ECONOMIC RESEARCH REPORTS

BAYESIAN LEARNING IN REPEATED GAMES
LEADS TO CORRELATED EQUILIBRIA

BY

Yaw Nyarko

RR # 92-26 June, 1992

C.V. STARR CENTER
FOR APPLIED ECONOMICS

| !

NEW YORK UNIVERSITY
FACULTY OF ARTS AND SCIENCE
DEPARTMENT OF ECONOMICS
WASHINGTON SQUARE

NEW YORK, N.Y. 10003



Bayesian Learning in Repeated Games Leads To
Correlated Equilibria

Yaw Nyarko'
New York University
Spring 1992

' 1 gratefully thank Professor Jim Jordan for wvery many
conversations. I thank Professors J-P Benoit, Lawrence Blume,
David Easley and Ehud Kalai for very helpful comments. I am also
very grateful to both the C.V. Starr Center and the Challenge Fund
at New York University for their generosity. I take
responsibility for all errors.
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Correlated Equilibria

Yaw Nyarko

ABSTRACT.

Consider an infinitely repeated game where each player is
characterized by a "type" which may be unknown to the other players
of the game. Impose only two conditions on the behavior of the
players. First, impose the Savage (1954) axioms; i.e., each
player has some beliefs about the evolution of the game and
maximizes its expected discounted payoffs given those beliefs.
Second, suppose that any event which has probability zero under one
player’s beliefs also has probability zero under the other player’s
beliefs. We show that under these two conditions limit points of
beliefs and of the empirical distributions (i.e., sample path
averages or histograms) are correlated equilibria of the "true”

game (i.e., the game characterized by the true vector of types) .
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1. Introduction. Consider an infinitely repeated game where

each player is characterized by a "type” which may be unknown to
the other players of the game. Impose only two conditions on the
behavior of the players. First, impose the Savage (1954) axioms;
i.e., suppose that each player has some beliefs about the evolution
of the game and maximizes its expected discounted payoffs given
those beliefs. Second, Ssuppose that any event which has
probability zero under one player’s beliefs also has probability
zero under the other player’s beliefs. We show that under these
two conditions there is "convergence" to a correlated equilibrium
of the "true" game (i.e., the game characterized by the true vector
of types): Limit points of beliefs about play AND the sample path
averages (i.e., the empirical distribution) of play are equilibria
of the true game.

The concepts of Correlated and especially Nash equilibrium are
very important in economics. It is therefore necessary to
determine when the optimizing behavior of players subject to
imperfect information leads to equilibrium behavior over time.
This paper therefore provides answers to the question of how robust
the Nash and Correlated equilibrium concepts are, and whether, when
initially out of "equilibrium", players can "learn" their way to
equilibrium. This research is therefore a continuation of that
began by Blume and Easley (1984). In answering these questions of
course, to obtain a "good" result one should impose conditions

which are as weak as possible. The players are facing very



complicated decision problems. The less is the amount of prior
knowledge and coordination we model the players with, the better
(more "realistic") is the model. Hence we have attempted to do
away with, as much as is possible, all common prior, independence
of types and finiteness aggumptions.

The only consistency condition we impose on players is that
they agree on probability zero events. This condition is of course
much weaker than the usual Harsanyi (1968) common prior assumption.

We refer to our much weaker consistency condition as the
Generalized Harsanyi condition (GH). (For an example of what
could go wrong when condition (GH) is violated see Nyarko, 199la.)
The conditions we use in our analysis are also much weaker than
those of Kalai and Lehrer (1890), who also obtain results on the
convergence to Nash equilibrium. Within our framework their
assumptions essentially require a finite or countable infinity of
types, and is violated in applications where the type space is say
an interval of the real line. Indeed, our main example in section
5 satisfies all of our assumptions but violates those of Kalai and
Lehrer (1990).

This paper is a generalization of earlier papers: Jordan
(1991a and b) first studied the model congidered here. However,
the Jordan papers assumed that types are "independent." Nyarko
(1992) also studied that model under a type-independence
agssumption, but relaxed the common prior assumption used in the
Jordan papers. Jordan (1991a and b) and Nyarko (1992) all

concluded that when the types are independent, convergence is to



the Nash equilibrium of the true. The concept of a correlated
equilibrium was introduced by Aumann (1974) and is the natural
extension of the concept of a Nash equilibrium, allowing players’
actions to be correlated by some external signals, say. This
paper allows for types which are not "independent" and hence allows
for correlated equilibrium behavior even in the limit over time.
When we assume that types are independent (or, stronger yet, when
they are common knowledge) then the results of this paper imply
convergence to Nash equilibrium. Since our method of proof is
different from Jordan’'s we obtain an alternate route for obtaining
those results. The Jordan papers provided results on convergence of
beliefs. One may ask: What do the beliefs have to do with the
actual play of the game? We provide here results on both beliefs
AND the empirical distributions, and show that beliefs and actual
sample path empirical distributions merge. Hence the latter is
over time an eguilibrium distribution.

Following Harsanyi (1968) and Mertens and Zamir (1985) a
ntype" represents a player’'s utility function AND that player’s
beliefs about others in the game. Hence, almost by definition, a
player’s beliefs should be allowed to depend upon its type. Hence
we believe that the relaxation of the independence of types
assumption of Jordan (1991) and Nyarko (1992} is important.
However, with this relaxation our limit points are in general
correlated, as opposed to Nash, equilibria.

To perhaps illustrate the strength of our results congider the

following. Take any finite action normal form game where no player



has a strictly dominated action. Impose our condition that players
agree on probability zero events and are optimizing. Impose no
other condition. Fix any finite time horizon. Then within that
finite time horizon any play is possible, given some beliefs of
players. Agreement on probability zero events does not preclude
any behavior in finite time. However, after a "long" time there
will be "a lot of" agreement as to the future play of the game.
(See Theorem 8.1 for details of this.) Hence in the limit there
will be total agreement as to the future play, and hence that play
must be an equilibrium (either Nash or, when types are not
independent, correlated).

To further illustrate our results consider a game with a
unique mixed strategy Nash equilibrium. Suppose there is no
imperfect information on types. Then our results show that beliefs
and the sample path empirical distributions converge to the mixed
strategy Nash equilibrium of the game. This is true despite the
fact that each player may be choosing a pure strategy at each date.
This therefore provides a rationale for the use of mixed strategies
in terms solely of play under Bayesian Rationality. This of
course is related to the much earlier arguments of Harsanyi (1973).

As an example where our Generalized Harsanyi condition (GH)
(i.e., agreement on probability zero events) is violated, consider
the standard versions of fictitious play. In fictitious play, each
player believes that others are choosing strategies according to a
fixed but unknown distribution, independently across time. Each

player optimizes given these beliefs. Hence, each player is



actually choosing strategies which are highly time-dependent.
However, each player believes the others are choosing time-
independent actions. Such models violate our condition (GH). Such
models are therefore able to generate non-convergence to Nash (or
correlated) equilibrium, which is not possible in under condition
(GH) .

In section 2 below we provide examples which illustrate ALL of
the major results of this paper. The rest of the paper is devoted
to formally stating the insights of the examples. Concluding
remarks are provided in section 12. All proofs are relegated to

the appendix.

2. Examples.

2.1. consider the following 3-person game payoff matrix (used by

Aumann (1974) in a slightly different context}:

0,1,3 0,0,0 2,2,2 0,0,0 0,1,0 0,0,0

1,1,1 1,0,0 2,2,0 2,2,2 1,1,1 1,0,3

Player A chooses the row (TOP or BOTTOM), B chooses the column
(LEFT or RIGHT) and C chooses the matrix (FIRST, MIDDLE or THIRD) .

Using dominance arguments it is easy to see that in any Nash
equilibrium to the above normal form game, Player A chooses

BOTTOM, Player B chooses LEFT column and player C randomizes (with



any probabilities) between the FIRST and THIRD matrices.

Let w be a realization from infinitely many independent and
identical coin-tossing experiments where an outcome from
{HEADS,TAILS} is chosen with equal probability. Hence w is a
element of {HEADS,TAILS}”. Players A and B are told of the
realization of . We may consider player A’S "type" to be T,=w,
Player B’'s "type" to be 7y=w, SO that 7,=Tz. Player C is not told
of @ but knows how it is chosen {(i,e., C knows the distribution of
w). Player C has a trivial type space (congisting of a singleton
element, say, representing "no information) .

Let w, denote the n-th coordinate of w. In particular w, €
{HEADS, TAILS}. Consider the following strategies for the players:
At each date n, Player A of type 7 =w chooses TOP at date n if
w,~HEADS and BOTTOM if ,=TAILS. Player B of type Tgz=w chooses the
LEFT Column if w,=HEADS and RIGHT if «,=TAILS. Player C chooses the
MIDDLE matrix all the time. It should be easy to see that if any
player believes the others are choosing actions in the manner just
described then it is optimal for that player to choose actions in
the manner described above for that player. In particular, each
player is choosing a best response at each date to its beliefs
about the other players.

Under this behavior, observe that MIDDLE matrix is chosen at
each date. This is not a Nash equilibrium action for the true

game. Hence we have,



Observation 1:  The actions or play of the players need NOT
converge to a NASH equilibrium of the true game.

Consider the beliefs of players about the date n play,
conditional on the history of the Qame from date 1 through date
n-1. These beliefs will assign probability one to MIDDLE matrix
being played. MIDDLE is not part of any Nash equilibrium. In

particular we have,

Observation 2: The beliefs of players about the future play

of the game conditional on the past (either conditional or not
conditional on players own realized types} need NOT converge
to a NASH equilibrium of the true game.

This example appears to contradict the conclusions of Jordan
(1991a and b) and Nyarko (1992), where convergence of beliefs to a
Nash equilibrium was proved. However, notice that the Players’
peliefs about the types of others are not independent of their own
type; indeed, we have extreme dependence with 7,=73. Hence the
independence assumptions used in the just-mentioned papers are
violated. This example, and in particular observation 2 above,
shows that when that independence assumption is violated the
conclusions of those papers fail.

However, notice that the behavior we have described in this
example is actually a correlated equilibrium. Players A and B use
the outcomes of the coin-tosses to coordinate their actions across
(TOP, LEFT) AND (BOTTOM,RIGHT) . The outcomes (TOP,LEFT,MIDDLE) AND

{(BOTTOM, RIGHT,MIDDLE) with probability 1/2 each constitutes a
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correlated equilibrium distribution. In particular, suppose a
"principal® (or correlating device) "suggests" that Player A should
play action TOP. Then A knows, in the correlated equilibrium, that
B and C will play LEFT and MIDDLE regpectively, so it is optimal
for A to follow the suggestion of the Principal. Similarly for B.
In the correlated equilibrium the only action that will be
suggested to player C is the action MIDDLE. C assigns equal
probability to A and B choosing action pairs (TOP,LEFT) and
(BOTTOM, RIGHT) . Hence following the suggestion of the Principal is
optimal. This verifies that (TOP, LEFT,MIDDLE)} and
(BOTTOM, RIGHT,MIDDLE) with probability 1/2 each ig indeed a
correlated equilibrium distribution.

Note further that this distribution i1s also the beliefs of
each player about the next period play of the game NOT CONDITIONING
ON OWN TYPES. 1In particular, if we asked each player to predict
the ocutcome of the future of the game conditional on only the
history of the game but NOT conditional on their own realized type
then each player would predict the play to be (TOP, LEFT,MIDDLE) AND
(BOTTOM, RIGHT ,MIDDLE) with probability one half each. This
illustrates one of the main results of this paper (Theorem 9.1

below), namely,

RESULT 1: Beliefs of players about the future of the game

conditional upon the past of the game but NOT conditional upon
own types converges to a correlated equilibrium distribution
for the true game.

10



Beliefs about the future of the game conditional upon the past
AND conditional upon own types do NOT converge to the set of
correlated equilibria. Indeed, A’s beliefs about the date N play
of the game conditional upon A'S realized type and the history
preceding date N is either that (TOP, LEFT,MIDDLE) will occur with
probability one or that (BOTTOM, RIGHT,MIDDLE) will occur with
probability one. (Which will occur is of course determined
completely by the date N coordinate, wy, of A’'s realized type w.)
However, neither of the outcomes (TOP, LEFT,MIDDLE) with probability
one or {(BOTTOM,RIGHT,MIDDLE) with probability one is a correlated
equilibrium since in either case Player C will be choosing a sub-

optimal action. In particular we have,

OBSERVATION 3: Beliefs of players about the future of the
game conditional upon the past of the game AND conditiomal

upon own typea need NOT converge to a correlated equilibrium

distribution for the true game.

Let us now look at actual play again. We may invoke the
strong law of large numbers to conclude that for almost every
sample path, in each sufficiently long history or play of the game
the outcome (TOP,LEFT,MIDDLE) will occur for approximately as many
periocds as the outcome (BOTTOM, RIGHT,MIDDLE). In particular the
average number of times each outcome will occur will in the limit
be equal to 1/2 for almost every sample path. This outcome is
the same as the limit point of beliefs of agents (see Result 1
above), and in particular is a correlated equilibrium for the true

game. This illustrates the second main result of this paper
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(Theorem 9.6): We define the empirical digtribution of play to be
the distribution (or histogram) obtained by taking the average

number of occurances of each action in the past history.

RESULT 2: The empirical distribution of play converges to a

correlated equilibrium distribution for the true game.
Further, the beliefs of players NOT conditioning on types and
the empirical distribution of play converge to the same limit
point over time.

2.2. EXAMPLE: The Need For Sub-Sequential Limit Points. The example

of section 2.1 may have given the impression that we will be
proving the convergence of beliefs and empirical distributions.

In the example of that section such convergence did indeéd take
place. However, for a general game the beliefs about the future of
the game need not even converge. Consider the following
coordination game with two players, Player A (the row player) and

Player B (the column player).

1,1 0,0

0,0 1,1

Suppose that at every even period the players chooée actions
(TOP, LEFT) while at every odd period they choose the actions
(BOTTOM,RIGHT). Each player will then be best responding given
their beliefs about the other. However each player’s beliefs about
the future of the game conditional on the past does not converge.

Instead the beliefs have two limit points: (TOP,LEFT) along the

12



sub-sequence of even dates and (BOTTOM, RIGHT) along the sub-
sequence of odd dates. Hence result 1 of example 2.1. will
actually be stated in terms of sub-sequential limits: Any limit
point of Beliefs of players about the future of the game
conditional upon the past of the game but NOT conditional upon own
types is a correlated equilibrium distribution for the true game.
We now illustrate that for some games the empirical
distribution need not converge either. Indeed, fix any sequence

of numbers {x,}*,., taking values of either 0 or 1 such that the

averages Eip&/N’ do not converge but oscillate between being

arbitrarily close to 0 and arbitrarily close to 1 infinitely often.
(This can of course be done by choosing x, to be equal to 0 for a
long time, then egual to 1 for an even longer time then equal to 0O
for a yet longer time, etc.) Suppose now that players choose
actions (TOP,LEFT) at each date n where Xx;=1 and choose actions
(BOTTOM, RIGHT) otherwise. Then it should be clear that the
empirical distribution of play does not converge, but instead
oscillates between arbitrarily high average for (TOP,LEFT) to an
arbitrarily low average.

However, consider now a sub-sequence of dates where beliefs
about next period play conditional on the past converges. In this
simple example this will be a sub-sequence of dates where either
(TOP, LEFT) is played at each date or where (BOTTOM,RIGHT) is played
at each date. Along such a sub-sequence of dates the empirical

distribution will converge. The limit point of the empirical
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distribution along any such sub-sequence is of course is either
(TOP, LEFT) with probability one (i.e., with limiting average equal
to one) or (BOTTOM,RIGHT) with probability one. Either of these
will constitute a correlated (actually Nash) equilibrium.

Hence result 2 of example 2.1. will actually be stated in
terms of sub-sequential limits. Our result will say, loosely
speaking (and see section 9 for details) the following: Fix a
sample path. Suppose that along a sub-sequence of dates beliefs of
players about the future of the game conditional upon the past of
the game but NOT conditional upon own types converges to gsome limit
point, » say. We know from Result 1 that » must be a correlated
equilibrium for the true game. Our result states that the
empirical dsitribution of play, congtructed along that sub-sequence
(i.e., using only observations on that sub-sequence) also converges

to the limit point ».

2.3. What if Types are Common Knowledge? Suppose that all utility

parameters are common knowledge and that there is no uncertainty
about "types" . Without imperfect information on types, beliefs
conditional on types and beliefs not conditional on types are the
same. Also there are no types to allow correlation in actions of
players. Hence (sub-sequential) limits of beliefs conditional on
types must be NASH as (opposed to correlated equilibria). The same
of course is true of the sample path averages (empirical

distributions) along the convergent sub-sequences of beliefs. More
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is true: Since player 1 knows its own actions, 1i's beliefs
conditional on i’s type equals i’s actual play. OQur previous
agsertion therefore implies that limit points of actual play and
not merely beliefs about play are Nash equilibria. (See section 10

for the details.)

3. Some Terminology. T is the finite set of players. Given

any collection of sets {Si}u, we define 8=ILS; and S.#=I,.8;. Given
any collection of functions £;:§ = Y; for ier, £;:8, = Y; is defined
by £;(s;) = I[,£(s;). The Cartesian product of metric spaces will
always be endowed with the product topology. Let S be any metric
space. JP(8) is the set of probability measures on (Borel) subsets
of §. Unless otherwise stated (and we will!) the set P(S) will be
endowed with the weak topology. Given any reP(S) we let wv(ds)
denote integration: {h(s)v(ds) is the integral of the real-valued
function h on S with respect to ». If S is a cartesian product
8=YZ we let »(dy) denote integration over ¥ with respect to the
marginal of » 6n Y. The latter will often be denoted by Margyy.

R denotes the real line.

15



4. The Basic Structure.

4.1. Following Jordan {1991b) we have the following basic structure

of the game. I is the finite set of players. §; represents the
finite set of actions available to player i at each date n=1,2,...;
g=Il_S;. Even though the action space S; is independent of the date
we shall sometimes write §; as S, when we seek to emphasize the set
of action choices at date n. SIS and S*=II",_,S are the set of
date N and infinite histories, respectively. sY and S® are endowed
with their respective product topologies. sV and s® will denote
generic elements of SY and 8% respectively. g° will denote the null
history, (at date 0, when there is no history)!

Perfect recall is assumed; in particular, at date n when
choosing the date n action s, the player i will have information on
g"l={g,,...,8.,). We define the shift operator 0y :P(S”)xS"P(8®) for
any date N as follows: Let g be any probability measure over S%.
Fix date N history sM. Denote the probability distribution over
the "future", sV'*={s,}"1-nn conditional on the past, s¥ Dby
q(ds™**|s¥) . We define gy(q,s") to be the probability distribution
obtained by viewing the game as beginning at date one where the
play of the game has the same distribution as the date N "future"
under gf{dst**|s¥). In particular we define oy :P(S”) xS">P(S”) by
setting for all subsets D of 8%, oy (g, 8™ (D) =g (D (s} |sN) where
D(sV)={s'~e¢S™|s’'N=s" and there exists some s"“¢D such that 8" =8' yin
for all n}. We denote oy(g,sV) by ay(.[|sV). I.e., we use a

subscript N to signify that gy(.|s™ is equal to the conditional
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q(.|s™ but "shifted" by N-coordinates.

Next, we define F={f,:SP(S)}; F, = IF,; F = n* ..F.; F =
> _,F,. F, is the set of all behavior strategies for player i. Fy
is endowed with the topology of pointwise convergence; F,, F,and F
are endowed with their respective product topologies. The mapping
m: F>P(S®) defines the probability distribution m(£f) on S* resulting
from the behavior strategy profile f£; i.e., induced by the

following transition equation: for each gubset D of S .,

m(£) (D|&") = £,(") (D). (4.2)

4.3. Payoff Functions. Each player i has an attribute vector which is

some element 6, of the set 8;. The attribute vector will represent
the parameter of its utility function unknown to other players in
the game. u;:0xS-R is player i‘s (within period or instantaneous)
utility function which depends upon its attribute vector, #;,, as
well as the vector of actions, s¢S, chosen by all the players. We
assume that u; is continuous and uniformly bounded on it’s domain.
We shall suppose that 6; is a compact subset of finite dimensional
Euclidean space. This is without loss of generality since the set
of joint actions, S, ié assumed finite. The player has a discount
factor which is a continuous function, §6;,:6>10,1}, of the player’s
attribute vector. {(This is also without loss of generality since

5, may be considered the projection of ©; onto the set of discount
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parameters, {(0,1}). We suppose that the players know the
functional forme of each player’s utility function, {w};,;. Each
player i knows its own attribute vector f; but does not necessarily
know those of other players, #6,. We define U;:8xS™R to be the

discounted sum of utilities:

U (6,,8) = o, [6,(8,)1"u (8, s,) (4.4)

where s*={s_}*,.,. We define V;:0xF> by
V,(8,, £)=§U,(8,, s )m(£) (ds) (4.5)

where m(f) (ds®) denotes integration over S® with respect to the

measure m{f) induced by the behavior strategies, f {(as in (4.2)).

5. Equilibria For the Complete Information Problem.

5.1. Nash Equilibria. Define for each ieI and {6.},¢8,

N, (8,) = {fdl,feF: £, € argmax V,(§,£f, .)};
N(§) = NN (0,) .
ND(8) = {veP(5): v=m(f) for some feN(f)}

N{f) is the set of Nash equilibria, where all players are best

18



responding to the others. ND(f) is the set of Nash equilibrium
distributions; i.e., those which are generated by some Nash

equilibrium vector of behavior strategies.

5.2. Correlated Equilibria. correlated equilibria are typically

defined using ‘"correlating devices" which involve expanding the
space of wuncertainty and endowing players with information
partitions representing the correlated signals received by those
player. (See Aumann (1974).) We shall use the following
definition which involves conditioning on actions. This is
equivalent to the definitions that involve information partitions.
Fix any 0;¢8,. Given any action s;¢S; and any probability
measure Q;€P(S;xlI",,8), define R;(6;,s8,0,4) to be the expected
utility to player i with attribute vector #, when i chooses action
S; at date one and the other players’ date one actions and all
players (including i’s) date n22 actions is governed by Q. I.e

L J

R(0,5",0,)=fU(8,, 8", 8,, {s}=.-2)dQy, (5.3)

where the integral is taken over the vector (84, {8}",2,) with
respect to the measure Q.

Fix any probability distribution of play QeP(S*). Define
Y;(6;,Q) to be the set of all date one actions, s;, which are optimal

for player i when the actions of other players at date one, and the

19



actions of all players at each date n=2 are governed by 0(.|s;y).
Also define ¥ () to be the set of all distributions of play, Q,
for which the above statement is true for all date one actions

excluding posgibly a set with Q-probability zero. I.e.,

Y,(0,,0) = {s',€8,: s,"¢ Argmax R/ (9,,.,Q,), where
Q= Marg Q(.|s,;=s,) on sdI*,_,S}; (5.4)
and |
Y, (8,) = {QeP(S™):0(%,(6,,Q))=1}. (5.5)

Now, the definitions in (5.4) and (5.5) require maximization

only at date one. We will now reguire optimal decisions to be
chosen at each date and history. In particular, we define for
each QeP(S*™),

D(Q,0)=(s"]|0y(.|5") €¥,(8,}) for all N};
Ci(0,) = {QeP(5™): Q(D,(Q,0,))=1}; and (5.6)
C(8)=r,C (0, where 6=(6,},,. (5.7}

C(f) is the set of all correlated equilibrium distributions of
play. Any Q in C(f#) is such that outside of a set of sample paths

8% with Q-probability zero the following is true: 1In each date N

history sV, for each ieI, if the "Principal suggests" the date N+1

20



actions sy, to player i and player i believes the future of the
game is governed by Q(.]|s¥,sy,;) then sy,, is an optimal date N+1
action for that player. It is these "suggestions" which allow for
correlation of the players’ actions.

It should be clear that any correlated equilibrium
distribution which satisfies some kind of independence across
players should be a Nash equilibrium. Indeed, fix any fe8 and
QeC(8). Suppose that under Q each player’s date N action

! is independent. 1I.e., suppose that

conditional on the history s™
for all sM'es™, and sy={sn}i€S, Qsxls™)=ILQ(sn|s™). Then it
should be clear that Q is a Nash equilibrium distribution; i.e.,

QeND(8) .

6. The Imperfect Information Problem.

6.1. The Type Space. player ieI may be any "type" in a type space T,.

Player i’s type, 7;, specifies that player’s attribute wvector, 8;;
it also specifies that player’'s beliefs about other players’
attribute vectors; it gpecifies that player’s beliefs about other
players’ beliefs about the attribute vectors; and beliefs about
beliefs about beliefs ...; etc. In particular a player’'s type
specifies a hierarchy of beliefs about 6. We set T=II,T,. We let
;(r;) denote the attribute vector of player i, type 71;,; 6,:T~8, is

therefore the projection mapping from the type space T, representing

the i-th player’s attribute vector into 8;. (See Mertens and Zamir,
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1985, or Nyarko (1991b) for details and elaboration.)

Hence a type specifies two things: the parameters of the
utility function as well as beliefs over other players’ types.
Hence in general, and indeed almost "by definition," a player’s
beliefs will NOT be independent of that player’s type. In
particular the independence assumptions of Jordan (1991a and b) and

Nyarko (1992) will in general be violated, almost "by definition."

6.2. Bayesian Strategy Processes Without Common Priors. We fix a

collection of probability distributions {u},, over TxS”. i
represents the ex ante beliefs player i has about the evolution of
the game before i has realized its own type. Thé ex post beliefs
are therefore pu(.]|7,). The collection of measures, {pl}, ¢
IIP(TxS"), is a Bayesian Strategy Process (BSP) for the Repeated

Game with (not necessarily common) priors if for each 1eT,

(6.3) p({(7,8")eTxS™|for all N, s,,, maximizes

fu, (8, (7)) Siners {Sn}mn=N+2) dy, (. | S, Spry, T }) = 1.

where the integral in (6.3) is taken over the wvector
(S.in+1s {80} ®aens2) With respect to the measure pil. 8™, Smars 7).
Condition (6.3) requires that at each date N given player i’s
beliefs about the evolution of the game, pk(.|s", Suy, 7). player i
maximizes its expected utility. (6.3) by itself does not imply that
under i’s beliefs about the game other players j#i are maximizing
their expected utility. (However, this latter assertion will hold

22



under condition (GH) which will be introduced in section 7.)
Note that we have NOT ruled out correlation in players’
choice of actions. In particular, we do NOT impose the following

assumption:
(6.4) p (dsy,,|s, 1) My (dsy,,| ¥, 7).

Condition (6.4) is indeed a natural assumption to impose, and
it holds if players choose actions at each date simulataneously.
Condition (6.4) is used by Jordan (1991a and b) and Nyarko (1992)
to obtain a result on the convergence to Nash equilibrium behavior.
Since our main result will be convergence to correlated
equilibrium, we have no need for (6.4). We will impose (6.4) in
section 10 when we indicate how the earlier results on convergence
to Nash equilibria are special cases of our results on the
convergence to correlated equilibria. We separate all the
independence assumptions so that it becomes clear what assumptions
are used for the various conclusgions.

General conditions for the existence of BSP‘s where
correlated actions are allowed is provided in Cotter (1991) and

Yannelis and Rustichini (1991).
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7. The Generalized Harsanyi Consistency Condition. We

will impose the following condition on the beliefs of players,
{mi}is which requires that, ex ante, the players agree on
probability zero events. The Harsanyi (1968) common prior
assumption requires p=pg; for all i and j. Our condition (GH) below
is therefore a generalization of the Harsanyi assumption. The
common prior assumption is used by Jordan (1991a and b)}.

Given any two probability measures u’ and g" on some
(measure) space Q, we say that pu’ is absolutely continuous with
respect to u" if for all (measureable) subsets D of Q, u’'(D)>0
implies that u"(D)>0. We then write p’<<u". We say that u’ and u"
are mutually absolutely continuous with respect to each other if

pecpu" and p"<<p’.

7.1. Condition (GH): The measures {u},, in P(TxS*) are mutually
absolutely continuous with respect to each other.

Condition (GH) does not require the ex post probabilities,
pi(.|7) and p(.}7;), to be mutually absolutely continuous. We shall

use the following much weaker version of condition (GH):

7.2. Condition (GGH): There exists a measure pu' over TxS™ such that
for all ieI, p' is absolutely continuous with respect to p,.

One may wish to interpret u’ as the "true" distribution of the

types and play while y; is player i’s beliefs. Any event which has
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posgitive probability under g’ in condition (GGH) will have strictly
positive probability under pu, for each ieI. The converse however
need not be true under the weaker condition (GGH). When condition
(GGH) holds we shall state our results in terms of the measure u’;
that condition should therefore be thought of as providing such a
measure. If condition (GH) holds, to obtain condition (GGH} we may
take the measure u° to be equal to any of the u’s or indeed any
meagure over TxS8” which is mutually absolutely continuous with
respect to any ({(and therefore all} of the y’s; e.g., u may be

taken to be the average measure I, u/ (#I).

7.3. Remark. As will soon become apparent, the principal use of

condition (GH) or (GGH) is to ensure agreement in the limit about
play of the game; (in particular its main use will be to prove
Theorem 8.1 below). Hence, for all the main results of this paper,
we may replace conditions (GH) and (GGH) above with assumptions
which require only absolute continuity of the marginals of p; on 8%
and not necessarily over all of TxS*. 1In particular, beliefs of
players about types are by themselves unimportant. We wuse
assumptions (GH) and (GGH) as stated above because it is

expositionally more convenient.

7.4. Remark. Let u' denote the true distribution of play for the

various player-types. The absolute continuity assumption of Kalai

and Lehrer (1990) requires that for each i in I and for each
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T={7T;}a€T, w(.]7) << g(.|7). In particular, their assumption
requires ex post absolute continuity. OQur condition (GGH) is
weaker and requires only ex ante absolute continuity. In
particular example 2.1 obeys condition (GH) but violates the Kalai
and Lehrer assumptions. For their assumption to hold the set of
{"behavior equivalent classes") of types must be finite or

countably infinite. (See Nyarko 1991b for details.)

8. (GH) Implies that Beliefs about the Future " Merge." the

following Lemma follows immediately from Blackwell and Dubins
(1963) theorem on "Merging of Opinions": Let p,(ds**|[s") denote the
probability distribution over the "future", s"*= {s,.,,8.,1,...}€S"
conditional on the '"past," s, with respect to the measure Hi. The
norm ||.|| denotes the total variation norm on S%; i.e., given
p,geP(87),

[ lp||= Sup;|p(E)-g(E)| (8.1)

where the supremum is over (measureable) subsets E of 8.

The theorem below implies that for each i and j in I, the
beliefs of the players about the future of the game conditional on
the past, {pn(ds™*[8") }",o; and {ppn(ds***|s™ }™,., have the same
limiting behavior and share the same limit points along any sub-
sequence of dates in each sample path. Obgerve that these

conditional probabilities are NOT conditioned on players’ types.
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8.2. Theorem. (Blackwell and Dubins). Suppose that the measures (i},

on TxS® obey condition (GGH) and let ' be as in that condition.
Define
W={(7,8%)eTxS®: 1im,.. ||y (ds™**|s") -py(ds***|g") | |=0}. (8.27)

Then u (W) = 1.

9. Convergence To Correlated Equilibria. we now show that

the probability distribution of the future of the game conditional
on the past, up(ds¥*|s¥), converges to the set C(#) of Correlated
equilibrium distributions for the true attribute vector #. Recall
that P(8™) is endowed with the topology of weak convergence. Given
any subset C of P(8%) and any sequence of measures {q,}%.., in P{(S™)
we write g~>>C if any limit point of the sequence of measures lies

in the set C.

9.1. Theorem. (Beliefs Converge to Correlated Equilibria). ret {u}. be

a BSP and suppose condition (GGH) holds. Define
G = {(1,8"): upy(as™*|s¥) »» C(0(r)) for all ieI}

Then up' ({(7,8%)eTxS"| (7,8%) €G and (8.2’) holds})=1.

(A gsketch of the main idea of the proof and the intuition behind it

is given in the appendix, as is the proof itself.)
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9.2. The Convergence of the Empirical Distributions (i.e., sample path

averages). In Theorem 9.6 below we relate the limit point of

beliefs (as discussed in the previous sub-section) to sample path
empirical distributions (i.e., the distributions obtained by taking
a histogram or sample path average of occurrences of the different
vectors of joint actions of players). Our results are as follows:

Let us first consider only beliefs about the next period (as
opposed to the entire future) conditional upon the history; i.e.,
#;(ds,,,|s™) . In the model with zero discount factors this is indeed
all we are concerned about. Fix a sample path and suppose that
along that sample path the beliefs about the future conditional on
the past, but NOT conditional on own types, p;{ds,,,|s"), converges
as n»w, Let us denote that limit point by reP(S). From Theorem
8.2 » is independent of i. Part (a) of our result (Theorem 9.6
below) concludes that the empirical distribution also converges to

v. In particular, fix any s'¢S, and define 1,(s") to equal one if

s,=s and 1,(s")=0 otherwise. Then I, ,1,(s)/N converges to »({s"})

as N»w., From the results of the previous sub-section we know that
for the zero discount factor problem any limit point of beliefs is
a correlated equilibrium. Hence, we may conclude that on any
sample path where these Dbeliefs converge, the empirical
distribution is in the limit a correlated equilibrium distribution
for the true game.

We know from the example of section 2.2 that beliefs about

the future given the past do not necessarily converge. Part (b) of
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of our result (Theorem 9.6) handles this case. It states that
beliefs and empirical distributions "merge" along convergent sub-
sequences. The result states, loosely speaking, the following:
Fix any sample path. Suppose that along a sub-sequence of dates
beliefs about the future given the past, g (ds,,,|s"), converges to
some limit point, reP(S). Then the empirical distribution
constructed along that sub-sequence also converges to ». Since the
limit points of beliefs are correlated equilibria we conclude that
those 1limit points o©of the empirical distributions are also
correlated equilibria.

Notice that in the above we used the language "loosely
speaking." Even though the statement above is intuitively correct
there is a technicality that must be taken care of. In particuar,
when forming the empirical distributions along a sub-sequence of
dates, we need to take a "rich" enough set of dates in that sub-
sequence. The formal statement of part (b) of our result is as
follows. Fix a sample path and suppose there there is a sub-
sequence of dates such that along that sub-sequence the beliefs,
pi(8s,,,]8"), converge to some veP(S). Fix any arbitrarily small
neighborhood of », and refer to this neighborhood as A. (For
measureability reasons we restrict attention to neighborhoods which
are intervals {or rectangles) with rational end-points or
(vertices).) Construct the empirical distribution from only the
periods where the beliefs, p,(ds,,;|s"), lie in the neighborhood A.
Then our result states that the empirical distribution thus

constructed will lie in the neighborhood A. The example below
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shows what could go wrong if we take "too thin" a sub-sequence of

dates.

9.3. Example. There are two players, A and B. Player A chooses

the row: TOP, MIDDLE or BOTTOM. Player B chooses the column:

LEFT, CENTER or RIGHT. The payoff matrix is as below:
-1,1 1,-1 0,0
1,-1 | -1,1 0,0
0,0 0,0 1,1

Notice that if we exclude the actions BOTTOM and RIGHT, the payoff
matrix is that of a "matching pennies" game.

Suppose the play of the game is as follows: On each even date
the players play the unique mixed strategy Nash equilibrium of the
matching pennies part of the game: I.e., Player A uses the mixed
strategy which randomizes with egual probability over the actions
TOP and MIDDLE and B uses the mixed strategy which randomizes with
equal probability over the actions LEFT and CENTER. On each odd
date Player A chooses action BOTTOM while B chooses action RIGHT.
It is easy to see that under this behavior each player is best-
responding to the other.

There are two limit points of beliefs of players about the
future of the game: One limit point assigns probability of 1/4 to

each of the four vectors of actions in the matching pennies part of
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the game. Another limit point of beliefs assigns probability one
to the wvector (BOTTOM,RIGHT). In obtaining convergence of the
empirical distribution along sub-sequences it should be clear what
sub-sequences to choose from. Either we take the sub-sequence of
even dates or the sub-sequence of odd dates.

If, however, we take too "thin" a sub-sequence we may not
obtain convergence of the empirical distribution to the limit point
of beliefs. 1In particular, fix a sample path and consider the sub-
sequence of dates where the action vector (TOP,LEFT) occurs. On
almost every sample path there will indeed be a sub-sequence of
such occurances. Of course along that sub-sequence the empirical
distribution will always assign probability one to the action
vector (TOP,LEFT). The empirical distribution along that sub-
sequence therefore does not converge to the limit point of beliefs.
Since (TOP,LEFT) is not a Nash or correlated equilibrium, the
empirical distribution ‘also does not converge to the set of
correlated equilibrium distributions. Our chosen sub-sequence is
"too thin."

The use of neighborhoods A as described in section 9.2 will
enable us to pick out the even or odd sub-sequences of dates.
Suppose we we take A to be a small neighborhood around the
probability which assigns mass of 1/4 to each of the vectors on the
matching pennies part of the game Players beliefs will lie in
this neighborhood at precisely the sub-sequence of even dates. If
A is a small neighborhood of the probability which assigns point

mass to {BOTTOM,RIGHT} then we pick out the sub-sequence of odd
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dates. The use of these neighborhoods provides with a "rich*

enough sub-sequence of dates.

94. It is easy to see how we would extend our results on the

convergence of empirical distributions to the multi-period version.
Indeed, fix any finite length of time, M<w. Also fix any sample
path. Let »MeP(SM). The M-period ahead beliefs are the
probabilities p;(d(S.,1, Spsz-, -+ -Saem) |87 . Suppose that along a
sub-sequence, {n(k}}%,.,, the M-period ahead beliefs converge to
vMeP(SM);  (d.e., (A(S,p41s Saggez-s - - cSamenm) [8™®) » »M as ksw, Then
along that sub-sequence the empirical distribution of the "next" M
periods, (S.g+1sSam+2s+- -+ Segsm) alSO converges to »M. (The formal
statement of course requires the use of neighborhoods of »M as
explained earlier for the one-period case. The proof of this
result follows in an analagous manner to the one-period version,
i.e., Theorem 9.6(b) below, and so0 is omitted. The details are

available from the author upon request.)

9.5. The statement and proof of Theorem 9.6 below is really a

probability-theoretic result and does not use anywhere the fact
that players are optimizing. The result states that beliefs (i.e.,
conditional probabilities of the future given the past) and sample
path empirical distributions "merge" over time (i.e., have the same
sub-sequential limits). The Theorem is stated for any general

peP(TxS™). It is easy to see how this theorem and condition (GH)
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or (GGH) prove all the assertions made above. We now state and
prove this theorem.

We use the following notation in the result below. Given any
event E let 1 represent.the indicator function on E (equal to one

if E holds and equal to zero otherwise).

9.6. Theorem. Let ;i be any measure on TxS™. Then the following is
true for each sample path (7,s8%)eTx8” (outside of a set with u-
probability =zero):

(a) Suppose that for some veP(S), along the given sample path

lim,,, #(ds,,|s") =v. Fix any s'e¢S. Then, along the sample

pbath the average number of times s' occurs is in the limit
equal to v((s'}). I.e., 1lim,, Efﬂj{s _s'} /N = v ({s'}).
(b) Suppose that for some veP(S), along the given sample path

there is a sub-sequence of dates {n(k)}*,., such that along
the sub-sequence 1lim,, p(ds,,,|s™) = v. Fix any s'eS. Let
A be any arbitrarily small non-degenerate closed interval

with rational endpoints which contains v ({s'}). Then
. N N
Lim,,, Eﬂ=11{s,-,=s') Z, 1 /To12,; € A.

Where ZHEI {'LL ({Sn+I=S.} I Sﬂ) EA] - (9- 7)
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10. Independence of Types Implies Convergence to Nash

qulllibl'ia. In obtaining the convergence to Nash result of Jordan

{1991a and b) and Nyarko (1992) the assumption below is used (in
addition to (6.4) above). This assumption requires that each
player i’s beliefs about the types of others is independent of

player i‘s type:

10.1. A Type-Independence Assumption. Define m=Marg, p,. Then m, is

a product measure on the type space T; i.e., n=L, [Marg o Tl
i

The example provided in section 2.1 obeys (6.4) but violates
(10.1). Hence without (10.1) the result on the convergence to Nash
(as opposed to correlated) équilibria obtained in the Jordan (1991)
and Nyarko (1992) does not hold. An immediate corollary of our
Theorem 9.1 is that if players choose actions independently and the
priors over types are independent (i.e., if (6.4) and (10.1) hold)
then beliefs of players converge to a Nash equilibrium
distribution. It is easy to see why this is so. Under (10.1) and

(6.4), each player i’s beliefs about date N+1 play conditional on

date N history will be a product measure:; i.e.,
pildsyy | sy) I (dspy[sy) . Any limit point of beliefs will also
have this property. We know from the previous section that any

limit point of beliefs is a correlated equilibrium. As explained

at the end of section 5, any correlated equilibrium distribution
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with the above mentioned product measure property is necegsarily a
Nash equilibrium distribution. Hence limit points of beliefs are
Nash equilibria. Hence we obtain the conclusions of Jordan (1991a

and b) and Nyarko (1992) as special cases of Theorem 9.1:

10.2. Corollary. Let {u}, be a BSP and suppose condition (GGH)

holds. Also suppose that (6.1) and (10.1) hold. Define
G = {(r,8%): pn(ds"*|s¥) »> ND(0 (7)) for all ieI}

Then p'({(7,5")¢G and (8.2°) holds})=1.

10.3. Remark. Of course, from Theorem 9.6 we may conclude that

under the conditions of corollary 10.2 the empirical distribution
(constructed along the appropriate sub-seguences) are also Nash {as

opposed to correlated) equilibria.

10.3. Model with Types Common Knowledge.  Suppose now that there

is only one vector of possible types (or, alternatively, that the
vector of types is common knowledge). Then, trivially, condition
{(10.1) holds. 1If players choose actions simultaneously {(so that
(6.4) holds) then corollary 10.2. implies that any limit point of
beliefs is a Nash equilibrium. Since there is only one vector of
types, each player’s beliefs about it’'s own play not conditioning
own types is equal to beliefs conditioning on types which in turn
is equal to actual play of that player. Hence actual play, and not

merely beliefs about play, converges to a Nash equilibrium. I.e.,
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10.4. Corollary. Let {w}., be a BSP and suppose condition (GGH)

holds. Algo suppose that (6.5) holds and the type space T is a
singleton (or equivalently the true vector of types is common
kxnowledge.) Define p” to be the true distribution of play, i.e.,
that induced by {p}u. Define

G = {(1,5%): py(ds™*|s¥) - ND(8 (7)) for all ieI}

Then p™({(7,8%)eG" and (8.2’) holds})=1.

11. Concluding Remark. we quote from Aumann (1987):

"The equilibrium concept of Nash ... is without doubt the
single game-theoretic tool that is most applied in
economics. Yet ... a little reflection leads to some

puzzlement as to why and under what conditions players
might be expected to play such an equilibrium."

The axioms of Savage (1954) imply Bayesian Rationality; i.e.,
players maximize subjective expected utility. Aumann (1987) argues
that Bayesian Rationality {(without common priors) ig equivalent to
a subjective correlated equilibrium. We show that the repeated
play of a game where Bayesian Rationality is assumed and there is
agreement on probability zero events (and nothing else!) leads to
an objective correlated equilibrium. We therefore ‘have a
justification of such equilibrium in terms of the behavior of

players over time under Bayesian rationality.
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12. Appendix. The Proofs.

Proof of Theorem 9.1.: The strategy of our proof will be as follows:

We begin by proving the result for the zero discount factor case
(=0 for all ieI). We later show how the proof can be extended to
the more general framework. With zero discount factor each player
at each date solves a one-period problem, and chooses actions to
maximize that period’s utility. To prove the one-period version
of the theorem we proceed ag follows: Our first step is to use
condition {(GGH) to relate convergence for any player i on sample
paths with p;,-probability one to convergence for all players, on
sets with p"-probability one. In particular, we first show (in
lemma 1 below) that it suffices to show that under i’s beliefs, u,
player 1 beliefs about the next period play of the game NOT
conditioning on i’s type 7;, i.e., p;(ds,.,|s"), converges to the set
of correlated distributions of one-period play where i is Dbest
responding; (i.e., to a set C!(#,) which will be defined later}.
We will define G/ to be the set where the above mentioned
convergence occurs, We usge the separating hyperplane theorem to
show that on any sample path outside of G/ there will exist two
disjoint sets (which we will denote by B and &), which can be
separated by a vector x, such that for infinitely many dates n,
beliefs conditional only on history (and not on own types) lie in
B while beliefs cohditional on history AND own types belongs to ¢
(i.e., p(ds,;|s"eB and p(ds,, |s*, 7,)e®). We then show that the

set of sample paths where beliefs conditional on type lies in one
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set and beliefs not conditional lie in another set is a set with
zero probability, if these sets are disjoint and can be separated.
This would prove that #;(GlY=1 and hence the required convergence
for the one-period problem holds with y; (and hence ¢*) probability

one. Now the details!

The Zero Discount Factor Problem (5,=0): aAssume 6;=0 for all players

ieI; hence each player is solving a one-period problem. We define
one-period analogues of the definitions of correlated equilibria in

the obvious manner: For each ieI, 6;e9;, and qeP(S),

Y/ (6,,q) = {seS;: s € Argmax §u,(8,,.,s,)g(ds,|s)} (12.1)
¢l (8,)={gqeP(5): q(¥/(8,,q))=1} (12.2)
¢ (8)=n,Cl(8,) where 0={6.},. (12.3)
¢l = {(1,8°): w(ds, |s") »= Cl(6,(1))} (12.4)
G = {(7,8%): w(ds,,|s") > C'(8(r}) for all ieI}. (12.5)

We seek tco show that

' ({(1,5%)€eG and (8.2’) holds})=1. (12.6)

We however have the following:
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Lemma 9.1.1. To prove (12.6) it suffices to prove that for each

ieI, m(Gl)=1.

Proof. on &/ any convergent sub-sequence of {p;(d8,.[s") )"

converges to the set cl(6,{1;)). From Theorem 8.2 we know that on
some set W with g’(W)=1, the measures ;(ds,,|s") and p;(ds,,|s
become closer and closer to each other as n»=x for each i and j in
I. Hence it is easy to see that on G/nW,

W (ds,|8") = C'(0,) for all jeI. (12.7)

Hence on n,G/mW, (12.7) holds for each i and j in I. Since C'(§)

- n,Cl(8,), we conclude that on ry,G/nW, p(ds,,|s” == cl(#) for ail

jeI. Hence n,G/nW is a subset of G'. For (12.6) it therefore
suffices to show that p'(ng G/nW)=1. We already have p'(W) =
Hence it remains only to show that p'(G')=1 for each i in I. For

thig, from condition (GGH) it is easy to see that it suffices to

show that u,(G/)=1 for each ieI. //

From now onwards we fix an iel. For ease of exposition we
identify S; and S, with the number of distinct elements they
contain. Fix any x and y inSRS4. We let x.y denote their inner
product. The vector x shall be called a rational vector if each

-

of its coordinates is a rational number. Any probability over §;

is an element of m54 ; it will be called a rational probability

if it is a rational vector. ©Let %Z={1,2,...}, the set of all
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positive integers. Define for xR and keZ,

B(x,1/k) = the closed ball with center x and radius 1/k; (12.8)
3 = {B(x,l/k)|xéR&‘ and x is ratiopnal and keZ}; (12.9)
g={qeR > |q.x20}; (12.10)
& = {¢] xeR %9 and x is ratiomal}; and (12.11)

and define the cartesian product,

J = {(x,}a,qb,k):xeﬁ)‘ts“ir and x ig rational, Be3, ¢e® and kez)} (12.12)

Note that the "index" set J is a countable set.

Define P(1,s;) to be the set of all probability distributions
of play of the other players against which the action s;'eS, is a

best response for the player i of type 7i; i.e.,

P(T, 5;) E{Qiey(s—i) I s,.'EArgmax fu (0,(7),.,8,)q;(ds,) } {12.13)
It is easy to check that P(7,s;) is compact and convex. We

therefore conclude from the separating hyperplane theorem that if

v, & P(7;,8") then »; and P(7,,8’) can be "separated" by some vector

x. More precisely, the following can easily be shown:
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Lemma 9.1.2. Fix any 7,eT, s,€S, and »,eP(S,). Suppose that P(7,s)

is non-empty and v, €& P(1,8). Then there exists a (x,B,¢,k)ed
such that v,B, P(1,s’) & ¢ and "x separates the sets B and ¢ by at
leagt 1/k"; i.e., for all beB and pe¢,

b.x « -1/k <« 0 = p.X. (12.14)

If (1,s8%) € G! then there exists a sub-sequence of dates and
an s;'€S; such that for each date n in the sub-sequence
(i) Sps1=S; ; and
(ii) along that sub-sequence of dates, p, (ds,| 8", s,,4;) converges
to some v, ,eP(S,) such that
(iii) s; 1s not a best response for the player of type 71, when

the other players are choosing actions according to v,.

(1) - (1ii) implies that P(7;,s;') is non-empty and »; & P(7,s/).
Lemma 9.1.2 therefore implies that there exists a (x,B,¢,k)eJ and

a sub-sequence of dates such that for each date n in the sub-

sequence,

(1) w (ds,;| 8", 8pyrs T €EP(T;, 87 )S¢

(417) w(ds,| ¢, 8,,,) € B; and

(1ii*) the vector x geparates the sets B and ¢ by at least 1/k

in the sense of (12.14).
In lemma 9.1.4 below we show that for fixed s¢S; and fixed

{(x,B,¢9,k)ed, the probability of (i’)-(iii’) occurring is zero.
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Since 8, and J are both countable this in turn implies that the
probability of (i’)-(iii’) occurring is =zero. This would then
prove that u(G')=1. From Lemma 9.1.1. this will in turn prove
Theorem 9.1 for the éﬁo.case.

For ease of exposition we adopt the following notation:

ﬂm(-)Eﬂi(-lsnrsmH)a F‘iw(-)EPi(-|Sm)r i (- [85)= (| 8% Sinw1s Sinar=84) 4
Pin (85} = iy ( {swa=84}), and P (sil7) = p {Sms1=S:} 8% Sigsrs Ti) - We
emphasize that in all of the above conditions on s.,,. We

proceed with the following claim:

Claim 9.1.3. Fix any subset D of T and any vector of actions s,€S;.

Then on a set of sample paths having p, probability one, (which may
depend upon D and s,),
lim,.. [t (D|84) i (S4) -the (D) piy (8,)] = 0.

Proof of Claim; From the Martingale convergence theorem it is easy

to see that outside of a set of sample paths with u; probability
zero,

1im, . p, (D) = P (D) (12.15)
(See, e.g., Chung, i974, Theorem 9.4.8.) If, in addition, s;,=S;
infinitely often then s"'=(s",s,,;,8;) so

1im,.. p, (Dis,)=1im, . p (D|s"*')=p, (D) (12.16)

Define

Q' ={(7,8%)eTxS*| 1im, ,p, (5,)%0} | (12.17)
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on Q', ZIo p.(s;) =w. Hence from the conditicnal Borel-Cantelli

Lemma (see, e.g., Chow et. al., 1971, p. 26}, we may conclude that
outside of a set of sample paths with y;-probability zero, on Q
S,4+1=8,; infinitely often. Hence (12.16) holds on Q’. It is easy
to see that the claim holds whenever (12.16) holds. Hence the claim
holds on Q’. Outside of @', lim,.p4,{(s;}=0 and the claim holds

trivially. //

Lemma 9.1.4: Fix any s'¢S, and (x,B,¢,k)edJ. Suppose that x

separates B and ¢ by 1/k (i.e., (12.14) holds). Define
E,'=((1,8") | Sp =5 };

E,r={(7,8") |, (ds,;) €B};

E"={(1,8%) |y, (ds,;| 7.} eP (7, 8 })=¢p} and

E= {(7,8%}|E,"nE,"nE,” occurs for infinitely many n}.

Then p,(E)=0.

Proof. The number of coordinates of the vector x is equal to the

number of elements in S;. In particular, for each s,eS, there will
be an associated real number, which we denote by x(s;}. Fix any

s; €S; and (x,B,¢,k)eJ and suppose that (12.14) holds. Define

D={1,€T,|P(7,, s ) is non-empty and is contained in ¢}. (12.18)

Now, on the event E,'={s,,,;=s"}, p.(ds,|7,)eP(7,8'). If 76D then
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P(n,sf) C . Hence for any 7,D, on E,’ we conclude from (12.14)
that x.pu,(ds;|7)=20. Integrating this inequality over 7D with

respect to p,(dr;) implies that on E/’,

fo T g =% (84) o (8] T) hyy (AT;) =§p [x. iy, (A8, 7,) Ty (AT ) 2 0O (12.19)
¥

From Bayes’ rule, for each s;eS,, §pmn(sil7)puldr)= o (D85) i (85) -

(12.19) therefore implies that on E,’

ES, x(s,) p, (D] s,) i (8,) = 0. (12.20)

Define E,’={E,’ occurs infinitely often}. Fix any sample path in
E.’ and let {n{k)}%.-, be a sub-sequence of dates when E,’ occurs.
Then taking limits in (12.20) and using Claim 9.1.3 we conclude
that on E_’,

Moo (D) 1iminf, ., X.ppey = 0. (12.21)

On the other hand on E,", Uq.€B and so from (12.14) X.pys-1/k.
Hence on the event E, "=(E,”’nE" occurs infinitely often}, (12.21)
implies that

U, (D) =0.  (12.22)

Integrating (12.22) over the set of s® in E_ " (and note that E_" is

indeed s®-measureable), we conclude that y(DxS*NE ")=0. It

44



(1,,s")€E,”, then P(7,s’) & ¢ so 7,.D. Hence E & DxS%. By
definition, we also have that E & E_,". Hence ;(DXS"nE_")=0

implies that p(E}=0.//

Proof for the §,>0 problem: ©Let G be as in Theorem 9.1, the set

where there is convergence to the set of correlated equilibria for
the infinite horizon problem. Fix any sample path (7,s%)#G. Then
from the definition of a correlated equilibrium in section S5 it is
straightforward to see that this implies that there exists an ieTI
and a sub-sequence of dates such that for each date n in the sub-
sequence p,(.|s® & ¥ (6). Obsgerve that in ¥(#), each player’s
current period action is the solution to the maximization of an
infinite horizon problem. From standard dynamic programming
arguments the actions which are sub-optimal for the infinite
horizon problem are also sub-optimal for the version of the problem
with some long but finite horizon, L<w.

Indeed, fix any finite horizon L=1,2,.... Fix any 6. We

define the L-horizon expected utility function as follows: Fix any

action s €S, and any probability measure Q% ¢ P(S;xI,.,8). Define
Uk (8, 85) =Ly, [6,(8,) 1"y, (0, s,) and
RM(8,, 87, Q") =fU" (8, s 8.4, {Sn}Ln=2) olo g {(12.23)

where the integral is taken over the vector (s,,{s,}%-,) with

respect to the measure QY;,. Define for any Q. e¢P(sSh,
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YL (9,,0") = (s7eS;: s'e¢ Argmax R'(4,, .,0",), where (%, is the

marginal of Q(.|s,=s') on Sx{s,}r.-.}: (12.24)
and CE(0,)={QFeP (S} : Q" (Y-, (8,,0Q") )=1}. (12.25)
Fix any s“eSY and suppose that py(.|s™ €& C,(8). Let uly(.|sW)

denote the marginal of puy(.}s") on 8. Then from standard dynamic
programming arguments there exists a finite horizon L sufficiently
large such that ply(.]|sV) & cl(4,).

Now congider a new fictitious game where one period of the
fictitious game equals L periods of the original game. Player i in
period one of the old game, player i in period 2, ..., player i in
period L. now become distinct players in the fictitious game.
Player i at date L+1 of the old game becomes in the fictitious game
a player at date 2. Etc. Hence in the fictitious game there will
be Lx(#I) players. The L-horizon game in the original game
therefore becomes a single period game in the fictitious game. If
in history sV the distribution of the next L-periods, uby(.|s"),
does not belong to Cl(#,) then player i at date one is choosing in
the fictitious game a sub-optimal action against uhy(.|sY). From the
results for the single-period problem we know that this can not
happen infintely often. Hence at each date each player is choosing
actions which are optimal for the L-horizon problem for all L
sufficiently large. Hence these actions must be optimal for the

(continuation) infinite horizon prcblem. //
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Proof of Theorem 9.6. Fix any probability p over TxS®. Let &£ denote

the class of closed intervals in {0,1] with rational end-points.
Note that the class &£ is countable. Then we have the following

claim:

Claim: For each (7,s8”), excluding possibly a set with zero pu-

probabilty, the following is true: For all Aef and s’eS, if we

define z ;= 1 (i ({s,=s"}| ") eA} * then on the event where
E::lzﬂ—.l =0,

LiMg.. Zh,l (8,287 z,./Th 2., € A. (12.26)

Proof of Claim: Fix any peP(TxS*). Since £ and $ are both countable

it suffices to prove that (12.26) holds pu-a.e. for a fixed Aef and
s'¢S; so fix any such A and 8°. Let z_, be as in the claim. Define °

y.=1 (s,=5") - Now, E(y,|s™")=u({s,=s"}]{s"!). Hence whenever

Z,y=1, E(y,|s™) .z €A Therefore, on the event where I,.,z,,>0,

Lim,.. TN E(y,|s].z,,/T 2, € A. (12.27}

Define §=y,-E(y,|s™) where the expectation above is taken with
respect to the conditional probability p(.}s"!). Then E[{.[s"!]1=0

and |£,]s1. Using the Martingale Convergence Theorem and
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Kronecker’s lemma it is easy to show the following (see Taylor,

1974): On the event where I,z ,=w,
Limy., I, Ef,|s™].2,,/tN 2, = 0 (12.28)

(The Taylor (1974) argument uses independence of {_, but this in not

required. Indeed, define Mg=zrl [z,,¢./I" z,] whenever the

denominator is non-zero (and set My=0 otherwise). Since
E[f(,]s*11=0, {M}"y-; is a Martingale sequence with respect to

information generated by partial history of actions. Since |£,|s1,

E[MQ]SEﬁsz/(Eaﬂhﬂ2. One may then proceed just as in Taylor

(1974) : Lemma 1 of Taylor (1974} implies that EMy’<2; the Martingale
convergence theorem implies My converges; Kronecker’s lemma then
implies (12.28).)

From (12.27) and (12.28) we may conclude that (12.26)}
holds.//

Proof of Theorem 9.6 (Cont’d): part (b) of the Theorem is the same

as the claim above. To prove part {a) of the Theorem we proceed as
follows. Fix any sample path and let » as in part (a) of the
Theorem. Fix any s’ in the support of ». Let {A*}™._, be a sequence
of intervals in £ monotonically decreasing to the point »{({s’}). If

p{{sps=s8'}|e") converges to »({s'}) then pu({s,,,;=s"}|s") eA* for all n
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sufficiently large. In particular, if z, is defined as in the claim

above but with A=A,, then z,=1 for all n sufficiently large. Hence,
the claim implies that for each k, lim,.,, Eill {s:=sW/NEA*‘ Taking
n

limits as k—»» then proves part (a) of the Theorem. //
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