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THE STATISTICAL PROPERTIES OF DIMENSION CALCULATIONS

USING SMALL DATA SETS: SOME ECONOMIC APPLICATIONS

I. Introduction’

Recently there has been an increase in the resources invested in the
study of nonlinear dynamics. Originating in the natural sciences,
applications of the theory have spread through various fields including brain
research, optics, meteorology, and economics. The revived interest in
nonlinear dynamics was sparked by the discovery in the natural sciences of
processes characterized by deterministic chaos; that is, highly complex
behavier that is generated by relatively simple non-linear functions.
Observed time series generated by chaotic processes appear to be random
utilizing conventional time series methods such as time series plots, auto-
correlation functions, and spectral analysis.

However, while empirical studies in the natural sciences are
characterized by large data sets, often numbering in the tens of thousands,
data sets in economic applications usually consist of less than one thousand
observations. Consequently, statistical procedures designed in the former
context may not be appropriate in the latter.

The correlation dimension, a measure of the relative rate of scaling of

the density of points within a given space, permits a researcher to obtain
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topological information about the underlying system generating the observed
data without requiring a prior commitment to a given structural model. If the
time series is a realization of a random variable, the correlation dimension
estimate should increase monotonically with the dimensionality of the space
within which the points are contained. By contrast, if a low correlation
dimension is obtained, this provides an indication that additional structure
exists in the time series -- structure that may be useful for forecasting
purposes. In this way, the correlation dimension estimates may prove useful
to economists wishing to scrutinize uncorrelated time series or the residuals
from fitted linear time series models for information on possible non-linear
structure. Furthermore, the correlation dimension can potentially provide an
indication of the number of variables necessary to model a system accurately.

Three terms that are frequently used in this literature are "attractor",
"embedding dimension"”, and "orbit" and should be at least intuitively defined
in this paper. An "attractor" in the context of dynamical analysis is that
sub-set of points towards which any dynamical path will converge; that is,
the dynamical path is "attracted" to a subspace of the space containing the
paths of the dynamical system from any initial condition. "Embedding
dimension" is the topological dimension of the space in which the attractor is
situated; loosely stated the embedding dimension is the number of axes needed
to portray the attractor. Topological dimension specializes in vector spaces
to the usual notiocn of Euclidian dimension. "Orbit" is essentially a synonym
for the dynamical path, but also implies the notion that the dynamical path
revisits any given part of the attractor infinitely often.

Recent economic empirical applications of the correlation dimension

include Barnett and Chen (1986 a,b), Brock (1986), Brock and Sayers (1986),



Frank and Stengos (1987 a,b), Gennotte and Marsh (1986}, Hsieh (1987), Sayers
(1986, 1987) and Scheinkman and Le Baron (1986, 1987). By the standards set in
the physical sciences, the sizes of the data sets used for these analyses have
been minuscule.

There is increasing concern over the application of the correlation
dimension procedure to small data sets, even within the physics community.
Furthermore, no finite sample distributional theory exists for the correlation
dimension estimator. However, Brock, Dechert and Scheinkman (1987) provide
asymptotic results when the observed points are generated by an independently
and identically distributed set of random variables.

The work of Ramsey and Yuan (1987), which examines the statistical
properties of dimension estimates and their variances, provides some insight
into the finite sample properties of correlation dimension estimators. They
have estimated empirical relationships between the conditional mean of
correlation dimension estimates, the embedding dimension, and the sample size
in order to evaluate the small sample biases in these estimators.

The purpose of this paper is to re-evaluate the calculation of dimension
utilized in a few recent economic empirical applications in light of the
results of Ramsey and Yuan (1987) and to present some cautionary remarks for
researchers attempting application of the correlation dimension algorithms.

In particular, it will be argued that potential biases are created in the
dimension estimation process due largely to small sample size. These biases
are dependent on the embedding dimension, the relevant time delay parameter,
and the region used to estimate the relative rate of scaling; &all of which

must be carefully chosen if highly misleading results are not to be obtained.



gection II summarizes the theory of correlation dimension and its
estimation, together with a brief summary of the difficulties that are
jnherent in dimension calculations. Section II1 presents the models that were
examined and the results of our reexamination of previous research. Section IV
contains our conclusions.

For the impatient reader, the main conclusion 1is that while there is
abundant evidence for the presence of non-linear stochastic processes, there
is virtually no evidence at the moment for the presence of simple chaotic

attractors of the type that have been discovered in the physical sciences.

II. Correlation Dimension: Definition and Estimation.

Reviews of the correlation dimension procedures that are written with the
economist in mind include Brock(1986), Brock, Dechert, and Scheinkman(1987),
Brock and Sayers(1986), Barnett and Chen(1986a,b), and a more detailed
evaluation of the details with a guide to the relevant physics literature is
Ramsey and Yuan(1987). The basic idea underlying the calculation of dimension
is relatively easily stated.

Any sequence of points, {x.), generated by some mechanism, whether
random, chaotic, or otherwise, can be transformed into a sequence of d-tuples,
(Xt1ﬂ%z"---xtd)- These d-tuples, regarded as points in a d-dimensional
Fuclidian space, can be "plotted” and properties of the cloud of points so
created examined. The choice of the value of "d" is the choice of "embedding
dimension"; it is the size of the Euclidian space into which the original
sequence is being fitted. If the generated points are from observations on a

random variable, then as d, the embedding dimension, 1s increased without



bound and assuming an unlimited sample size, the size of the space into which
the d-tuples will fit is d for all values of d; that is, random variables are
space filling. But if the points are generated by a mechanism that is
deterministic, or at least one that produces a shape that requires only "k"
dimensions, then as the embedding dimension is increased without limit, the
dimension of the points will not increase beyond "k". Imagine, for example, an
ellipse, which is an object of dimension 1, that requires at least Euclidian
dimension 2 to be observed, but no more; consider embedding an ellipse in a 3
or 4 dimensional space: the dimension of the ellipse is still 1.

Unfortunately, the objects of interest to us involve more complicated
structures. The simplest intuitive example is to imagine a mechanism that
produces points that are best described as the Cartesian product of the unit
interval and a Gantor set; a Cantor set is obtained by deleting middle thirds
from the remainder of the unit interval obtained by deleting middle thirds at
a previous iteration. This idea can be extended to any number of Cartesian
products.

Finally, there exists a set of problems that are particularly severe in a
non-experimental discipline like Economics. These problems involve the
extended "maintained hypothesis" that is needed in economic analysis, as well
as in other non-experimental disciplines. In the problems examined to date in
physies and chemistry, the simple dichotomy of: "either an attractor, or the
data are merely high dimensional noise" has been considered to be appropriate.
But this is not the case in economics. The extended maintained hypothesis
must include as alternatives the options that the data come from ARIMA or non-

linear stochastic processes.



Even more damaging to a simplistic version of dimension calculation is
the realization that often researchers mistakenly perform dimension analysis
on data that are highly auto-correlated; this procedure vitiates any
conclusions that might possibly be made. This is because dimension is a
topological concept and at certain scales of magnification of some stochastic
processes, the dimension is in fact quite low; for example, the dimension of a
geometric random walk, is at intermediate scales, about 1.1: a geometric
random walk can be regarded at such scales as a highly convoluted line, giving
it a topological structure that is of dimension slightly higher than that of
a line. What is worse is that if the data are generated by a simple ARMA
process with long auto-correlation lag, that is, a long period before the
auto-correlations die to zero, then dimension calculations with such data will
produce, over a range of scaling values, low dimensional results.

The problem for all experimental data, even if there were a perfectly
well defined and recoverable attractor, is that at small enougﬁ scales the
dimension is that of noise. Thus, the practical problem of trying to
distinguish between attractofrs, auto-correlated processes, and non-linear

stochastic processes is a real one.

The Grassberger-Procaccia (1983 a,b,c) algorithm will be utilized
throughout this paper. Let the ordered sequence {X,), t =1,...,N, represent
the observed time series. Then, for a given embedding dimension d, create a
sequence of d-histories,

(2.1) {(Ryy Rpppreoons Kerca-1yr) ) -
Here, 7 stands for the time delay parameter. The sample correlation

integral is given by,



(2.2) PAR D YR T e L R S PR

r>0, x; = (XX -0 s Ri4qa-1yr) *
g(.) is the Heaviside step function which maps positive arguments into one,
and non-positive arguments into zero. Thus, #(.) counts the number of peints
which are within distance r from each other. "r" is the scaling parameter. The

. N .
calculation of C_ 1is useful because:

(2.3) . lim C} » €,
—c0
-0

+
and dlnC_/dlnx = Dy,
whenever the derivative 1s defined, Guckenheimer(1984) ; D, 1is a member of a

general class of dimensions Dg, q = {0,1,2,...), defined by:

D, = -1in1Kq(r)/1n(r)
-0

(2.4

K, = (1-97'ln 2R (0"
where P;(r) 1is the probability of a point of the attractor being within r
of the ith point, N(r) is the number of such boxes needed to cover the
attractor, and K, 15 the Kolmogorov-Sinal (metric) entropy; details are in
Badii and Politi, for example. In the rest of the paper, D, will be
designated dc to stand for correlation dimension. The dc is a measure of
pointwise dimension, dp. Pointwise dimension , see for example, Farmer, Ott,

and Yorke(1983), measures the relative rate of change in the number of points



on the attractor as the diameter of the covering sets is decreased. Pointwise
dimension and related concepts differ from capacity and Hausdorff concepts in
that they reflect the probability structure of the attractors; purely metric
concepts, such as capacity, count all coverings equally, no matter how low the
relative frequency of visitation by the orbits.

Correlation dimension is usually estimated from experimental data by a
linear regression of the observed values of 1In Cf on ln r over a suitably
chosen sub-interval of the range of r, (0,1). The estimated slope coefficient
of this regression, designated hereafter as d¢, is the usual estimator of
correlation dimension cited in the literature and is the basic variable used
in this paper.

However, there are a number of important qualifications to this seemingly
simple procedure. First, an important practical issue involves the appropriate
choice of the scaling region r actually used to calculate dc. While the
theory discusses the properties of C, as 10, the reality is that the range
of r wused is far from zero and inevitably increases away from zero as
embedding dimension is increased. Smaller values for r require substantial
increases in sample size at any given embedding dimension in order to be able
to determine a logarithmic linear relationship between €, and r. In fact,
the relationship between 1nC, and 1lnr is only approximately linear over a
relatively narrow range of values for r. For large values of r, C_
saturates at unity so that the regression of InG, on Inr 1is zero.
Further, as the value of r declines towards zero even with very large data
sets, two complications arise; one is due to the limited precision of the
data series and the other is due to the inevitable presence of noise. The

former problem sets a practical lower bound on r before C, collapses to



zero and the latter difficulty offsets the decline in values of G when Y
reaches the level of the noise scales. Consequently, the negative slope of
lnC, on Inr starts at zero, increases first at an increasing rate, then
may remain constant for a short range, before increasing again, and then falls
very sharply.

Wwith limited data sets a further problem occurs in that the plot of 1n
C, on lnr for sufficiently high dimension becomes & step-function for
certain ranges of r values, so that the estimation of slope becomes
problematic at best. Ranges of r values which produce reliable slope
estimates at lower embedding dimensions will yield apparently very low numbers
at higher embedding dimensions. A similar phenomenon is observed as T
decreases to very low values with fixed embedding dimension and sample size.
This phenomenon is caused by the relative scarcity of data points so that G
remains constant for sizable intervals of r values. This problem is
particularly difficult with random models.

The practical implications of this are that the choice of r values with
respect to which de can be usefully calculated is difficult at any given
embedding dimension and is doubly so if one is to avoid biases induced by
changing the choice of r-region as embedding dimension grows; that is, one
needs to avoid moving the r-region too close to the saturation level in
response to the above mentioned difficulties. Further, if low scale noise is
present, then the appropriate range of r for the calculation of dimension
shrinks dramatically.

A subtle aspect of the "choice by eye" of the linear region is that when

one is already aware, or believes one is aware, of the true slope coefficient,
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there is a natural, albeit unconscious, proclivity to choose the "right"
value.
Yet another problem is due to an incorrect assumption about the nature of the
regression to be used. The traditional model assumes,
(2.9) In G, =a +b In(r) +u
where b is an estimate of dc, and u is an independently and identically
distributed normal error term that is distributed independently of r. Thus,
the variance of u generates the variance in estimating the dimension as
represented by the coefficient "b". Ramsey and Yuan (1987) present an
alternative and more appropriate random coefficient regression model of the
following form,
(2.6) In G, = a(e|N,ED) + b(e|N,ED)In(r) + u
where the variance of u is very small relative to the variance of e for small
N and large ED. "e" represents an experimental error term whose distribution
is dependent on the sample size, N, and the embedding dimension, ED; e is
assumed to be distributed independently of u.

Ramsey and Yuan demonstrate that the conditional mean of the estimate of
de depends both upon the sample size and the embedding dimension in the

following manner,

= 73
(2.7)  In (kbde) =73 + MNP + 4N [Exp (v/ED™y) . 1.0],

where dc is the mean of the estimator dc.

This equation is not as parameter extensive as it would appear. The parameter
k equals zero or one. Its purpose is to improve the approximation for very
low dimensional attractors and to allow <, to be strictly positive for

attractors. It could easily be set to O for all data sets with little serious
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impact on the overall results;this is the case in this study. The right hand

side of equation (2.7) can be considered in two parts:

(a) (7 + 7,8
(2.77)

(h) (v,N"5[exp(vg/ED"7) - 1.0]).
The expression (v, + 72N73) indicates the main effect of small sample size on
the expected value of the estimator dc. For random variables that scale
monotonically in ED, v, = 0 and both vy, and vy, are positive; that is,
the limit towards which the term (2.7'b) is approaching is given by 7,N"3;
the larger N, the larger the limiting value for dc expressed as a function of
ED.

If, however, one has an attractor, then <y, > 0 and v, < 0, so that as
N =+ « the small sample bias provided by the term 12N13 goes to zero; one
would expect <y, to be -1.0 for attractors with low dimension. The asymptote
as both N and ED -+ =, but such that l&m ED/N =+ 0 1is given by v,.

lim 1In(l+de) = 7,, or lim dc = e"1-1.
F2a

B

The second part of the expression shown in (2.7'b) models the bias effect
due to the embedding dimension. For both random and attractor generated data,
one expects vy, to be negative, but vy, to be positive so that the approach
to the limit is a sigmoid shape. The factor 74N75 modifies the ED bias
effect. vy, seems to be negative for attractors and zero for random
variables. Thus, for low dimensional attractors the effect of a downward bias
on de due to small values for ED declines as N increases. v, depends on
the units of measurement chosen for ED and the relative weight of the ED

effect to sample size, N.
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The funectional class, defined up to parameter values in equation (2.7),
seems to be sufficiently general so as to be able to describe the bias scaling
effects of a wide variety of alternative models, including simple attractors
and random numbers. The equation would seem to be sufficiently general as to
provide at least useful guidance for other, and perhaps less simple,
attractors. It is to be hoped that while the coefficient values of equation
(2.7) are clearly model specific, the form of the equation is invariant to a

wide class of attractors and a wide class of distribution functions.

The authors found that dimension estimates for random signals are downward
biased, while for chaotic signals the dimension estimate is upward biased for
all, but very small values of ED,

In addition, this relationship contains a test for differentiating between
low dimensional processes and random phenomena. If the underlying model is a
random variable, then k=0, ¥, = 0, and v,, Y3 > 0. If the observed sequence
of observations is being generated by a low dimensional process, then k=1, v,
> 0, and v, < 0.

One of the implications of equation (2.6) is that the usual formula for
the variance of the estimator of the parameter "b" is inappropriate; indeed,
the usual estimate is a gross underestimate of the true variance as has been
documented by Ramsey and Yuan.The equation that expresses the relationship

between the actual standard deviation and the design parameters, N and ED is:

(2.8) In(Std) = a; + a,lnN + o InED + a,ED/N,
In general, the standard deviation increases in embedding dimension, and

decreases in sample size. However, the relative effect of ED is much greater
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than that for N; that is, small increases in ED must be offset by
proportionately much larger increases in N in order to maintain a given
variance. Ramsey and Yuan obtained estimates of the parameters in equation
(2.8) by calculating dec for multiple repetitions of a given sample size,N, and
for each value of ED. However, given the very small sample sizes involved in
the studies examined in this paper we are unable to use this approach. This is
a serious deficiency. While the ordinary least squares estimator of the
variance is a linear function of the actual variance, the OLS estimate is a
small fraction of the actual variance: the ratio varied anywhere from only a
fifth to a low of 0.006 for the models studied in Ramsey and Yuan(1987). An
idea currently under investigation is to use a Bootstrap procedure to provide
a more realistic lower bound to the actual variance. What is very clear is

that the OLS estimate is virtually useless.

III. THE ECONOMIC DATA AND THE ESTIMATION OF EQUATION (2.7).
We chose to examine the data sets utilized in Barnett and Chen (1986
a,b), Sayers (1986, 1987), and Scheinkman and Le Baron (1986).

Barnett and Chen assert evidence of chaos in the demand Divisia monetary
aggregates. Our efforts concentrated on the demand Divisia M2. This choice
was dictated in part by our wish to concentrate on the more important results
of Barnett and Chen and in part because we discovered very little difference
between the Divisia demand indices for M2 and M3: why there is almost an exact
linear relationship between Divisia demand M2 and M3 we have not discovered.
The sample period is "weekly" from January 1969 to July 1984, N=807. The data

source is Fayyad (1986). The basic procedure that Fayyad seems to have
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followed is to apply the Divisia procedure to the components of monthly M2, or
monthly M3, data series as published by the Federal Reserve, and then to
generate a weekly series by spline interpolation at an approximate period of
0.23 to represent a week's fraction of a month. Consequently, only a very few
of the original monthly data points are contained in the constructed "weekly"
data series; the corresponding number of monthly data points is about 200.

Sayers (1986, 1987) used man-days idle due to work stoppages, monthly
figures from January 1928 to December 1981, N=648, as published by The Bureau
of Labor Statistics.

Scheinkman and Le Baron utilize Center for Research in Security Prices
(CRSP) data. They have indicated finding a dimension of about 4.5. These data
are value weighted daily stock returns, with a sample size of 5200 daily
returns. Weekly returns were obtained by simple compounding of the daily
returns; the details are contained in Scheinkman and Le Baron(1986).This
procedure yields 1227 weekly observations.

Our analytical procedure with respect to each data set was as follows.
The first step was to replicate each author’s published results. Except for
minor errors due to differences in algorithms or computer word size, we were
able in all cases to duplicate the original results: given the experience of
one of the authors of this paper, this is a testimony to the care taken by all
of the above mentioned researchers.

The next step was to split each sample into sub-samples of 200, 400, 600,
800, etc. observations in order to attempt to estimate equation (2.7). The
original idea was to obtain sub-samples by random sampling of the initial
starting value. However, problems that we encountered with the Scheinkman data

led us back to a sampling procedure that was more systematic for that data
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set. The problem that we encountered is of considerable interest and will be
discussed below. For each set of sub-sets of data, we estimated dc in the
standard manner, for ED = 2,3,...25, if the data set could sustain such a high
embedding dimension. In particular cases, the highest sustainable dimension
was as low as 8. The final Step was to regress the estimated dc on N, sample
size, and ED, embedding dimension, as discussed with respect to equation
(2.7). The estimated equation was then analyzed in accordance with the
discussion above, in order to try to resolve the issue of whether the observed
time series indicated the presence of a chaotic attractor. In addition the
data were randomized in terms of their time order and the whole procedure
repeated with the randomized data.

IV. Results

Figures R.1 to R.3 demonstrate in a striking manner the difference in the
relationship between the estimated dimension, sample size, and embedding
dimension that was discovered in the context of known attractors and known
distributions. These Figures will provide a useful benchmark of comparison for

the results on the economic data analyzed in this paper.

Sayer's Work Stoppage Data.

Figures S.1 to $.4 and Table §.1 summarize the results of applying the
procedures discussed in this paper to the work stoppage data. These data
provide the clearest impression of structure that might have low dimension.
The dimension calculations were performed at a lag of 5 which represents the

lowest lag with zero auto-correlation. However, one must be extremely cautious
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about any conclusions, because the number of data points is so limited.
Nevertheless, the results are intriguing.

A comparison of Figures 5.3 and $.4, together with an examination of
Table 5.1, indicates that there is more evidence of structure in the raw data
than in the randomized data. However, with real as opposed to simulated data,
especially when using strictly limited data sets, difficulties with estimating
the coefficients occur. Examine the estimates for 7, and vy, for the randomized
data. By the analysis in Ramsey and Yuan (1987) vy, should be zero and Ty
should be positive, whereas the estimated values are 4.97 for v, and -0.06
for 7v,;. But both estimates have t-ratios that are about .1; that is, the
standard deviations are about 10 times the size of the coefficients, In
addition, the limited extent of the data produces very elongated confidence
ellipsoids. Consequently, the randomized Sayers’ data produces an estimate of
v, that is very large and offsets that with an estimated value of 75 that is
negative, instead of the theoretically predicted values of Y, = 0 and v, > 0,

The results for the raw data indicate an estimated asymptotic value for
the dimension of the data of 0.214, but the actual value could easily be as
high as 1.68 at an approximate 95% confidence level; a value of 1.6 to 1.8
seems to be a common finding in economic data. But the reader is warned that
the estimated standard errors are usually fractions of those indicated by the
standard analysis, see Ramsey and Yuan (1987). The remaining coefficient
estimates seem to have reasonable values; for example, the power on the
additive term in N is approximately -0.5, (actual value is -0.62), which
agrees with the usual square root law of asymptotic convergence. The original
estimates by Sayers were in a range of about 5.0 to 10.0, depending on sub-

sampling size and scaling region used. While these results would indicate the
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probability at least of a low dimensional result, one cannot conclude from
these results alone that one has an attractor. However, one can conclude that
these data are neither random, nor simple ARMA processes.

The results produced in this paper can be regarded as a modest

improvement in the determination of dimension using these work stoppage data.

Scheinkman and Le Baron Stock Market Data

The results are summarized in Figures Sc.l to Sc.4 and Table Sc.l. The 7
lag used to generate the dimension calculations was 2. While we were able to
reproduce the results quoted by Scheinkman and Le Baron, it soon became clear
that there were difficulties with the inferences drawn by the authors. First,
a careful examination revealed that even with the procedure used by Scheinkman
and Le Baron, there is slight, but perceptible, evidence of continued scaling
of dimension estimates as embedding dimension increases. Secondly, our initial
sub-sampling procedures produced some surprising anomalies that were for some
time quite puzzling, until we discovered the key.

Essentially, the authors cited an attractor dimension of less than 6.0.
But this conclusion is in fact driven by approxzimately 25 observations. In the
second panel of the time series plot for these data at about 625 observations,
the reader will observe that the range of the data suddenly doubles; the data
are in fact non-stationary. The effect of the presence of these observations
in the series is to lower the entropy of the whole data set dramatically,
these data, when normalized to facilitate the analysis, have a long thin tail
of values in the histogram plot with a heavy concentration of points in the

narrow range defined by the bulk of the data. The implication of low entropy



-18-

for random data is that it slows, often dramatically, the rate at which
estimated dimension increases with embedding dimension. Consequently, such
data, especially in the presence of significant auto-correlation, can easily
give the appearance of a low dimensional attractor. We discovered that the
elimination of 25 consecutive data points in this region led to slightly
different estimates for the whole sample, but removed all our anomalous
results with the sub-samples. The 25 observations that we dropped were 626 to
650; these observations cover the period from July 1974 to the beginning of
January 1975. Figures Sc.3 and Sc.4 were produced with the "purged" data.
There is no clear evidence of an attractor in these plots as is confirmed by
the regression estimates for the raw and randomized data sets. Even with
approximately 1200 observations, there are considerable difficulties with the
estimation of the coefficients in equation (2.7). In addition, the reader
should be cautioned to remember that the seemingly good fit of each regression

of In Cr on 1ln r does mot provide a good estimate of the true variance of

estimate.

Barnett and Chen’s Filtered Divisia Money Demand (M2) Data

The results of our efforts are summarized in Figures B.1 to B.5 and Table
B.1. Before proceeding, we should warn the reader that the procedures used to
generate the ’'weekly' data involved spline interpolations from about 200
original data points, not 807 original observations as might be inferred by a
careless reader. A greater difficulty with the original approach used by
Barnett and Chen is that the first zero of the auto-correlation function for

the raw data series is at a lag of approximately 180. As we have seen from the



-19-

discussion of Ramsey and Yuan (1987), it is crucial to a useful interpretation
of dimension calculations that the calculations be carried out at a zero auto-
correlation lag, or at least at the first minimum of the mutual information,
Fraser (1986). With only 807 splined data points, the standard procedure was
clearly impossible.

Our approach was to transform the original data into a stationary series.
We did so by subtracting from the original series a 19 point double sided
moving average filter in order to eliminate from the series the trend and some
of the lowest frequency variation; the corresponding transfer function is
shown in Figure B.3. The chosen r lag was 6.

The raw, but filtered, Barnett data show the least indication of any
structure of the three sets of data examined in this paper; compare Figure
B.4, the plot of the dimensional estimates on N and ED for the raw filtered
data, with Figures R.1 to R.3. While the sign of vy, using the randomized data
is incorrect, the corresponding t-ratic is less than 0.03, so that little
confidence can be placed in the value of its estimate.

Notwithstanding this conclusion, the estimates using the two sets of data
tentatively indicate that there was some effect of the order in the original

data that was lost when the data were randomized.

v. Conclusions

The main question of burning interest is whether or not there is any
evidence of the presence of a strange, or of a chaotic, attractor. The short
answer is no. That does not mean that other procedures, or that the use of new

data, will produce evidence of attractors; but the current evidence based on
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minuscule data sets does not provide any indication of an attractor. A
possible exception to this general statement is the work stoppage data whose
plots show the characteristic shapes exhibited by attractors and their
randomized values. However, even this modest claim must be severely hedged by
the fact that there are only 648 cobservations.

There is evidence of varying persuasiveness of non-linearity in all of
these data. The effect of randomization is clear, even when applied to data
points that are plotted at the zero auto-correlation lags.

The second major pair of lessons is that the calculation of dimension
with small data sets is delicate to say the least and that the procedures
proposed in Ramsey and Yuan (1987) do provide some relief from the stringency
of small sample sizes. By capitalizing on the implicit structure of the bias
relationship between the conditional mean of the dimension estimate, sample
size, and the embedding dimension, one can improve the quality of one's
inferences about the topological structure of non-linear stochastic processes,
if not about the topological structure of chaotic attractors.

One final important insight is that economic data seem to show definite
signs of non-stationarity, even when in differenced form or when low frequency
components have been removed. The typical structure is that of noise
components, or seemingly random variation, that are interspersed with periods

of very high amplitude, but of low frequency
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Table S-1

Regression Results from Fitting

11’1(&) =7t 7, N"3 + Ty N5 [EXP (75/ED17)) "1]

To Sayers "Work Stoppage Data"

Estimated R? Value/
Coefficient Student-t Asymptotic
Data () Estimates Ratios dc Estimat
Original 1 -1.543 -1.495 R = 0.983
2 4,069 3.772
3 -0.621 -4.423
4 2.882 4.313
5 -0.806 -11.358 60 degrees of freedom (DOF)
6 -1.066 -4.921
7 0.537 4.495
Randomized 1 4.967 0.084 R? = 0.988
2 5.310 0.089
3 -0.055 -0.086
4 11.872 0.995
5 -0.032 -0.601 54 DOF
6 -1.192 -1.658
7 0.298 1.189
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Table Sc.l

J— ¥ ¥
In (de) = vy + 7, N2 + v, NPp ( mD7)) - 1

To Scheinkman "Computed Stock Return Data"

Estimated
Coefficient Student-t
Data (v) Estimates Ratios R% Value
Original 1 4,018 1.585 R% = 0.981
2 4.060 0.524
3 -0.121 -1.499
4 11.255 0.850
5 -0.079 -5.269 268 DOF
6 -0.893 -5.815
7 0.160 0.833
Randomized 1 5.340 8.651 R? = 0.998
2 0.646 1.560
3 0.267 1.690
4 7.690 9.211
5 0.032 4,340 165 DOF
6 -0.715 -19.288
7 0.378 8.540
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Table B.1
Regression Results for Fitting
In (dc) = y; + v, N + 4, N' [Exp (v,/ED"7)) - 1]

To Filtered Barnett "Money Divisia Demand (M?) Data"”

Estimated
Coefficient Student-t
Data (v) Estimates Ratios R? Value
Original 1 3.133 1.669 R® = 0.986
2 3.848 0.750
3 3.003 1.156
4 7.683 0.916
5 1.153 7.478 57 DOF
6 -1.294 -2.338
7 0.293 1.001
Randomized 1 6.10 0.122 RZ = 0.982
2 -1.042 -0.029
3 -0.069 -0.034
4 8.029 0.138
5 0.014 0.216 23 DOF
6 -0.515 -0.460
7 0.310 0.140
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