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ABSTRACT

We provide exact solutions for a class of stochastic dynamic

programming problems in growth theory involving pairs of constant relative

risk aversion utili~ functions and multi-sector CES technologies. This

generalizes the solutions for the well-known case of logarithmic utility

coupled with Cobb-Douglas production functions. We are also able to

incorparate depreciation schemes through a vintage capital approach We

then study applications of our re8ults to dynamic games JEL Classflcatlon

Numbers: 020. 026. 111. Key words: Dynamic programming. dynamic games,

growth theory
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1. Introduction

Many problems in economic theory can be formulated in terms of

Since general analytic solutions are not available,dynamic programming.

one often uses particular functional forms amenable to analytical

In finance, intertemporal problems of portfolio choice involvesolution.

linear budget conatraints and some reasonable functional forms for

preferences can be chosen to obtain explicit 8olutions. In growth theory

however. the production functions forming the constraint set are typically

nonlinear About the only type of problem that can be explicitly solved

in the growth context is the one with logarithmic preferences and Cobb-

Douglas technology. and such a specification of technology is not

(This i8compatible with less than a hundred percent depreciation rat.

so because less than full depreciation adds a linear component to the

production function.) A successful application of this framework to a

stochastic multi.ector growth model is given by Long and Plosser 1983)

In this paper we propose to extend the class of solvable

specifications in growth problems to pairs of constant relative risk

Theaversion utility functions coupled with CES production functions.

results generalize the log utility and Cobb-Douglas production

specification in several ways. Fir.t. in the single capital good case

where the production function is subject to a stochastic shock following a

Markov process, the propensities to save are not constants but random

variables that depend on realizations of the shock Nevertheless the

propensities are still independent of the stock of capital Second, in

the multisector case where elasticities of substitution differ across
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goods. the propensities to save. the equilibrium quantity of labor and the

proportions of factors allocated across goods also depend on the capital

Finally, we can allow for a variety of vintages of capitalstock vector

that differentiates equipment by age. and in this manner we can introduce

depreciation schemes along the lines suggested by Radner [1966] Explicit

solutions can be obtained without recourse to quadratic approximations and

the model can then be simulated on the computer

In section three we apply the solution techniques of the earlier

sections to dynamic games of the type investigated by Levhari and Kirman

[1980]. We are interested in trigger strategy equilibria where

punishments for deviating from cooperation consist of reversion to

stationary equilibria. A particular type of powerful punishment consists

of extreme stationary equilibria where agents consume all that they can,

thereby exhausting the stock In the log utility Cobb-Douglas

specification such extreme actions lead to equilibrium states of zero

consumption and infinitely negative utility In our framework

elasticities of substitution smaller than unity generate much less drastic

(and maybe more plausible) trigger strategies. The enforcability of

cooperative behavior from some initial states but not from others becomes

an issue of particular interest, which we can study in some detail We

also iuvestigate and discuss the possibility of .switching equilibria.

studied in Benhabib and Radner [1988]. where cooperative behavior is

eventually but not immediately enforced along an equilibrium path. The

parameterization of our model by the substitution elasticities turns out

to be quite useful for a heuristic understanding of the nature of trigger

strategy equilibria. as discussed at the end of section three
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The last section offers tentative conjectures about policy functions

corresponding to more general specifications than the ones that we have

considered

An analxtical 8o1ution for the simnle stochastic case when canital

lasts two Reri.ods.

For ease of exposition we will start with a simple stochastic growth

model The representative agent has a separable utili~ function given by

U(c,L) - AC1-c + W(l-L) - u(c) + W(l-L: where A - A'/(l-c). A'. c > 0 and

V i8 a concave function representing the utility of leisure Total time

endowment is normalized to one, L is labor and c is consumption

The production function is of CES type We will treat depreciation

along the lines suggested by Redner 1966]. who adopted a vintage

New equipment k turns into depreciated one-period oldstructure.

equipment Plk after one period, into two-period old equipment P2Plk after

two periods and so on (1- ~1) is the depreciation rate for equipment

that: i. 1-1 years old Thus any arbitrary depreciation scheme is

pos81ble. The treatment of production however differentiates this scheme

The production function is offrom the standard aggregative treatments

the CIS type. given by

y - Z(al~-. + a2~-C

where ~' al' &z> 0, ~ is new equipment and ~ is one-year old equipment

The multiplicative facto~ z can be taken as the observed shock which
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follows some arbitrary stochastic process. For simplicity we will assume

that z follows a stationary first order Markov process so that Zt+l =

ftet, where et is lognormally distributed for all t and 0 ~ A < 1.

For simplicity we also assume that capital lasts two periods only,

that it depreciates at rate (l-~l) at the end of the first period, and

that new and old machines enter production as separate capital goods,

rather than as a simple weighted aggregate. This specification implies

that new and old machines are complements rather than substitutes. (For a

more traditional specification where capital goods of different vintages

are substitutes, see Benhabib and Rustichini [1989].) In this framework,

al and az can be chosen to reflect the relative importance of each vintage

in the process of production. This formulation follows Radner [1966],

except that the production function is Cobb-Douglas and the utility

function is logarithmic in the Radner formulation. Since factors enter

multiplicatively in the Radner formulation, positive production requires

all vintages to be present in positive amounts.

Analytic solutions for dynamic programming growth problems are known

for some special cases. The basic cases are the constant relative risk

aversion utility functions for consumption (or more generally, those of

the HARA type) coupled with linear technologies, generally used for

portfolio problems; the simple linear utility functions coupled with

arbitrary production functions; and the well-known log utility coupled

with Cobb-Douglas production. If we let £u and £p be the elasticities of

substitution for the constant-relative risk aversion utility functions and

the CES production functions respectively, the diagram below represents
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what ,is already known and what we propose to add The vertical axis

(linear technology), the horizontal axis (linear utility), and the point

(1,1) represents cases that we already know how to solve. The diagonal

represents the new cases for which we propose a solution

Figure 1

(The multisector case requires a generalization and will be presented

later.) Therefore we set the ela8ticity of substitution for utili~

given by f, equal to the elasticity of substitution for production, given

by E' The dynamic programming problem then becomes, given the current

equipment level kl' the one-year old equipment level~, and the

realization of the shock zl'

- c,pk1, ZZ}

subject to 0 :s c :s ZI(alk~-C + az~-c + (l-al-az)Ll-C) and 0 :s L :s 1. The

expectation involving the random variable z2 is taken with respect to the

1realization of Zt.

1 Sufficient conditions for the value function to be well-defined would
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We briefly outline the computations used to derive the policy

function. Throughout the paper, we will restrict our attention to

characterizing interior solutions. Straightforward modifications needed

for characterizing solutions on the boundary are left to the reader. The

first order conditions with respect to consumption and labor are given by

A(l-f)c-f = 5EV{

dW- = 5EV .MPL
dL 1 1

where MPLj is the marginal product of labor in the jth good: in the one

sector model used above of course j=l. Similarly MPKij will denote the

marginal product of the equipment of vintage i in the production of good

j. The notation' and" denote the number of periods ahead at which the

,

variable is evaluated. Hence V1 is evaluated at the values that

variables take on next period, V; at values two periods from now and so

on. Differentiating V we obtain:

, -fV2 = 5EV1.MPK21 = A(l-f)c .MPK21

, , -f , -f ,Vl = 5EVl 'MPKll + jJ.5EV2 = A(l-f)c .MPKll + jJ.5EA(1-f) (c) .MPK21'

require some assumptions to assure boundedness. It can be shown (see
Benhabib and Rustichini [1989]) that the total value will be bounded if
(al)1/8, 5 < 1 and () < 1 where () is the autoregressive component of a
first-order stochastic process for z: that is Zt+l = z:.
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Updating and substituting into the first order condition for consumption

we get the equation:

- 6A(1-f)Br(c')-(.MPK~1A(l-e)c

equation has the standard interpretation that the marginal utility of

a consumption unit today equals the discounted sum of utilities that it

We note that for the CBS case MPK11will produce in the future.

I-, a1(y!k1)C. Let the candidate 8olution for the policy function be givenz
, .,Then k1 - (l-~)y and k2 - pk1 - p(l-~)y. Substitutingby c - ~y.

these into equation (*) and solving for ~ at time zero we obtain:

For the case of log utility and Cobb-Douglas production where £-1 and no

vintages (a2-o), this reduces to the standard result that the marginal

We a180 obtainpropensity to consume is equal to (1-&16). a constant.

that the labor supply at time zero is the solution to:

dV

dL

1-c -c -c- A(l-f.)(l-al-~)zO ~ L

Choosing a function W(l-L) yields the quantity of labor supply.

The solution to the dynamic programming problem is therefore given by

the expressions for the marginal propensity to save and the labor supply

each period which are random variables independent of the capital stocks

-9-



I

I

~ We will see below that this will no longer be the case when there is more

t than one produced capital good. (Note of course that if z's are iid, then
,

I the marginal propensity to save is constant for the one-sector model
i
'.

I

r presented above.)
I

.. The dynamics of growth can also be represented by a simple linear

difference equation. We have kt+l - (l-).)Yt. Let Xt = k~-E for all t.

Then the dynamics are given by

( ) l-f l-fXt+l - zt(l-).) (alxt + J1. aZxt+l + (l-al-az)L)

where L is the constant optimal labor supply.

We should also note that it is possible to slightly extend the above

case to a HARA utility function. Consider for simplicity the case without

the vintage (az=O). Then let u(c) = A(C+~)l-f where ~ is a constant and

let the corresponding CES production function be given by

Yt = Zt (al (k+-y) l-f + (l-al)L l-f) l/(l-f)

where -y = -~. Then it is easily shown that the optimal policy is c = ).y +

d where ). = l-(oal)l/f and that d = -~ = 'Y. Thus a solution for this case

requires utility and production function pairs for which not only the

substitution e1asticites are identical but for which the constants ~ and 'Y

add up to zero. In such a case either the production function or the

utility function will not be well defined for c or k values that are

sufficiently low.

-10-
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-( , -( , 2 " -( "A1(1-E1)C11 = OA1(1-E1)(C1) 1.MPK11 + 0 11.1A1(1-E1) (C1) 1.MPK31

3 ," -(1 ,"
+ 0 11.311.1A1(1- E1) (C1) .MPK51

-( ,-(, 2 "-("A2(1-E2)c22 = oA2(1-E2)(c2) 2.MPK22 + 0 11.2A2(1-E2) (C2) 2.MPK42

3 ," -(2 ,"
+ 0 11.411.2A2(1-E2) (C2) .MPK62

The interpretation of the above conditions is standard, and as before: the

marginal utility of consumption in the current period equals the

discounted sum of utilities that a unit of a capital good can produce

during its life. Note that MPKij denotes the marginal product of capital

good i in the production of good j.

If we set c1 = A1y1 and c2 = A2y2, we can simplify the first order

conditions for the whole system to the following equations:

(1 ) (1 f -(1 ,,2 l-(l f -(1 ,,3 ( ) l-(l f -(1-A1 = 0°11 11 + Q °3111.1 31 + Q °51 11.111.3 51

1 ) ( f -(2 ,,2 1-(2 (1 f ) -(2 ,,3 ( ) 1-(2 (1 f ) -(2 ( -A2 2 = 0°22 21 + Q °4211.2 - 41 + Q °61 11.411.2 - 61

A1(1-E1)A2(2 { Oi2fi~1 } ( - (2 = ki1 fori=0,1,...,6

A2(1-E2)A1(1 °i1(1-fi1)(2

A(l- E1) °01
W'(gt-L) = . - L-(l

A(l f (1
1 01

where ko = L. The above 10 equations can then be solved for the 10

variables fi1 (i = 0, 1, ..., 6), c1' C2 and L.
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We first note that unless f1 = f2' the solution will depend on the

state vector (k1, k2, .., k6). Thus A1' A2' fi1 and L are in general not

independent of the state variable. Second, an explicit solution is not

generally possible so that a non-linear solver will be required to solve

the above equations at every step along the optimal path. The solution

will nevertheless be exact and will not involve approximations. Given the

parameters of the system, the optimal paths for the capital goods and the

evolution of A1' A2' fi1 and L can be computed.

We can easily modify the above derivations along the lines of the

previous section to introduce stochastic shocks and allow the shocks to

differ across goods. For example, for the case where the two capital

goods last only one period (~1=~2=~3=~4=O) and z~ is the multiplicative

shock to the ith good in period j, the optimal policies are given by the

six equations:

(1-A1) = {{"'16E(zi)1-f1Iz~)}1/f'r'1

(1-A2) = {{"216E(Z~)1-f2Iz~)}1/f2r1-f21)

(1 ) -f1 { ( 2 ) 1-f2 )f f1 }A1 - f 1 A1 °12 Zo 11 f - f

Q- - . k1 2= A2(1-f2)A;f2 - °11 (z~)1-f1 )(1-f11)f2 1

{ 022(z~)1-f2)(1-f21)f2 } f-f Q = . k22 1

°21 (z~)1-f1 )(f21)f1

i

-14-

~ (

I



{ a02 (z~)1-£2)(1-f01)£2 } £-£ Q- . L2 1

a01 (Z~)l-£l) (f01)£1

{ A1 (1- f 1 ) aO 1 (Z~ ) 1 - £ 1

}W' (gt -L) =
A £ 1 ( f L) £ 1

1 01

Note again that policies will be independent of stock levels if

f1=f2' The above framework also allows a portfolio analysis of the

effects of differential changes in the riskiness and in the mean returns

of the two assets, which we do not pursue further in this paper.

4. Applications to Dynamic Garnes.

In this section we apply the results of the previous section to

theory of dynamic games. The basic model is that of Levhari and Mirman

[1980], extended to allow for history-dependent trigger strategies. The

model has two players, whose total utilities are given by

Q) it.
~ U(c){3 , 1. = 1, 2.
0

The accumulation equation for capital is

kt+1 - f(kt) - c~ - c~ ' ko given.

Of course, the constraints c1, C2, k ~ 0 must hold at all times. We

define Yt = f(kt).

The strategy of player i will be represented by a function which maps

the state (Yt' Yt+1) into consumption c~ : c~ = hi(Yt, Yt+1)' This

-15-
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,1If we let cwhere primes denote variables evaluated one period ahead.

~y and then note that k~ - (l-2~)y, we obtain as a solution:

1. -

Since in equilibrium, as can be ascertained fro. fir8t order conditions,

Cl-c2 at each moment in time, the value V(k) will also correspond to the

total utility that a single player obtains under cooperation If we set

V(k) - skI-' + I, we obtain (since Cl-c2)

V(k) - sk1-. + 1 - (l/(l-c»~l-'(Qlkl-'+aoll-')

Equating coefficients and solving, we obtain

(l/(l-c»~l-Cal
1-(Po1)1/f °1(1/2)1-'(1/(1-_)s - -

1--1 - P(1-2A.) °1

I -

Of course the consumption strategies required by cooperation are not

equilibrium strategies unless they can be sustained by some threats

We now compute an equilibrium in stationary strategies. Each

players' value function is defined as
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- c)}+ pv(l-~~)(Ql~-'+GoJ.l-')l'(l-.)V.(k) -

where ~~ i8 the proportion of output appropriated by the opposing player

who is following a stationary strategy. If we set the stationary strategy

of the player as c - ~.Y. we can compute the stationary equilibrium

8olution with the same technique used for the cooperative case We obtain

the two equations

(1-.\.-.\~)' - .8al(l-A:>

(l.~~.~.)' - .8o1(1-~.)

which imply that ~~ - ~. where ~. i8 the 8olution to

(l.n.)' - .801 (l-A.).

The value function for a player in a stationary equilibrium will be

given by

1-fV. (k) - 8.k + I.

where

s,
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( ) l-f Is = 1/(1-,8) (aa/al).R. ss.

Since cooperation dominates the stationary equilibrium for all k, it

follows that s ~ ss' I ~ Is.

The above analysis for stationary equilibria can also be generalized

to the case of multiple capital goods, using the same techniques as in the

previous section. The consumption propensity for good i would be given by

A; which solves (1-2A;) = ,8aii(l-A;), where ail is the coefficient of

the capital good i in the CES production function of the i'th good. This

still leaves the question of the allocation of each capital stock to the

production of the various goods. If one player was assigned the task, his

dominant strategy would be to choose the allocations efficiently, as in

the previous section. The derivation of the allocation proportions fij

would also essentially follow the rules of the previous section.

We now turn to trigger strategies. Let the strategy of each player

be defined by

i { AYt if kt = (1-2A)Yt-l
c =t

AsYt otherwise

Thus player i follows the cooperative strategy if both himself or the

opposing player has followed the cooperative strategy in the previous

period. Otherwise he reverts to the stationary strategy. The value of

optimally defecting from cooperation is therefore given by

-19-
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of course that the trigger atrategies defined above imply that

if a defection takes place once, the players will revert to stationary

strategies forever The optimal defection value for consumption is given

by

c - (1-~)~8DY

where ~SD -
-llc

The value of defection, VsD(k) is given by

1-.- sSDk + lID

where

SSD

The issue that arises in this case is whether V and VSD intersect:

that i8. can cooperation be enforced with trigger strategies from some

states but not for others? In particular we can inquire if cooperation is

fea.ible for k ~ k (k s k) but not for k < k (k > k) where k> 0 is some

critical value. These possibilities can be ruled out by simple inspection
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If 8 > 88D' then it follow8 that I > lSD' andof S, .10' I and Isoo

conversely, if. < 880' it follows that I < Iso. so that V and VSD do not

We can express this with the following Lemma:intersect.

If cooperation i8 enforcable (unenforcable) under the threat ofLemma 1:

reverting to the 8tationary equilibrium from some k, it is enforcable

(unenforcab1e) from all k.

Another type of trigger strategy involves much stronger punishments.

where a player tries to consume all the output that he can. The best

response for the opposing player i8 to also consume as much as he can. We

will assume that if players try to consume more than the available output

they will share what is available equally, unless one player tries to

consume less than half of what i8 available In such a case that player

gets the full amount he is aiming for, and the opposing player gets the

Of course in equilibrium neither player will be satisified toremainder.

see the other player get more than half of the output and thereby exhaust

Strategies for which agents try to consume all thewhat is available.

available stock will be termed extreme More foraally. . trigger strategy

involving extreme punishments can be expressed as

if ~ - (l-tl)Yt.-l
~yt.

c.. -
(l-~' )Yt. otherwise

Ofwhere ~' is the proportion of output consumed by the other player.
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course the sharing rule states that if ~'~ 1/2, then the realized

- (1/a )Ytconswaption ct.

The value of defecting from cooperation under the threat of an

extreme punishment is given by

The last term on the right-hand side represents the total payoff to

the players after the stock of capital has been exhausted at the end of

the second period Note that this is only feasible if E < 1 since

otherwise no output can be produced without capital, &8 in the Cobb

Douglas case. Furthermore, if f ~ 1 the utility of zero consumption will

be minus infinity so that defection will never become attractive

The optimal consumption to initiate defection in this case is given

by

c - ~(1-1)y

1
where ~D -

1 + (PO1)l'_(1/2)(1-_),-

Of course in equilibrium it is a dominant strategy for both players not to

withold any of their labor endowments because there is no disutility of

labor.

The value function for each player in this case is given by
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VD(k)
1-, 1- sok + D

where

1-.

While we have not formally proved the analogue of Lemma 1 for this

case. simulations on the computer suggest that an analogous result holds

for this case as well 1988] have shown that ifBenhabib and Radner

agents have a HARA utility function (of the type (c+q)G where" is a

po8itive constant) and face a simple linear technology without labor

inputs, then it is possible to construct examples where cooperation cannot

be enforced from low stocks but can be enforced by high stocks (see also

Benhabib and Ferri 1987) Furthermore. in their example. a symmetric

non-cooperative consumption strategy that starts in the region where

cooperation is unenforcable and grows into the cooperative region after

which players switch to cooperative strategies is enforcable as an

equilibrium under the threat of reverting to the extreme equilibrium

Benhabib and Radner 1988] termed the strategies followed along such an

equilibrium path switching strategies Of course since they constitute an

equilibriua, the payoffs associated with switching strategies must

dominate the value of defecting from them

We can offer a conjecture as to why equilibria with switching

strategies are possible in the HARA case with a linear technology and not

-23



in the case of a constant relative risk aversion utility coupled with CES

production. Both formulations require sufficient curvature of the utility

of consumption to dampen the value of defection with a large amount of

consumption when the stock is large. Similarly, both formulations require

some positive utility when the stock levels have been depleted 80 that the

value of defection is high enough for low stocks This is acheived by the

~ term in the HARA case so that players can continue to accumulate utility

after stocks are depleted and consumption 1s zero. In the CES case

positive consumption can continue after stocks are depleted because labor

However in the latter case the curvature ofalone produces output

utility is tied to the curvature of production A strongly curved utility

also implies a low elasticity of substitution in production so that labor

Thus it may be possibleis not effective in producing output on its own

to dampen the value of a defection from high stocks with a large amount of

consumption by imposing a strong curvature on the utility function, while

simultaneously allowing for a sufficiently high level of output after the

stock has been depleted, so that with low stocks the value of defection

can be maintained above that of cooperation

When cooperation cannot be immediately enforced as an equilibrium

from the initial stock by using some appropriate trigger strategy, the

above discussion raises the issue of finding strategies that constitute a

second best equilibrium. Characterizing such strategies remains an open

problem

4. Some Final Remarks
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We have shown in section 2 that for the siaple dynamic programming

problem that arises in growth theory, setting appropriate elaaticities of

the utility and production functions equal to each other results in

savings policies that are independent of capital stocks. In terms of

Figure 1 however, not only points on the diagonal but also those on the

vertical axis results in such policies, although for a given utility

function the policies will be different. First consider the CES

production function (akl-C+(1-a>11-C)1/(1-C) where 1 denotes the fixed

quantity of labor. For 1 - 0, the function becomes linear and is given by

.11 (1-. ) k For purposes of comparison we specify a linear production

function bk + (l-b)l, where b - .1/(1-c) We set the utility function

As is already known, the consumption policy for the linear(cl-C)/(l-f).

technology can be computed as c - ~(y-l), where ~ - 1-(,a)l'8 For the

CES production function, consumption is given by c - ~y, again with ~ - 1-

(,8a) l/e Therefore the two consumption functions only differ by the

amount ~l; consumption is always higher with the CES production function.

Therefore we can conjecture that, in terms of Figure 1, moving from the

diagonal towards the vertical axis where technology is linear tends to

increase the propensity to save out of income. The problem of obtaining

exact solutions for parameters not on the diagonal or on the axes remains

open
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