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1. INTRODUCTION

This paper examines issues of fair division of n indivisible items among m people based solely
on their preference orders over the items. It extends the analyses of fair division among people
with similar preferences in Brams and Fishburn (2000) and Edelman and Fishburn (2000) to
situations with dissimilar as well as similar preferences. We assume, as before, that each person
has a most-preferred to least-preferred strict preference order on the n items, that all items
have positive value to every person, and no side payments or other transfers are possible.

The set of items is denoted throughout by S = {1,2,...,n}, and 2° is the set of all subsets
of S. The m people are indexed by j from 1 to m. We refer to an allocation or distribution
of items to people as a division, which is an m-tuple = (Aj, As, ..., Ay,) of mutually disjoint
subsets of S whose union equals S, where A; is the subset received by person j. The set of all
divisions is denoted by A.

We assume that the preference information available for making a choice from A consist
of an m-tuple p = (>1,>2,...,>m), where >; denotes person j’s linear preference order, or
strict ranking, of the items in S from most preferred to least preferred. We refer to p as a data

profile and will often display it in list format as

1. ann a2 -+ ain
a1 Q2 -+ Q2
m. am1 aGm2 - Omn ,
where each ajiajo---aj, is a permutation of S and a;1 >; ajo >; -+ >; aj,. The set of all

data profiles is denoted by P.

The basic task of fair division is to determine one or more divisions in A for each p € P
that are the ‘fairest’ or ‘most satisfactory’ to the persons represented in the data profile. The
criteria we use to judge fairness and satisfactoriness include the traditional ones of Pareto-
optimality (or Pareto-efficiency) and envy-freeness (Tinbergen (1946), Foley (1967), Varian
(1974), Sugden (1984)). We also use a notion of dominance-freeness and notions of equity that
reflect how egalitarian a division is.

Most criteria we consider are based on individuals’ preference relations on 2°. However,
because the available data about preferences are restricted to preference orders on S, it is
necessary to make assumptions about how preferences over subsets relate to preferences over
items. We will assume, as in Brams and Fishburn (2000), that each person has a preference-or-

indifference weak order (>7;) on 2° that satisfies the qualitative probability axioms of de Finetti



(1931) and Savage (1954) and whose induced order on singletons is the same as >; on S. We
expand on this point in the next section, which also operationalizes the criteria. Section 3 then
gives an overview of the rest of the paper.

There have been many other contributions to allocation problems with indivisibilities. They
include Crawford and Heller (1979), Demko and Hill (1988), Alkan, Demange and Gale (1991),
Tadenuma and Thomson (1991), portions of Brams and Taylor (1996), Bossert (1998), Bogo-
molnaia and Moulin (1999), Brams and Kilgour (1999), and Herreiner and Puppe (2000). Most
of the allocation mechanisms and procedures described therein involve one or more continuous
variables, such as infinitely divisible goods, money, or probabilities for randomized allocations.
Two that do not are Demko and Hill (1988) and Herreiner and Puppe (2000). Both consider
fair division of a finite set of indivisible items among a set of people without assuming the use
of side payments or the help of mediators or other exogenous parties.

Demko and Hill propose both deterministic and randomized solution procedures. Their
deterministic solution chooses a division that maximizes the minimum utility obtained by the
m people, under the assumption that each person’s preferences over subsets are represented
by a unique probability measure on 2°, which specifies his or her utilities for various subsets of
items. A similar assumption about probability measures, which represent utilities additively
over subsets, is made by many others, including Steinhaus (1948), Crawford and Heller (1979)
and Alkan, Demange and Gale (1991).

In our finite-S setting, the assumption of a probability measure presumes either a continu-
ous scaling mechanism (DeGroot (1970)) or a set of indifference comparisons between subsets
(Fishburn and Roberts (1989)) that are unlikely to hold in practice. Although we relate the
terms in a data profile to preference over subsets by means of the qualitative probability ax-
ioms, these axioms do not generally imply the existence of a probability measure that represents
preferences over subsets.

Another deterministic procedure for allocation that is also designed to make the worst-off
person as well off as possible — while ensuring a Pareto-optimal division — is described in
Herreiner and Puppe (2000). A variant of their basic procedure that is more likely to yield an
envy-free division but might not satisfy Pareto-optimality is noted. Unlike Demko and Hill,
Herreiner and Puppe do not assume that individuals’ preferences over subsets are represented
by probability measures or are related to their rankings over S in any simple way. Instead, they

assume that each person has a linear preference order on 2°. This allows for complementarity



and substitutability effects among items and also accommodates the possibility that some
people may prefer not to receive certain items. In view of problems of interdependencies that
may beset subset evaluations (Farquhar and Rao (1976), Kannai and Peleg (1984), Fishburn
(1992), Fishburn and LaValle (1996)), the procedures of Herreiner and Puppe offer a creative
way of dealing with subset preferences. On the other hand, the sheer number of subsets (more
than a million when n = 20), and their presumption of clear preferences between subsets, could
detract from the practicability of their procedures.

The use of data profiles as the basis for fair division is thoroughly pragmatic. Even this
might tax the judgmental capacities of some people, but it is generally far less demanding
than preference assessment under the foregoing procedures. Despite the fact that we relate
preference rankings of S to preferences over subsets for the purposes of applying certain criteria
and deriving interesting normative conclusions, our approach never elicits preferences over
subsets beyond the information supplied by p.

We conclude this introduction by illustrating aspects of our approach that are expanded
on later.

ExXxAMPLE 1.1: Three items are to be distributed to two people on the basis of the data

profile
1. 123
2. 132.

There are four divisions in which each person receives his or her first or second choice, namely

where (1,23) abbreviates ({1}, {2, 3}). Other divisions are either Pareto-dominated by another
division or are highly inequitable. For example, (13,2) is Pareto-dominated by (12, 3) because
person 1 prefers 12 to 13 and person 2 prefers 3 to 2. And (123, ¢) is Pareto-optimal but gives
all items to person 1.

Divisions and are unconditionally Pareto-optimal, or Pareto-ensuring, because neither
person can be made better off without hurting the other. We cannot conclude the same thing

for and . For example, if both people prefer 1 to 23, or both prefer 23 to 1, then and are



Pareto-optimal. But if person 1 prefers 23 to 1 and person 2 prefers 1 to 23, then Pareto-
dominates . When the Pareto-optimality of a division depends on preferences over subsets that
are not determined by the data profile in conjunction with the qualitative probability axioms
for preferences, we say that the division is Pareto-possible. This is the case here for and .

Divisions and , while Pareto-ensuring, are not envy-free. In = (12,3), person 2 envies
person 1 because person 2 prefers 12 to 3. In , person 1 envies person 2. and may or may
not be envy-free. If both persons are indifferent between 1 and 23, then and are envy-free. If
both prefer 1 to 23, then neither nor is envy-free. And if person 1 prefers 1 to 23 and person
2 prefers 23 to 1, then is envy-free but is not. When the envy-freeness of a division depends
on subset preferences, we say that the division is envy-possible.

We conclude that and are envy-possible and Pareto-possible, whereas and are envy-
ensuring and Pareto-ensuring. Moreover, all four divisions are minimally equitable in the
sense that each person gets a first or second choice, but and might appear to be more
equitable than and because and give the other two items to the person who does not get
his or her first choice.

The latter point is supported by assigning values of 3, 2 and 1 to a person’s first, second,
and third choices, respectively. These values can be viewed as surrogate utilities, based on
applications of Laplace’s principle of insufficient reason to successive increments of utility and
to utility totals. Both persons have value 3 for and , whereas one person has value 5 and the
other value 2 for and . Although the sum of the person’s values is greater for or than for or
, the latter divisions maximize the minimum value a person receives.

It is easily seen that, for all individual additive utilities that are consistent with p, the

deterministic solution of Demko and Hill (1988) prescribes or . O

2. PREFERENCES AND CRITERIA
2.1. Preference Assumptions

Let - denote a preference-or-indifference relation on 2 with induced strict preference ()

and indifference (~) relations defined by

A>=B if Az B and not(BZ A,
A~B if AZ B and B A.



Subscript j, as in 77;, identifies such a relation for person j. We assume that 7 (hence every

;) satisfies the following axioms for all A, B,C' € 25 and all 7, i’ € S:

AXIOM 1: 7 is a weak order (transitive, complete).
Axiom 2: If A # ¢ then A > ¢.
Axiom 3: If (AUB)NC =¢ then A= B< AUC = BUC.

Axiom 4: If i # 4" then {i} = {i'} or {i'} = {i}.

Axiom 1 is a traditional order axiom, Axiom 2 is a positive-value assumption, Axiom 3 is a
first-order independence or cancellation condition for strict preference, and Axiom 4 says that a
person is never indifferent between distinct items. When n > 5, considerably more demanding
axioms than these (Kraft, Pratt and Seidenberg (1957), Fishburn (1996)) are needed (with
obvious relaxations in Axioms 2 and 4) for 7 to be representable by a probability measure
on 27 in the sense that A - B < u(A) > p(B). We invoke this stronger form later when we
note a result which characterizes envy-possible divisions in terms of dominance relations.

Given 77, define >p on S by
i>pd if {i} = {i'} .

Axioms 1, 2 and 4 imply that >¢ is a linear order or strict ranking of S with positive value for
each item because {i} > ¢. A data profile p = (>1,>2,...,>n,) consists of one such ranking
for each person, with i >; ¢’ if {¢} >; {¢'}.

It follows easily from Axioms 1-3 that A7z B< S\ B S\ Aand A D B= A > B. The

latter implication is generalized by a dominance relation >> on 29 defined by
A>>Bif A2Band |[{i € A:i2gi'}|>|{i€B:i>¢i'}| foralli’ €S.

It follows from the definition that A >> B < S\ B >> S\ A. Note also that A >> B if
A # B and every i’ € B\ A has a different ¢ € A\ B for which i >( i’. Because >> depends
only on >¢ (each >>; depends only on its >;), the dominance relations for the m people are

computable from the data profile. Our use of the dominance relations is based on the following

lemma (Fishburn (1996)).

LEMMA 2.1: For all distinct A,B € 25:
(i) if A >> B then A = B for every 7 that satisfies Azioms 1—4;



(i1) if not(B >> A) then A = B for at least one 7 that satisfies Azioms 1-4.

When n > 3, a linear order >; on S is consistent with more than one Z; on 29, We
denote by W (>;) the set of all weak orders on 2° that satisfy Axioms 1-4 and have >; as
their induced linear order on S. For example, when n = 3 and 1 >; 2 >; 3, W(>;) has three
members according to whether 1 >; 23, 1 ~; 23, or 23 >, 1.

We refer to an m-tuple (71,72, ..., Zm) of weak orders on 2° that satisfy Axioms 1-4 as
a preference profile. Let W(p) denote the set of all preference profiles that are consistent with
data profile p = (>1,>2,...,>m). Then

Wi(p) =W (>1) X W(>2) X -+ X W(>p) .

Our analysis takes account of the possibility that any member of W (p) might be the preference

profile that induces p.
2.2. Envy-freeness
Division = (Ay, ..., Ay) is envy-free for preference profile (71, ..., 7Zm) if
Aj i Ay forall jke{l,...,m}.

With respect to data profile p, we say that is
(i) envy-free if is envy-free for every preference profile in W (p);
(ii) envy-possible if is envy-free for at least one but not all preference profiles in W(p);

(iii) envy-ensuring if is envy-free for no preference profile in W (p).
2.3. Dominance-freeness

Division = (Ai,...,Apn) is dominance-free for p = (>1,...,>m) if there are no j,k €
{1,...,m} for which Ay >>; A;. We are not aware that others have used this criterion, but
it is clearly relevant to our formulation and is more easily satisfied than envy-freeness or envy-
possibleness. Note that, by Lemma 2.1, if is not dominance-free then it must be envy-ensuring.
In other words, dominance-freeness is necessary (but not generally sufficient) for envy-freeness

or envy-possibleness.



2.4. Pareto Properties

Division = (Ai,..., An) Pareto-dominates division = (By,..., By) for preference profile

(Z1y-- oy Zm) if

Ajz; B; forall j, and A;>; B; forsome j.

The Pareto dominance relation on A for any fixed preference profile is asymmetric and tran-
sitive and is therefore a strict partial order.

With respect to data profile p, we say that always Pareto-dominates if Pareto-dominates
for all preference profiles in W(p). In addition, sometimes Pareto-dominates [ never Pareto-
dominates | if Pareto-dominates for some but not all [for no] preference profiles in W (p).

We shall find it convenient to say that strongly dominates with respect to p if # and
Aj>>;B; or Aj=DB; foral je{l,...,m}.

In the presence of Lemma 2.1, strongly dominates if and only if always Pareto-dominates

(see Lemma 4.1(i)). Strong dominance also entails equal cardinalities, as follows.
LEMMA 2.2: If strongly dominates with respect to p, then |A;| = |B;| for all j.

ProOF: The strong dominance conditions imply |A;| > |Bj| for all j. Because X|A,;| =
Y|Bj|, we have |A;| = |B;| for all j. O

We say that, with respect to p, a division is strongly dominated if some other division
strongly dominates it. We prove later that a division is strongly dominated if and only if it is
Pareto-dominated (Theorem 4.11) as defined below.

Let B and C be nonempty subsets of A with B C C C A. Given € B, is Pareto-ensuring
in C for a preference profile if it is not Pareto-dominated by another division in C for that
preference profile. Finiteness and Pareto-dominance ensure that every such B has a Pareto-
ensuring division in B for any given preference profile.

With respect to data profile p, we say that € B is Pareto-ensuring in C if it is Pareto-
optimal in C for all preference profiles in W(p). In addition, € B is Pareto-possible [Pareto-
dominated] in C if it is Pareto-optimal in C for some but not all [for no| preference profiles in

W (p). Whenever C is omitted here, it is understood to be the entire set A of divisions.

2.5. Equity Conditions



In some allocation situations, it is natural to constrain the number of items received by

each person. An example for n > m is the feasible division set
Ai={=(41,...,An) : |A;| >1 forall j}.

A choice from A; ensures that everyone gets something. Another example is the even-shares

division set
Ac={=(A1,...,An) : |4;]| <|Ag|+1 forall j ke{l,...,m}},

which implies that every |A;| equals either |n/m] or [n/m] and that no person receives more
than one item more than any other person. We refer to divisions in A, as even-shares divisions.
When n = Am for a positive integer A, every even-shares division has |A;| = A and is an equal-
shares division (Brams and Straffin (1979)).

Because constraints based only on numbers of items received do not consider preferences,
we use surrogate utilities as in Example 1.1 to assess equity, or the egalitarianness of a division.
Given >, let

uwj(i)=n—|{i' €S:4¢ >;i}| foreach i€ S .

When >;= ajia;2- - - ajp, we have uj(aj1) = n, uj(ajz) =n—1,...,uj(aj,) = 1. We extend
u; additively to 25 by

uj(A) = Zu](z) for each A €2,

i€A

with u;(¢) = 0 and u;(S) = 14+2+---4+n = n(n+1)/2. We refer to u;j(A) as person
j’s point total for A. The point-totals vector for division = (Aj,...,An) and data profile
p=(>1,---,>m) I8

u(,p) = (u1(Ar), uz(Az), ..., um(Am)) -

Special types of divisions can be defined on the basis of these vectors. We say that &
A is a mazsum division if it maximizes ¥;u;(A;), and a mazrmin division if it maximizes
min{u(A1),...,um(An)}. Maxsum divisions focus on aggregate point totals without regard
to equity across persons, whereas maxmin divisions ensure as large a point total as possible
for the person having the smallest point total.

We extend the equity feature of maxmin lexicographically in a way that resembles lexi-
cographic rules discussed in d’Aspremont and Gevers (1977), Deschamps and Gevers (1978),
Blackorby, Bossert and Donaldson (1996), and Luss (1999), among others. Let U(,p) denote



the m-tuple whose terms are the uj(A;) arranged in nondecreasing order. For example, if
u(,p) = (10,11,9) for m = 3, then U(,p) = (9,10,11). Next, for p € P, define >;, on
A lexicographically in the natural way on the basis of the U(,p) vectors. That is, when
U(,p)= = (r1,r2,...,mm) and U(,p) = = (81,52, --,8m), we have
>ip if =, orif # and ry > s, for the
smallest k for which ry # s, .
It follows that >;, on A is a weak order, and there is a unique U vector, say = (t1,%2,...,tm),
such that >;, for all € A whenever U(,p) =. We refer to as p’s equimaz vector and to each
€ A for which U(,p) = as an equimaxz division.
According to these definitions, an equimax division first maximizes the point total of a
person with the smallest point total. It then maximizes the point total of a person with the

next smallest (possibly the same) point total, and so forth.

EXAMPLE 2.3: Suppose three people have the following strict rankings on S = {1,2,...,6}

for p:
1. 123456
2. 214365
3. 614235.

The maximum points for each item, and the people who can attain these maxima, are

for item 1: person 1
for item 2: person 2
for item 3: person 1
for item 4: persons 2 and 3
for item 5: person 1
for item 6: person 3.

(23 N N =2 =)

The sum of the maximum points is 28. The sum is achieved by any division that gives
each item to a person who attains the maximum points for that item. There are two maxsum
divisions, (135,24,6) and (135,2,46), with point-totals vectors (12,10,6) and (12,6, 10), re-
spectively. Both maxsum divisions are dominance-free because every person receives his or her
first choice, but we shall see that neither is a maxmin division because their minimum point
total of 6 is not as large as possible.

It is not difficult to show that division = (15,23,46), with u(,p) = U(,p) = (8,9, 10), is the

unique equimax division. Its point-totals sum, 27, is as large as possible when the minimum



point total exceeds 6, and there is no division whose minimum point total exceeds 8. A close
second to is = (13,24, 56) with u(,p) = (10,10,7) and U(,p) = (7,10, 10). Although neither
nor is a maxsum division, both are maxsum divisions within the set A. of equal-shares divi-

sions. O

3. OVERVIEW OF RESULTS

We now preview our subsequent results, based on the preceding criteria. Throughout, the
dominance relations >>; through >>,, correspond to the strict rankings >1 through >, of
a data profile. = (Aj,...,A,,) and = (By,...,B,,) denote divisions in A, and parenthetical
references cite theorems and examples in later sections.

We have organized our results into three sections. Section 4 focuses on Pareto relations,
section 5 emphasizes envy-freeness, and section 6 discusses additional aspects of maxsum and
equimax divisions. Our aim is to elucidate possibilities and impossibilities of the criteria
separately and in combination.

Section 4 considers characterizations of Pareto-ensuring, Pareto-possible, and
Pareto-dominated divisions. The section begins with aspects of Pareto dominance based on the
dominance relations >>; through >>,, (Lemma 4.1). For example, always Pareto-dominates

if and only if strongly dominates , and never Pareto-dominates if and only if B; >>; A;
for some j. We then note a few types of Pareto-ensuring divisions that assign items to persons
sequentially in such a way that all items assigned to j are the highest ranking items in >; that
have not been previously assigned (Lemma 4.2, Theorem 4.3). All divisions formed in this way
are either Pareto-ensuring or Pareto-possible (Lemma 4.5). When m divides n, there may be
no equal-shares division in A, that is Pareto-ensuring in A (Example 4.4), but some division
in A, is Pareto-ensuring in A, and either Pareto-ensuring or Pareto-possible in A (Theorem
4.6). Moreover, if if Pareto-ensuring and gives every person at least two items, then must be
dominance-free (Theorem 4.7).

There are data profiles for which no maxsum or equimax division is unconditionally Pareto-
ensuring (Example 4.9), but every maxsum and equimax division is Pareto-ensuring or Pareto-
possible (Theorem 4.10). The final result in section 4 says that a division is Pareto-dominated
if and only if it is strongly dominated (Theorem 4.11).

Section 5 observes that is envy-free if and only if A; >>; Ay, for all j # k (Lemma 5.1),

10



which can happen only if is an equal-shares division (Corollary 5.2). When is envy-free
with A = n/m and is also Pareto-ensuring, then every person gets his or her first choice,
and if A > 2 then every person gets his or her first A — 1 choices (Theorem 5.3). When A
contains at least one envy-free division, at least one such division is not strongly dominated if
m = 2 (Theorem 5.4), but all can be strongly dominated if m > 3 (Theorem 5.5). In a similar
vein, every dominance-free division is envy-free or envy-possible when m = 2 but not when
m > 3 (Theorem 5.6). If all weak orders in a preference profile are additively representable
with m > 3, then a division is envy-free or envy-possible if and only if no A; is dominated
by a convex combination of the other Ay. The absence of convex dominance is sufficient for
envy-freeness or envy-possibleness in the context of W (p) (Corollary 5.8).

We conclude section 5 by illustrating possibilities for equal-shares divisions, with m = 3
and n = 6, for a data profile in which (1) no equal-shares division is envy-free or Pareto-
ensuring, (2) some maxsum divisions are equal-shares divisions, all of which are envy-ensuring,
(3) some equimax divisions are equal-shares divisions, all of which are envy-possible and Pareto-
possible, and (4) one envy-possible equal-shares division is strongly dominated by an equal-
shares equimax division (Example 5.9).

Section 6 notes that all maxsum and equimax divisions can be envy-ensuring, and that
every maxsum division might give one person all but one item (Lemma 6.1). We then describe
data profiles for m = 2 in which the maxsum point-totals sum minus the equimax point-totals
sum grows quadratically in n (Theorem 6.3). The section concludes with a data profile for
which all maxsum and equimax divisions are equal-shares divisions and the maxsum sum ex-

ceeds the equimax sum (Theorem 6.4).

4. PARETIAN ANALYSIS

In this section we characterize Pareto-dominance relations with respect to a data profile
p=(>1,...,>m) in terms of the corresponding dominance relations >>1,...,>>,,. We then
describe Pareto-ensuring possibilities and impossibilities for even-shares, maxsum and equimax
divisions, among others, and conclude with facts about strong dominance. Throughout, =

(A1,...,Apn) and = (By,..., Bn) denote divisions in A.

LEMMA 4.1: Suppose # . Then, with respect top € P:

(1) always Pareto-dominates if and only if strongly dominates ;

11



(ii) sometimes Pareto-dominates if and only if does not strongly dominate , and not
(Bj >>j A]) for all 5;

(i11) never Pareto-dominates if and only if B; >>; A; for some j.

PROOF: (i) Suppose # and A; >>; B;j or A; = B, for every j. Then, for every preference
profile (Z1,...,2Zm) in W(p), Lemma 2.1 implies A; 77; B; for all j with A; »; B; whenever
A; # Bj. It follows that always Pareto-dominates . If not(A; >>; B; or A; = Bj) for
some j, then Lemma 2.1 implies that B; >; A; for some Z; in W(>;), so does not always
Pareto-dominate .

(ii) It follows from Lemma 2.1 that the conditions of (ii) imply that Pareto-dominates for
some but not all preference profiles in W (p).

(iii) If Bj >>; A; then B; >=; A; by Lemma 2.1 for every 7, in W(>;), so there is no
preference profile in W(p) at which Pareto-dominates . If not(B; >>; A;) for every j, then
(ii) or (i) obtains. O

Our first result for Pareto-ensuringness notes that the most inequitable divisions are always

Pareto-ensuring.

LEMMA 4.2: Every division that gives all items to one person is Pareto-ensuring in A with

respect to every p € P.

Proor: If has A; =5, and # , then A; >>; B;, so never Pareto-dominates by Lemma
4.1(iii). O

Several ensuing results use divisions constructed sequentially for a given ordering of the
m people, say 1,2,...,m for definiteness. Let (A1, A2,...,Ap) be an m-tuple of nonnegative
integers that sum to n. We then define T'(A1, A2, ..., Ap) for a given p = (>1,>2,...,>mn)
as the division in which A; is the set of the top (most-preferred) A; items in >; and, for
Jj =2,...,m, A is the set of the top items in >; that are not already in A; U---U A;_1.
For example, if p = (123456, 154362,326145), then 7'(2,2,2) = (12,45,36) and 7'(3,1,2) =
(123,5,46).

The next result counterbalances Lemma 4.2 with the fact that some minimally equitable

divisions are also Pareto-ensuring. In particular, A; for n > m always has such divisions.

THEOREM 4.3: Ifn <m, then T(1,...,1,0,...0) is Pareto-ensuring in A with respect to

every p € P. If n > m, then T(n —m +1,1,1,...,1) is Pareto-ensuring in A with respect to

12



every p € P.

PRrOOF: Let p be given. Suppose n < m. Let =T(1,...,1,0,...,0),s0 |[A;] =1for j <n
and |A;| =0 for j > n. If has |B;| = 0 for some j < n, then A; >>; B; and we conclude by
Lemma 4.1(iii) that never Pareto-dominates .

Consequently, € A can Pareto-dominate for some preference profile in W (p) only if
|Bj| = |A,| for every j. But Pareto-dominance would require By = Aj, else A1 >>1 By, and
By = A, else Ay >>9 By, and so forth, so that =, a contradiction. We conclude that never
Pareto-dominates for every € A, so is Pareto-ensuring in A.

Now suppose n > m. Let =T(n—m+1,1,1,...,1). If either |B;| = 0 for some j > 1 or
|Bi| <n—m+1, then never Pareto-dominates . And if [B1| =n —m+1 and |B;| = 1 for
all 7 > 1, the supposition that Pareto-dominates for some preference profile in W(p) leads,
as above, to the contradiction that = . It follows that is Pareto-ensuring in A. O

When n < m 4 1, Theorem 4.3 shows that the set A, of even-shares divisions always has

divisions that are Pareto-ensuring in .A. This need not be true when n > m + 2.

EXAMPLE 4.4: Let p = (1234,1234), so n = m + 2 = 4. A, has six divisions, and for each
there is at least one preference profile in W (p) for which it is Pareto-dominated by another
division in A:

(12,34) and (13,24) can be Pareto-dominated by (234, 1);
(14,23) can be Pareto-dominated by (23, 14);

(23,14) can be Pareto-dominated by (14, 23);

(24,13) and (34,12) can be Pareto-dominated by (1,234). O

Our next main result, Theorem 4.6, shows that 4. always contains a division that is
Pareto-ensuring in A, and either Pareto-ensuring or Pareto-possible in .A. We precede it by a
construction which, given a division , produces a preference profile for which is Pareto-ensuring
or Pareto-possible.

Given p = (>1,...,>m) and = (A1,...,An), let f(j) = 0if A; = ¢, and otherwise let
f(j) be the least-preferred item in A; according to >;. For each j, let v; be a positive and

strictly decreasing (in >;) real-valued function on S such that, when f(j) > 0,
vi(f(5)) =1
vj(i) <1+1/n for @>; f(j)

v;(i) < 1/2.
{i:£ (7))
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Define v;(A) as 3 ;. , v;(i) for all j and all A € 25, and let =, be the weak order on 2 that
satisfies

AZj B vj(A) = v(B) .
We denote by W(p,) the set of preference profiles (71,. .., 7, ) constructible in this manner.

LEMMA 4.5: For allp € P and all m-tuples (A1,..., \m) of nonnegative integers that sum

ton, T(A,...,A\m) is either Pareto-ensuring or Pareto-possible in A.

PrOOF: Given p, let = T(A1,...,\) and let X be a preference profile in W(p,). If
some division Pareto-dominates for X, then some with |B;| = 0 whenever |A;| = 0 Pareto-
dominates for X. Suppose is such a division. Let j; < jo < --- < jq be the j’s with f(j) > 0.
Then Bj, D Aj,, for otherwise v;, (Aj,) > v;, (Bj,) and Aj, =;, Bj,. Proceeding sequentially,
.., Bj, > Aj,. But then B; = Aj, for

Pareto-dominance also requires Bj, 2 Aj,,

Bj, 2 Aj37 .
k=1,...,q, so we get the contradiction that = . Hence no division in A Pareto-dominates

for X, so is Pareto-ensuring or Pareto-possible in A with respect to p. O

THEOREM 4.6: Suppose n > m+2 and p € P. Let n = Am + 3 with A\ € {1,2,...} and
Be{0,1,....m=1}. If B=01let =T(\,...,\), andif 3 >0let =T(A+1,....,A+1,\ ... A).
Then is Pareto-ensuring in A. and is Pareto-ensuring or Pareto-possible in A with respect to

p.

PrOOF: The final assertion for A follows immediately from Lemma 4.5. To prove that
is Pareto-ensuring in A, suppose first that 3 = 0. If € A, Pareto-dominates for some

preference profile in W(p), we require By = Ay (else, with |B;| = |A1|, A1 >>1 B1), Ba = As
(else, given By = Ay, A2 >>3 Bs),..., so =, a contradiction. Hence is Pareto-ensuring in
Ae.

Suppose 3 >0,s0 =TA+1,...,A+1,A,...,\) with |4;] = A+ 1 for persons 1,...,[.
Suppose € A, Pareto-dominates for some preference profile in W (p). Then B; = A, for if
either |B1| = A or |[Bi| = A+ 1 and By # A; then Ay >>; Bj. Similarly, By = As,...,Bf =
Ap. Then, for every j > 3, membership in A, implies that |B;| = A and we get Bg1 = Ag1
(else Ag11 >>p41 Bgt1),- .-, Bm = Ap. Therefore = | a contradiction. It follows that is
Pareto-ensuring in A.. 0O

Our next result shows that a Pareto-ensuring division that gives every person at least

two items is dominance-free. Although dominance-freeness does not guarantee envy-freeness
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or envy-possibleness when m > 3 (see Theorem 5.6), it seems likely that a dominance-free

division will not be envy-ensuring.

THEOREM 4.7: Suppose m > 2, n > 2m, and p € P. If € A is Pareto-ensuring with

respect to p and has |Aj| > 2 for all j, then A is dominance-free.

PRrooF: Suppose € A has |A;| > 2 for all j and is not dominance-free. Assume without
loss of generality that A; >>5 As. Let i be the first item in >5 that is in A;. Then i >5 k for
all k € Ay because A; >>9 Ay and A; and A are disjoint. By Lemma 2.1, {i} >2 Az for some
weak order in W (>32). Also, because |Az| > 2, (A1 U Ag) \ {i} =1 A; for some weak order in
W(>1). Let By = (A1 UA2) \ {i}, B2 = {i}, and B; = A;j for j > 3. It follows that sometimes
Pareto-dominates , so is not Pareto-ensuring. In other words, if is Pareto-ensuring then it
must be dominance-free. O

We continue with results for maxsum and equimax divisions. The following lemma notes

the simple structure of the set of maxsum divisions. Recall that u;(i) =n—|{i' € S : i >, i}|.
LEMMA 4.8: Given p € P, let
x; = maxu;(i) forall €8S,
j
M; = {i:uj(i)=a;} forall je{l,...,m}.
Then is a mazxsum division if and only if A; C M; for all j.

PrOOF: Clearly, max X u;(Aj) = Z;x;. If Aj C Mj for all j then X;uj(Aj) = X;x;, s0 is a
maxsum division. If A; £LM; for some j, then ¢ € A;\ M; has less than x; points in ¥ju;(4;),
SO Eju]'(Aj) < Xx;. O

We precede a proof that all equimax and maxsum divisions are Pareto-ensuring or Pareto-

possible by showing that there might be no Pareto-ensuring equimax or maxsum division.

EXAMPLE 4.9: Let p = (12345,31452). Then M; = {1,2} and My = {3,4,5}, so, by
Lemma 4.8, the unique maxsum division is (12, 345) with point-totals vector (9,10) and ¥;x; =
19. Clearly, (12,345) is also the unique equimax division. But it is Pareto-dominated by
(245,13) if 45 =1 1 and 1 > 45, so (12, 345) is not Pareto-ensuring. O

THEOREM 4.10: For every p € P, every equimaz division and every maxsum division is

Pareto-ensuring or Pareto-possible.

PROOF: Given p, let Y be the preference profile in W (p) that has A 7, B < u;(A4) > u;(B)
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for every j. Suppose is an equimax division. If Pareto-dominates for Y, then u;(B;) > u;(A;)
for all j, and u;(B;) > u;j(A;) for some j, contrary to as an equimax division. Therefore, no
other division Pareto-dominates for Y, so is Pareto-possible or Pareto-ensuring. A similar
result clearly holds for Y if is a maxsum division. O

We conclude our Paretian analysis with a proof that is strongly dominated with respect
to p if and only if it is Pareto-dominated with respect to p. In the proof, we say that /7, in

W (>;) is a superdecreasing weak order for >; if, for all distinct A and B in 25

A =; B if the most-preferred item by >; in
(A\B)U(B\A) isin A\ B.

When >;= ajiaj3---aj,, this can be represented additively as A 7Z; B < Y .. w;(i) >

Y iep w;i(i), with wj(az,) > 0 and wj(ajq) > nw;(ajep1) forg=1,...,n— 1.

THEOREM 4.11: For allp € P and € A, the following are mutually equivalent:

(i) is strongly dominated;

(ii) there is a list Ao, AB, Avy,..., Ap of two or more different components of , and a; € A;
for each j € {a,3,7,...,u} such that

aa > BaB > yay--- > pa, > aao;

(11i) s Pareto-dominated.

PRrOOF: We show that (ii)=(i), (i)=-(iii) and (iii)=(ii).

(ii)=-(i). Assume (ii). Take Ba = (Aa U {apu}) \ {aa},...,By = (Ay U {af}) \ {av},
BB = (ABU{aa})\ {aB}, and Bj = Aj for j £{a,(,7,...,1}. Then strongly dominates .

(i)=(iii). If strongly dominates then, by Lemma 2.1, Pareto-dominates for every pref-
erence profile in W(p).

(iii)=(ii). Assume (iii). Let Z = (Z1,...,2Zm) with Z; a superdecreasing weak order
for >; for every j. Let # Pareto-dominate for Z. With K = {k : By # A}, we have
Ug Br = Ug Ay, |K| > 2, and By, >, A for all k € K. By the choice of Z, the most-preferred
item in (By \ Ag) U (A \ Bg) for > is in By \ Ag. Denote this item by bg. Assume without
loss of generality that K = {1,2,...,r}. Because each by is in an A; \ B; for some j # k in
{1,2,...,r}, there is a partition (A}, A3, ..., Ay) of {b1,ba,...,b,} with A} C A\ By, for each
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k such that
b1 >1 AT

b2 >9 A;

br >r A7,
where b, >j, Aj means that by >, x for every =z, if any, in A;. With z <, y & y >, = and
b, € A;(k), we have

b1 <g(k) bg(k) <g(a(k)) Ogla(k)) <glala(k))) """

and must obtain a cyclic arrangement for (i) with {a, 3,7,...,u} €{1,2,...,r}. O

5. ENVY-FREE ANALYSIS

We now bring aspects of dominance-freeness and envy-freeness into the picture, beginning

with a characterization of envy-freeness.

LEMMA 5.1: Division is envy-free with respect to p € P if and only if

Aj >>; Ay, for all distinct j and k in {1,...,m}.

Proor: We use Lemma 2.1. If A; >>; A for all j # k then A; >; Ay for all j # k, so
there is no envy. If not(A; >>; Ay) for some j # k then Ay >=; A; for some Z; in W(>;). O
The condition of Lemma 5.1 is very demanding. It requires n = Am for some integer A and

can hold only for equal-shares divisions.
COROLLARY 5.2: If is envy-free for any p € P, then |A;| = |Ag| for all j,k € {1,...,m}.

Proor: A; >>; Aj implies [A;| > |Ag|, and Ay >>p A; implies |Ag| > |A;]. The
corollary’s conclusion then follows from Lemma 5.1. O

An argument similar to that used in the proof of Theorem 4.7 shows that if an envy-free
division is also Pareto-ensuring, then every person gets his or her first choice. Moreover, if

A =n/m > 2, then every person gets his or her first A — 1 choices.

THEOREM 5.3: Suppose m > 2, p € P, and division € A is envy-free and Pareto-ensuring

with respect to p, where |A;| = X = n/m for all j. Then every person gets his or her first
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choice, and if A > 2 then every person gets his or her first A — 1 choices.

PRrROOF: Assume that is envy-free. By Corollary 5.2, |A;| = |Ag| for all j and k. Let
A =mn/m,so |A;| = Xfor all j. If A =1, then envy-freeness implies that every person must get
his or her first choice. Suppose A > 2. Assume without loss of generality that person 1’s strict
ranking is 12---n, and suppose that person 1 does not get item i, where ¢ < X\ — 1, whereas
person 2 (for definiteness) gets item . Let X be the items in A; that person 1 prefers less than
i. Then |X| > 2. Let have By = (A U{i})\ X, B2 = (A2UX)\ {3}, and B; = A, for all j > 3.
Then, as in the proof of Theorem 4.7, person 1 might prefer B; to A;, and person 2 might
prefer By to As. Consequently, sometimes Pareto-dominates , so is not Pareto-ensuring. It
follows that if is Pareto-ensuring then every person must get his or her first A — 1 items. O

That an envy-free division can be strongly dominated and therefore Pareto-dominated

(Theorem 4.11), is true of = (1346,2578) when p is

1. 12345678

2. 56781234.

Here is strongly dominated by (1234,5678). However, when m = 2 and there are envy-free
divisions, at least one such division must be Pareto-possible or Pareto-ensuring. This is an
immediate corollary of Theorem 4.11 and the following result. It is true also, as shown by
an example in Brams, Edelman and Fishburn (2000), that an envy-free and Pareto-ensuring

division need not be an equimax division when m > 3.

THEOREM 5.4: Ifm =2, p € P, and A contains at least one envy-free division with respect

to p, then at least one of those divisions is not strongly dominated.

PrROOF: Let A° = S\ A. Suppose m = 2 and = (A, A°) is envy-free with respect to
p, so A >>1 A® and A° >>9 A. If = (B, B°) strongly dominates , then, with the use of

C>>D <& D >>(C° we have
B>>1 A>>1 A°>>1 B°, so B >>; B° by transitivty,

and

B¢ >>9 A° >>y A>>9 B, so B°>>; B by transitivity.

Therefore is also envy-free. It follows from finiteness and transitivity of the >>; that some

envy-free division is not strongly dominated. O
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The conclusion of Theorem 5.4 can fail when m > 3.

THEOREM 5.5: If m > 3, there are data profiles with unconditionally envy-free divisions

all of which are strongly dominated.

PRrOOF: The smallest example that verifies Theorem 5.5 for m = 3 has n = 6 with data

profile
1. 123456
2. 432156
3. 512634.

With the aid of Lemma 5.1 and Corollary 5.2, it is easily seen that = (13,24, 56), shown above
in boldface, is the only envy-free division. However, it is strongly dominated by = (12,34, 56),
which is envy-possible but not envy-free because person 3 might prefer 12 to 56.

The reasoning which shows that is the unique envy-free division extends easily to larger

m. We illustrate it for m = 4 with data profile

1. 14623578
2. 25413678
3. 36512478

4. 71458236.

Suppose = (C1,C5,Cs,Cy) is envy-free. By Corollary 5.2, |C}| = 2 for all j. By Lemma 5.1,
C; must contain person j’s first choice and exclude j’s last choice, so j € C; for j = 1,2,3,
and Cy = 78. Then Cy >>4 Cj requires C; = 16, and C3 >>3 C; requires C3 = 35.
Therefore (16,24,35,78) is the only envy-free division. But it is strongly dominated by =
(14,25,36,78). O

Clearly, unquestioned adherence to envy-freeness is untenable, because it can force the
choice of a strongly dominated division. In the preceding proof, we note that the dominating
divisions, and , are the unique maxsum and equimax divisions for the two examples. Because
a strongly dominated division can be neither a maxsum nor an equimax division, the envy-free
divisions, and , do not satisfy these properties.

We now consider other aspects of envy-freeness. Recall that is dominance-free if no j
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and k have Ay >>; A;. Dominance-freeness is clearly necessary for envy-freeness or envy-

possibleness, but it need not be sufficient.

THEOREM 5.6: If m = 2, every dominance-free division is envy-free or envy-possible with
respect to p. If m > 3, there are data profiles with dominance-free divisions that are envy-

ENSUTING.

PrOOF: If m =2 and = (A1, A2) is dominance-free, then some preference profile in W(p)
has Ay =1 Ay and Ag =9 Aj.
For m = 3, let p be given by

1. 127934856
2. 234567198

3. 123756489.

Division = (12,4567,389) is dominance-free, but it is envy-ensuring because person 3 always

envies either person 1 or 2. Suppose to the contrary that 73€ W (>3) satisfies

389 =g 12

389 3 4567.
We also have 145 >>3 389 and 267 >>3 389, so 145 >3 389 and 267 >3 389. Transitivity gives

145 >3 12

267 =3 4567.

However, cancellation (Axiom 3) implies both 45 =3 2 and 2 >3 45, a contradiction to weak
order.

Similar examples for m > 4 are easily constructed by enhancements of the preceding one. O

Because dominance-freeness is necessary but not sufficient for envy-possibleness or envy-
freeness when m > 3, we are interested in a condition stronger than dominance-freeness that
is sufficient as well as necessary to preclude envy-ensuringness. We give such a condition only
for the set of preference profiles whose Z;’s are additively representable, but note also that
this condition is sufficient with respect to W(p).

Let W (p)qaqqa denote the set of all preference profiles (1,...,7Zm) in W(p) in which each
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7 is additively representable as
AziB& Y wi() 2> w;(i),
i€A i€B
where w;(a;1) > w;(aj2) > - > wj(ajp) >0 when >;= ajiajo---aj,. For A€ 2% and i € S,
let
A(i):{ 1 if ieA

0 otherwise.
Then, for division = (Ai,...,A4,) and j € {1,...,m}, we say that A; is dominated by a

convex combination of the other Ay if there exist numbers

pr >0 forall ke{l,...,m}\{j}

with

Zﬂk:]-:

k#j
such that, when >;= aj1aj2---ajn,
q q
S mAr(az) =D Aj(an) for g=1,...,n,
i=1 k#j i=1

with strict inequality for at least one gq.

LEMMA 5.7: If m > 3, p € P, and € A, then there is an additively representable weak

order 71 in W (>1) for which
A1 1Ay for j=2,....m
if and only if Ay is not dominated by a convex combination of As through A,.

PRrOOF: The proof is essentially the same as the proof of Theorem 4 in Edelman and
Fishburn (2000). O

The following corollary is an easy consequence of Lemma 5.7 and W (p)aqa € W(p).

COROLLARY 5.8: Suppose m >3, p € P, and € A. Then is envy-possible or envy-free in
the context of W(p)aaa if and only if no A; is dominated by a convex combination of the other
Ay. In the context of W(p), is envy-free or envy-possible if no A; is dominated by a convex

combination of the other A,. O

Example 2 in  Edelman and  Fishburn  (2000) notes that  division
= ({1,2,3},{6,7,8,9,10,11},{4,5,12,13}) is dominance-free for the same preferences data
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profile

1. 12345678910111213
2. 1234567891011 1213

3. 1234567891011 1213

but that As is dominated uniquely by the convex combination of A; with 1 = % and As with

Lo = % It follows that every additively representable 7~3 in W (>3) has a ws that satisfies

2 1
5103(141) + gwg(Az) > wg(A3) ;

hence, A; =3 Az or Az =3 As for all preference profiles in W(p)aaa- It seems plausible,
however, that some 7—3 in W (>3) that is not additively representable can have A3 73 A; and
As 73 As, in which case we obtain an example with convex dominance and envy-possibleness.
The example was designed to have p1 # p2, so the approach in the proof of Theorem 5.6 could
not be used to derive a contradiction to As 7—3 A; and As -3 A on the basis of Axiom 3 and
Lemma 2.1.

We conclude this section by illustrating aspects of equal-shares divisions for a situation in

which such a division is likely to be chosen.

EXAMPLE 5.9: Let p be given by

1. 123456
2. 142356
3. 241653.

Interesting features of p include:

(a) no equal-shares division is envy-free or Pareto-ensuring;

(b) two equal-shares divisions are maxsum divisions, and both are envy-ensuring and
Pareto-possible. Question marks are used below to indicate divisions that might Pareto-
dominate others;

(c) there are two equimax divisions, and both are equal-shares divisions that are envy-
possible and Pareto-possible;

(d) there are two other envy-possible equal-shares divisions besides the equimax divisions,

and one of these is strongly dominated by an equimax division.
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We list the six equal-shares divisions of (b), (c) and (d) along with their point totals and
other comments. Verification of the properties claimed in (a)—(d) can be aided by prior results,
including Lemma 4.5, Theorems 4.10 and 4.11, and Lemma 5.1. The two maxsum divisions
of (b) are Pareto-ensuring in A.. This example well illustrates, we believe, the difficulty of

declaring a division “most fair,” which is a matter we return to at the end of the paper.

point
division totals sum comments
(b) (13,45,26) (10,7,9) 26 13 >>9 45. Pareto-dominated by (345,1,26)7
(b) (35, 14,26) (6,11,9) 26 14 >>; 35. Pareto-dominated by (2,14, 356)7
(c) (15,34,26) (8,8,9) 25 Pareto-dominated by (34,15,26)?
(c) (23,15,46) (9,8,8) 25 Pareto-dominated by (15,23,46)?
(d) (34,15,26) (7,8,9) 24 Pareto-dominated by (15,34,26)?
(d) (15,23,46) (8,7,8) 23 strongly dominated by (15,34, 26).

6. MAXSUM AND EQUIMAX DIVISIONS

Among other findings, we have proved one positive and one negative result for maxsum
and equimax divisions, namely that (1) every maxsum and equimax division is Pareto-ensuring
or Pareto-possible (Theorem 4.10), and (2) there are data profiles with envy-free divisions,
none of which is a maxsum or equimax division (Theorem 5.5). We note also that there are
data profiles, for example p = (123,123,123), for which all divisions are envy-ensuring, so we
know that maxsum and equimax divisions cannot guarantee envy-freeness or envy-possibleness.
Because all data profiles have maxsum and equimax divisions, and such divisions are often very
attractive, we conclude our technical analysis with further remarks about them.

We begin with the observation that maxsum divisions can be very inequitable.

LEMMA 6.1: For every m > 2 and all n > 3, there are data profiles all of whose mazxsum

divisions give one person all but one item.

PrOOF: Let p=(12---n,nl12---n—1,nl2---n—1,...,n12---n—1). Then every maxsum
division has A; ={1,2,...,n—1}. O

Given p, let M (p) denote the maximum point-totals sum over all divisions in .4, and let E(p)
be the point-totals sum of the equimax vector for p. Clearly, M (p) > E(p), and Example 1.1 is
the smallest example for which M (p) > E(p). Examples 2.3 and 5.9 also have M (p)—E(p) = 1.
A small example with M(p) — E(p) = 2 follows.
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EXAMPLE 6.2: Let p be given by

1. 1234
2. 3412
3. 1324.

Then M(p) =44 3+4+3 = 14. The unique equimax division is (24, 3,1) with equimax vector
(4,4,4),s0 E(p) =12. O

This raises the question of how large M (p) — E(p) can be. We have verified by computer
enumeration that, for m = 2, max[M(p) — E(p)] = 1 for n € {3,4}, max = 2 for n € {5,6},
max = 3 for n =7, and max =4 for n = 8. At n = 8, two different types of data profiles give

max = 4. We denote these as types I and II, and note a representative data profile for each:

typel: 1. 1 2 3 4 5 6 7 8 M(p) = 46
2.2 46 81357 E(p) =42,
typell: 1. 1 2 3 4 5 6 7 8 M(p) = 48
2.3456 78 1 2 E(p)=44.

Our next theorem shows that, for m = 2, max[M(p) — E(p)] grows quadratically in n. It
can also be shown for m = 2 that max[M(p) — E(p)] can be no greater than about 0.065n2 for
n > 6, but we will not prove this here. In any event, because max M (p) itself is always less
than (3/4)n?, the lower bound on max[M(p) — E(p)] in the following theorem is as large as

possible in order of magnitude.

THEOREM 6.3: When m = 2, there is an integer ng such that max|M (p) — E(p)] > 0.039n>

for all n > ng.

PRrooFr: We use data profiles like the type II representative for n = 8. Given m = 2 and

n > 8, let t be an integer near n/4 and let p(t) be the following data profile:

1. 1 2 eee t t+1 -+~ n—t n—t+1 --- n
2. t+1 t+2 -+ 2t 2t4+1 --- n 1 R

By Lemma 4.8, the maxsum division = (A, A2) has
A1 ={1,...,t} and Ay ={t+1,...,n}.

Let (t) = (F1, E2) be an equimax division for p(t). If i <t, j > ¢, ¢ € Es, and j € Eq, then
(EqU{i})\{j} =1 E1 and (E2 U {j}) \ {¢} =2 E2, which contradicts (¢) as equimax. Because
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E4 must contain items from Ao, we conclude that Ay C Ey. Therefore

Fi = AUB

Ey, = A\ B,

where B is a nonempty subset of As.
Let k be the largest integer for which u;(A; UC) < ua(A2\C) when C' = {t+1,...,t+k}.

Then it must be true that |B| > k. Otherwise, we would have
u1(E1) <u1(ALUC) because C >>1 B

and

’LLQ(EQ) > UQ(AQ \ C) > ’LL1(A1 U C) s

in which case (A; U C, Ay \ C) would be equimax-superior to (Ej, Es), a contradiction. It
follows that with k as defined here, we have M(p) — E(p) = |B|t > kt.

When the first k items in A are transferred to person 1, so that C' = {t+1,t+2,...,t+k},
person 1’s total for AyUC is (t+k)n+(n—t—k+1)]/2=(t+k)2n—t—k+1)/2, and
person 2’s total for A2\ C'is (n—t—k)[(n—k—1+1)+(t+1)]/2=(n—t—k)(n—k+t+1)/2.
The k value that equalizes the totals therefore satisfies

t+E)2n—t—k+1)=n—-t—k)n—-k+t+1).

We solve this quadratic equation in k to obtain the equalization value k* given by

n(n2+ b, (H;)?

1/2

B =n— _
Ty

When k* is not an integer, its use below actually understates the decrease from the maxsum

total. The total decrease in the maxsum total with the use of k* is

971/2
n(n—|—1)+ t+1
2 2

< M(p(t)) — E(p(t)) -

We simplify this by omitting its —1 and 41 terms:

1/2
th* =t LAk /
— n———|— _
2 2 2
As explained at the end of the proof, our final result is not affected by the simplification.
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We now choose ¢, which will be near n/4, to maximize tk*. For convenience, let t = 2An.
When the right side of the preceding equation is differentiated with respect to ¢ (or \), we find

that it is maximized when its derivative vanishes, i.e., when

2 1/2
n—An—(n——i-)\ZnZ) =n |1+ An
2 2 1/2
(% +2n2)

This reduces to the cubic equation 1613 —4\? + 8\ — 1 = 0, whose relevant root is A9 = 0.1290.
The corresponding t value is

to = 2 on = 0.258n .

The value of tgk* by the simplified form is

2 1/2
tok* = 0.258n {n —0.120n — {% + (0.12971)2} }

= 0.0393n°.

By decreasing this final figure, say to 0.039n2, and by taking n suitably large, simplification

discrepancies become irrelevant, and we conclude for all sufficiently large n that
M (p) — E(p) > 0.039n?

for some two-person data profile p on n items. O
Our final observation is that M(p) > E(p) is possible even when all maxsum and equimax
divisions are equal-shares divisions. We leave open the question of whether M (p) — E(p) can

become arbitrarily large for fixed m in such cases.

THEOREM 6.4: There are data profiles with M(p) > E(p) whose mazsum and equimax

divisions are all equal-shares divisions.

PRrOOF: Consider p given by

1. 123456789
2. 412368579

3. 517239468

The unique maxsum division (Lemma 4.8) is clearly (123,468,579), with point-totals vector
(24,18,20) and M(p) = 62. There is also a unique equimax division, namely (136,248,579),
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with equimax vector (20, 20, 20) and E(p) = 60. Equimax verification follows from the fact that
60 < E(p) < 61 according to (20,20,20), and M(p) = 62 for a non-equimax division. With
an equimax division, E(p) € {60,61} requires 4 € A, {5,7,9} C Az and {6,8} N A3 = ¢. To
get w1 (A1) > 20 and uz(Az) > 20, we require {1,2,3} C A; U Ay, so Az = {5,7,9}. We then
need 1€ A;,2€ A, 6 € Ay and 8¢ Ay. O

7. DISCUSSION

Our purpose has been to analyze criteria for fair division of indivisible items among people
when their revealed preferences consist of rankings of items and no side payments are allowed.
The criteria we considered include refinements of Pareto optimality and envy-freeness as well
as dominance-freeness, evenness of shares, and two criteria based on point totals of equally
spaced surrogate utilities. The first of those two, maxsum, maximizes the sum of the persons’
point totals. The second, equimax, maximizes the smallest point total, then maximizes the
next-smallest point total subject to first maximization, and so forth.

Although maxsum divisions tend to have high aggregate utility and good Pareto-optimal
properties, they can be very inequitable and induce unnecessary envy. While equimax divisions
may have slightly smaller point-totals sums, they also do well with respect to Pareto optimality
and, in addition, tend to be more equitable, engender less envy, and give people approximately
even shares.

When a situation requires an even-shares division, equimax and perhaps maxsum within
the even-shares set could identify good possibilities. Other constraints, such as giving each
person at least one item near the top of his or her ranking, can be combined with other criteria
to select a reasonably fair division that honors the constraints.

Situations may differ significantly in the criteria judged to be important as well as in the
types of data profiles that may arise. As a consequence, different allocation schemes will be
more suitable for some situations than for others. Because of this, our objective has been to
elucidate the promises and pitfalls of different criteria, both singly and in combination, as a
guide to the evaluation and selection of fair divisions under a variety of circumstances.

We conclude that important criteria can conflict, as Example 5.9 readily demonstrates.
In the absence of an equal-shares envy-free or Pareto-ensuring division in this example, there

is a choice between two different maxsum and two different equimax divisions. It is evident
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not only from this example but from our general analysis that fair division is an intellectually
demanding problem. Because it has, in addition, far-reaching real-world consequences (Brams
and Taylor (1999)), its theoretical foundations are surely worthy of a sustained effort of building

and reconstruction.

REFERENCES

ALKAN, A.; G. DEMANGE, AND D. GALE (1991): “Fair Allocation of Individual Goods and

Criteria of Justice,” Econometrica, 59, 1023-1039.

BLACKORBY, C., W. BOSSERT, AND D. DONALDSON (1996): “Leximin Population Ethics,”

Mathematical Social Sciences, 31, 115-131.

BOGOMOLNAIA, A.; AND H. MOULIN (1999): “A Simple Random Assignment Problem with

a Unique Solution,” manuscript, Department of Economics, University of Nottingham.

BOSSERT, W. (1998): “Welfarism and Rationalizability in Allocation Problems with Indivis-
ibilities,” Mathematical Social Sciences, 35, 133—-150.

Brawms, S. J., P. H. EDELMAN, AND P. C. FISHBURN (2000): “Paradoxes of Fair Divisions,”

manuscript, Department of Politics, New York University.

Brawms, S. J., AND P. C. FISHBURN (2000): “Fair Division of Indivisible Items Between

Two People with Identical Preferences: Envy-freeness, Pareto-optimality, and Equity,”

Social Choice and Welfare, 17, 247-267.

Brams, S. J., AND D. M. KILGOUR (1999): “Competitive Fair Division,” manuscript,

Department of Politics, New York University.

BraMms, S. J., AND P. D. STRAFFIN (1979): “Prisoners’ Dilemma and Professional Sports

Drafts,” American Mathematical Monthly, 86, 80-88.

Brams, S. J., AND A. D. TAYLOR (1996): Fair Division: From Cake-Cutting to Dispute

Resolution. Cambridge, UK: Cambridge University Press.

(1999): The Win-Win Solution: Guaranteeing Fair Shares to Everybody. New York:
W. W. Norton.

28



CRAWFORD, V., AND W. HELLER (1979): “Fair Division with Indivisible Commodities,”

Journal of Economic Theory, 21, 10-27.

D’ ASPREMONT, C., AND L. GEVERS (1977): “Equity and the Informational Basis of Col-

lective Choice,” Review of Economic Studies, 44, 199-209.

DEMKO, S., AND T. P. HiLL (1988): “Equitable Distribution of Indivisible Items,” Mathe-
matical Social Sciences, 16, 145-158.

DEscHAMPS, R., AND L. GEVERS (1978): “Leximin and Utilitarian Rules: A Joint Charac-

terization,” Journal of Economic Theory, 17, 143-163.

EDELMAN, P., AND P. FisHBURN (2000): “Fair Division of Indivisible Items Among People

with Similar Preferences,” forthcoming in Mathematical Social Sciences.

DE FINETTI, B. (1931): “Sul Significato Soggettivo della Probabilita,” Polska Akademia Nauk
Fundamenta Mathematicae, 17, 298-329.

DeGrooT, M. H. (1970): Optimal Statistical Decisions. New York: McGraw-Hill.

FARQUHAR, P. H. AND V. R. Ra0 (1976): “A Balance Model for Evaluating Subsets of
Multiattributed Items,” Management Science, 22, 528-539.

F1sHBURN, P. C. (1992): “Signed Orders and Power Set Extensions,” Journal of Economic

Theory, 56, 1-19.

(1996): “Finite Linear Qualitative Probability,” Journal of Mathematical Psychology,
40, 64-77.

FisuBurN, P. C.; AND F. S. ROBERTS (1989): “Uniqueness in Finite Measurement,” in
Applications of Combinatorics and Graph Theory to the Biological and Social Sciences,
ed. by F. Roberts. New York: Springer-Verlag, 103-137.

FoLEY, D. (1967): “Resource Allocation and the Public Sector,” Yale Economic Essays, 7,
73-76.

HERREINER, D., AND C. PuppE (2000): “A Simple Procedure for Finding Equitable Al-
locations of Indivisible Goods,” manuscript, Department of Economics, University of

Bonn.

29



KANNAIL, Y., AND B. PELEG (1984): “A Note on the Extension of an Order to the Power
Set,” Journal of Economic Theory, 32, 172—175.

KrAFT, C. H., J. W. PRATT, AND A. SEIDENBERG (1959): “Intuitive Probability on Finite
Sets,” Annals of Mathematical Statistics, 30, 408-419.

Luss, H. (1999): “On Equitable Resource Allocation Problems: A Lexicographic Minimax
Approach,” Operations Research, 47, 361-378.

SAVAGE, L. J. (1954): The Foundations of Statistics. New York: Wiley.
STEINHAUS, H. (1948): “The Problem of Fair Division,” Econometrica, 16, 101-104.

SUGDEN, R. (1984): “Is Fairness Good? A Critique of Varian’s Theory of Fairness,” Nous,
18, 505-511.

TADENUMA, K., AND W. THOMSON (1991): “No-Envy and Consistency in Economies with

Indivisible Goods,” Econometrica, 59, 1755-1767.
TINBERGEN, J. (1946): Redelijke Inkomensverdeling. Haarlem: De Gulden Pers.

VARIAN, H. (1974): “Equity, Envy and Efficiency,” Journal of Economic Theory, 9, 63-91.

30



