents. In particular when (9.3) holds the induced distribution over the
types and behavior strategies TXF is a product measure over the spaces 0y, {TxF},;. The
independence assumption (9.3) (or its absence) is important in the model of a BNE of Milgrom and

Weber (1985) and also of Jordan (1991a,b) and Nyarko (1992 and 1993a).

9.4. With Independence Types are Attributes. Suppose now that we have a T-based

BNE, {;}iq, which obeys the independence assumption (9.3). It turns out this implies that {u};
is then necessarily an attribute based BNE. In particular, under the independence assumption types
are “essentially” attribute vectors. The argument for this is as follows: Agent i’s type is of the form
.=(0,7"). Her Savage-Bayesian type is of the form q;=(6,,q;"). Since agent i’s type 7, is by
definition a o({q;})-measurable random variable there exists a Borel-measurable function £2:Q~T;
such that 7,=g(#,,q"). However, ¢, determines agent i’s belief over the behavior strategies and
Savage-Bayesian types of other agents via the measure P(q;™) of (3.2). Under the independence
assumption (9.3) agent i’s beliefs about the other agents’ Savage-Bayesian types must be independent
of her own 7, type. So P,(g;”) must be independent of q;” with g; probability one. In particular with
pi-probability one P(q;”) is equal to some (non-random) measure, p;™ say, (over Q xO,xF.). From
(3.2) we know that the function P, is one-to-one. Hence there must be some (non-random) hierarchy
of beliefs q;* such that g, assigns probability one to the event that ¢;*=gq,*. This in turn implies
that with u;-probability one 7,=g(6,,q;). This is true for all iel with pi-probabilitS/ one (and hence
under condition (GH) with ,u.-j probability one). In particular for any agent i, conditioning with

respect to 7, or 7; is the same as conditioning with respect to 8; or 0, respectively. We may therefore
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replace 7; with 6; and 7; with 6; in each of the conditions of (6.2). This implies that if {p.},; is a T-

based BNE and the independence condition (9.3) holds then {u.},; is also an attribute-based BNE.

9.5. On Aumann (1987). The main theorem of Aumann (1987) states that "if there is Bayes’

rationality (i.e., maximizing behavior) at every state of the world then the distribution of actions is
a correlated equilibrium.” Well, as argued in (9.1), under our broad definition of an attribute vector
the difference between Nash and correlated Nash equilibrium disappears. Next, if maximizing
behavior occurs at every state of the world then there will necessarily be "common knowledge" of
maximizing behavior since there are no states where the event "non-maximizing behavior" occurs.
We argued in (7.1) that under maximizing behavior and knowledge of maximizing behavior any
collection of ex ante beliefs constitutes a Savage-Bayesian BNE. Hence we obtain the implication

of the main theorem of Aumann (1987) if we interpret the types as Savage-Bayesian types.

10. Conclusion

We have provided a discussion of the various notions of a type. The concept of a Savage-Bayesian
type on the one hand is that required for decision theory. The concepts of a Harsanyi type, an
attribute type and other notions of a type are used in game-theory. Our formal definition and
comparison of these notions of type will hopefully provide some insights into the similarities and
differences between the decision-theoretic and game-theoretic approaches to modelling multi-agent
interactions where agents have incomplete information over both the fundamentals and the behavior

strategies used by other agents.
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11. Technical Appendices

11.1. Appendix A: From a BNE to a Pseudo BNE. We now show that the conditions

in (6.2) define a T-based pseudo BNE as asserted in (6.4). Let {u.}.1, {7;};x and {D;*},, be as in
(6.4). Fix any iel and let D;:T,~P(F,) be any alternative decision function for agent i. We seek to
show that (4.4) is true. We shall use the notation of (6.1): given any probability » on { and any
random variable x on @, »(dx) denotes the induced distribution of x by » and § .»(dx) denotes
integration with respect to »(dx); further, given any finite collection of Borel measures {v}; with »,
a probability over a metric space X;, ILy; denotes the product of the measures over the cartesian
product ILX..

The following statements are true for u;-almost every fixed q;eQ; and 76T;: The measure
pidf; | q) is agent i’s behavior strategy choice rule as a function of g. Denote by Di(r;)(df), the
measure over F; induced by the alternative decision function D; when agent i’s type is 7.  From
6.2(i) agent i is maximizing utility so, recalling the definition of U; of (3.9) and the fact that 7, is the

type of the agent with Savage-Bayesian type q;, we conclude that
§ Ugy, fui(df; | @) = § Ui(q,, ID(r)(df). (11.2)

We make the following three observations: first, \w;re may re-write the utility function U, of (3.9) of
agentias Ufg,f)=1§ § ui(l9(,_,6'i,fi,f_i),ui(df_i | @i, 7.opi(d7; | 7) where p(d7; | 7)) integrates over 6,e0,
which recall is a coordinate of T.;=OxIL.;T;; second, from (6.2iv) w(df; | q;,7) =1L .(df; | q,,7)
(which from 6.2ii)) = ILu(df; | )= IL.D*()(df)=D*(r.}df); and third, p(dr; | )=

7(d7; | 7). These three observations imply that
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Ui(g,©)= § § ui6o,0, £, 9D *(r)df)m(d7; | 7). (11.3)

Since 7; is measurable with respect to the o-algebra generated by q;, conditioning y; on (g;,7) is the
same as conditioning on only q;. Using this fact (for the first equality below) and condition 6.2(ii)

(for the second) we conclude that

wldf; | @)=pdf; | q;,7)=pi(df; | 7) =Di*(n). (11.4)

Recalling the definition of W; in (4.3) we see that by putting (11.3) and (11.4) into (11.2) and

integrating over 7; with respect to ;, we obtain (4.4).//

11.5. Appendix B: From a Pseudo BNE to a BNE. Let T, {r},, and {D},; be as in

(6.5). We proceed to perform the following exercises mentioned in (6.5): (i) construct the measure
p; over OxT; (ii) show that the marginal, g;, of i, over @ is a subjective ex ante belief for agent i
over {1; and (iii} show that if the pseudo BNE respects the "intrinsic" definition of a characteristic
then {p;},y is a T-based BNE.

(i) _Construction of the measure g;: Given any 7¢T, define D(7) to be the product measure over
IL.,F; induced by the decision functions {Dy(7)},;. Define 7; to be the measure over Q, = TxF whose
marginal on T is x; and whose conditional on F given 7 is D(7); (using the notation of (3.11) this
is the measure m®D(7)). Now, the vector of attributes and behavior strategies, (0,f)eOxF, may be
considered to be a random variable over £, equal to the projection of },=TxF=0xT*xF onto the
OxF coordinate. We denote this by (8(w,),f(w)). We construct at woefly agent i’s belief hierarchy

4 (w0) =(q;'(0),9:*(w),...)eQ;™ over the random variable (4,f) by induction as follows: the first
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order belief at wy, g;'(w), is defined by setting for MS ©_xF,

4" (@)M) = n({(6.,£IeM} | T)(w0); (11.6)

and given r-th order beliefs for each jel at each wyelly, (r+1)-th order beliefs are defined by setting

for each ME Q,;x0 xF,,

¢ (w)M)=nM’ | 7)(w) where M'={wq'ely | (q:(wo),0.("),f ()M}, 117

and where 7,(. | 7)) denotes a fixed regular version of the conditional of #; given 7. Define g(w,) =
(04(w0),4:™ (ax)). It can be shown that ¢;”(w,) is measurable with respect to the ¢-aglebra generated
by 7, on the Borel measure space of {},. Hence there is a Borel-measurable function L:T~Q, such
that q;(wy) =Li(7i(wy)) at each weel; (;-a.€). (One should consult Nyarko (1993b) for the details,
and in particular see Lemma 9.6 of Nyarko (1993b) for a proof that q,;”(w,) obeys the "probabilistic
coherence condition” mentioned in (3.2) of this paper so that g;(w,) does indeed belong to Q; (for u;-
a.e. wy); and see Lemma 9.5 of Nyarko (1993b) for the verification of the fact that under the
assumption that {=.};; are mutually absolutely continuous, the above construction is independent of
the versions of the conditional probabilities 7,(. | 7)) used.) We define, using the notation of (3.11),
the measure

;= [[mOL(DIBD(7)]SP, (11.8)

to be the measure over TxQ with the following properties: (a) the marginal over T is equal to =;;

(b) the conditional over Q given 7 assigns probability one to the vector LN ={L(m)}xs (c) the
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distribution over F given any (7,q)eTxQ is equal to D(n)=II;Dy(7); and (d) the distribution over
Z* given any (1,q,f) is equal to P, of section (3.6) where 7={{(8,,7:)}..,0,} and y=(6,,f). Then it
should be clear that u(. | 7)) represents the belief over @ of agent i of type 7; in the pseudo BNE
under the assumption that the ex ante beliefs {;};; and the decision functions {D,}; are "common
knowledge."

i) g is a subjective ex ante belief: Let y; be the marginal of g; on Q. Recall again our
terminology from (6.1): given any measure  over a cartesian product XxY, 5(dx) denotes the
marginal of n on X. Also recall the definition of the product operation & of (3.11). By integration
(actually "disintegration”) or equivalently by iterated conditioning, it should be clear that we.may

write p; as follows:

pi = [[e(dg)@p(df; | q)1®p(d(q,0.1) | ¢)ISP,. - (11.9)

From Nyarko (1993b, (9.7)) it may be shown that at m-a.e. w,, our earlier construction of
Qi(wo) =(0i(wg),q;"(wy)), is "coherent" in the following sense: the probability distribution of the
random variable (q.;,8,,f.,;) on Q, induced by 5. | q(w,)) (the conditional of 7; given q(w,)) is equal
to the measure Py(q;"(w,)) of section (3.2). This in turn implies that for p;-a.e. qi=(0i,_q,-°°),
#i(d(q.;,0,£) | @)= P(q;™). By comparing (11.9) and (3.12), we see that p; is indeed an ex ante
subjective belief for agent i over the state space {.

(iii) g, obeys (6.2): Now take as given the "intrinsic meaning” of the characteristic; i.e., fix the
mappings m;:Q-T; and define m{w)={f,, {m(w)};;}. Assume that the pseudo BNE respects the
definition m: i.e., assume that for all iel, p({(r,0)eTxQ: m(w)=7})=1. Recall that g is the
marginal of g; on Q.. We proceed to show that {u.},, is a T-based BNE.

Fix any agent i and a characteristic 7;. Let q(r) =Ly(7) where L:T~Q, is the function
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defined in part (i) and write q(7)=(047),q,"(7)); qi(r;) is the Savage-Bayesian type of that agent of
characteristic ; in the pseudo BNE. From the definition of a pseudo BNE agent i’s choice of a
behavior strategy is optimal given that agent’s belief about the behavior strategy choices of other
agents,  From the coherence property mentioned in part (ii) above, this belief is the same as that
generated by the measure Pitqj“(rg). In particular, for n;-a.e. (r,f)eTxF,, f; maximizes agent i’s
utility U(.,q,(7)) (see (3.9)) when agent i’s Savage-Bayesian type is q7)). From the definition of
w; this in turn implies that for gi-a.e. (q;,f)eQxF,, f; maximizes U(.,q). Hence (6.2i) holds.

To prove the rest of (6.2) we make the following observations: First, m;, may be considered
a random variable on Tx{Ql by defining m;(7,w) to be equal to m{w). Since the pseudo BNE is
assumed to respect the intrinsic definition of a characteristic, m;=r; y;-a.e. So conditioning on m,
is equivalent to conditioning on 7; (i;-a.e.). Second, g;=L,(7)) by construction so conditioning with
respect to the pair (q;,7;) is equivalent to conditioning with respect to only 7; (again p.-a.e.). Third,
since y; is the marginal of g; over f, both measures agree over random variables defined over .
Finally, if «; and #; are mutually absolutely continuous, then so are p; and »;. Hence, all of the
above observations which are true y; a.e. are also true g;-a.e.

To prove (6.2i)) we may therefore argue as follows: p(df, | q,m)=p(df, | g,m) =
pidf; ) q,7) = w(df; | 7) = pdf, | m) = p(df, | m). To prove (6.2iii) we have the following
related arguments: pu(df; | g.m)=p(df, | g,m)=p(df, | q,7)=Dy(r) (by definition of z; ) =
p(df; | ) =pdf; | m)=p(df, | my). Condition (6.2iv) follows similarly. Hence {4}, is a T-based

BNE.

11.10. Appendix C. Details of the Re-Parametrization in (8.2). Suppose we are

given the original model with primitives specified by < O,F,Z> {pu.}.a>. We shall now construct
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a new model (specified by a hat, ~ ), where we change the attribute vector to specify in addition the
behavior strategy chosen by the agent; i.e., where ©,=0xF, for all iel. We will show that with
this re—parametriiation there is a homomorphism between the space of Harsanyi Types and the space
of Savage-Bayesian types.

For each iel we may construct the space of hierarchies of beliefs over OxF, {QX}=,_,, in
the manner described in (3.2) (by setting Y, of that section equal to éixFQ. Define Qi to be the
resulting set of Savage-Bayesian types of agent i and set Q=II,,Q;. Define Q=0xOxFxZ=; this
is the state space for the new model. Define for each iel, y;':Q,'~Q;' by setting for each g'eQ,! and
McOxF,,

e =q'(M) where M={(0,,£)¢0.xF ;: (6,,f,,f)eM}. (11.11)

The range of ;' in Q;! is the set of first order beliefs in the new model such that agent i "reads off"
agent j’s attribute vector to infer her behavior strategy. Let us proceed inductively.  Given
wj’:Qj’—-Qj’ for each jel and for some integer r, define ¢;7*:Q*'-Q;*! by setting for each ¢ *'eQ/*

and M< (}'_ixé_ixF_i
Vg ) =g (M) where M= {(q,8.,£)eQ,x0.xF ;: (V(q.,(0.,,£.), £ )N} (11.12)

Next define y;:QxF—~OxII*,_,Q/ by setting ¢((8,,4',a%,....),£) = (8,4.,42,...) where 8, =(8,,£)) and
4 =¥,(q") for each r. One may check that the sequence ¥,(q;,f) obeys the probabilistic coherence
condition mentioned in (3.2) so belongs to .. Define the measure ft; over by setting for each
M, 3V = p,(M) where M= {w=(q,8,,1,2")e: (¥(q,D,0,f,z")eM}. i, is agent i’s ex ante belief

in the new model.
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Define Qi* to be the range of ¥, in Qi. Then Qi* is the subset of Qi where the hierarchies
of beliefs of agent i in the new model obey the "common knowledge of literacy condition" mentioned
in (8.2). The mapping ¥;:QxF—>Q* can easily be seen to be a homomorphism between QxF; and
Q*. A Harsanyi type for agent i in the pew model specifies agent i’s attribute vector & =(8,,f) as
well as a hierarchy of beliefs over O=6xF. A Savage-Bayesian type ¢;=(0;,q;"} in the original
model specifies agent i’s attribute vector, 8, as well as a hierarchy of beliefs over the set OxF=0
(but does not specify agent i’s behavior strategy). Hence, the space of Harsanyi types in the new
model, H,, is equal to the cartesian product QxF; of agént i’s space of Savage-Bayesian types and
her space of behavior strategies. The mapping y; therefore defines a homomorphism between the
space of Harsanyi types of the new model, H,=QxF,, and the set of Savage-Bayesian types in the

new model which obey the "common knowledge of literacy condition," Qi*.
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